Taking advantage of Degeneracy in Cone Optimization with Applications to Sensor Network Localization and Molecular Conformation

Henry Wolkowicz

Dept. of Combinatorics and Optimization University of Waterloo

Tues. July 19, 3-5PM, Room:14
ICIAM 2011

1

Outline

Part I: Sensor Network Localization, SNL, Henry Wolkowicz

- exploiting implicit degeneracy
- solving huge problems
- high accuracy (low rank) solutions
(With: N. Krislock, F. Rendl)

Part II: Preprocessing and Reduction for Degenerate Semidefinite Programs, Y-L (Vris) Cheung

- backward stable preprocessing technique using rank-revealing rotations
- (strict) complementarity and duality gaps
(With: S. Schurr and H. Wolkowicz)

Part I: Sensor Network Localization, SNL, Problem (Exploiting (Implicit) Degeneracy)

SNL - a Fundamental Problem of Distance Geometry;
easy to describe - dates back to Grasssmann 1886

- n ad hoc wireless sensors (nodes) to locate in \mathbb{R}^{r}, (r is embedding dimension;
sensors $\left.p_{i} \in \mathbb{R}^{r}, i \in V:=1, \ldots, n\right)$
- m of the sensors are anchors, $p_{i}, i=n-m+1, \ldots, n$) (positions known, using e.g. GPS)
- pairwise distances $D_{i j}=\left\|p_{i}-p_{j}\right\|^{2}, i j \in E$, are known within radio range $R>0$
-

$$
P^{T}=\left[\begin{array}{lll}
p_{1} & \ldots & p_{n}
\end{array}\right]=\left[\begin{array}{ll}
X^{\top} & A^{T}
\end{array}\right] \in \mathbb{R}^{r \times n}
$$

Applications

> Horst Stormer (Nobel Prize, Physics, 1998), "21 Ideas for the 21st Century", Business Week. 8/23-30, 1999

Untethered micro sensors will go anywhere and measure anything - traffic flow, water level, number of people walking by, temperature. This is developing into something like a nervous system for the earth, a skin for the earth. The world will evolve this way.

Tracking Humans/Animals/Equipment/Weather

- geographic routing; data aggregation; topological control; soil humidity; earthquakes and volcanos; weather and ocean currents; radiation levels.
- military; tracking of goods; vehicle positions; surveillance; random deployment in inaccessible terrains.
- brain scans

Underlying Graph Realization/Partial EDM NP-Hard

Graph

- node set $\mathcal{V}=\{1, \ldots, n\}$
- edge set $(i, j) \in \mathcal{E} ; \omega_{i j}=\left\|p_{i}-p_{j}\right\|^{2}$ known approximately
- The anchors form a clique (complete subgraph)
- Realization of \mathcal{G} in \Re^{r} : a mapping of node $v_{i} \rightarrow p_{i} \in \Re^{r}$ with squared distances given by ω.

Corresponding Partial Euclidean Distance Matrix, EDM

$$
D_{i j}=\left\{\begin{array}{cl}
d_{i j}^{2} & \text { if }(i, j) \in \mathcal{E} \\
0 & \text { otherwise (unknown distance) }
\end{array}\right.
$$

$d_{i j}^{2}=\omega_{i j}$ are known squared Euclidean distances between sensors p_{i}, p_{j}; anchors correspond to a clique.

Sensor Localization Problem/Partial EDM

Molecular Conformation: $r=3$, no anchors

Distance Geometry Description

From Experimental data, e.g. NMR spectroscopy
(1) a list of distances (lower and upper bounds on the distances between pairs of atoms)
(2) chirality constraints (chirality of its rigid quadruples of atoms)

Connections to Semidefinite Programming (SDP)

, Cone of (symmetric) SDP matrices in
 inner product $\langle A, B\rangle=$ trace $A B$
 Löwner (psd) partial order $A \succeq B, A \succ B$

$D=\mathcal{K}(B) \in \mathcal{E}^{n}, B=\mathcal{K}^{\dagger}(D) \in \mathcal{S}^{n} \cap S_{C}$

