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Outline

Part I: Sensor Network Localization, SNL, Henry Wolkowicz
@ exploiting implicit degeneracy
@ solving huge problems
@ high accuracy (low rank) solutions

(With: N. Krislock, F. Rendl)

Part II: Preprocessing and Reduction for Degenerate

Semidefinite Programs, Y-L (Vris) Cheung

@ backward stable preprocessing technique using
rank-revealing rotations

@ (strict) complementarity and duality gaps
(With: S. Schurr and H. Wolkowicz)




Part |I: Sensor Network Localization, SNL, Problem
(Exploiting (Implicit) Degeneracy)

SNL - a Fundamental Problem of Distance Geometry;

® n ad hoc wireless sensors (nodes) to locate in R,
(r is embedding dimension;

sensorspi e R',ieV :=1,...,n)

om yPi,i=n—m+1,...,n)
(positions known, using e.g. GPS)

@ pairwise distances Dj = ||p; — ijZ, ij € E, are known
within radio range R > 0

o
PT _ [pl pn] _ [XT AT] c R*N




Applications

Horst Stormer (Nobel Prize, Physics, 1998), “21 Ideas for the

21st Century”, Business Week. 8/23-30, 1999

Untethered micro sensors will go anywhere and measure
anything - traffic flow, water level, number of people walking by,
temperature. This is developing into something like a nervous
system for the earth, a skin for the earth. The world will evolve
this way.

Tracking Humans/Animals/Equipment/Weather

@ geographic routing; data aggregation; topological control;
soil humidity; earthquakes and volcanos; weather and
ocean currents; radiation levels.

@ military; tracking of goods; vehicle positions; surveillance;
random deployment in inaccessible terrains.

@ brain scans




Underlying Graph Realization/Partial EDM  NP-Hard

@ nodesetV = {1,....n}
@ edge set (i,j) € £; wj = ||pi — p;||*> known approximately
@ The anchors form a clique (complete subgraph)

@ Realization of G in R": a mapping of node v; — p; € R’
with squared distances given by w.

Corresponding Partial Euclidean Distance Matrix, EDM

o _ 4 ifGee
7| 0 otherwise (unknown distance),

dij2 = wjj are known squared Euclidean distances between
Sensors p;, pj; anchors correspond to a clique.




Sensor Localization Problem/Partial EDM

and Anchors




Molecular Conformation: r = 3, no anchors

Distance Geometry Description

From Experimental data, e.g. NMR spectroscopy

@ alist of distances (lower and upper bounds on the
distances between pairs of atoms)

@ chirality constraints (chirality of its rigid quadruples of
atoms)




Connections to Semidefinite Programming (SDP)

, Cone of (symmetric) SDP matrices in

inner product (A, B) = traceAB
Léwner (psd) partial order A =~ B, A - B

\

, (centered )
PT=[p1 p2 ... Pn] €M™,
B :=PPT € 8" (Gram matrix of inner products);
rank B =r; let D € £" corresponding EDM ; e = (l 1)T
(toDee™) D = (Ipi—Ppil3) s

n
= (ofpi+o/m—207m),

= |diag(B)e' +ediag(B)" — 2B
—: De(B) — 2B
=: K(B) (fromB e ST).
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Euclidean Distance, EDM, and Semidefinite, SDP,
Matrices

Moore-Penrose Generalized Inverse

B0 =— D=K(B)=dag(B)e" +ediag(B)’ —2Bc &
Defé = B=K/(D)=-3J(offDiag)J) = 0,De =0

Theorem (Schoenberg, 1935)

A (hollow) matrix D with diag (D) = 0(D € Sy) is a
Euclidean distance matrix
if and only if

| A\

B =K'(D) = 0.
And
embdim (D) = rank (}CT(D)) , YDeg"

\



S") K:8'NSc—E'CS" NSy «—: T (&Y

Linear Transformations:

@ allow: Dy (B) := diag(B)v' + v diag(B)";
Dy(y) :=yvT +vyT

@ adjoint £ *(D) = 2(Diag(De) — D).

