
Chapter 9

Unconstrained minimization

9.1 Unconstrained minimization problems

In this chapter we discuss methods for solving the unconstrained optimization
problem

minimize f(x) (9.1)

where f : Rn → R is convex and twice continuously differentiable (which implies
that dom f is open). We will assume that the problem is solvable, i.e., there exists
an optimal point x⋆. (More precisely, the assumptions later in the chapter will
imply that x⋆ exists and is unique.) We denote the optimal value, infx f(x) =
f(x⋆), as p⋆.

Since f is differentiable and convex, a necessary and sufficient condition for a
point x⋆ to be optimal is

∇f(x⋆) = 0 (9.2)

(see §4.2.3). Thus, solving the unconstrained minimization problem (9.1) is the
same as finding a solution of (9.2), which is a set of n equations in the n variables
x1, . . . , xn. In a few special cases, we can find a solution to the problem (9.1) by
analytically solving the optimality equation (9.2), but usually the problem must
be solved by an iterative algorithm. By this we mean an algorithm that computes
a sequence of points x(0), x(1), . . . ∈ dom f with f(x(k)) → p⋆ as k → ∞. Such
a sequence of points is called a minimizing sequence for the problem (9.1). The
algorithm is terminated when f(x(k)) − p⋆ ≤ ǫ, where ǫ > 0 is some specified
tolerance.

Initial point and sublevel set

The methods described in this chapter require a suitable starting point x(0). The
starting point must lie in dom f , and in addition the sublevel set

S = {x ∈ dom f | f(x) ≤ f(x(0))} (9.3)

must be closed. This condition is satisfied for all x(0) ∈ dom f if the function f is
closed, i.e., all its sublevel sets are closed (see §A.3.3). Continuous functions with

458 9 Unconstrained minimization

dom f = Rn are closed, so if dom f = Rn, the initial sublevel set condition is
satisfied by any x(0). Another important class of closed functions are continuous
functions with open domains, for which f(x) tends to infinity as x approaches
bddom f .

9.1.1 Examples

Quadratic minimization and least-squares

The general convex quadratic minimization problem has the form

minimize (1/2)xTPx+ qTx+ r, (9.4)

where P ∈ Sn
+, q ∈ Rn, and r ∈ R. This problem can be solved via the optimality

conditions, Px⋆ + q = 0, which is a set of linear equations. When P ≻ 0, there is
a unique solution, x⋆ = −P−1q. In the more general case when P is not positive
definite, any solution of Px⋆ = −q is optimal for (9.4); if Px⋆ = −q does not
have a solution, then the problem (9.4) is unbounded below (see exercise 9.1). Our
ability to analytically solve the quadratic minimization problem (9.4) is the basis
for Newton’s method, a powerful method for unconstrained minimization described
in §9.5.

One special case of the quadratic minimization problem that arises very fre-
quently is the least-squares problem

minimize ‖Ax− b‖2
2 = xT (ATA)x− 2(AT b)Tx+ bT b.

The optimality conditions
ATAx⋆ = AT b

are called the normal equations of the least-squares problem.

Unconstrained geometric programming

As a second example, we consider an unconstrained geometric program in convex
form,

minimize f(x) = log
(∑m

i=1 exp(aT
i x+ bi)

)
.

The optimality condition is

∇f(x⋆) =
1∑m

j=1 exp(aT
j x

⋆ + bj)

m∑

i=1

exp(aT
i x

⋆ + bi)ai = 0,

which in general has no analytical solution, so here we must resort to an iterative
algorithm. For this problem, dom f = Rn, so any point can be chosen as the
initial point x(0).

Analytic center of linear inequalities

We consider the optimization problem

minimize f(x) = −
∑m

i=1 log(bi − aT
i x), (9.5)

9.1 Unconstrained minimization problems 459

where the domain of f is the open set

dom f = {x | aT
i x < bi, i = 1, . . . ,m}.

The objective function f in this problem is called the logarithmic barrier for the
inequalities aT

i x ≤ bi. The solution of (9.5), if it exists, is called the analytic

center of the inequalities. The initial point x(0) must satisfy the strict inequalities
aT

i x
(0) < bi, i = 1, . . . ,m. Since f is closed, the sublevel set S for any such point

is closed.

Analytic center of a linear matrix inequality

A closely related problem is

minimize f(x) = log detF (x)−1 (9.6)

where F : Rn → Sp is affine, i.e.,

F (x) = F0 + x1F1 + · · · + xnFn,

with Fi ∈ Sp. Here the domain of f is

dom f = {x | F (x) ≻ 0}.

The objective function f is called the logarithmic barrier for the linear matrix
inequality F (x) � 0, and the solution (if it exists) is called the analytic center of
the linear matrix inequality. The initial point x(0) must satisfy the strict linear
matrix inequality F (x(0)) ≻ 0. As in the previous example, the sublevel set of any
such point will be closed, since f is closed.

9.1.2 Strong convexity and implications

In much of this chapter (with the exception of §9.6) we assume that the objective
function is strongly convex on S, which means that there exists an m > 0 such that

∇2f(x) � mI (9.7)

for all x ∈ S. Strong convexity has several interesting consequences. For x, y ∈ S
we have

f(y) = f(x) + ∇f(x)T (y − x) +
1

2
(y − x)T∇2f(z)(y − x)

for some z on the line segment [x, y]. By the strong convexity assumption (9.7), the
last term on the righthand side is at least (m/2)‖y−x‖2

2, so we have the inequality

f(y) ≥ f(x) + ∇f(x)T (y − x) +
m

2
‖y − x‖2

2 (9.8)

for all x and y in S. When m = 0, we recover the basic inequality characterizing
convexity; for m > 0 we obtain a better lower bound on f(y) than follows from
convexity alone.

460 9 Unconstrained minimization

We will first show that the inequality (9.8) can be used to bound f(x) − p⋆,
which is the suboptimality of the point x, in terms of ‖∇f(x)‖2. The righthand
side of (9.8) is a convex quadratic function of y (for fixed x). Setting the gradient
with respect to y equal to zero, we find that ỹ = x − (1/m)∇f(x) minimizes the
righthand side. Therefore we have

f(y) ≥ f(x) + ∇f(x)T (y − x) +
m

2
‖y − x‖2

2

≥ f(x) + ∇f(x)T (ỹ − x) +
m

2
‖ỹ − x‖2

2

= f(x) −
1

2m
‖∇f(x)‖2

2.

Since this holds for any y ∈ S, we have

p⋆ ≥ f(x) −
1

2m
‖∇f(x)‖2

2. (9.9)

This inequality shows that if the gradient is small at a point, then the point is
nearly optimal. The inequality (9.9) can also be interpreted as a condition for
suboptimality which generalizes the optimality condition (9.2):

‖∇f(x)‖2 ≤ (2mǫ)1/2 =⇒ f(x) − p⋆ ≤ ǫ. (9.10)

We can also derive a bound on ‖x − x⋆‖2, the distance between x and any
optimal point x⋆, in terms of ‖∇f(x)‖2:

‖x− x⋆‖2 ≤
2

m
‖∇f(x)‖2. (9.11)

To see this, we apply (9.8) with y = x⋆ to obtain

p⋆ = f(x⋆) ≥ f(x) + ∇f(x)T (x⋆ − x) +
m

2
‖x⋆ − x‖2

2

≥ f(x) − ‖∇f(x)‖2‖x
⋆ − x‖2 +

m

2
‖x⋆ − x‖2

2,

where we use the Cauchy-Schwarz inequality in the second inequality. Since p⋆ ≤
f(x), we must have

−‖∇f(x)‖2 ‖x⋆ − x‖2 +
m

2
‖x⋆ − x‖2

2 ≤ 0,

from which (9.11) follows. One consequence of (9.11) is that the optimal point x⋆

is unique.

Upper bound on ∇2f(x)

The inequality (9.8) implies that the sublevel sets contained in S are bounded, so in
particular, S is bounded. Therefore the maximum eigenvalue of ∇2f(x), which is a
continuous function of x on S, is bounded above on S, i.e., there exists a constant
M such that

∇2f(x) �MI (9.12)

9.1 Unconstrained minimization problems 461

for all x ∈ S. This upper bound on the Hessian implies for any x, y ∈ S,

f(y) ≤ f(x) + ∇f(x)T (y − x) +
M

2
‖y − x‖2

2, (9.13)

which is analogous to (9.8). Minimizing each side over y yields

p⋆ ≤ f(x) −
1

2M
‖∇f(x)‖2

2, (9.14)

the counterpart of (9.9).

Condition number of sublevel sets

From the strong convexity inequality (9.7) and the inequality (9.12), we have

mI � ∇2f(x) �MI (9.15)

for all x ∈ S. The ratio κ = M/m is thus an upper bound on the condition
number of the matrix ∇2f(x), i.e., the ratio of its largest eigenvalue to its smallest
eigenvalue. We can also give a geometric interpretation of (9.15) in terms of the
sublevel sets of f .

We define the width of a convex set C ⊆ Rn, in the direction q, where ‖q‖2 = 1,
as

W (C, q) = sup
z∈C

qT z − inf
z∈C

qT z.

The minimum width and maximum width of C are given by

Wmin = inf
‖q‖2=1

W (C, q), Wmax = sup
‖q‖2=1

W (C, q).

The condition number of the convex set C is defined as

cond(C) =
W 2

max

W 2
min

,

i.e., the square of the ratio of its maximum width to its minimum width. The
condition number of C gives a measure of its anisotropy or eccentricity. If the
condition number of a set C is small (say, near one) it means that the set has
approximately the same width in all directions, i.e., it is nearly spherical. If the
condition number is large, it means that the set is far wider in some directions than
in others.

Example 9.1 Condition number of an ellipsoid. Let E be the ellipsoid

E = {x | (x− x0)
TA−1(x− x0) ≤ 1},

where A ∈ Sn
++. The width of E in the direction q is

sup
z∈E

qT z − inf
z∈E

qT z = (‖A1/2q‖2 + qTx0) − (−‖A1/2q‖2 + qTx0)

= 2‖A1/2q‖2.

462 9 Unconstrained minimization

It follows that its minimum and maximum width are

Wmin = 2λmin(A)1/2, Wmax = 2λmax(A)1/2,

and its condition number is

cond(E) =
λmax(A)

λmin(A)
= κ(A),

where κ(A) denotes the condition number of the matrix A, i.e., the ratio of its
maximum singular value to its minimum singular value. Thus the condition number
of the ellipsoid E is the same as the condition number of the matrix A that defines
it.

Now suppose f satisfies mI � ∇2f(x) � MI for all x ∈ S. We will derive
a bound on the condition number of the α-sublevel Cα = {x | f(x) ≤ α}, where
p⋆ < α ≤ f(x(0)). Applying (9.13) and (9.8) with x = x⋆, we have

p⋆ + (M/2)‖y − x⋆‖2
2 ≥ f(y) ≥ p⋆ + (m/2)‖y − x⋆‖2

2.

This implies that Binner ⊆ Cα ⊆ Bouter where

Binner = {y | ‖y − x⋆‖2 ≤ (2(α− p⋆)/M)1/2},

Bouter = {y | ‖y − x⋆‖2 ≤ (2(α− p⋆)/m)1/2}.

In other words, the α-sublevel set contains Binner, and is contained in Bouter, which
are balls with radii

(2(α− p⋆)/M)1/2, (2(α− p⋆)/m)1/2,

respectively. The ratio of the radii squared gives an upper bound on the condition
number of Cα:

cond(Cα) ≤
M

m
.

We can also give a geometric interpretation of the condition number κ(∇2f(x⋆))
of the Hessian at the optimum. From the Taylor series expansion of f around x⋆,

f(y) ≈ p⋆ +
1

2
(y − x⋆)T∇2f(x⋆)(y − x⋆),

we see that, for α close to p⋆,

Cα ≈ {y | (y − x⋆)T∇2f(x⋆)(y − x⋆) ≤ 2(α− p⋆)},

i.e., the sublevel set is well approximated by an ellipsoid with center x⋆. Therefore

lim
α→p⋆

cond(Cα) = κ(∇2f(x⋆)).

We will see that the condition number of the sublevel sets of f (which is bounded
by M/m) has a strong effect on the efficiency of some common methods for uncon-
strained minimization.

9.2 Descent methods 463

The strong convexity constants

It must be kept in mind that the constants m and M are known only in rare cases,
so the inequality (9.10) cannot be used as a practical stopping criterion. It can be
considered a conceptual stopping criterion; it shows that if the gradient of f at x
is small enough, then the difference between f(x) and p⋆ is small. If we terminate
an algorithm when ‖∇f(x(k))‖2 ≤ η, where η is chosen small enough to be (very
likely) smaller than (mǫ)1/2, then we have f(x(k)) − p⋆ ≤ ǫ (very likely).

In the following sections we give convergence proofs for algorithms, which in-
clude bounds on the number of iterations required before f(x(k)) − p⋆ ≤ ǫ, where
ǫ is some positive tolerance. Many of these bounds involve the (usually unknown)
constants m and M , so the same comments apply. These results are at least con-
ceptually useful; they establish that the algorithm converges, even if the bound on
the number of iterations required to reach a given accuracy depends on constants
that are unknown.

We will encounter one important exception to this situation. In §9.6 we will
study a special class of convex functions, called self-concordant, for which we can
provide a complete convergence analysis (for Newton’s method) that does not de-
pend on any unknown constants.

9.2 Descent methods

The algorithms described in this chapter produce a minimizing sequence x(k), k =
1, . . . , where

x(k+1) = x(k) + t(k)∆x(k)

and t(k) > 0 (except when x(k) is optimal). Here the concatenated symbols ∆ and
x that form ∆x are to be read as a single entity, a vector in Rn called the step or
search direction (even though it need not have unit norm), and k = 0, 1, . . . denotes
the iteration number. The scalar t(k) ≥ 0 is called the step size or step length at
iteration k (even though it is not equal to ‖x(k+1) − x(k)‖ unless ‖∆x(k)‖ = 1).
The terms ‘search step’ and ‘scale factor’ are more accurate, but ‘search direction’
and ‘step length’ are the ones widely used. When we focus on one iteration of
an algorithm, we sometimes drop the superscripts and use the lighter notation
x+ = x+ t∆x, or x := x+ t∆x, in place of x(k+1) = x(k) + t(k)∆x(k).

All the methods we study are descent methods, which means that

f(x(k+1)) < f(x(k)),

except when x(k) is optimal. This implies that for all k we have x(k) ∈ S, the initial
sublevel set, and in particular we have x(k) ∈ dom f . From convexity we know
that ∇f(x(k))T (y − x(k)) ≥ 0 implies f(y) ≥ f(x(k)), so the search direction in a
descent method must satisfy

∇f(x(k))T ∆x(k) < 0,

i.e., it must make an acute angle with the negative gradient. We call such a
direction a descent direction (for f , at x(k)).

464 9 Unconstrained minimization

The outline of a general descent method is as follows. It alternates between two
steps: determining a descent direction ∆x, and the selection of a step size t.

Algorithm 9.1 General descent method.

given a starting point x ∈ dom f .

repeat

1. Determine a descent direction ∆x.
2. Line search. Choose a step size t > 0.
3. Update. x := x+ t∆x.

until stopping criterion is satisfied.

The second step is called the line search since selection of the step size t deter-
mines where along the line {x + t∆x | t ∈ R+} the next iterate will be. (A more
accurate term might be ray search.)

A practical descent method has the same general structure, but might be or-
ganized differently. For example, the stopping criterion is often checked while, or
immediately after, the descent direction ∆x is computed. The stopping criterion
is often of the form ‖∇f(x)‖2 ≤ η, where η is small and positive, as suggested by
the suboptimality condition (9.9).

Exact line search

One line search method sometimes used in practice is exact line search, in which t
is chosen to minimize f along the ray {x+ t∆x | t ≥ 0}:

t = argmins≥0 f(x+ s∆x). (9.16)

An exact line search is used when the cost of the minimization problem with one
variable, required in (9.16), is low compared to the cost of computing the search
direction itself. In some special cases the minimizer along the ray can be found an-
alytically, and in others it can be computed efficiently. (This is discussed in §9.7.1.)