(centered Be

$P^{T}=\left[\begin{array}{llll}p_{1} & p_{2} & \ldots & p_{n}\end{array}\right] \in \mathcal{M}^{r \times n} ;$
$B:=P P^{T} \in \mathcal{S}_{+}^{n}$ (Gram matrix of inner products);
$\operatorname{rank} B=r$; let $D \in \mathcal{E}^{n}$ corresponding EDM ; $e=\left(\begin{array}{lll}1 & \ldots & 1\end{array}\right)^{T}$

$$
\begin{aligned}
\left(\text { to } D \in \mathcal{E}^{n}\right) \quad D & =\left(\left\|p_{i}-p_{j}\right\|_{2}^{2}\right)_{i, j=1}^{n} \\
& =\left(p_{i}^{T} p_{i}+p_{j}^{T} p_{j}-2 p_{i}^{T} p_{j}\right)_{i, j=1}^{n} \\
& =\operatorname{diag}(B) e^{T}+e \operatorname{diag}(B)^{T}-2 B \\
& =: \mathcal{\mathcal { D } _ { e } (B) - 2 B} \\
& \left.=: \mathcal{K}(B) \quad \text { (from } B \in \mathcal{S}_{+}^{n}\right) .
\end{aligned}
$$

Euclidean Distance, EDM, and Semidefinite, SDP, Matrices

Moore-Penrose Generalized Inverse

$$
\begin{aligned}
B \succeq 0 & \Longrightarrow \quad D=\mathcal{K}(B)=\operatorname{diag}(B) e^{T}+e \operatorname{diag}(B)^{T}-2 B \in \mathcal{E} \\
D \in \mathcal{E} & \left.\Longrightarrow \quad B=\mathcal{K}^{\dagger}(D)=-\frac{1}{2} J(\text { offDiag }) J\right) \succeq 0, D e=0
\end{aligned}
$$

Theorem (Schoenberg, 1935)

A (hollow) matrix D with $\operatorname{diag}(D)=0\left(D \in S_{H}\right)$ is a
Euclidean distance matrix
if and only if

$$
B=\mathcal{K}^{\dagger}(D) \succeq 0
$$

And

$$
\operatorname{embdim}(D)=\operatorname{rank}\left(\mathcal{K}^{\dagger}(D)\right), \quad \forall D \in \mathcal{E}^{n}
$$

Linear Transformations:

- allow: $\mathcal{D}_{v}(B):=\operatorname{diag}(B) v^{T}+v \operatorname{diag}(B)^{T}$;

$$
\mathcal{D}_{v}(y):=y v^{\top}+v y^{\top}
$$

- adjoint $\mathcal{K}^{*}(D)=2(\operatorname{Diag}(D e)-D)$.
- \mathcal{K} is $1-1$, onto between centered $\&$ hollow subspaces
$\mathcal{S}_{C}:=\left\{B \in \mathcal{S}^{n}: B e=0\right\} ;$
$\mathcal{S}_{H}:=\left\{D \in \mathcal{S}^{n}: \operatorname{diag}(D)=0\right\}=\mathcal{R}($ offDiag $)$
- $J:=I-\frac{1}{n} e e^{T}$ (orthogonal projection onto $M:=\{e\}^{\perp}$);
- $\mathcal{T}(D):=-\frac{1}{2} \operatorname{JoffDiag}(D) J \quad\left(=\mathcal{K}^{\dagger}(D)\right)$

Popular Techniques; SDP Relax.; Highly Degen.

Nearest, Weighted, SDP Approx. (relax/discard rank B)

- $\min _{B \succeq 0, B \in \Omega}\|H \circ(\mathcal{K}(B)-D)\| ;$ rank $B=r$; typical weights: $H_{i j}=1 / \sqrt{D_{i j}}$, if $i j \in E$.
- with rank constraint: a non-convex, NP-hard program
- SDP relaxation is convex, BUT: expensive/low accuracy/implicitly highly degenerate (cliques restrict ranks of feasible $B \mathrm{~s}$)

Instead: (Shall) Take Advantage of Degeneracy!