) ‘ IC is 1—1, onto between centered & hollow subspaces ‘:
Sc :={B €S" :Be =0};
Sy :={D € S" : diag(D) = 0} = R (offDiag)

@ J:=1| - Zee' (orthogonal projection onto M := {e}*);

@ | 7(D) = —3JoffDiag(D)J (=K (D))

10



Popular Techniques; SDP Relax.; Highly Degen.

Nearest, Weighted, SDP Approx. (relax/discard

® Ming-gpeq ||H o (K (B) —D)|; rankB =r;

typical weights: H; = 1/,/D;. ifij € E.
@ with rank constraint: a non-convex, NP-hard program
@ SDP relaxation is convex, BUT: expensive/low

accuracy/implicitly highly degenerate (cliques restrict ranks
of feasible BS)

4
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Instead: (Shall) Take Advantage of Degeneracy!

© given clique o, |a| = k; with corresp. principal EDM block
D[a]; and embed. dim. =t <r <k

@ IMPLIES a restriction on rank of corresp. Gram matrix:
rank (KT(D[a])) =t <

© IMPLIES a restriction on rank of principal block of main
Gram matrix: rank (B[a]) < rank (K T(D[a])) + 1

© IMPLIES rank B = rank (KT(D)) <n—|(k —t—1)
© IMPLIES Slater's CQ (strict feasibility) fails
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Semidefinite Cone, Faces

@ F C K is aface of K, denoted , if

(x,y €K, 3(x +y) € F) = (cone{x,y} CF).

o [F oK ifF IK,F #K;F is|proper face if {0} # F <K.
o FJKis if: intersection of K with a hyperplane.

@ |face(S) | denotes smallest face of K that contains set S.

@ if S is convex set, F is a face
minimal face face(S) = F iff S Nrelint (F) # 0

All faces are exposed.
13




Facial Structure of SDP Cone; Equivalent

SUBSPACES

Equivalence to

F < ST determined by range of any S € relintF,

i.e.letS =UIUT be compact spectral decomposition; I' € S', |

is diagonal matrix of pos. eigenvalues;

(F associated with R (U))
dmF =t(t+1)/2.

F=US\U"

face - representation by subspace

(subspace) £ =R (T), T is n x t full column, then:

F=TS{TT<8", rdint(F)=T8,. 7T

\



Basic Single Clique/Facial Reduction

principal submatrix
Define £"(a, D) := {D € £&" : D[a] = D}.

Given D; find a corresponding B > 0; find the corresponding
face; find the corresponding subspace.
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BASIC THEOREM for Single Clique/Facial Reduction

THEOREM 1: Single Clique/Facial Reduction

Let: D :=D[1:K] € £X, k < n,embdim(D) =t <r;
B:=Kf(D)= uBsuB,uBeMkxt UgUg =1, S € S ;

Ug = [UB Te} e MKx(tH1) 'y .= [UB 0 ],and

0 I
[V —HBIZH} € MK+ orthogonal. Then:
faceK T (£"(1:k,D)) = (Usi—k—&-t—&-lUT) N Se

= (UV)ST (uv)T

Note that the minimal face is defined by the subspace
L =TR(UV). We add %e to represent V(K ); then we use V
to eliminate e to recover a centered face.
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Facial Reduction for Disjoint Cliques

Corollary from Basic Theorem

let vy, ...,y € 1:n pairwise disjoint sets, wlog:

ai = (ki1 + 1):ki,ko = 0, 1= U{_; i = 1:a| let

Ui € Rlel<(6+1) with full column rank satisfy e € R (U;) and
ki1 t+1 n-—k;

Ki—1 | 0 0
Ui = |q 0 Ui 0 c RN (n—lail+ti+1)
|

n—k; O O
The minimal face is defined by £ = R (U):
tt+1 ... t+1 n—|q
| | L_J]_ o 0 0
U.— - S : c RN (n—lal+t+1)
|aee] o ... U o0 /
n—|a| 0 S 0 I

where t := Zleti +/—1.Ande € R(U).
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Sets for Intersecting Cliques/Faces

aq %)

For each clique |o| = k, we get a corresponding face/subspace
(k x r matrix) representation. We now see how to handle two
cliques, a1, ay, that intersect.