Backtracking line search

Most line searches used in practice are inexact : the step length is chosen to ap-
proximately minimize f along the ray {x + t∆x | t ≥ 0}, or even to just reduce
f ‘enough’. Many inexact line search methods have been proposed. One inexact
line search method that is very simple and quite effective is called backtracking line
search. It depends on two constants α, β with 0 < α < 0.5, 0 < β < 1.

Algorithm 9.2 Backtracking line search.

given a descent direction ∆x for f at x ∈ dom f , α ∈ (0, 0.5), β ∈ (0, 1).

t := 1.
while f(x+ t∆x) > f(x) + αt∇f(x)T ∆x, t := βt.

9.2 Descent methods 465

t

f(x+ t∆x)

t = 0 t0

f(x) + αt∇f(x)T ∆xf(x) + t∇f(x)T ∆x

Figure 9.1 Backtracking line search. The curve shows f , restricted to the line
over which we search. The lower dashed line shows the linear extrapolation
of f , and the upper dashed line has a slope a factor of α smaller. The
backtracking condition is that f lies below the upper dashed line, i.e., 0 ≤
t ≤ t0.

The line search is called backtracking because it starts with unit step size and
then reduces it by the factor β until the stopping condition f(x + t∆x) ≤ f(x) +
αt∇f(x)T ∆x holds. Since ∆x is a descent direction, we have ∇f(x)T ∆x < 0, so
for small enough t we have

f(x+ t∆x) ≈ f(x) + t∇f(x)T ∆x < f(x) + αt∇f(x)T ∆x,

which shows that the backtracking line search eventually terminates. The constant
α can be interpreted as the fraction of the decrease in f predicted by linear extrap-
olation that we will accept. (The reason for requiring α to be smaller than 0.5 will
become clear later.)

The backtracking condition is illustrated in figure 9.1. This figure suggests,
and it can be shown, that the backtracking exit inequality f(x + t∆x) ≤ f(x) +
αt∇f(x)T ∆x holds for t ≥ 0 in an interval (0, t0]. It follows that the backtracking
line search stops with a step length t that satisfies

t = 1, or t ∈ (βt0, t0].

The first case occurs when the step length t = 1 satisfies the backtracking condition,
i.e., 1 ≤ t0. In particular, we can say that the step length obtained by backtracking
line search satisfies

t ≥ min{1, βt0}.

When dom f is not all of Rn, the condition f(x+ t∆x) ≤ f(x)+αt∇f(x)T ∆x
in the backtracking line search must be interpreted carefully. By our convention
that f is infinite outside its domain, the inequality implies that x+ t∆x ∈ dom f .
In a practical implementation, we first multiply t by β until x + t∆x ∈ dom f ;

466 9 Unconstrained minimization

then we start to check whether the inequality f(x + t∆x) ≤ f(x) + αt∇f(x)T ∆x
holds.

The parameter α is typically chosen between 0.01 and 0.3, meaning that we
accept a decrease in f between 1% and 30% of the prediction based on the linear
extrapolation. The parameter β is often chosen to be between 0.1 (which corre-
sponds to a very crude search) and 0.8 (which corresponds to a less crude search).

9.3 Gradient descent method

A natural choice for the search direction is the negative gradient ∆x = −∇f(x).
The resulting algorithm is called the gradient algorithm or gradient descent method.

Algorithm 9.3 Gradient descent method.

given a starting point x ∈ dom f .

repeat

1. ∆x := −∇f(x).
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. x := x+ t∆x.

until stopping criterion is satisfied.

The stopping criterion is usually of the form ‖∇f(x)‖2 ≤ η, where η is small and
positive. In most implementations, this condition is checked after step 1, rather
than after the update.

9.3.1 Convergence analysis

In this section we present a simple convergence analysis for the gradient method,
using the lighter notation x+ = x+ t∆x for x(k+1) = x(k) + t(k)∆x(k), where ∆x =
−∇f(x). We assume f is strongly convex on S, so there are positive constants m
and M such that mI � ∇2f(x) �MI for all x ∈ S. Define the function f̃ : R → R

by f̃(t) = f(x − t∇f(x)), i.e., f as a function of the step length t in the negative
gradient direction. In the following discussion we will only consider t for which
x − t∇f(x) ∈ S. From the inequality (9.13), with y = x − t∇f(x), we obtain a
quadratic upper bound on f̃ :

f̃(t) ≤ f(x) − t‖∇f(x)‖2
2 +

Mt2

2
‖∇f(x)‖2

2. (9.17)

Analysis for exact line search

We now assume that an exact line search is used, and minimize over t both sides
of the inequality (9.17). On the lefthand side we get f̃(texact), where texact is the
step length that minimizes f̃ . The righthand side is a simple quadratic, which

9.3 Gradient descent method 467

is minimized by t = 1/M , and has minimum value f(x) − (1/(2M))‖∇f(x)‖2
2.

Therefore we have

f(x+) = f̃(texact) ≤ f(x) −
1

2M
‖∇(f(x))‖2

2.

Subtracting p⋆ from both sides, we get

f(x+) − p⋆ ≤ f(x) − p⋆ −
1

2M
‖∇f(x)‖2

2.

We combine this with ‖∇f(x)‖2
2 ≥ 2m(f(x) − p⋆) (which follows from (9.9)) to

conclude
f(x+) − p⋆ ≤ (1 −m/M)(f(x) − p⋆).

Applying this inequality recursively, we find that

f(x(k)) − p⋆ ≤ ck(f(x(0)) − p⋆) (9.18)

where c = 1 −m/M < 1, which shows that f(x(k)) converges to p⋆ as k → ∞. In
particular, we must have f(x(k)) − p⋆ ≤ ǫ after at most

log((f(x(0)) − p⋆)/ǫ)

log(1/c)
(9.19)

iterations of the gradient method with exact line search.
This bound on the number of iterations required, even though crude, can give

some insight into the gradient method. The numerator,

log((f(x(0)) − p⋆)/ǫ)

can be interpreted as the log of the ratio of the initial suboptimality (i.e., gap
between f(x(0)) and p⋆), to the final suboptimality (i.e., less than ǫ). This term
suggests that the number of iterations depends on how good the initial point is,
and what the final required accuracy is.

The denominator appearing in the bound (9.19), log(1/c), is a function ofM/m,
which we have seen is a bound on the condition number of ∇2f(x) over S, or the
condition number of the sublevel sets {z | f(z) ≤ α}. For large condition number
bound M/m, we have

log(1/c) = − log(1 −m/M) ≈ m/M,

so our bound on the number of iterations required increases approximately linearly
with increasing M/m.

We will see that the gradient method does in fact require a large number of
iterations when the Hessian of f , near x⋆, has a large condition number. Conversely,
when the sublevel sets of f are relatively isotropic, so that the condition number
bound M/m can be chosen to be relatively small, the bound (9.18) shows that
convergence is rapid, since c is small, or at least not too close to one.

The bound (9.18) shows that the error f(x(k)) − p⋆ converges to zero at least
as fast as a geometric series. In the context of iterative numerical methods, this
is called linear convergence, since the error lies below a line on a log-linear plot of
error versus iteration number.

468 9 Unconstrained minimization

Analysis for backtracking line search

Now we consider the case where a backtracking line search is used in the gradient
descent method. We will show that the backtracking exit condition,

f̃(t) ≤ f(x) − αt‖∇f(x)‖2
2,

is satisfied whenever 0 ≤ t ≤ 1/M . First note that

0 ≤ t ≤ 1/M =⇒ − t+
Mt2

2
≤ −t/2

(which follows from convexity of −t+Mt2/2). Using this result and the bound (9.17),
we have, for 0 ≤ t ≤ 1/M ,

f̃(t) ≤ f(x) − t‖∇f(x)‖2
2 +

Mt2

2
‖∇(f(x))‖2

2

≤ f(x) − (t/2)‖∇f(x)‖2
2

≤ f(x) − αt‖∇f(x)‖2
2,

since α < 1/2. Therefore the backtracking line search terminates either with t = 1
or with a value t ≥ β/M . This provides a lower bound on the decrease in the
objective function. In the first case we have

f(x+) ≤ f(x) − α‖∇f(x)‖2
2,

and in the second case we have

f(x+) ≤ f(x) − (βα/M)‖∇f(x)‖2
2.

Putting these together, we always have

f(x+) ≤ f(x) − min{α, βα/M}‖∇f(x)‖2
2.

Now we can proceed exactly as in the case of exact line search. We subtract p⋆

from both sides to get

f(x+) − p⋆ ≤ f(x) − p⋆ − min{α, βα/M}‖∇f(x)‖2
2,

and combine this with ‖∇f(x)‖2
2 ≥ 2m(f(x) − p⋆) to obtain

f(x+) − p⋆ ≤ (1 − min{2mα, 2βαm/M})(f(x) − p⋆).

From this we conclude

f(x(k)) − p⋆ ≤ ck(f(x(0)) − p⋆)

where
c = 1 − min{2mα, 2βαm/M} < 1.

In particular, f(x(k)) converges to p⋆ at least as fast as a geometric series with an
exponent that depends (at least in part) on the condition number bound M/m. In
the terminology of iterative methods, the convergence is at least linear.

9.3 Gradient descent method 469

x1

x
2

x(0)

x(1)

−10 0 10

−4

0

4

Figure 9.2 Some contour lines of the function f(x) = (1/2)(x2
1 + 10x2

2). The
condition number of the sublevel sets, which are ellipsoids, is exactly 10.
The figure shows the iterates of the gradient method with exact line search,
started at x(0) = (10, 1).

9.3.2 Examples

A quadratic problem in R2

Our first example is very simple. We consider the quadratic objective function on
R2

f(x) =
1

2
(x2

1 + γx2
2),

where γ > 0. Clearly, the optimal point is x⋆ = 0, and the optimal value is 0. The
Hessian of f is constant, and has eigenvalues 1 and γ, so the condition numbers of
the sublevel sets of f are all exactly

max{1, γ}

min{1, γ}
= max{γ, 1/γ}.

The tightest choices for the strong convexity constants m and M are

m = min{1, γ}, M = max{1, γ}.

We apply the gradient descent method with exact line search, starting at the
point x(0) = (γ, 1). In this case we can derive the following closed-form expressions
for the iterates x(k) and their function values (exercise 9.6):

x
(k)
1 = γ

(
γ − 1

γ + 1

)k

, x
(k)
2 =

(
−
γ − 1

γ + 1

)k

,

and

f(x(k)) =
γ(γ + 1)

2

(
γ − 1

γ + 1

)2k

=

(
γ − 1

γ + 1

)2k

f(x(0)).

This is illustrated in figure 9.2, for γ = 10.
For this simple example, convergence is exactly linear, i.e., the error is exactly

a geometric series, reduced by the factor |(γ − 1)/(γ + 1)|2 at each iteration. For

470 9 Unconstrained minimization

γ = 1, the exact solution is found in one iteration; for γ not far from one (say,
between 1/3 and 3) convergence is rapid. The convergence is very slow for γ ≫ 1
or γ ≪ 1.

We can compare the convergence with the bound derived above in §9.3.1. Using
the least conservative values m = min{1, γ} and M = max{1, γ}, the bound (9.18)
guarantees that the error in each iteration is reduced at least by the factor c =
(1 −m/M). We have seen that the error is in fact reduced exactly by the factor

(
1 −m/M

1 +m/M

)2

in each iteration. For small m/M , which corresponds to large condition number,
the upper bound (9.19) implies that the number of iterations required to obtain
a given level of accuracy grows at most like M/m. For this example, the exact
number of iterations required grows approximately like (M/m)/4, i.e., one quarter
of the value of the bound. This shows that for this simple example, the bound on
the number of iterations derived in our simple analysis is only about a factor of four
conservative (using the least conservative values for m and M). In particular, the
convergence rate (as well as its upper bound) is very dependent on the condition
number of the sublevel sets.

A nonquadratic problem in R2

We now consider a nonquadratic example in R2, with

f(x1, x2) = ex1+3x2−0.1 + ex1−3x2−0.1 + e−x1−0.1. (9.20)

We apply the gradient method with a backtracking line search, with α = 0.1,
β = 0.7. Figure 9.3 shows some level curves of f , and the iterates x(k) generated
by the gradient method (shown as small circles). The lines connecting successive
iterates show the scaled steps,

x(k+1) − x(k) = −t(k)∇f(x(k)).

Figure 9.4 shows the error f(x(k))−p⋆ versus iteration k. The plot reveals that
the error converges to zero approximately as a geometric series, i.e., the convergence
is approximately linear. In this example, the error is reduced from about 10 to
about 10−7 in 20 iterations, so the error is reduced by a factor of approximately
10−8/20 ≈ 0.4 each iteration. This reasonably rapid convergence is predicted by
our convergence analysis, since the sublevel sets of f are not too badly conditioned,
which in turn means that M/m can be chosen as not too large.

To compare backtracking line search with an exact line search, we use the
gradient method with an exact line search, on the same problem, and with the
same starting point. The results are given in figures 9.5 and 9.4. Here too the
convergence is approximately linear, about twice as fast as the gradient method
with backtracking line search. With exact line search, the error is reduced by
about 10−11 in 15 iterations, i.e., a reduction by a factor of about 10−11/15 ≈ 0.2
per iteration.

9.3 Gradient descent method 471

x(0)

x(1)

x(2)

Figure 9.3 Iterates of the gradient method with backtracking line search,
for the problem in R2 with objective f given in (9.20). The dashed curves
are level curves of f , and the small circles are the iterates of the gradient
method. The solid lines, which connect successive iterates, show the scaled
steps t(k)∆x(k).

k

f
(x

(k
)
)
−
p

⋆

backtracking l.s.

exact l.s.

0 5 10 15 20 25
10−15

10−10

10−5

100

105

Figure 9.4 Error f(x(k))− p⋆ versus iteration k of the gradient method with
backtracking and exact line search, for the problem in R2 with objective f
given in (9.20). The plot shows nearly linear convergence, with the error
reduced approximately by the factor 0.4 in each iteration of the gradient
method with backtracking line search, and by the factor 0.2 in each iteration
of the gradient method with exact line search.

472 9 Unconstrained minimization

x(0)

x(1)

Figure 9.5 Iterates of the gradient method with exact line search for the
problem in R2 with objective f given in (9.20).

A problem in R100

We next consider a larger example, of the form

f(x) = cTx−

m∑

i=1

log(bi − aT
i x), (9.21)

with m = 500 terms and n = 100 variables.

The progress of the gradient method with backtracking line search, with pa-
rameters α = 0.1, β = 0.5, is shown in figure 9.6. In this example we see an initial
approximately linear and fairly rapid convergence for about 20 iterations, followed
by a slower linear convergence. Overall, the error is reduced by a factor of around
106 in around 175 iterations, which gives an average error reduction by a factor of
around 10−6/175 ≈ 0.92 per iteration. The initial convergence rate, for the first 20
iterations, is around a factor of 0.8 per iteration; the slower final convergence rate,
after the first 20 iterations, is around a factor of 0.94 per iteration.

Figure 9.6 shows the convergence of the gradient method with exact line search.
The convergence is again approximately linear, with an overall error reduction by
approximately a factor 10−6/140 ≈ 0.91 per iteration. This is only a bit faster than
the gradient method with backtracking line search.

Finally, we examine the influence of the backtracking line search parameters α
and β on the convergence rate, by determining the number of iterations required
to obtain f(x(k)) − p⋆ ≤ 10−5. In the first experiment, we fix β = 0.5, and vary
α from 0.05 to 0.5. The number of iterations required varies from about 80, for
larger values of α, in the range 0.2–0.5, to about 170 for smaller values of α. This,
and other experiments, suggest that the gradient method works better with fairly
large α, in the range 0.2–0.5.

Similarly, we can study the effect of the choice of β by fixing α = 0.1 and
varying β from 0.05 to 0.95. Again the variation in the total number of iterations
is not large, ranging from around 80 (when β ≈ 0.5) to around 200 (for β small,
or near 1). This experiment, and others, suggest that β ≈ 0.5 is a good choice.

9.3 Gradient descent method 473

k

f
(x

(k
)
)
−
p

⋆

exact l.s.

backtracking l.s.