(1) given clique $\alpha,|\alpha|=k$; with corresp. principal EDM block $D[\alpha]$; and embed. dim. $=t \leq r<k$
(2) IMPLIES a restriction on rank of corresp. Gram matrix: rank $\left(\mathcal{K}^{\dagger}(D[\alpha])\right)=t \leq r$
(3) IMPLIES a restriction on rank of principal block of main Gram matrix: $\operatorname{rank}(B[\alpha]) \leq \operatorname{rank}\left(\mathcal{K}^{\dagger}(D[\alpha])\right)+1$
(9) IMPLIES $\operatorname{rank} B=\operatorname{rank}\left(\mathcal{K}^{\dagger}(D)\right) \leq n-(k-t-1)$
(6) IMPLIES Slater's CQ (strict feasibility) fails

Semidefinite Cone, Faces

Faces of cone K

- $F \subseteq K$ is a face of K, denoted $F \unlhd K$, if

$$
\left(x, y \in K, \frac{1}{2}(x+y) \in F\right) \Longrightarrow(\operatorname{cone}\{x, y\} \subseteq F)
$$

- $F \triangleleft K$, if $F \unlhd K, F \neq K ; F$ is proper face if $\{0\} \neq F \triangleleft K$.
- $F \unlhd K$ is exposed if: intersection of K with a hyperplane.
- face (S) denotes smallest face of K that contains set S.
- if S is convex set, F is a face

is a Facially Exposed Cone
All faces are exposed.

Facial Structure of SDP Cone; Equivalent SUBSPACES

Face $F \unlhd S^{n}$ Equivalence to $\mathcal{R}(U)$ Subspace of \mathbb{R}^{n}
$F \unlhd \mathcal{S}_{+}^{n}$ determined by range of any $S \in$ relint F,
i.e. let $S=U \Gamma U^{\top}$ be compact spectral decomposition; $\Gamma \in \mathcal{S}_{++}^{t}$ is diagonal matrix of pos. eigenvalues; $F=U \mathcal{S}_{+}^{t} U^{T}$
(F associated with $\mathcal{R}(U)$)

$$
\operatorname{dim} F=t(t+1) / 2
$$

face F representation by subspace \mathcal{L}
(subspace) $\mathcal{L}=\mathcal{R}(T), T$ is $n \times t$ full column, then:

$$
F:=T \mathcal{S}_{+}^{t} T^{T} \unlhd \mathcal{S}_{+}^{n}, \quad \text { relint }(F)=T \mathcal{S}_{++}^{t} T^{T}
$$

Basic Single Clique/Facial Reduction

Given \bar{D}; find a corresponding $B \succeq 0$; find the corresponding face; find the corresponding subspace.
if $\alpha=1: k$; embedding dim embdim (\bar{D})

$$
D=\left[\begin{array}{ll}
\bar{D} & \cdot \\
\cdot & .
\end{array}\right],
$$

THEOREM 1: Single Clique/Facial Reduction

Let: $\bar{D}:=D[1: k] \in \mathcal{E}^{k}, k<n$, $\operatorname{embdim}(\bar{D})=t \leq r$;
$B:=\mathcal{K}^{\dagger}(\bar{D})=\bar{U}_{B} S \bar{U}_{B}^{T}, \bar{U}_{B} \in \mathcal{M}^{k \times t}, \bar{U}_{B}^{T} \bar{U}_{B}=I_{t}, S \in \mathcal{S}_{++}^{t} ;$
$U_{B}:=\left[\begin{array}{ll}\bar{U}_{B} & \frac{1}{\sqrt{k}} e\end{array}\right] \in \mathcal{M}^{k \times(t+1)}, U:=\left[\begin{array}{cc}U_{B} & 0 \\ 0 & I_{n-k}\end{array}\right]$, and
$\left[\begin{array}{ll}V & \frac{U^{T} e}{\left\|U^{T} e\right\|}\end{array}\right] \in \mathcal{M}^{n-k+t+1}$ orthogonal. Then:

$$
\begin{aligned}
\text { face } \mathcal{K}^{\dagger}\left(\mathcal{E}^{n}(1: k, \bar{D})\right) & =\left(U \mathcal{S}_{+}^{n-k+t+1} U^{T}\right) \cap \mathcal{S}_{C} \\
& =(U V) \mathcal{S}_{+}^{n-k+t}(U V)^{T}
\end{aligned}
$$

Note that the minimal face is defined by the subspace $\mathcal{L}=\mathcal{R}(U V)$. We add $\frac{1}{\sqrt{k}}$ e to represent $\mathcal{N}(\mathcal{K})$; then we use V to eliminate e to recover a centered face.