Two (Intersecting) Cligue Reduction/Subsp. Repres.

THEOREM 2: Clique/Facial Intersection Using Subspace

Intersection

{al,azgl:n K :=|as Uay|
Fori=1,2:D —D[a] e £, embedding dimension b
Bi := KT(D)) = U;SiUT, U e MK, UTUi =1, Si € S,

Ui = [Ui ﬁ } /\/lk x(ti+1): and U e M kx(t+1) satisfies

R@U)=R ({%1 ISSDmR q'g SZD,With UT0 = Iy

cont. ..
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Two (Intersecting) Cligue Reduction, cont. ..

THEOREM 2 Nonsing. Clique/Facial Inters. cont...

cont. . . with

-\ U, O IIZ 0 ithuTuU = .
o (5 ) 5 g wmir
Uu o
0 Infk
[V UTe } € M "K++1 pe orthogonal. Then

let: U :— [ } e M " (n—k+t+1) and

[UTell

Ny facekt (€%(ai,B)) = (UST*HHUT) N
= (UV)ST V)T
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Expense/Work of (Two) Clique/Facial Reductions

Subspace Intersection for Two Intersecting Cliques/Faces

Suppose:
U O I O
U, = Ui’ 0 and U, = 1|0 Ué/
o | 0 U]
Then:
u; Uy (upyiug
U:= Uy or U:= us
Uy(Ug)iuy U}
(Q1 =: (U])TUY,Q, = (U4)'UY orthogonal/rotation)
(Efficiently) satisfies
R(U) =R (U1) "R (U2)
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Two (Intersecting) Cliqgue Reduction Figure

Completion: missing distances can be recovered if desired. ]
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Two (Intersecting) Clique Explicit Delayed Completion

COR. Intersection with Embedding Dim. '/Completion

Hypotheses of Theorem 2 holds. Let D; := D[a.] e &l for
i1=1,2,CagNag,y:=aiUay, D :=DI[3],B :
KT(D), Us:=U(8,:), where O € M Kkx(t+D) satisfies

t+1
forer| € M
be orthogonal. Let|Z := (JUV)TB((JUV))T | If the

embedding dimension for Disr, THEN t = r in Theorem 2, and
Z e S_L is the unique solution of the equation
(JUsV)Z(JUgV)T = B, and the exact completion is

D[yl = K (PPT) | where|P := UVZz € RhI*!

intersection equation of Theorem 2. Let {V
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Completing SNL (Delayed use of Anchor Locations)

Rotate to Align the Anchor Positions

@ Given P = [:21] € R"™ such that D = K (PPT)
2

@ Solve the orthogonal Procrustes problem:

min [|A - P2Q|
st QTQ =1

PJA=UXVT SVD decomposition; set Q = UV T;
(Golub/Van Loan, Algorithm 12.4.1)
@ Set X :=P;Q

24



Algorithm: Four Cases

Clique Union

Node Absorption

Rigid

Non-rigid

AN
@




ALGOR: clique union; facial reduct.; delay compl.

Initialize: Find initial set of cliques.

G = {j:(Dp)ij<(R/2)2}, fori=1,...,n

|

Iterate
® For |C; N Cj| > r + 1, do Rigid Clique Union
@ For |CiNN (j)| > r + 1, do Rigid Node Absorption
@ For |C; N Cj| = r, do Non-Rigid Clique Union (lower bnds)

@ For |C; NN (j)| =r, do Non-Rigid Node Absorp. (lower
bnds)

Finalize

When 1 a clique containing all anchors, use computed facial
representation and positions of anchors to solve for X
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Results - Data for Random Noisless Problems

2.16 GHz Intel Core 2 Duo, 2 GB of RAM

Dimensionr = 2

Square region: [0, 1] x [0, 1]

m = 9 anchors

Using only Rigid Clique Union and Rigid Node Absorption
Error measure: Root Mean Square Deviation

L0 1/2
RMSD = (a > Ipi- pr“euz)
1=
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Results - Large n

(SDP size O(n?))