0 50 100 150 200
10−4

10−2

100

102

104

Figure 9.6 Error f(x(k))−p⋆ versus iteration k for the gradient method with
backtracking and exact line search, for a problem in R100.

These experiments suggest that the effect of the backtracking parameters on the
convergence is not large, no more than a factor of two or so.

Gradient method and condition number

Our last experiment will illustrate the importance of the condition number of
∇2f(x) (or the sublevel sets) on the rate of convergence of the gradient method.
We start with the function given by (9.21), but replace the variable x by x = T x̄,
where

T = diag((1, γ1/n, γ2/n, . . . , γ(n−1)/n)),

i.e., we minimize

f̄(x̄) = cTT x̄−
m∑

i=1

log(bi − aT
i T x̄). (9.22)

This gives us a family of optimization problems, indexed by γ, which affects the
problem condition number.

Figure 9.7 shows the number of iterations required to achieve f̄(x̄(k))−p̄⋆ < 10−5

as a function of γ, using a backtracking line search with α = 0.3 and β = 0.7. This
plot shows that for diagonal scaling as small as 10 : 1 (i.e., γ = 10), the number of
iterations grows to more than a thousand; for a diagonal scaling of 20 or more, the
gradient method slows to essentially useless.

The condition number of the Hessian ∇2f̄(x̄⋆) at the optimum is shown in
figure 9.8. For large and small γ, the condition number increases roughly as
max{γ2, 1/γ2}, in a very similar way as the number of iterations depends on γ.
This shows again that the relation between conditioning and convergence speed is
a real phenomenon, and not just an artifact of our analysis.

474 9 Unconstrained minimization

γ

it
er

at
io

n
s

10−1 100 101102

103

Figure 9.7 Number of iterations of the gradient method applied to prob-
lem (9.22). The vertical axis shows the number of iterations required to

obtain f̄(x̄(k))− p̄⋆ < 10−5. The horizontal axis shows γ, which is a param-
eter that controls the amount of diagonal scaling. We use a backtracking
line search with α = 0.3, β = 0.7.

γ

κ
(∇

2
f̄
(x̄

⋆
))

10−1 100 101101

102

103

104

Figure 9.8 Condition number of the Hessian of the function at its minimum,
as a function of γ. By comparing this plot with the one in figure 9.7, we see
that the condition number has a very strong influence on convergence rate.

9.4 Steepest descent method 475

Conclusions

From the numerical examples shown, and others, we can make the conclusions
summarized below.

• The gradient method often exhibits approximately linear convergence, i.e.,
the error f(x(k)) − p⋆ converges to zero approximately as a geometric series.

• The choice of backtracking parameters α, β has a noticeable but not dramatic
effect on the convergence. An exact line search sometimes improves the con-
vergence of the gradient method, but the effect is not large (and probably
not worth the trouble of implementing the exact line search).

• The convergence rate depends greatly on the condition number of the Hessian,
or the sublevel sets. Convergence can be very slow, even for problems that are
moderately well conditioned (say, with condition number in the 100s). When
the condition number is larger (say, 1000 or more) the gradient method is so
slow that it is useless in practice.

The main advantage of the gradient method is its simplicity. Its main disadvantage
is that its convergence rate depends so critically on the condition number of the
Hessian or sublevel sets.

9.4 Steepest descent method

The first-order Taylor approximation of f(x+ v) around x is

f(x+ v) ≈ f̂(x+ v) = f(x) + ∇f(x)T v.

The second term on the righthand side, ∇f(x)T v, is the directional derivative of
f at x in the direction v. It gives the approximate change in f for a small step v.
The step v is a descent direction if the directional derivative is negative.

We now address the question of how to choose v to make the directional deriva-
tive as negative as possible. Since the directional derivative ∇f(x)T v is linear in
v, it can be made as negative as we like by taking v large (provided v is a descent
direction, i.e., ∇f(x)T v < 0). To make the question sensible we have to limit the
size of v, or normalize by the length of v.

Let ‖ · ‖ be any norm on Rn. We define a normalized steepest descent direction

(with respect to the norm ‖ · ‖) as

∆xnsd = argmin{∇f(x)T v | ‖v‖ = 1}. (9.23)

(We say ‘a’ steepest descent direction because there can be multiple minimizers.)
A normalized steepest descent direction ∆xnsd is a step of unit norm that gives the
largest decrease in the linear approximation of f .

A normalized steepest descent direction can be interpreted geometrically as
follows. We can just as well define ∆xnsd as

∆xnsd = argmin{∇f(x)T v | ‖v‖ ≤ 1},

476 9 Unconstrained minimization

i.e., as the direction in the unit ball of ‖ · ‖ that extends farthest in the direction
−∇f(x).

It is also convenient to consider a steepest descent step ∆xsd that is unnormal-

ized, by scaling the normalized steepest descent direction in a particular way:

∆xsd = ‖∇f(x)‖∗∆xnsd, (9.24)

where ‖ · ‖∗ denotes the dual norm. Note that for the steepest descent step, we
have

∇f(x)T ∆xsd = ‖∇f(x)‖∗∇f(x)T ∆xnsd = −‖∇f(x)‖2
∗

(see exercise 9.7).
The steepest descent method uses the steepest descent direction as search direc-

tion.

Algorithm 9.4 Steepest descent method.

given a starting point x ∈ dom f .

repeat

1. Compute steepest descent direction ∆xsd.
2. Line search. Choose t via backtracking or exact line search.
3. Update. x := x+ t∆xsd.

until stopping criterion is satisfied.

When exact line search is used, scale factors in the descent direction have no effect,
so the normalized or unnormalized direction can be used.

9.4.1 Steepest descent for Euclidean and quadratic norms

Steepest descent for Euclidean norm

If we take the norm ‖·‖ to be the Euclidean norm we find that the steepest descent
direction is simply the negative gradient, i.e., ∆xsd = −∇f(x). The steepest
descent method for the Euclidean norm coincides with the gradient descent method.

Steepest descent for quadratic norm

We consider the quadratic norm

‖z‖P = (zTPz)1/2 = ‖P 1/2z‖2,

where P ∈ Sn
++. The normalized steepest descent direction is given by

∆xnsd = −
(
∇f(x)TP−1∇f(x)

)−1/2
P−1∇f(x).

The dual norm is given by ‖z‖∗ = ‖P−1/2z‖2, so the steepest descent step with
respect to ‖ · ‖P is given by

∆xsd = −P−1∇f(x). (9.25)

The normalized steepest descent direction for a quadratic norm is illustrated in
figure 9.9.

9.4 Steepest descent method 477

−∇f(x)

∆xnsd

Figure 9.9 Normalized steepest descent direction for a quadratic norm. The
ellipsoid shown is the unit ball of the norm, translated to the point x. The
normalized steepest descent direction ∆xnsd at x extends as far as possible
in the direction −∇f(x) while staying in the ellipsoid. The gradient and
normalized steepest descent directions are shown.

Interpretation via change of coordinates

We can give an interesting alternative interpretation of the steepest descent direc-
tion ∆xsd as the gradient search direction after a change of coordinates is applied
to the problem. Define ū = P 1/2u, so we have ‖u‖P = ‖ū‖2. Using this change
of coordinates, we can solve the original problem of minimizing f by solving the
equivalent problem of minimizing the function f̄ : Rn → R, given by

f̄(ū) = f(P−1/2ū) = f(u).

If we apply the gradient method to f̄ , the search direction at a point x̄ (which
corresponds to the point x = P−1/2x̄ for the original problem) is

∆x̄ = −∇f̄(x̄) = −P−1/2∇f(P−1/2x̄) = −P−1/2∇f(x).

This gradient search direction corresponds to the direction

∆x = P−1/2
(
−P−1/2∇f(x)

)
= −P−1∇f(x)

for the original variable x. In other words, the steepest descent method in the
quadratic norm ‖ · ‖P can be thought of as the gradient method applied to the
problem after the change of coordinates x̄ = P 1/2x.

9.4.2 Steepest descent for ℓ1-norm

As another example, we consider the steepest descent method for the ℓ1-norm. A
normalized steepest descent direction,

∆xnsd = argmin{∇f(x)T v | ‖v‖1 ≤ 1},

478 9 Unconstrained minimization

−∇f(x)

∆xnsd

Figure 9.10 Normalized steepest descent direction for the ℓ1-norm. The
diamond is the unit ball of the ℓ1-norm, translated to the point x. The
normalized steepest descent direction can always be chosen in the direction
of a standard basis vector; in this example we have ∆xnsd = e1.

is easily characterized. Let i be any index for which ‖∇f(x)‖∞ = |(∇f(x))i|. Then
a normalized steepest descent direction ∆xnsd for the ℓ1-norm is given by

∆xnsd = −sign

(
∂f(x)

∂xi

)
ei,

where ei is the ith standard basis vector. An unnormalized steepest descent step
is then

∆xsd = ∆xnsd‖∇f(x)‖∞ = −
∂f(x)

∂xi
ei.

Thus, the normalized steepest descent step in ℓ1-norm can always be chosen to be a
standard basis vector (or a negative standard basis vector). It is the coordinate axis
direction along which the approximate decrease in f is greatest. This is illustrated
in figure 9.10.

The steepest descent algorithm in the ℓ1-norm has a very natural interpretation:
At each iteration we select a component of ∇f(x) with maximum absolute value,
and then decrease or increase the corresponding component of x, according to the
sign of (∇f(x))i. The algorithm is sometimes called a coordinate-descent algorithm,
since only one component of the variable x is updated at each iteration. This can
greatly simplify, or even trivialize, the line search.

Example 9.2 Frobenius norm scaling. In §4.5.4 we encountered the unconstrained
geometric program

minimize
∑n

i,j=1
M2

ijd
2
i /d

2
j ,

where M ∈ Rn×n is given, and the variable is d ∈ Rn. Using the change of variables
xi = 2 log di we can express this geometric program in convex form as

minimize f(x) = log
(∑n

i,j=1
M2

ije
xi−xj

)
.

9.4 Steepest descent method 479

It is easy to minimize f one component at a time. Keeping all components except
the kth fixed, we can write f(x) = log(αk + βke

−xk + γke
xk), where

αk = M2
kk +

∑

i,j 6=k

M2
ije

xi−xj , βk =
∑

i6=k

M2
ike

xi , γk =
∑

j 6=k

M2
kje

−xj .

The minimum of f(x), as a function of xk, is obtained for xk = log(βk/γk)/2. So
for this problem an exact line search can be carried out using a simple analytical
formula.

The ℓ1-steepest descent algorithm with exact line search consists of repeating the
following steps.

1. Compute the gradient

(∇f(x))i =
−βie

−xi + γie
xi

αi + βie−xi + γkexi
, i = 1, . . . , n.

2. Select a largest (in absolute value) component of ∇f(x): |∇f(x)|k = ‖∇f(x)‖∞.

3. Minimize f over the scalar variable xk, by setting xk = log(βk/γk)/2.

9.4.3 Convergence analysis

In this section we extend the convergence analysis for the gradient method with
backtracking line search to the steepest descent method for an arbitrary norm. We
will use the fact that any norm can be bounded in terms of the Euclidean norm,
i.e., there exists a constant γ ∈ (0, 1] such that

‖x‖∗ ≥ γ‖x‖2

(see §A.1.2.)

Again we assume f is strongly convex on the initial sublevel set S. The upper
bound ∇2f(x) � MI implies an upper bound on the function f(x + t∆xsd) as a
function of t:

f(x+ t∆xsd) ≤ f(x) + t∇f(x)T ∆xsd +
M‖∆xsd‖

2
2

2
t2

≤ f(x) + t∇f(x)T ∆xsd +
M‖∆xsd‖

2
∗

2γ2
t2

= f(x) − t‖∇f(x)‖2
∗ +

M

2γ2
t2‖∇f(x)‖2

∗. (9.26)

The step size t̂ = γ2/M (which minimizes the quadratic upper bound (9.26))
satisfies the exit condition for the backtracking line search:

f(x+ t̂∆xsd) ≤ f(x) −
γ2

2M
‖∇f(x)‖2

∗ ≤ f(x) +
αγ2

M
∇f(x)T ∆xsd (9.27)

480 9 Unconstrained minimization

since α < 1/2 and ∇f(x)T ∆xsd = −‖∇f(x)‖2
∗. The line search therefore returns a

step size t ≥ min{1, βγ2/M}, and we have

f(x+) = f(x+ t∆xsd) ≤ f(x) − αmin{1, βγ2/M}‖∇f(x)‖2
∗

≤ f(x) − αγ2 min{1, βγ2/M}‖∇f(x)‖2
2.

Subtracting p⋆ from both sides and using (9.9), we obtain

f(x+) − p⋆ ≤ c(f(x) − p⋆),

where
c = 1 − 2mαγ2 min{1, βγ2/M} < 1.

Therefore we have
f(x(k)) − p⋆ ≤ ck(f(x(0)) − p⋆),

i.e., linear convergence exactly as in the gradient method.

9.4.4 Discussion and examples

Choice of norm for steepest descent

The choice of norm used to define the steepest descent direction can have a dra-
matic effect on the convergence rate. For simplicity, we consider the case of steep-
est descent with quadratic P -norm. In §9.4.1, we showed that the steepest descent
method with quadratic P -norm is the same as the gradient method applied to the
problem after the change of coordinates x̄ = P 1/2x. We know that the gradient
method works well when the condition numbers of the sublevel sets (or the Hes-
sian near the optimal point) are moderate, and works poorly when the condition
numbers are large. It follows that when the sublevel sets, after the change of coor-
dinates x̄ = P 1/2x, are moderately conditioned, the steepest descent method will
work well.

This observation provides a prescription for choosing P : It should be chosen
so that the sublevel sets of f , transformed by P−1/2, are well conditioned. For
example if an approximation Ĥ of the Hessian at the optimal point H(x⋆) were
known, a very good choice of P would be P = Ĥ, since the Hessian of f̃ at the
optimum is then

Ĥ−1/2∇2f(x⋆)Ĥ−1/2 ≈ I,

and so is likely to have a low condition number.
This same idea can be described without a change of coordinates. Saying that

a sublevel set has low condition number after the change of coordinates x̄ = P 1/2x
is the same as saying that the ellipsoid

E = {x | xTPx ≤ 1}

approximates the shape of the sublevel set. (In other words, it gives a good ap-
proximation after appropriate scaling and translation.)

This dependence of the convergence rate on the choice of P can be viewed from
two sides. The optimist’s viewpoint is that for any problem, there is always a

9.4 Steepest descent method 481

x(0)

x(1)
x(2)

Figure 9.11 Steepest descent method with a quadratic norm ‖ · ‖P1 . The

ellipses are the boundaries of the norm balls {x | ‖x− x(k)‖P1 ≤ 1} at x(0)

and x(1).

choice of P for which the steepest descent methods works very well. The challenge,
of course, is to find such a P . The pessimist’s viewpoint is that for any problem,
there are a huge number of choices of P for which steepest descent works very
poorly. In summary, we can say that the steepest descent method works well in
cases where we can identify a matrix P for which the transformed problem has
moderate condition number.

Examples

In this section we illustrate some of these ideas using the nonquadratic problem in
R2 with objective function (9.20). We apply the steepest descent method to the
problem, using the two quadratic norms defined by

P1 =

[
2 0
0 8

]
, P2 =

[
8 0
0 2

]
.

In both cases we use a backtracking line search with α = 0.1 and β = 0.7.

Figures 9.11 and 9.12 show the iterates for steepest descent with norm ‖·‖P1
and

norm ‖ · ‖P2
. Figure 9.13 show the error versus iteration number for both norms.

Figure 9.13 shows that the choice of norm strongly influences the convergence.
With the norm ‖ · ‖P1

, convergence is a bit more rapid than the gradient method,
whereas with the norm ‖ · ‖P2

, convergence is far slower.

This can be explained by examining the problems after the changes of coor-

dinates x̄ = P
1/2
1 x and x̄ = P

1/2
2 x, respectively. Figures 9.14 and 9.15 show the

problems in the transformed coordinates. The change of variables associated with
P1 yields sublevel sets with modest condition number, so convergence is fast. The
change of variables associated with P2 yields sublevel sets that are more poorly
conditioned, which explains the slower convergence.