Facial Reduction for Disjoint Cliques

Corollary from Basic Theorem

let $\alpha_{1}, \ldots, \alpha_{\ell} \subseteq 1: n$ pairwise disjoint sets, wlog:
$\alpha_{i}=\left(k_{i-1}+1\right): k_{i}, k_{0}=0, \alpha:=\bigcup_{i=1}^{\ell} \alpha_{i}=1:|\alpha|$ let
$\bar{U}_{i} \in \mathbb{R}^{\left|\alpha_{i}\right| \times\left(t_{i}+1\right)}$ with full column rank satisfy $e \in \mathcal{R}\left(\bar{U}_{i}\right)$ and

$$
U_{i}:=\begin{gathered}
k_{i-1} \\
\left|\alpha_{i}\right| \\
n-k_{i}
\end{gathered}\left[\begin{array}{ccc}
k_{i-1} & t_{i}+1 & n-k_{i} \\
1 & 0 & 0 \\
0 & \bar{U}_{i} & 0 \\
0 & 0 & l
\end{array}\right] \in \mathbb{R}^{n \times\left(n-\left|\alpha_{i}\right|+t_{i}+1\right)}
$$

The minimal face is defined by $\mathcal{L}=\mathcal{R}(U)$:

$$
\begin{aligned}
& \begin{array}{llll}
t_{1}+1 & \ldots & t_{\ell}+1 & n-|\alpha|
\end{array} \\
& U:=\begin{array}{c}
\left|\alpha_{1}\right| \\
\vdots \\
\left|\alpha_{\ell}\right| \\
n-|\alpha|
\end{array}\left[\begin{array}{cccc}
\bar{U}_{1} & \ldots & 0 & 0 \\
\vdots & \ddots & \vdots & \vdots \\
0 & \ldots & \bar{U}_{\ell} & 0 \\
0 & \ldots & 0 & 1
\end{array}\right] \in \mathbb{R}^{n \times(n-|\alpha|+t+1)}, \\
& \text { where } t:=\sum_{i=1}^{\ell} t_{i}+\ell-1 \text {. And } e \in \mathcal{R}(U) \text {. }
\end{aligned}
$$

Sets for Intersecting Cliques/Faces

For each clique $|\alpha|=k$, we get a corresponding face/subspace ($k \times r$ matrix) representation. We now see how to handle two cliques, α_{1}, α_{2}, that intersect.

Two (Intersecting) Clique Reduction/Subsp. Repres.

THEOREM 2: Clique/Facial Intersection Using Subspace Intersection
$\left\{\alpha_{1}, \alpha_{2} \subseteq 1: n_{;} \quad k:=\left|\alpha_{1} \cup \alpha_{2}\right|\right.$
For $i=1,2: \bar{D}_{i}:=D\left[\alpha_{i}\right] \in \mathcal{E}^{k_{i}}$, embedding dimension t_{i};
$B_{i}:=\mathcal{K}^{\dagger}\left(\bar{D}_{i}\right)=\bar{U}_{i} S_{i} \bar{U}_{i}^{\top}, \bar{U}_{i} \in \mathcal{M}^{k_{i} \times t_{i}}, \bar{U}_{i}^{T} \bar{U}_{i}=I_{t_{i}}, S_{i} \in \mathcal{S}_{++}^{t_{i}} ;$ $U_{i}:=\left[\begin{array}{ll}\bar{U}_{i} & \frac{1}{\sqrt{k_{i}}} e\end{array}\right] \in \mathcal{M}^{k_{i} \times\left(t_{i}+1\right)} ;$ and $\bar{U} \in \mathcal{M}^{k \times(t+1)}$ satisfies

$$
\mathcal{R}(\bar{U})=\mathcal{R}\left(\left[\begin{array}{cc}
U_{1} & 0 \\
0 & I_{\bar{k}_{3}}
\end{array}\right]\right) \cap \mathcal{R}\left(\left[\begin{array}{cc}
I_{\bar{k}_{1}} & 0 \\
0 & U_{2}
\end{array}\right]\right) \text {, with } \bar{U}^{T} \bar{U}=I_{t+1}
$$

cont...

Two (Intersecting) Clique Reduction, cont. . .