n # of Sensors Located

n # sensors \ R 0.07 0.06 0.05 0.04
2000 2000 2000 1956 1374
6000 6000 6000 6000 6000
10000 10000 | 10000 | 10000 | 10000

CPU Seconds
#sensors\R | 0.07 | 0.06 | 0.05 | 0.04
2000 1 1 1 3
6000 5 5 4 4
10000 10 10 9 8
RMSD (over located sensors)

n # sensors \ R 0.07 0.06 0.05 0.04
2000 4e—16 | 5e—16 | 6e—16 | 3e—16
6000 4e—16 | 4e—16 | 3e—16 | 3e—16
10000 3e—16 | 5e—16 | 4e—16 | 4e—16
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Results - N Huge SDPs Solved

Large-Scale Problems

# sensors # anchors radiorange | RMSD Time
20000 9 .025 5e—16 25s
40000 9 .02 8e—16 | 1m 23s
60000 9 .015 5e—16 | 3m 13s
100000 9 .01 6e—16 | 9m 8s

Size of SDPs Solved:

En(density of G) = 7R?; M = &,(|E|) = mR2N (# constraints)

Size of SDP Problems:

M = [3,078,915 12,315,351 27,709,309 76,969,790]

(# vrbls)

N = 10° [0.2000 0.8000 1.8000 5.0000]
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Locally Recover Exact EDMs

Nearest EDM

@ Given clique «; corresp. EDM D, = D + N, N, noise
@ we need to find the smallest face containing £"(«, D).

{ min || (X) — D||
°

st. rank(X)=r,Xe=0,X =0
X = 0.

@ Eliminate the constraints: Ve = 0.V 'V = I,
Kv(X):=K((XVT):

Ur € agmin 1|kyv(UUT) - D7
st.  Uem®O-Dr,

The nearest EDMis D* = /Cy (U;(U;/)T).
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Solve Overdetermined Nonlin. Least Squares Prob.

Newton (expensive) or Gauss-Newton (less accurate)

F(U) := us2vec (}CV(UUT) . DE) . minf(U) = % IF(U)]2

Derivatives: gradient and Hessian

Vf(U)(AU) = (2 (/ct, [/CV(UUT) . D€D U,AU)

V2f(U) = 2vec (.ca/cgzcvsz.cu LK (/cv(uuT) . DE>) Mat

where Ly(-) =-UT; Sg(U)=3(U +UT)




random noisy probs;r =2, m =9, nf =1e — 6

@ Using only Rigid Clique Union, preliminary results:

remaining cliques

cpu seconds

max-log-error

n/R 1.0 0.9 0.8 0.7 0.6
1000 1.00 5.00 11.00 40.00 124.00
2000 1.00 1.00 1.00 1.00 7.00
3000 1.00 1.00 1.00 1.00 1.00
4000 1.00 1.00 1.00 1.00 1.00
5000 1.00 1.00 1.00 1.00 1.00
n/R 1.0 0.9 0.8 0.7 0.6
1000 9.43 6.98 5.57 5.04 4.05
2000 12.46 12.18 12.43 11.18 9.89
3000 18.08 18.50 19.07 18.33 16.33
4000 25.18 24.01 24.02 23.80 22.12
5000 38.13 31.66 30.26 30.32 29.88
n/R 1.0 0.9 0.8 0.7 0.6
1000 —3.28 —4.19 —2.92 Inf Inf
2000 —3.63 —3.81 —3.82 —2.39 —3.73
3000 —3.51 —3.98 —3.25 —3.90 —3.28
4000 —4.15 —4.05 —3.52 —3.04 —3.33
5000 —4.80 —4.38 —3.89 —4.13 —3.40
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Summary Part |

@ SDP relaxation of SNL is highly (implicitly) degenerate:
The feasible set of this SDP is restricted to a low dim. face
of the SDP cone, causing the Slater constraint qualification
(strict feasibility) to fail

@ We take advantage of this degeneracy by finding explicit
representations of intersections of faces of the SDP cone
corresponding to unions of intersecting cliques

@ Without using an SDP-solver (eg. SeDuMi or SDPT3), we
quickly compute the exact solution to the SDP relaxation
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Thanks for your attention!
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