482 9 Unconstrained minimization

x(0)

x(1)

x(2)

Figure 9.12 Steepest descent method, with quadratic norm ‖ · ‖P2 .

k

P1

P2

f
(x

(k
)
)
−
p

⋆

0 10 20 30 40
10−15

10−10

10−5

100

105

Figure 9.13 Error f(x(k)) − p⋆ versus iteration k, for the steepest descent
method with the quadratic norm ‖ · ‖P1 and the quadratic norm ‖ · ‖P2 .
Convergence is rapid for the norm ‖ · ‖P1 and very slow for ‖ · ‖P2 .

9.4 Steepest descent method 483

x̄(0)

x̄(1)

Figure 9.14 The iterates of steepest descent with norm ‖ · ‖P1 , after the
change of coordinates. This change of coordinates reduces the condition
number of the sublevel sets, and so speeds up convergence.

x̄(0)

x̄(1)

Figure 9.15 The iterates of steepest descent with norm ‖ · ‖P2 , after the
change of coordinates. This change of coordinates increases the condition
number of the sublevel sets, and so slows down convergence.

484 9 Unconstrained minimization

f

f̂

(x, f(x))

(x+ ∆xnt, f(x+ ∆xnt))

Figure 9.16 The function f (shown solid) and its second-order approximation

f̂ at x (dashed). The Newton step ∆xnt is what must be added to x to give

the minimizer of f̂ .

9.5 Newton’s method

9.5.1 The Newton step

For x ∈ dom f , the vector

∆xnt = −∇2f(x)−1∇f(x)

is called the Newton step (for f , at x). Positive definiteness of ∇2f(x) implies that

∇f(x)T ∆xnt = −∇f(x)T∇2f(x)−1∇f(x) < 0

unless ∇f(x) = 0, so the Newton step is a descent direction (unless x is optimal).
The Newton step can be interpreted and motivated in several ways.

Minimizer of second-order approximation

The second-order Taylor approximation (or model) f̂ of f at x is

f̂(x+ v) = f(x) + ∇f(x)T v +
1

2
vT∇2f(x)v, (9.28)

which is a convex quadratic function of v, and is minimized when v = ∆xnt. Thus,
the Newton step ∆xnt is what should be added to the point x to minimize the
second-order approximation of f at x. This is illustrated in figure 9.16.

This interpretation gives us some insight into the Newton step. If the function
f is quadratic, then x + ∆xnt is the exact minimizer of f . If the function f is
nearly quadratic, intuition suggests that x+ ∆xnt should be a very good estimate
of the minimizer of f , i.e., x⋆. Since f is twice differentiable, the quadratic model
of f will be very accurate when x is near x⋆. It follows that when x is near x⋆,
the point x + ∆xnt should be a very good estimate of x⋆. We will see that this
intuition is correct.

9.5 Newton’s method 485

x

x+ ∆xnt

x+ ∆xnsd

Figure 9.17 The dashed lines are level curves of a convex function. The
ellipsoid shown (with solid line) is {x + v | vT∇2f(x)v ≤ 1}. The arrow
shows −∇f(x), the gradient descent direction. The Newton step ∆xnt is
the steepest descent direction in the norm ‖ · ‖∇2f(x). The figure also shows
∆xnsd, the normalized steepest descent direction for the same norm.

Steepest descent direction in Hessian norm

The Newton step is also the steepest descent direction at x, for the quadratic norm
defined by the Hessian ∇2f(x), i.e.,

‖u‖∇2f(x) = (uT∇2f(x)u)1/2.

This gives another insight into why the Newton step should be a good search
direction, and a very good search direction when x is near x⋆.

Recall from our discussion above that steepest descent, with quadratic norm
‖ · ‖P , converges very rapidly when the Hessian, after the associated change of
coordinates, has small condition number. In particular, near x⋆, a very good choice
is P = ∇2f(x⋆). When x is near x⋆, we have ∇2f(x) ≈ ∇2f(x⋆), which explains
why the Newton step is a very good choice of search direction. This is illustrated
in figure 9.17.

Solution of linearized optimality condition

If we linearize the optimality condition ∇f(x⋆) = 0 near x we obtain

∇f(x+ v) ≈ ∇f(x) + ∇2f(x)v = 0,

which is a linear equation in v, with solution v = ∆xnt. So the Newton step ∆xnt is
what must be added to x so that the linearized optimality condition holds. Again,
this suggests that when x is near x⋆ (so the optimality conditions almost hold),
the update x+ ∆xnt should be a very good approximation of x⋆.

When n = 1, i.e., f : R → R, this interpretation is particularly simple. The
solution x⋆ of the minimization problem is characterized by f ′(x⋆) = 0, i.e., it is

486 9 Unconstrained minimization

f ′

f̂ ′

(x, f ′(x))

(x+ ∆xnt, f
′(x+ ∆xnt))

Figure 9.18 The solid curve is the derivative f ′ of the function f shown in

figure 9.16. f̂ ′ is the linear approximation of f ′ at x. The Newton step ∆xnt

is the difference between the root of f̂ ′ and the point x.

the zero-crossing of the derivative f ′, which is monotonically increasing since f is
convex. Given our current approximation x of the solution, we form a first-order
Taylor approximation of f ′ at x. The zero-crossing of this affine approximation is
then x+ ∆xnt. This interpretation is illustrated in figure 9.18.

Affine invariance of the Newton step

An important feature of the Newton step is that it is independent of linear (or
affine) changes of coordinates. Suppose T ∈ Rn×n is nonsingular, and define
f̄(y) = f(Ty). Then we have

∇f̄(y) = TT∇f(x), ∇2f̄(y) = TT∇2f(x)T,

where x = Ty. The Newton step for f̄ at y is therefore

∆ynt = −
(
TT∇2f(x)T

)−1 (
TT∇f(x)

)

= −T−1∇2f(x)−1∇f(x)

= T−1∆xnt,

where ∆xnt is the Newton step for f at x. Hence the Newton steps of f and f̄ are
related by the same linear transformation, and

x+ ∆xnt = T (y + ∆ynt).

The Newton decrement

The quantity

λ(x) =
(
∇f(x)T∇2f(x)−1∇f(x)

)1/2

is called the Newton decrement at x. We will see that the Newton decrement
plays an important role in the analysis of Newton’s method, and is also useful

9.5 Newton’s method 487

as a stopping criterion. We can relate the Newton decrement to the quantity
f(x) − infy f̂(y), where f̂ is the second-order approximation of f at x:

f(x) − inf
y
f̂(y) = f(x) − f̂(x+ ∆xnt) =

1

2
λ(x)2.

Thus, λ2/2 is an estimate of f(x)− p⋆, based on the quadratic approximation of f
at x.

We can also express the Newton decrement as

λ(x) =
(
∆xT

nt∇
2f(x)∆xnt

)1/2
. (9.29)

This shows that λ is the norm of the Newton step, in the quadratic norm defined
by the Hessian, i.e., the norm

‖u‖∇2f(x) =
(
uT∇2f(x)u

)1/2
.

The Newton decrement comes up in backtracking line search as well, since we have

∇f(x)T ∆xnt = −λ(x)2. (9.30)

This is the constant used in a backtracking line search, and can be interpreted as
the directional derivative of f at x in the direction of the Newton step:

−λ(x)2 = ∇f(x)T ∆xnt =
d

dt
f(x+ ∆xntt)

∣∣∣∣
t=0

.

Finally, we note that the Newton decrement is, like the Newton step, affine in-
variant. In other words, the Newton decrement of f̄(y) = f(Ty) at y, where T is
nonsingular, is the same as the Newton decrement of f at x = Ty.

9.5.2 Newton’s method

Newton’s method, as outlined below, is sometimes called the damped Newton
method or guarded Newton method, to distinguish it from the pure Newton method,
which uses a fixed step size t = 1.

Algorithm 9.5 Newton’s method.

given a starting point x ∈ dom f , tolerance ǫ > 0.

repeat

1. Compute the Newton step and decrement.

∆xnt := −∇2f(x)−1∇f(x); λ2 := ∇f(x)T∇2f(x)−1∇f(x).
2. Stopping criterion. quit if λ2/2 ≤ ǫ.
3. Line search. Choose step size t by backtracking line search.
4. Update. x := x+ t∆xnt.

This is essentially the general descent method described in §9.2, using the New-
ton step as search direction. The only difference (which is very minor) is that the
stopping criterion is checked after computing the search direction, rather than after
the update.

488 9 Unconstrained minimization

9.5.3 Convergence analysis

We assume, as before, that f is twice continuously differentiable, and strongly
convex with constant m, i.e., ∇2f(x) � mI for x ∈ S. We have seen that this also
implies that there exists an M > 0 such that ∇2f(x) �MI for all x ∈ S.

In addition, we assume that the Hessian of f is Lipschitz continuous on S with
constant L, i.e.,

‖∇2f(x) −∇2f(y)‖2 ≤ L‖x− y‖2 (9.31)

for all x, y ∈ S. The coefficient L, which can be interpreted as a bound on the
third derivative of f , can be taken to be zero for a quadratic function. More
generally L measures how well f can be approximated by a quadratic model, so
we can expect the Lipschitz constant L to play a critical role in the performance
of Newton’s method. Intuition suggests that Newton’s method will work very well
for a function whose quadratic model varies slowly (i.e., has small L).

Idea and outline of convergence proof

We first give the idea and outline of the convergence proof, and the main conclusion,
and then the details of the proof. We will show there are numbers η and γ with
0 < η ≤ m2/L and γ > 0 such that the following hold.

• If ‖∇f(x(k))‖2 ≥ η, then

f(x(k+1)) − f(x(k)) ≤ −γ. (9.32)

• If ‖∇f(x(k))‖2 < η, then the backtracking line search selects t(k) = 1 and

L

2m2
‖∇f(x(k+1))‖2 ≤

(
L

2m2
‖∇f(x(k))‖2

)2

. (9.33)

Let us analyze the implications of the second condition. Suppose that it
is satisfied for iteration k, i.e., ‖∇f(x(k))‖2 < η. Since η ≤ m2/L, we have
‖∇f(x(k+1))‖2 < η, i.e., the second condition is also satisfied at iteration k + 1.
Continuing recursively, we conclude that once the second condition holds, it will
hold for all future iterates, i.e., for all l ≥ k, we have ‖∇f(x(l))‖2 < η. Therefore
for all l ≥ k, the algorithm takes a full Newton step t = 1, and

L

2m2
‖∇f(x(l+1))‖2 ≤

(
L

2m2
‖∇f(x(l))‖2

)2

. (9.34)

Applying this inequality recursively, we find that for l ≥ k,

L

2m2
‖∇f(x(l))‖2 ≤

(
L

2m2
‖∇f(xk)‖2

)2l−k

≤

(
1

2

)2l−k

,

and hence

f(x(l)) − p⋆ ≤
1

2m
‖∇f(x(l))‖2

2 ≤
2m3

L2

(
1

2

)2l−k+1

. (9.35)

9.5 Newton’s method 489

This last inequality shows that convergence is extremely rapid once the second
condition is satisfied. This phenomenon is called quadratic convergence. Roughly
speaking, the inequality (9.35) means that, after a sufficiently large number of
iterations, the number of correct digits doubles at each iteration.

The iterations in Newton’s method naturally fall into two stages. The second
stage, which occurs once the condition ‖∇f(x)‖2 ≤ η holds, is called the quadrat-

ically convergent stage. We refer to the first stage as the damped Newton phase,
because the algorithm can choose a step size t < 1. The quadratically convergent
stage is also called the pure Newton phase, since in these iterations a step size t = 1
is always chosen.

Now we can estimate the total complexity. First we derive an upper bound on
the number of iterations in the damped Newton phase. Since f decreases by at
least γ at each iteration, the number of damped Newton steps cannot exceed

f(x(0)) − p⋆

γ
,

since if it did, f would be less than p⋆, which is impossible.
We can bound the number of iterations in the quadratically convergent phase

using the inequality (9.35). It implies that we must have f(x) − p⋆ ≤ ǫ after no
more than

log2 log2(ǫ0/ǫ)

iterations in the quadratically convergent phase, where ǫ0 = 2m3/L2.
Overall, then, the number of iterations until f(x)− p⋆ ≤ ǫ is bounded above by

f(x(0)) − p⋆

γ
+ log2 log2(ǫ0/ǫ). (9.36)

The term log2 log2(ǫ0/ǫ), which bounds the number of iterations in the quadrati-
cally convergent phase, grows extremely slowly with required accuracy ǫ, and can
be considered a constant for practical purposes, say five or six. (Six iterations of
the quadratically convergent stage gives an accuracy of about ǫ ≈ 5 · 10−20ǫ0.)

Not quite accurately, then, we can say that the number of Newton iterations
required to minimize f is bounded above by

f(x(0)) − p⋆

γ
+ 6. (9.37)

A more precise statement is that (9.37) is a bound on the number of iterations to
compute an extremely good approximation of the solution.

Damped Newton phase

We now establish the inequality (9.32). Assume ‖∇f(x)‖2 ≥ η. We first derive a
lower bound on the step size selected by the line search. Strong convexity implies
that ∇2f(x) �MI on S, and therefore

f(x+ t∆xnt) ≤ f(x) + t∇f(x)T ∆xnt +
M‖∆xnt‖

2
2

2
t2

≤ f(x) − tλ(x)2 +
M

2m
t2λ(x)2,

490 9 Unconstrained minimization

where we use (9.30) and

λ(x)2 = ∆xT
nt∇

2f(x)∆xnt ≥ m‖∆xnt‖
2
2.

The step size t̂ = m/M satisfies the exit condition of the line search, since

f(x+ t̂∆xnt) ≤ f(x) −
m

2M
λ(x)2 ≤ f(x) − αt̂λ(x)2.

Therefore the line search returns a step size t ≥ βm/M , resulting in a decrease of
the objective function

f(x+) − f(x) ≤ −αtλ(x)2

≤ −αβ
m

M
λ(x)2

≤ −αβ
m

M2
‖∇f(x)‖2

2

≤ −αβη2 m

M2
,

where we use

λ(x)2 = ∇f(x)T∇2f(x)−1∇f(x) ≥ (1/M)‖∇f(x)‖2
2.

Therefore, (9.32) is satisfied with

γ = αβη2 m

M2
. (9.38)

Quadratically convergent phase

We now establish the inequality (9.33). Assume ‖∇f(x)‖2 < η. We first show that
the backtracking line search selects unit steps, provided

η ≤ 3(1 − 2α)
m2

L
.

By the Lipschitz condition (9.31), we have, for t ≥ 0,

‖∇2f(x+ t∆xnt) −∇2f(x)‖2 ≤ tL‖∆xnt‖2,

and therefore

∣∣∆xT
nt

(
∇2f(x+ t∆xnt) −∇2f(x)

)
∆xnt

∣∣ ≤ tL‖∆xnt‖
3
2.

With f̃(t) = f(x + t∆xnt), we have f̃ ′′(t) = ∆xT
nt∇

2f(x + t∆xnt)∆xnt, so the
inequality above is

|f̃ ′′(t) − f̃ ′′(0)| ≤ tL‖∆xnt‖
3
2.

We will use this inequality to determine an upper bound on f̃(t). We start with

f̃ ′′(t) ≤ f̃ ′′(0) + tL‖∆xnt‖
3
2 ≤ λ(x)2 + t

L

m3/2
λ(x)3,

9.5 Newton’s method 491

where we use f̃ ′′(0) = λ(x)2 and λ(x)2 ≥ m‖∆xnt‖
2
2. We integrate the inequality

to get

f̃ ′(t) ≤ f̃ ′(0) + tλ(x)2 + t2
L

2m3/2
λ(x)3

= −λ(x)2 + tλ(x)2 + t2
L

2m3/2
λ(x)3,

using f̃ ′(0) = −λ(x)2. We integrate once more to get

f̃(t) ≤ f̃(0) − tλ(x)2 + t2
1

2
λ(x)2 + t3

L

6m3/2
λ(x)3.

Finally, we take t = 1 to obtain

f(x+ ∆xnt) ≤ f(x) −
1

2
λ(x)2 +

L

6m3/2
λ(x)3. (9.39)

Now suppose ‖∇f(x)‖2 ≤ η ≤ 3(1 − 2α)m2/L. By strong convexity, we have

λ(x) ≤ 3(1 − 2α)m3/2/L,

and by (9.39) we have

f(x+ ∆xnt) ≤ f(x) − λ(x)2
(

1

2
−
Lλ(x)

6m3/2

)

≤ f(x) − αλ(x)2

= f(x) + α∇f(x)T ∆xnt,

which shows that the unit step t = 1 is accepted by the backtracking line search.
Let us now examine the rate of convergence. Applying the Lipschitz condition,

we have

‖∇f(x+)‖2 = ‖∇f(x+ ∆xnt) −∇f(x) −∇2f(x)∆xnt‖2

=

∥∥∥∥
∫ 1

0

(
∇2f(x+ t∆xnt) −∇2f(x)

)
∆xnt dt

∥∥∥∥
2

≤
L

2
‖∆xnt‖

2
2

=
L

2
‖∇2f(x)−1∇f(x)‖2

2

≤
L

2m2
‖∇f(x)‖2

2,

i.e., the inequality (9.33).
In conclusion, the algorithm selects unit steps and satisfies the condition (9.33)

if ‖∇f(x(k))‖2 < η, where

η = min {1, 3(1 − 2α)}
m2

L
.

Substituting this bound and (9.38) into (9.37), we find that the number of iterations
is bounded above by

6 +
M2L2/m5

αβmin{1, 9(1 − 2α)2}
(f(x(0)) − p⋆). (9.40)

492 9 Unconstrained minimization

x(0)

x(1)

Figure 9.19 Newton’s method for the problem in R2, with objective f given
in (9.20), and backtracking line search parameters α = 0.1, β = 0.7. Also

shown are the ellipsoids {x | ‖x−x(k)‖∇2f(x(k)) ≤ 1} at the first two iterates.

9.5.4 Examples

Example in R2

We first apply Newton’s method with backtracking line search on the test func-
tion (9.20), with line search parameters α = 0.1, β = 0.7. Figure 9.19 shows the
Newton iterates, and also the ellipsoids

{x | ‖x− x(k)‖∇2f(x(k)) ≤ 1}

for the first two iterates k = 0, 1. The method works well because these ellipsoids
give good approximations of the shape of the sublevel sets.

Figure 9.20 shows the error versus iteration number for the same example.
This plot shows that convergence to a very high accuracy is achieved in only five
iterations. Quadratic convergence is clearly apparent: The last step reduces the
error from about 10−5 to 10−10.

Example in R100

Figure 9.21 shows the convergence of Newton’s method with backtracking and exact
line search for a problem in R100. The objective function has the form (9.21), with
the same problem data and the same starting point as was used in figure 9.6. The
plot for the backtracking line search shows that a very high accuracy is attained in
eight iterations. Like the example in R2, quadratic convergence is clearly evident
after about the third iteration. The number of iterations in Newton’s method
with exact line search is only one smaller than with a backtracking line search.
This is also typical. An exact line search usually gives a very small improvement in
convergence of Newton’s method. Figure 9.22 shows the step sizes for this example.
After two damped steps, the steps taken by the backtracking line search are all full,
i.e., t = 1.

Experiments with the values of the backtracking parameters α and β reveal that
they have little effect on the performance of Newton’s method, for this example

9.5 Newton’s method 493

k

f
(x

(k
)
)
−
p

⋆

0 1 2 3 4 5
10−15

10−10

10−5

100

105

Figure 9.20 Error versus iteration k of Newton’s method for the problem
in R2. Convergence to a very high accuracy is achieved in five iterations.

k

f
(x

(k
)
)
−
p

⋆

exact l.s.

backtracking l.s.

0 2 4 6 8 10
10−15

10−10

10−5

100

105

Figure 9.21 Error versus iteration for Newton’s method for the problem in
R100. The backtracking line search parameters are α = 0.01, β = 0.5. Here
too convergence is extremely rapid: a very high accuracy is attained in only
seven or eight iterations. The convergence of Newton’s method with exact
line search is only one iteration faster than with backtracking line search.

494 9 Unconstrained minimization

k

st
ep

si
ze
t(

k
)

exact l.s.

backtracking l.s.

0 2 4 6 8
0

0.5

1

1.5

2

Figure 9.22 The step size t versus iteration for Newton’s method with back-
tracking and exact line search, applied to the problem in R100. The back-
tracking line search takes one backtracking step in the first two iterations.
After the first two iterations it always selects t = 1.

(and others). With α fixed at 0.01, and values of β varying between 0.2 and 1,
the number of iterations required varies between 8 and 12. With β fixed at 0.5,
the number of iterations is 8, for all values of α between 0.005 and 0.5. For these
reasons, most practical implementations use a backtracking line search with a small
value of α, such as 0.01, and a larger value of β, such as 0.5.

Example in R10000

In this last example we consider a larger problem, of the form

minimize −

n∑

i=1

log(1 − x2
i) −

m∑

i=1

log(bi − aT
i x)

with m = 100000 and n = 10000. The problem data ai are randomly generated
sparse vectors. Figure 9.23 shows the convergence of Newton’s method with back-
tracking line search, with parameters α = 0.01, β = 0.5. The performance is very
similar to the previous convergence plots. A linearly convergent initial phase of
about 13 iterations is followed by a quadratically convergent phase, that achieves
a very high accuracy in 4 or 5 more iterations.

Affine invariance of Newton’s method

A very important feature of Newton’s method is that it is independent of linear
(or affine) changes of coordinates. Let x(k) be the kth iterate of Newton’s method,
applied to f : Rn → R. Suppose T ∈ Rn×n is nonsingular, and define f̄(y) =
f(Ty). If we use Newton’s method (with the same backtracking parameters) to

9.5 Newton’s method 495

k

f
(x

(k
)
)
−
p

⋆

0 5 10 15 20

10−5

100

105

Figure 9.23 Error versus iteration of Newton’s method, for a problem
in R10000. A backtracking line search with parameters α = 0.01, β = 0.5 is
used. Even for this large scale problem, Newton’s method requires only 18
iterations to achieve very high accuracy.

minimize f̄ , starting from y(0) = T−1x(0), then we have

Ty(k) = x(k)

for all k. In other words, Newton’s method is the same: The iterates are related
by the same change of coordinates. Even the stopping criterion is the same, since
the Newton decrement for f̄ at y(k) is the same as the Newton decrement for f at
x(k). This is in stark contrast to the gradient (or steepest descent) method, which
is strongly affected by changes of coordinates.

As an example, consider the family of problems given in (9.22), indexed by the
parameter γ, which affects the condition number of the sublevel sets. We observed
(in figures 9.7 and 9.8) that the gradient method slows to useless for values of γ
smaller than 0.05 or larger than 20. In contrast, Newton’s method (with α = 0.01,
β = 0.5) solves this problem (in fact, to a far higher accuracy) in nine iterations,
for all values of γ between 10−10 and 1010.

In a real implementation, with finite precision arithmetic, Newton’s method is
not exactly independent of affine changes of coordinates, or the condition number
of the sublevel sets. But we can say that condition numbers ranging up to very
large values such as 1010 do not adversely affect a real implementation of Newton’s
method. For the gradient method, a far smaller range of condition numbers can
be tolerated. While choice of coordinates (or condition number of sublevel sets) is
a first-order issue for gradient and steepest descent methods, it is a second-order
issue for Newton’s method; its only effect is in the numerical linear algebra required
to compute the Newton step.

496 9 Unconstrained minimization

Summary

Newton’s method has several very strong advantages over gradient and steepest
descent methods:

• Convergence of Newton’s method is rapid in general, and quadratic near x⋆.
Once the quadratic convergence phase is reached, at most six or so iterations
are required to produce a solution of very high accuracy.

• Newton’s method is affine invariant. It is insensitive to the choice of coordi-
nates, or the condition number of the sublevel sets of the objective.

• Newton’s method scales well with problem size. Its performance on problems
in R10000 is similar to its performance on problems in R10, with only a modest
increase in the number of steps required.

• The good performance of Newton’s method is not dependent on the choice
of algorithm parameters. In contrast, the choice of norm for steepest descent
plays a critical role in its performance.

The main disadvantage of Newton’s method is the cost of forming and storing
the Hessian, and the cost of computing the Newton step, which requires solving
a set of linear equations. We will see in §9.7 that in many cases it is possible to
exploit problem structure to substantially reduce the cost of computing the Newton
step.

Another alternative is provided by a family of algorithms for unconstrained op-
timization called quasi-Newton methods. These methods require less computational
effort to form the search direction, but they share some of the strong advantages
of Newton methods, such as rapid convergence near x⋆. Since quasi-Newton meth-
ods are described in many books, and tangential to our main theme, we will not
consider them in this book.

9.6 Self-concordance

There are two major shortcomings of the classical convergence analysis of Newton’s
method given in §9.5.3. The first is a practical one: The resulting complexity
estimates involve the three constants m, M , and L, which are almost never known
in practice. As a result, the bound (9.40) on the number of Newton steps required
is almost never known specifically, since it depends on three constants that are, in
general, not known. Of course the convergence analysis and complexity estimate
are still conceptually useful.

The second shortcoming is that while Newton’s method is affinely invariant, the
classical analysis of Newton’s method is very much dependent on the coordinate
system used. If we change coordinates the constants m, M , and L all change. If
for no reason other than aesthetic, we should seek an analysis of Newton’s method
that is, like the method itself, independent of affine changes of coordinates. In

9.6 Self-concordance 497

other words, we seek an alternative to the assumptions

mI � ∇2f(x) �MI, ‖∇2f(x) −∇2f(y)‖2 ≤ L‖x− y‖2,

that is independent of affine changes of coordinates, and also allows us to analyze
Newton’s method.

A simple and elegant assumption that achieves this goal was discovered by
Nesterov and Nemirovski, who gave the name self-concordance to their condition.
Self-concordant functions are important for several reasons.

• They include many of the logarithmic barrier functions that play an impor-
tant role in interior-point methods for solving convex optimization problems.

• The analysis of Newton’s method for self-concordant functions does not de-
pend on any unknown constants.

• Self-concordance is an affine-invariant property, i.e., if we apply a linear
transformation of variables to a self-concordant function, we obtain a self-
concordant function. Therefore the complexity estimate that we obtain for
Newton’s method applied to a self-concordant function is independent of
affine changes of coordinates.

9.6.1 Definition and examples

Self-concordant functions on R

We start by considering functions on R. A convex function f : R → R is self-

concordant if
|f ′′′(x)| ≤ 2f ′′(x)3/2 (9.41)

for all x ∈ dom f . Since linear and (convex) quadratic functions have zero third
derivative, they are evidently self-concordant. Some more interesting examples are
given below.

Example 9.3 Logarithm and entropy.

• Negative logarithm. The function f(x) = − log x is self-concordant. Using
f ′′(x) = 1/x2, f ′′′(x) = −2/x3, we find that

|f ′′′(x)|

2f ′′(x)3/2
=

2/x3

2(1/x2)3/2
= 1,

so the defining inequality (9.41) holds with equality.

• Negative entropy plus negative logarithm. The function f(x) = x log x− log x is
self-concordant. To verify this, we use

f ′′(x) =
x+ 1

x2
, f ′′′(x) = −

x+ 2

x3

to obtain
|f ′′′(x)|

2f ′′(x)3/2
=

x+ 2

2(x+ 1)3/2
.

498 9 Unconstrained minimization

The function on the righthand side is maximized on R+ by x = 0, where its
value is 1.

The negative entropy function by itself is not self-concordant; see exercise 11.13.

We should make two important remarks about the self-concordance defini-
tion (9.41). The first concerns the mysterious constant 2 that appears in the
definition. In fact, this constant is chosen for convenience, in order to simplify the
formulas later on; any other positive constant could be used instead. Suppose, for
example, that the convex function f : R → R satisfies

|f ′′′(x)| ≤ kf ′′(x)3/2 (9.42)

where k is some positive constant. Then the function f̃(x) = (k2/4)f(x) satisfies

|f̃ ′′′(x)| = (k2/4)|f ′′′(x)|

≤ (k3/4)f ′′(x)3/2

= (k3/4)
(
(4/k2)f̃ ′′(x)

)3/2

= 2f̃ ′′(x)3/2

and therefore is self-concordant. This shows that a function that satisfies (9.42)
for some positive k can be scaled to satisfy the standard self-concordance inequal-
ity (9.41). So what is important is that the third derivative of the function is
bounded by some multiple of the 3/2-power of its second derivative. By appropri-
ately scaling the function, we can change the multiple to the constant 2.

The second comment is a simple calculation that shows why self-concordance
is so important: it is affine invariant. Suppose we define the function f̃ by f̃(y) =
f(ay + b), where a 6= 0. Then f̃ is self-concordant if and only if f is. To see this,
we substitute

f̃ ′′(y) = a2f ′′(x), f̃ ′′′(y) = a3f ′′′(x),

where x = ay + b, into the self-concordance inequality for f̃ , i.e., |f̃ ′′′(y)| ≤
2f̃ ′′(y)3/2, to obtain

|a3f ′′′(x)| ≤ 2(a2f ′′(x))3/2,

which (after dividing by a3) is the self-concordance inequality for f . Roughly
speaking, the self-concordance condition (9.41) is a way to limit the third derivative
of a function, in a way that is independent of affine coordinate changes.

Self-concordant functions on Rn

We now consider functions on Rn with n > 1. We say a function f : Rn → R

is self-concordant if it is self-concordant along every line in its domain, i.e., if the
function f̃(t) = f(x + tv) is a self-concordant function of t for all x ∈ dom f and
for all v.

9.6 Self-concordance 499

9.6.2 Self-concordant calculus

Scaling and sum

Self-concordance is preserved by scaling by a factor exceeding one: If f is self-
concordant and a ≥ 1, then af is self-concordant. Self-concordance is also preserved
by addition: If f1, f2 are self-concordant, then f1 + f2 is self-concordant. To show
this, it is sufficient to consider functions f1, f2 : R → R. We have

|f ′′′1 (x) + f ′′′2 (x)| ≤ |f ′′′1 (x)| + |f ′′′2 (x)|

≤ 2(f ′′1 (x)3/2 + f ′′2 (x)3/2)

≤ 2(f ′′1 (x) + f ′′2 (x))3/2.

In the last step we use the inequality

(u3/2 + v3/2)2/3 ≤ u+ v,

which holds for u, v ≥ 0.

Composition with affine function

If f : Rn → R is self-concordant, and A ∈ Rn×m, b ∈ Rn, then f(Ax + b) is
self-concordant.

Example 9.4 Log barrier for linear inequalities. The function

f(x) = −

m∑

i=1

log(bi − aT
i x),

with dom f = {x | aT
i x < bi, i = 1, . . . ,m}, is self-concordant. Each term − log(bi −

aT
i x) is the composition of − log y with the affine transformation y = bi − aT

i x, and
hence self-concordant. Therefore the sum is also self-concordant.

Example 9.5 Log-determinant. The function f(X) = − log detX is self-concordant
on dom f = Sn

++. To show this, we consider the function f̃(t) = f(X + tV), where
X ≻ 0 and V ∈ Sn. It can be expressed as

f̃(t) = − log det(X1/2(I + tX−1/2V X−1/2)X1/2)

= − log detX − log det(I + tX−1/2V X−1/2)

= − log detX −

n∑

i=1

log(1 + tλi)

where λi are the eigenvalues of X−1/2V X−1/2. Each term − log(1 + tλi) is a self-
concordant function of t, so the sum, f̃ , is self-concordant. It follows that f is
self-concordant.

Example 9.6 Log of concave quadratic. The function

f(x) = − log(xTPx+ qTx+ r),

500 9 Unconstrained minimization

where P ∈ −Sn
+, is self-concordant on

dom f = {x | xTPx+ qTx+ r > 0}.

To show this, it suffices to consider the case n = 1 (since by restricting f to a line,
the general case reduces to the n = 1 case). We can then express f as

f(x) = − log(px2 + qx+ r) = − log (−p(x− a)(b− x))

where dom f = (a, b) (i.e., a and b are the roots of px2+qx+r). Using this expression
we have

f(x) = − log(−p) − log(x− a) − log(b− x),

which establishes self-concordance.

Composition with logarithm

Let g : R → R be a convex function with dom g = R++, and

|g′′′(x)| ≤ 3
g′′(x)

x
(9.43)

for all x. Then
f(x) = − log(−g(x)) − log x

is self-concordant on {x | x > 0, g(x) < 0}. (For a proof, see exercise 9.14.)
The condition (9.43) is homogeneous and preserved under addition. It is sat-

isfied by all (convex) quadratic functions, i.e., functions of the form ax2 + bx+ c,
where a ≥ 0. Therefore if (9.43) holds for a function g, then it holds for the function
g(x) + ax2 + bx+ c, where a ≥ 0.

Example 9.7 The following functions g satisfy the condition (9.43).

• g(x) = −xp for 0 < p ≤ 1.

• g(x) = − log x.

• g(x) = x log x.

• g(x) = xp for −1 ≤ p ≤ 0.

• g(x) = (ax+ b)2/x.

It follows that in each case, the function f(x) = − log(−g(x))−log x is self-concordant.
More generally, the function f(x) = − log(−g(x) − ax2 − bx − c) − log x is self-
concordant on its domain,

{x | x > 0, g(x) + ax2 + bx+ c < 0},

provided a ≥ 0.

Example 9.8 The composition with logarithm rule allows us to show self-concordance
of the following functions.

• f(x, y) = − log(y2 − xTx) on {(x, y) | ‖x‖2 < y}.

• f(x, y) = −2 log y − log(y2/p − x2), with p ≥ 1, on {(x, y) ∈ R2 | |x|p < y}.

• f(x, y) = − log y − log(log y − x) on {(x, y) | ex < y}.

We leave the details as an exercise (exercise 9.15).

9.6 Self-concordance 501

9.6.3 Properties of self-concordant functions

In §9.1.2 we used strong convexity to derive bounds on the suboptimality of a point
x in terms of the norm of the gradient at x. For strictly convex self-concordant
functions, we can obtain similar bounds in terms of the Newton decrement

λ(x) =
(
∇f(x)T∇2f(x)−1∇f(x)

)1/2
.

(It can be shown that the Hessian of a strictly convex self-concordant function is
positive definite everywhere; see exercise 9.17.) Unlike the bounds based on the
norm of the gradient, the bounds based on the Newton decrement are not affected
by an affine change of coordinates.

For future reference we note that the Newton decrement can also be expressed
as

λ(x) = sup
v 6=0

−vT∇f(x)

(vT∇2f(x)v)1/2

(see exercise 9.9). In other words, we have

−vT∇f(x)

(vT∇2f(x)v)1/2
≤ λ(x) (9.44)

for any nonzero v, with equality for v = ∆xnt.

Upper and lower bounds on second derivatives

Suppose f : R → R is a strictly convex self-concordant function. We can write the
self-concordance inequality (9.41) as

∣∣∣∣
d

dt

(
f ′′(t)−1/2

)∣∣∣∣ ≤ 1 (9.45)

for all t ∈ dom f (see exercise 9.16). Assuming t ≥ 0 and the interval between 0
and t is in dom f , we can integrate (9.45) between 0 and t to obtain

−t ≤

∫ t

0

d

dτ

(
f ′′(τ)−1/2

)
dτ ≤ t,

i.e., −t ≤ f ′′(t)−1/2 − f ′′(0)−1/2 ≤ t. From this we obtain lower and upper bounds
on f ′′(t):

f ′′(0)
(
1 + tf ′′(0)1/2

)2 ≤ f ′′(t) ≤
f ′′(0)

(
1 − tf ′′(0)1/2

)2 . (9.46)

The lower bound is valid for all nonnegative t ∈ dom f ; the upper bound is valid
if t ∈ dom f and 0 ≤ t < f ′′(0)−1/2.

Bound on suboptimality

Let f : Rn → R be a strictly convex self-concordant function, and let v be a
descent direction (i.e., any direction satisfying vT∇f(x) < 0, not necessarily the

502 9 Unconstrained minimization

Newton direction). Define f̃ : R → R as f̃(t) = f(x + tv). By definition, the
function f̃ is self-concordant.

Integrating the lower bound in (9.46) yields a lower bound on f̃ ′(t):

f̃ ′(t) ≥ f̃ ′(0) + f̃ ′′(0)1/2 −
f̃ ′′(0)1/2

1 + tf̃ ′′(0)1/2
. (9.47)

Integrating again yields a lower bound on f̃(t):

f̃(t) ≥ f̃(0) + tf̃ ′(0) + tf̃ ′′(0)1/2 − log(1 + tf̃ ′′(0)1/2). (9.48)

The righthand side reaches its minimum at

t̄ =
−f̃ ′(0)

f̃ ′′(0) + f̃ ′′(0)1/2f̃ ′(0)
,

and evaluating at t̄ provides a lower bound on f̃ :

inf
t≥0

f̃(t) ≥ f̃(0) + t̄f̃ ′(0) + t̄f̃ ′′(0)1/2 − log(1 + t̄f̃ ′′(0)1/2)

= f̃(0) − f̃ ′(0)f̃ ′′(0)−1/2 + log(1 + f̃ ′(0)f̃ ′′(0)−1/2).

The inequality (9.44) can be expressed as

λ(x) ≥ −f̃ ′(0)f̃ ′′(0)−1/2

(with equality when v = ∆xnt), since we have

f̃ ′(0) = vT∇f(x), f̃ ′′(0) = vT∇2f(x)v.

Now using the fact that u+ log(1− u) is a monotonically decreasing function of u,
and the inequality above, we get

inf
t≥0

f̃(t) ≥ f̃(0) + λ(x) + log(1 − λ(x)).

This inequality holds for any descent direction v. Therefore

p⋆ ≥ f(x) + λ(x) + log(1 − λ(x)) (9.49)

provided λ(x) < 1. The function − (λ+ log(1 − λ)) is plotted in figure 9.24. It
satisfies

− (λ+ log(1 − λ)) ≈ λ2/2,

for small λ, and the bound

− (λ+ log(1 − λ)) ≤ λ2

for λ ≤ 0.68. Thus, we have the bound on suboptimality

p⋆ ≥ f(x) − λ(x)2, (9.50)

valid for λ(x) ≤ 0.68.
Recall that λ(x)2/2 is the estimate of f(x)− p⋆, based on the quadratic model

at x; the inequality (9.50) shows that for self-concordant functions, doubling this
estimate gives us a provable bound. In particular, it shows that for self-concordant
functions, we can use the stopping criterion

λ(x)2 ≤ ǫ,

(where ǫ < 0.682), and guarantee that on exit f(x) − p⋆ ≤ ǫ.

9.6 Self-concordance 503

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

Figure 9.24 The solid line is the function −(λ+log(1−λ)), which for small λ
is approximately λ2/2. The dashed line shows λ2, which is an upper bound
in the interval 0 ≤ λ ≤ 0.68.

9.6.4 Analysis of Newton’s method for self-concordant functions

We now analyze Newton’s method with backtracking line search, when applied to
a strictly convex self-concordant function f . As before, we assume that a starting
point x(0) is known, and that the sublevel set S = {x | f(x) ≤ f(x(0))} is closed.
We also assume that f is bounded below. (This implies that f has a minimizer x⋆;
see exercise 9.19.)

The analysis is very similar to the classical analysis given in §9.5.2, except that
we use self-concordance as the basic assumption instead of strong convexity and
the Lipschitz condition on the Hessian, and the Newton decrement will play the
role of the norm of the gradient. We will show that there are numbers η and γ > 0,
with 0 < η ≤ 1/4, that depend only on the line search parameters α and β, such
that the following hold:

• If λ(x(k)) > η, then
f(x(k+1)) − f(x(k)) ≤ −γ. (9.51)

• If λ(x(k)) ≤ η, then the backtracking line search selects t = 1 and

2λ(x(k+1)) ≤
(
2λ(x(k))

)2

. (9.52)

These are the analogs of (9.32) and (9.33). As in §9.5.3, the second condition can
be applied recursively, so we can conclude that for all l ≥ k, we have λ(x(l)) ≤ η,
and

2λ(x(l)) ≤
(
2λ(x(k))

)2l−k

≤ (2η)2
l−k

≤

(
1

2

)2l−k

.

As a consequence, for all l ≥ k,

f(x(l)) − p⋆ ≤ λ(x(l))2 ≤
1

4

(
1

2

)2l−k+1

≤

(
1

2

)2l−k+1

,

504 9 Unconstrained minimization

and hence f(x(l)) − p⋆ ≤ ǫ if l − k ≥ log2 log2(1/ǫ).

The first inequality implies that the damped phase cannot require more than
(f(x(0)) − p⋆)/γ steps. Thus the total number of iterations required to obtain an
accuracy f(x) − p⋆ ≤ ǫ, starting at a point x(0), is bounded by

f(x(0)) − p⋆

γ
+ log2 log2(1/ǫ). (9.53)

This is the analog of the bound (9.36) in the classical analysis of Newton’s method.

Damped Newton phase

Let f̃(t) = f(x+ t∆xnt), so we have

f̃ ′(0) = −λ(x)2, f̃ ′′(0) = λ(x)2.

If we integrate the upper bound in (9.46) twice, we obtain an upper bound for f̃(t):

f̃(t) ≤ f̃(0) + tf̃ ′(0) − tf̃ ′′(0)1/2 − log
(
1 − tf̃ ′′(0)1/2

)

= f̃(0) − tλ(x)2 − tλ(x) − log(1 − tλ(x)), (9.54)

valid for 0 ≤ t < 1/λ(x).

We can use this bound to show the backtracking line search always results in a
step size t ≥ β/(1 + λ(x)). To prove this we note that the point t̂ = 1/(1 + λ(x))
satisfies the exit condition of the line search:

f̃(t̂) ≤ f̃(0) − t̂λ(x)2 − t̂λ(x) − log(1 − t̂λ(x))

= f̃(0) − λ(x) + log(1 + λ(x))

≤ f̃(0) − α
λ(x)2

1 + λ(x)

= f̃(0) − αλ(x)2t̂.

The second inequality follows from the fact that

−x+ log(1 + x) +
x2

2(1 + x)
≤ 0

for x ≥ 0. Since t ≥ β/(1 + λ(x)), we have

f̃(t) − f̃(0) ≤ αβ
λ(x)2

1 + λ(x)
,

so (9.51) holds with

γ = αβ
η2

1 + η
.

9.6 Self-concordance 505

Quadratically convergent phase

We will show that we can take

η = (1 − 2α)/4,

(which satisfies 0 < η < 1/4, since 0 < α < 1/2), i.e., if λ(x(k)) ≤ (1− 2α)/4, then
the backtracking line search accepts the unit step and (9.52) holds.

We first note that the upper bound (9.54) implies that a unit step t = 1 yields a
point in dom f if λ(x) < 1. Moreover, if λ(x) ≤ (1− 2α)/2, we have, using (9.54),

f̃(1) ≤ f̃(0) − λ(x)2 − λ(x) − log(1 − λ(x))

≤ f̃(0) −
1

2
λ(x)2 + λ(x)3

≤ f̃(0) − αλ(x)2,

so the unit step satisfies the condition of sufficient decrease. (The second line
follows from the fact that −x− log(1 − x) ≤ 1

2x
2 + x3 for 0 ≤ x ≤ 0.81.)

The inequality (9.52) follows from the following fact, proved in exercise 9.18. If
λ(x) < 1, and x+ = x−∇2f(x)−1∇f(x), then

λ(x+) ≤
λ(x)2

(1 − λ(x))2
. (9.55)

In particular, if λ(x) ≤ 1/4,

λ(x+) ≤ 2λ(x)2,

which proves that (9.52) holds when λ(x(k)) ≤ η.

The final complexity bound

Putting it all together, the bound (9.53) on the number of Newton iterations be-
comes

f(x(0)) − p⋆

γ
+log2 log2(1/ǫ) =

20 − 8α

αβ(1 − 2α)2
(f(x(0))−p⋆)+ log2 log2(1/ǫ). (9.56)

This expression depends only on the line search parameters α and β, and the final
accuracy ǫ. Moreover the term involving ǫ can be safely replaced by the constant
six, so the bound really depends only on α and β. For typical values of α and β, the
constant that scales f(x(0)) − p⋆ is on the order of several hundred. For example,
with α = 0.1, β = 0.8, the scaling factor is 375. With tolerance ǫ = 10−10, we
obtain the bound

375(f(x(0)) − p⋆) + 6. (9.57)

We will see that this bound is fairly conservative, but does capture what appears
to be the general form of the worst-case number of Newton steps required. A more
refined analysis, such as the one originally given by Nesterov and Nemirovski, gives
a similar bound, with a substantially smaller constant scaling f(x(0)) − p⋆.

506 9 Unconstrained minimization

f(x(0)) − p⋆

it
er

at
io

n
s

0 5 10 15 20 25 30 35
0

5

10

15

20

25

Figure 9.25 Number of Newton iterations required to minimize self-
concordant functions versus f(x(0)) − p⋆. The function f has the form
f = −

∑m

i=1
log(bi − aT

i x), where the problem data ai and b are randomly
generated. The circles show problems with m = 100, n = 50; the squares
shows problems with m = 1000, n = 500; and the diamonds show problems
with m = 1000, n = 50. Fifty instances of each are shown.

9.6.5 Discussion and numerical examples

A family of self-concordant functions

It is interesting to compare the upper bound (9.57) with the actual number of
iterations required to minimize a self-concordant function. We consider a family of
problems of the form

f(x) = −

m∑

i=1

log(bi − aT
i x).

The problem data ai and b were generated as follows. For each problem instance,
the coefficients of ai were generated from independent normal distributions with
mean zero and unit variance, and the coefficients b were generated from a uniform
distribution on [0, 1]. Problem instances which were unbounded below were dis-
carded. For each problem we first compute x⋆. We then generate a starting point
by choosing a random direction v, and taking x(0) = x⋆ + sv, where s is chosen so
that f(x(0)) − p⋆ has a prescribed value between 0 and 35. (We should point out
that starting points with values f(x(0))− p⋆ = 10 or higher are actually very close
to the boundary of the polyhedron.) We then minimize the function using New-
ton’s method with a backtracking line search with parameters α = 0.1, β = 0.8,
and tolerance ǫ = 10−10.

Figure 9.25 shows the number of Newton iterations required versus f(x(0))−p⋆

for 150 problem instances. The circles show 50 problems with m = 100, n = 50;
the squares show 50 problems with m = 1000, n = 500; and the diamonds show 50
problems with m = 1000, n = 50.

9.6 Self-concordance 507

For the values of the backtracking parameters used, the complexity bound found
above is

375(f(x(0)) − p⋆) + 6, (9.58)

clearly a much larger value than the number of iterations required (for these 150
instances). The plot suggests that there is a valid bound of the same form, but
with a much smaller constant (say, around 1.5) scaling f(x(0)) − p⋆. Indeed, the
expression

f(x(0)) − p⋆ + 6

is not a bad gross predictor of the number of Newton steps required, although it is
clearly not the only factor. First, there are plenty of problems instances where the
number of Newton steps is somewhat smaller, which correspond, we can guess, to
‘lucky’ starting points. Note also that for the larger problems, with 500 variables
(represented by the squares), there seem to be even more cases where the number
of Newton steps is unusually small.

We should mention here that the problem family we study is not just self-
concordant, but in fact minimally self-concordant, by which we mean that αf
is not self-concordant for α < 1. Hence, the bound (9.58) cannot be improved
by simply scaling f . (The function f(x) = −20 log x is an example of a self-
concordant function which is not minimally self-concordant, since (1/20)f is also
self-concordant.)

Practical importance of self-concordance

We have already observed that Newton’s method works in general very well for
strongly convex objective functions. We can justify this vague statement empir-
ically, and also using the classical analysis of Newton’s method, which yields a
complexity bound, but one that depends on several constants that are almost al-
ways unknown.

For self-concordant functions we can say somewhat more. We have a complexity
bound that is completely explicit, and does not depend on any unknown constants.
Empirical studies suggest that this bound can be tightened considerably, but its
general form, a small constant plus a multiple of f(x(0))− p⋆, seems to predict, at
least crudely, the number of Newton steps required to minimize an approximately
minimally self-concordant function.

It is not yet clear whether self-concordant functions are in practice more easily
minimized by Newton’s method than non-self-concordant functions. (It is not
even clear how one would make this statement precise.) At the moment, we can
say that self-concordant functions are a class of functions for which we can say
considerably more about the complexity of Newton’s method than is the case for
non-self-concordant functions.

508 9 Unconstrained minimization

9.7 Implementation

In this section we discuss some of the issues that arise in implementing an un-
constrained minimization algorithm. We refer the reader to appendix C for more
details on numerical linear algebra.

9.7.1 Pre-computation for line searches

In the simplest implementation of a line search, f(x + t∆x) is evaluated for each
value of t in the same way that f(z) is evaluated for any z ∈ dom f . But in some
cases we can exploit the fact that f (and its derivatives, in an exact line search) are
to be evaluated at many points along the ray {x+ t∆x | t ≥ 0} to reduce the total
computational effort. This usually requires some pre-computation, which is often
on the same order as computing f at any point, after which f (and its derivatives)
can be computed more efficiently along the ray.

Suppose that x ∈ dom f and ∆x ∈ Rn, and define f̃ as f restricted to the line
or ray determined by x and ∆x, i.e., f̃(t) = f(x + t∆x). In a backtracking line
search we must evaluate f̃ for several, and possibly many, values of t; in an exact
line search method we must evaluate f̃ and one or more derivatives at a number of
values of t. In the simple method described above, we evaluate f̃(t) by first forming
z = x + t∆x, and then evaluating f(z). To evaluate f̃ ′(t), we form z = x + t∆x,
then evaluate ∇f(z), and then compute f̃ ′(t) = ∇f(z)T ∆x. In some representative
examples below we show how f̃ can be computed at a number of values of t more
efficiently.

Composition with an affine function

A very general case in which pre-computation can speed up the line search process
occurs when the objective has the form f(x) = φ(Ax+ b), where A ∈ Rp×n, and φ
is easy to evaluate (for example, separable). To evaluate f̃(t) = f(x + t∆x) for k
values of t using the simple approach, we form A(x+ t∆x) + b for each value of t
(which costs 2kpn flops), and then evaluate φ(A(x+ t∆x) + b) for each value of t.
This can be done more efficiently by first computing Ax+ b and A∆x (4pn flops),
then forming A(x+ t∆x) + b for each value of t using

A(x+ t∆x) + b = (Ax+ b) + t(A∆x),

which costs 2kp flops. The total cost, keeping only the dominant terms, is 4pn+2kp
flops, compared to 2kpn for the simple method.

Analytic center of a linear matrix inequality

Here we give an example that is more specific, and more complete. We consider
the problem (9.6) of computing the analytic center of a linear matrix inequality,
i.e., minimizing log detF (x)−1, where x ∈ Rn and F : Rn → Sp is affine. Along
the line through x with direction ∆x we have

f̃(t) = log det(F (x+ t∆x))−1 = − log det(A+ tB)

9.7 Implementation 509

where
A = F (x), B = ∆x1F1 + · · · + ∆xnFn ∈ Sp.

Since A ≻ 0, it has a Cholesky factorization A = LLT , where L is lower triangular
and nonsingular. Therefore we can express f̃ as

f̃(t) = − log det
(
L(I + tL−1BL−T)LT

)
= − log detA−

p∑

i=1

log(1 + tλi) (9.59)

where λ1, . . . , λp are the eigenvalues of L−1BL−T . Once these eigenvalues are

computed, we can evaluate f̃(t), for any t, with 4p simple arithmetic computations,
by using the formula on the right hand side of (9.59). We can evaluate f̃ ′(t) (and
similarly, any higher derivative) in 4p operations, using the formula

f̃ ′(t) = −

p∑

i=1

λi

1 + tλi
.

Let us compare the two methods for carrying out a line search, assuming that
we need to evaluate f(x + t∆x) for k values of t. In the simple method, for each
value of t we form F (x+t∆x), and then evaluate f(x+t∆x) as − log detF (x+t∆x).
For example, we can find the Cholesky factorization of F (x + t∆x) = LLT , and
then evaluate

− log detF (x+ t∆x) = −2

p∑

i=1

logLii.

The cost is np2 to form F (x + t∆x), plus (1/3)p3 for the Cholesky factorization.
Therefore the total cost of the line search is

k(np2 + (1/3)p3) = knp2 + (1/3)kp3.

Using the method outlined above, we first form A, which costs np2, and factor
it, which costs (1/3)p3. We also form B (which costs np2), and L−1BL−T , which
costs 2p3. The eigenvalues of this matrix are then computed, at a cost of about
(4/3)p3 flops. This pre-computation requires a total of 2np2 +(11/3)p3 flops. After
finishing this pre-computation, we can now evaluate f̃(t) for each value of t at a
cost of 4p flops. The total cost is then

2np2 + (11/3)p3 + 4kp.

Assuming k is small compared to p(2n+(11/3)p), this means the entire line search
can be carried out at an effort comparable to simply evaluating f . Depending on
the values of k, p, and n, the savings over the simple method can be as large as
order k.

9.7.2 Computing the Newton step

In this section we briefly describe some of the issues that arise in implementing
Newton’s method. In most cases, the work of computing the Newton step ∆xnt

510 9 Unconstrained minimization

dominates the work involved in the line search. To compute the Newton step
∆xnt, we first evaluate and form the Hessian matrix H = ∇2f(x) and the gradient
g = ∇f(x) at x. Then we solve the system of linear equations H∆xnt = −g to
find the Newton step. This set of equations is sometimes called the Newton system

(since its solution gives the Newton step) or the normal equations, since the same
type of equation arises in solving a least-squares problem (see §9.1.1).

While a general linear equation solver can be used, it is better to use methods
that take advantage of the symmetry and positive definiteness of H. The most
common approach is to form the Cholesky factorization of H, i.e., to compute a
lower triangular matrix L that satisfies LLT = H (see §C.3.2). We then solve Lw =
−g by forward substitution, to obtain w = −L−1g, and then solve LT ∆xnt = w by
back substitution, to obtain

∆xnt = L−Tw = −L−TL−1g = −H−1g.

We can compute the Newton decrement as λ2 = −∆xT
ntg, or use the formula

λ2 = gTH−1g = ‖L−1g‖2
2 = ‖w‖2

2.

If a dense (unstructured) Cholesky factorization is used, the cost of the forward and
back substitution is dominated by the cost of the Cholesky factorization, which is
(1/3)n3 flops. The total cost of computing the Newton step ∆xnt is thus F+(1/3)n3

flops, where F is the cost of forming H and g.
It is often possible to solve the Newton system H∆xnt = −g more efficiently,

by exploiting special structure in H, such as band structure or sparsity. In this
context, ‘structure of H’ means structure that is the same for all x. For example,
when we say that ‘H is tridiagonal’ we mean that for every x ∈ dom f , ∇2f(x) is
tridiagonal.

Band structure

If the Hessian H is banded with bandwidth k, i.e., Hij = 0 for |i− j| > k, then the
banded Cholesky factorization can be used, as well as banded forward and back
substitutions. The cost of computing the Newton step ∆xnt = −H−1g is then
F +nk2 flops (assuming k ≪ n), compared to F +(1/3)n3 for a dense factorization
and substitution method.

The Hessian band structure condition

∇2f(x)ij =
∂2f(x)

∂xi∂xj
= 0 for |i− j| > k,

for all x ∈ dom f , has an interesting interpretation in terms of the objective
function f . Roughly speaking it means that in the objective function, each variable
xi couples nonlinearly only to the 2k + 1 variables xj , j = i − k, . . . , i + k. This
occurs when f has the partial separability form

f(x) = ψ1(x1, . . . , xk+1) + ψ2(x2, . . . , xk+2) + · · · + ψn−k(xn−k, . . . , xn),

where ψi : Rk+1 → R. In other words, f can be expressed as a sum of functions
of k consecutive variables.

9.7 Implementation 511

Example 9.9 Consider the problem of minimizing f : Rn → R, which has the form

f(x) = ψ1(x1, x2) + ψ2(x2, x3) + · · · + ψn−1(xn−1, xn),

where φi : R2 → R are convex and twice differentiable. Because of this form, the
Hessian ∇2f is tridiagonal, since ∂2f/∂xi∂xj = 0 for |i− j| > 1. (And conversely, if
the Hessian of a function is tridiagonal for all x, then it has this form.)

Using Cholesky factorization and forward and back substitution algorithms for tridi-
agonal matrices, we can solve the Newton system for this problem in order n flops.
This should be compared to order n3 flops, if the special form of f were not exploited.

Sparse structure

More generally we can exploit sparsity of the Hessian H in solving the Newton
system. This sparse structure occurs whenever each variable xi is nonlinearly
coupled (in the objective) to only a few other variables, or equivalently, when the
objective function can be expressed as a sum of functions, each depending on only
a few variables, and each variable appearing in only a few of these functions.

To solve H∆x = −g when H is sparse, a sparse Cholesky factorization is used
to compute a permutation matrix P and lower triangular matrix L for which

H = PLLTPT .

The cost of this factorization depends on the particular sparsity pattern, but is
often far smaller than (1/3)n3, and an empirical complexity of order n (for large
n) is not uncommon. The forward and back substitution are very similar to the
basic method without the permutation. We solve Lw = −PT g using forward
substitution, and then solve LT v = w by back substitution to obtain

v = L−Tw = −L−TL−1PT g.

The Newton step is then ∆x = Pv.

Since the sparsity pattern of H does not change as x varies (or more precisely,
since we only exploit sparsity that does not change with x) we can use the same
permutation matrix P for each of the Newton steps. The step of determining a
good permutation matrix P , which is called the symbolic factorization step, can be
done once, for the whole Newton process.

Diagonal plus low rank

There are many other types of structure that can be exploited in solving the New-
ton system H∆xnt = −g. Here we briefly describe one, and refer the reader to
appendix C for more details. Suppose the Hessian H can be expressed as a diago-
nal matrix plus one of low rank, say, p. This occurs when the objective function f
has the special form

f(x) =

n∑

i=1

ψi(xi) + ψ0(Ax+ b) (9.60)

512 9 Unconstrained minimization

where A ∈ Rp×n, ψ1, . . . , ψn : R → R, and ψ0 : Rp → R. In other words, f
is a separable function, plus a function that depends on a low dimensional affine
function of x.

To find the Newton step ∆xnt for (9.60) we must solve the Newton system
H∆xnt = −g, with

H = D +ATH0A.

Here D = diag(ψ′′
1 (x1), . . . , ψ

′′
n(xn)) is diagonal, and H0 = ∇2ψ0(Ax + b) is the

Hessian of ψ0. If we compute the Newton step without exploiting the structure,
the cost of solving the Newton system is (1/3)n3 flops.

Let H0 = L0L
T
0 be the Cholesky factorization of H0. We introduce the tempo-

rary variable w = LT
0 A∆xnt ∈ Rp, and express the Newton system as

D∆xnt +ATL0w = −g, w = LT
0 A∆xnt.

Substituting ∆xnt = −D−1(ATL0w + g) (from the first equation) into the second
equation, we obtain

(I + LT
0 AD

−1ATL0)w = −LT
0 AD

−1g, (9.61)

which is a system of p linear equations.
Now we proceed as follows to compute the Newton step ∆xnt. First we compute

the Cholesky factorization of H0, which costs (1/3)p3. We then form the dense,
positive definite symmetric matrix appearing on the lefthand side of (9.61), which
costs 2p2n. We then solve (9.61) for w using a Cholesky factorization and a back and
forward substitution, which costs (1/3)p3 flops. Finally, we compute ∆xnt using
∆xnt = −D−1(ATL0w + g), which costs 2np flops. The total cost of computing
∆xnt is (keeping only the dominant term) 2p2n flops, which is far smaller than
(1/3)n3 for p≪ n.

Bibliography 513

Bibliography

Dennis and Schnabel [DS96] and Ortega and Rheinboldt [OR00] are two standard refer-
ences on algorithms for unconstrained minimization and nonlinear equations. The result
on quadratic convergence, assuming strong convexity and Lipschitz continuity of the Hes-
sian, is attributed to Kantorovich [Kan52]. Polyak [Pol87, §1.6] gives some insightful
comments on the role of convergence results that involve unknown constants, such as the
results derived in §9.5.3.

Self-concordant functions were introduced by Nesterov and Nemirovski [NN94]. All our
results in §9.6 and exercises 9.14–9.20 can be found in their book, although often in a
more general form or with different notation. Renegar [Ren01] gives a concise and elegant
presentation of self-concordant functions and their role in the analysis of primal-dual
interior-point algorithms. Peng, Roos, and Terlaky [PRT02] study interior-point methods
from the viewpoint of self-regular functions, a class of functions that is similar, but not
identical, to self-concordant functions.

References for the material in §9.7 are given at the end of appendix C.

514 9 Unconstrained minimization

Exercises

Unconstrained minimization

9.1 Minimizing a quadratic function. Consider the problem of minimizing a quadratic
function:

minimize f(x) = (1/2)xTPx+ qTx+ r,

where P ∈ Sn (but we do not assume P � 0).

(a) Show that if P 6� 0, i.e., the objective function f is not convex, then the problem is
unbounded below.

(b) Now suppose that P � 0 (so the objective function is convex), but the optimality
condition Px⋆ = −q does not have a solution. Show that the problem is unbounded
below.

9.2 Minimizing a quadratic-over-linear fractional function. Consider the problem of minimiz-
ing the function f : Rn → R, defined as

f(x) =
‖Ax− b‖2

2

cTx+ d
, dom f = {x | cTx+ d > 0}.

We assume rankA = n and b 6∈ R(A).

(a) Show that f is closed.

(b) Show that the minimizer x⋆ of f is given by

x⋆ = x1 + tx2

where x1 = (ATA)−1AT b, x2 = (ATA)−1c, and t ∈ R can be calculated by solving
a quadratic equation.

9.3 Initial point and sublevel set condition. Consider the function f(x) = x2
1 +x2

2 with domain
dom f = {(x1, x2) | x1 > 1}.

(a) What is p⋆?

(b) Draw the sublevel set S = {x | f(x) ≤ f(x(0))} for x(0) = (2, 2). Is the sublevel set
S closed? Is f strongly convex on S?

(c) What happens if we apply the gradient method with backtracking line search, start-

ing at x(0)? Does f(x(k)) converge to p⋆?

9.4 Do you agree with the following argument? The ℓ1-norm of a vector x ∈ Rm can be
expressed as

‖x‖1 = (1/2) inf
y≻0

(
m∑

i=1

x2
i /yi + 1

T y

)
.

Therefore the ℓ1-norm approximation problem

minimize ‖Ax− b‖1

is equivalent to the minimization problem

minimize f(x, y) =
∑m

i=1
(aT

i x− bi)
2/yi + 1T y, (9.62)

with dom f = {(x, y) ∈ Rn ×Rm | y ≻ 0}, where aT
i is the ith row of A. Since f is twice

differentiable and convex, we can solve the ℓ1-norm approximation problem by applying
Newton’s method to (9.62).

9.5 Backtracking line search. Suppose f is strongly convex with mI � ∇2f(x) � MI. Let
∆x be a descent direction at x. Show that the backtracking stopping condition holds for

0 < t ≤ −
∇f(x)T ∆x

M‖∆x‖2
2

.

Use this to give an upper bound on the number of backtracking iterations.

Exercises 515

Gradient and steepest descent methods

9.6 Quadratic problem in R2. Verify the expressions for the iterates x(k) in the first example
of §9.3.2.

9.7 Let ∆xsd and ∆xsd be the normalized and unnormalized steepest descent directions at x,
for the norm ‖ · ‖. Prove the following identities.

(a) ∇f(x)T ∆xnsd = −‖∇f(x)‖∗.

(b) ∇f(x)T ∆xsd = −‖∇f(x)‖2
∗.

(c) ∆xsd = argminv(∇f(x)T v + (1/2)‖v‖2).

9.8 Steepest descent method in ℓ∞-norm. Explain how to find a steepest descent direction in
the ℓ∞-norm, and give a simple interpretation.

Newton’s method

9.9 Newton decrement. Show that the Newton decrement λ(x) satisfies

λ(x) = sup
vT ∇2f(x)v=1

(−vT∇f(x)) = sup
v 6=0

−vT∇f(x)

(vT∇2f(x)v)1/2
.

9.10 The pure Newton method. Newton’s method with fixed step size t = 1 can diverge if the
initial point is not close to x⋆. In this problem we consider two examples.

(a) f(x) = log(ex + e−x) has a unique minimizer x⋆ = 0. Run Newton’s method with

fixed step size t = 1, starting at x(0) = 1 and at x(0) = 1.1.

(b) f(x) = − log x+x has a unique minimizer x⋆ = 1. Run Newton’s method with fixed

step size t = 1, starting at x(0) = 3.

Plot f and f ′, and show the first few iterates.

9.11 Gradient and Newton methods for composition functions. Suppose φ : R → R is increasing
and convex, and f : Rn → R is convex, so g(x) = φ(f(x)) is convex. (We assume that
f and g are twice differentiable.) The problems of minimizing f and minimizing g are
clearly equivalent.

Compare the gradient method and Newton’s method, applied to f and g. How are the
search directions related? How are the methods related if an exact line search is used?
Hint. Use the matrix inversion lemma (see §C.4.3).

9.12 Trust region Newton method. If ∇2f(x) is singular (or very ill-conditioned), the Newton
step ∆xnt = −∇2f(x)−1∇f(x) is not well defined. Instead we can define a search direction
∆xtr as the solution of

minimize (1/2)vTHv + gT v
subject to ‖v‖2 ≤ γ,

whereH = ∇2f(x), g = ∇f(x), and γ is a positive constant. The point x+∆xtr minimizes
the second-order approximation of f at x, subject to the constraint that ‖(x+∆xtr)−x‖2 ≤
γ. The set {v | ‖v‖2 ≤ γ} is called the trust region. The parameter γ, the size of the trust
region, reflects our confidence in the second-order model.

Show that ∆xtr minimizes

(1/2)vTHv + gT v + β̂‖v‖2
2,

for some β̂. This quadratic function can be interpreted as a regularized quadratic model
for f around x.

516 9 Unconstrained minimization

Self-concordance

9.13 Self-concordance and the inverse barrier.

(a) Show that f(x) = 1/x with domain (0, 8/9) is self-concordant.

(b) Show that the function

f(x) = α

m∑

i=1

1

bi − aT
i x

with dom f = {x ∈ Rn | aT
i x < bi, i = 1, . . . ,m}, is self-concordant if dom f is

bounded and
α > (9/8) max

i=1,...,m
sup

x∈dom f

(bi − aT
i x).

9.14 Composition with logarithm. Let g : R → R be a convex function with dom g = R++,
and

|g′′′(x)| ≤ 3
g′′(x)

x

for all x. Prove that f(x) = − log(−g(x))− log x is self-concordant on {x | x > 0, g(x) <
0}. Hint. Use the inequality

3

2
rp2 + q3 +

3

2
p2q + r3 ≤ 1

which holds for p, q, r ∈ R+ with p2 + q2 + r2 = 1.

9.15 Prove that the following functions are self-concordant. In your proof, restrict the function
to a line, and apply the composition with logarithm rule.

(a) f(x, y) = − log(y2 − xTx) on {(x, y) | ‖x‖2 < y}.

(b) f(x, y) = −2 log y − log(y2/p − x2), with p ≥ 1, on {(x, y) ∈ R2 | |x|p < y}.

(c) f(x, y) = − log y − log(log y − x) on {(x, y) | ex < y}.

9.16 Let f : R → R be a self-concordant function.

(a) Suppose f ′′(x) 6= 0. Show that the self-concordance condition (9.41) can be ex-
pressed as ∣∣∣ d

dx

(
f ′′(x)−1/2

)∣∣∣ ≤ 1.

Find the ‘extreme’ self-concordant functions of one variable, i.e., the functions f
and f̃ that satisfy

d

dx

(
f ′′(x)−1/2

)
= 1,

d

dx

(
f̃ ′′(x)−1/2

)
= −1,

respectively.

(b) Show that either f ′′(x) = 0 for all x ∈ dom f , or f ′′(x) > 0 for all x ∈ dom f .

9.17 Upper and lower bounds on the Hessian of a self-concordant function.

(a) Let f : R2 → R be a self-concordant function. Show that

∣∣∣∣
∂3f(x)

∂3xi

∣∣∣∣ ≤ 2

(
∂2f(x)

∂x2
i

)3/2

, i = 1, 2,

∣∣∣∣
∂3f(x)

∂x2
i ∂xj

∣∣∣∣ ≤ 2
∂2f(x)

∂x2
i

(
∂2f(x)

∂x2
j

)1/2

, i 6= j

for all x ∈ dom f .

Exercises 517

Hint. If h : R2 × R2 × R2 → R is a symmetric trilinear form, i.e.,

h(u, v, w) = a1u1v1w1 + a2(u1v1w2 + u1v2w1 + u2v1w1)

+ a3(u1v2w2 + u2v1w1 + u2v2w1) + a4u2v2w2,

then

sup
u,v,w 6=0

h(u, v, w)

‖u‖2‖v‖2‖w‖2
= sup

u 6=0

h(u, u, u)

‖u‖3
2

.

(b) Let f : Rn → R be a self-concordant function. Show that the nullspace of ∇2f(x)
is independent of x. Show that if f is strictly convex, then ∇2f(x) is nonsingular
for all x ∈ dom f .

Hint. Prove that if wT∇2f(x)w = 0 for some x ∈ dom f , then wT∇2f(y)w = 0 for
all y ∈ dom f . To show this, apply the result in (a) to the self-concordant function

f̃(t, s) = f(x+ t(y − x) + sw).

(c) Let f : Rn → R be a self-concordant function. Suppose x ∈ dom f , v ∈ Rn. Show
that

(1 − tα)2∇2f(x) � ∇2f(x+ tv) �
1

(1 − tα)2
∇2f(x)

for x+ tv ∈ dom f , 0 ≤ t < α, where α = (vT∇2f(x)v)1/2.

9.18 Quadratic convergence. Let f : Rn → R be a strictly convex self-concordant function.
Suppose λ(x) < 1, and define x+ = x−∇2f(x)−1∇f(x). Prove that λ(x+) ≤ λ(x)2/(1−
λ(x))2. Hint. Use the inequalities in exercise 9.17, part (c).

9.19 Bound on the distance from the optimum. Let f : Rn → R be a strictly convex self-
concordant function.

(a) Suppose λ(x̄) < 1 and the sublevel set {x | f(x) ≤ f(x̄)} is closed. Show that the
minimum of f is attained and

(
(x̄− x⋆)T∇2f(x̄)(x̄− x⋆)

)1/2
≤

λ(x̄)

1 − λ(x̄)
.

(b) Show that if f has a closed sublevel set, and is bounded below, then its minimum is
attained.

9.20 Conjugate of a self-concordant function. Suppose f : Rn → R is closed, strictly convex,
and self-concordant. We show that its conjugate (or Legendre transform) f∗ is self-
concordant.

(a) Show that for each y ∈ dom f∗, there is a unique x ∈ dom f that satisfies y =
∇f(x). Hint. Refer to the result of exercise 9.19.

(b) Suppose ȳ = ∇f(x̄). Define

g(t) = f(x̄+ tv), h(t) = f∗(ȳ + tw)

where v ∈ Rn and w = ∇2f(x̄)v. Show that

g′′(0) = h′′(0), g′′′(0) = −h′′′(0).

Use these identities to show that f∗ is self-concordant.

9.21 Optimal line search parameters. Consider the upper bound (9.56) on the number of
Newton iterations required to minimize a strictly convex self-concordant functions. What
is the minimum value of the upper bound, if we minimize over α and β?

9.22 Suppose that f is strictly convex and satisfies (9.42). Give a bound on the number of

Newton steps required to compute p⋆ within ǫ, starting at x(0).

518 9 Unconstrained minimization

Implementation

9.23 Pre-computation for line searches. For each of the following functions, explain how the
computational cost of a line search can be reduced by a pre-computation. Give the cost
of the pre-computation, and the cost of evaluating g(t) = f(x+ t∆x) and g′(t) with and
without the pre-computation.

(a) f(x) = −
∑m

i=1
log(bi − aT

i x).

(b) f(x) = log
(∑m

i=1
exp(aT

i x+ bi)
)
.

(c) f(x) = (Ax− b)T (P0 + x1P1 + · · · + xnPn)−1(Ax− b), where Pi ∈ Sm, A ∈ Rm×n,
b ∈ Rm and dom f = {x | P0 +

∑n

i=1
xiPi ≻ 0}.

9.24 Exploiting block diagonal structure in the Newton system. Suppose the Hessian ∇2f(x) of
a convex function f is block diagonal. How do we exploit this structure when computing
the Newton step? What does it mean about f?

9.25 Smoothed fit to given data. Consider the problem

minimize f(x) =
∑n

i=1
ψ(xi − yi) + λ

∑n−1

i=1
(xi+1 − xi)

2

where λ > 0 is smoothing parameter, ψ is a convex penalty function, and x ∈ Rn is the
variable. We can interpret x as a smoothed fit to the vector y.

(a) What is the structure in the Hessian of f?

(b) Extend to the problem of making a smooth fit to two-dimensional data, i.e., mini-
mizing the function

n∑

i,j=1

ψ(xij − yij) + λ

(
n−1∑

i=1

n∑

j=1

(xi+1,j − xij)
2 +

n∑

i=1

n−1∑

j=1

(xi,j+1 − xij)
2

)
,

with variable X ∈ Rn×n, where Y ∈ Rn×n and λ > 0 are given.

9.26 Newton equations with linear structure. Consider the problem of minimizing a function
of the form

f(x) =

N∑

i=1

ψi(Aix+ bi) (9.63)

where Ai ∈ Rmi×n, bi ∈ Rmi , and the functions ψi : Rmi → R are twice differentiable
and convex. The Hessian H and gradient g of f at x are given by

H =

N∑

i=1

AT
i HiAi, g =

N∑

i=1

AT
i gi. (9.64)

where Hi = ∇2ψi(Aix+ bi) and gi = ∇ψi(Aix+ bi).

Describe how you would implement Newton’s method for minimizing f . Assume that
n≫ mi, the matrices Ai are very sparse, but the Hessian H is dense.

9.27 Analytic center of linear inequalities with variable bounds. Give the most efficient method
for computing the Newton step of the function

f(x) = −

n∑

i=1

log(xi + 1) −

n∑

i=1

log(1 − xi) −

m∑

i=1

log(bi − aT
i x),

with dom f = {x ∈ Rn | −1 ≺ x ≺ 1, Ax ≺ b}, where aT
i is the ith row of A. Assume A

is dense, and distinguish two cases: m ≥ n and m ≤ n. (See also exercise 9.30.)

Exercises 519

9.28 Analytic center of quadratic inequalities. Describe an efficient method for computing the
Newton step of the function

f(x) = −

m∑

i=1

log(−xTAix− bTi x− ci),

with dom f = {x | xTAix + bTi x + ci < 0, i = 1, . . . ,m}. Assume that the matrices
Ai ∈ Sn

++ are large and sparse, and m≪ n.

Hint. The Hessian and gradient of f at x are given by

H =

m∑

i=1

(2αiAi + α2
i (2Aix+ bi)(2Aix+ bi)

T), g =

m∑

i=1

αi(2Aix+ bi),

where αi = 1/(−xTAi − bTi x− ci).

9.29 Exploiting structure in two-stage optimization. This exercise continues exercise 4.64, which
describes optimization with recourse, or two-stage optimization. Using the notation and
assumptions in exercise 4.64, we assume in addition that the cost function f is a twice
differentiable function of (x, z), for each scenario i = 1, . . . , S.

Explain how to efficiently compute the Newton step for the problem of finding the optimal
policy. How does the approximate flop count for your method compare to that of a generic
method (which exploits no structure), as a function of S, the number of scenarios?

Numerical experiments

9.30 Gradient and Newton methods. Consider the unconstrained problem

minimize f(x) = −
∑m

i=1
log(1 − aT

i x) −
∑n

i=1
log(1 − x2

i),

with variable x ∈ Rn, and dom f = {x | aT
i x < 1, i = 1, . . . ,m, |xi| < 1, i = 1, . . . , n}.

This is the problem of computing the analytic center of the set of linear inequalities

aT
i x ≤ 1, i = 1, . . . ,m, |xi| ≤ 1, i = 1, . . . , n.

Note that we can choose x(0) = 0 as our initial point. You can generate instances of this
problem by choosing ai from some distribution on Rn.

(a) Use the gradient method to solve the problem, using reasonable choices for the back-
tracking parameters, and a stopping criterion of the form ‖∇f(x)‖2 ≤ η. Plot the
objective function and step length versus iteration number. (Once you have deter-
mined p⋆ to high accuracy, you can also plot f − p⋆ versus iteration.) Experiment
with the backtracking parameters α and β to see their effect on the total number of
iterations required. Carry these experiments out for several instances of the problem,
of different sizes.

(b) Repeat using Newton’s method, with stopping criterion based on the Newton decre-
ment λ2. Look for quadratic convergence. You do not have to use an efficient method
to compute the Newton step, as in exercise 9.27; you can use a general purpose dense
solver, although it is better to use one that is based on a Cholesky factorization.

Hint. Use the chain rule to find expressions for ∇f(x) and ∇2f(x).

9.31 Some approximate Newton methods. The cost of Newton’s method is dominated by the
cost of evaluating the Hessian ∇2f(x) and the cost of solving the Newton system. For large
problems, it is sometimes useful to replace the Hessian by a positive definite approximation
that makes it easier to form and solve for the search step. In this problem we explore
some common examples of this idea.

For each of the approximate Newton methods described below, test the method on some
instances of the analytic centering problem described in exercise 9.30, and compare the
results to those obtained using the Newton method and gradient method.

520 9 Unconstrained minimization

(a) Re-using the Hessian. We evaluate and factor the Hessian only every N iterations,
whereN > 1, and use the search step ∆x = −H−1∇f(x), whereH is the last Hessian
evaluated. (We need to evaluate and factor the Hessian once every N steps; for the
other steps, we compute the search direction using back and forward substitution.)

(b) Diagonal approximation. We replace the Hessian by its diagonal, so we only have
to evaluate the n second derivatives ∂2f(x)/∂x2

i , and computing the search step is
very easy.

9.32 Gauss-Newton method for convex nonlinear least-squares problems. We consider a (non-
linear) least-squares problem, in which we minimize a function of the form

f(x) =
1

2

m∑

i=1

fi(x)
2,

where fi are twice differentiable functions. The gradient and Hessian of f at x are given
by

∇f(x) =

m∑

i=1

fi(x)∇fi(x), ∇2f(x) =

m∑

i=1

(
∇fi(x)∇fi(x)

T + fi(x)∇
2fi(x)

)
.

We consider the case when f is convex. This occurs, for example, if each fi is either
nonnegative and convex, or nonpositive and concave, or affine.

The Gauss-Newton method uses the search direction

∆xgn = −

(
m∑

i=1

∇fi(x)∇fi(x)
T

)−1(m∑

i=1

fi(x)∇fi(x)

)
.

(We assume here that the inverse exists, i.e., the vectors ∇f1(x), . . . ,∇fm(x) span Rn.)
This search direction can be considered an approximate Newton direction (see exer-
cise 9.31), obtained by dropping the second derivative terms from the Hessian of f .

We can give another simple interpretation of the Gauss-Newton search direction ∆xgn.
Using the first-order approximation fi(x+ v) ≈ fi(x) +∇fi(x)

T v we obtain the approxi-
mation

f(x+ v) ≈
1

2

m∑

i=1

(fi(x) + ∇fi(x)
T v)2.

The Gauss-Newton search step ∆xgn is precisely the value of v that minimizes this ap-
proximation of f . (Moreover, we conclude that ∆xgn can be computed by solving a linear
least-squares problem.)

Test the Gauss-Newton method on some problem instances of the form

fi(x) = (1/2)xTAix+ bTi x+ 1,

with Ai ∈ Sn
++ and bTi A

−1
i bi ≤ 2 (which ensures that f is convex).