THEOREM 2 Nosing. Clique/Facial Inters. cont. . .
cont. . . with
$\mathcal{R}(\bar{U})=\mathcal{R}\left(\left[\begin{array}{cc}U_{1} & 0 \\ 0 & \bar{k}_{k_{3}}\end{array}\right]\right) \cap \mathcal{R}\left(\left[\begin{array}{cc}c_{k_{1}} & 0 \\ 0 & U_{2}\end{array}\right]\right)$, with $\bar{U}^{T} \bar{U}=I_{t+1}$
let: $U:=\left[\begin{array}{cc}\bar{U} & 0 \\ 0 & I_{n-k}\end{array}\right] \in \mathcal{M}^{n \times(n-k+t+1)}$ and
$\left[\begin{array}{ll}V & \frac{U^{\top} e}{\left\|U^{\top} e\right\|}\end{array}\right] \in \mathcal{M}^{n-k+t+1}$ be orthogonal. Then
$\underline{\underline{\bigcap_{i=1}^{2} \text { face } \mathcal{K}^{\dagger}\left(\mathcal{E}^{n}\left(\alpha_{i}, \bar{D}_{i}\right)\right)}}=\left(U \mathcal{S}_{+}^{n-k+t+1} U^{\top}\right) \cap \mathcal{S}_{C}$
$=(U V) \mathcal{S}_{+}^{n-k+t}(U V)^{T}$

Expense/Work of (Two) Clique/Facial Reductions

Subspace Intersection for Two Intersecting Cliques/Faces

Suppose:

$$
U_{1}=\left[\begin{array}{cc}
U_{1}^{\prime} & 0 \\
U_{1}^{\prime \prime} & 0 \\
0 & 1
\end{array}\right] \quad \text { and } \quad U_{2}=\left[\begin{array}{cc}
1 & 0 \\
0 & U_{2}^{\prime \prime} \\
0 & U_{2}^{\prime}
\end{array}\right]
$$

Then:

$$
U:=\left[\begin{array}{c}
U_{1}^{\prime} \\
U_{1}^{\prime \prime} \\
U_{2}^{\prime}\left(U_{2}^{\prime \prime}\right)^{\dagger} U_{1}^{\prime \prime}
\end{array}\right] \quad \text { or } \quad U:=\left[\begin{array}{c}
U_{1}^{\prime}\left(U_{1}^{\prime \prime}\right)^{\dagger} U_{2}^{\prime \prime} \\
U_{2}^{\prime \prime} \\
U_{2}^{\prime}
\end{array}\right]
$$

$\left(Q_{1}=:\left(U_{1}^{\prime \prime}\right)^{\dagger} U_{2}^{\prime \prime}, Q_{2}=\left(U_{2}^{\prime \prime}\right)^{\dagger} U_{1}^{\prime \prime}\right.$ orthogonal/rotation)
(Efficiently) satisfies

$$
\mathcal{R}(U)=\mathcal{R}\left(U_{1}\right) \cap \mathcal{R}\left(U_{2}\right)
$$

Two (Intersecting) Clique Reduction Figure

Completion: missing distances can be recovered if desired.

Two (Intersecting) Clique Explicit Delayed Completion

COR. Intersection with Embedding Dim. r/Completion

Hypotheses of Theorem 2 holds. Let $\bar{D}_{i}:=D\left[\alpha_{i}\right] \in \mathcal{E}^{k_{i}}$, for
$i=1,2, \beta \subseteq \alpha_{1} \cap \alpha_{2}, \gamma:=\alpha_{1} \cup \alpha_{2}, \bar{D}:=D[\beta], B:=$
$\mathcal{K}^{\dagger}(\bar{D}), \quad \bar{U}_{\beta}:=\bar{U}(\beta,:)$, where $\bar{U} \in \mathcal{M}^{k \times(t+1)}$ satisfies
intersection equation of Theorem 2. Let $\left[\begin{array}{ll}\bar{V} & \frac{\bar{U}^{\top} e}{\left\|U^{T} e\right\|}\end{array}\right] \in \mathcal{M}^{t+1}$
be orthogonal. Let $Z:=\left(J \bar{U}_{\beta} \bar{V}\right)^{\dagger} B\left(\left(J \bar{U}_{\beta} \bar{V}\right)^{\dagger}\right)^{\top}$. If the
embedding dimension for \bar{D} is r, THEN $t=r$ in Theorem 2, and $Z \in \mathcal{S}_{+}^{r}$ is the unique solution of the equation
$\left(J \bar{U}_{\beta} \bar{V}\right) Z\left(J \bar{U}_{\beta} \bar{V}\right)^{T}=B$, and the exact completion is

$$
D[\gamma]=\mathcal{K}\left(P P^{T}\right) \text { where } P:=U V Z^{\frac{1}{2}} \in \mathbb{R}^{|\gamma| \times r}
$$

Completing SNL (Delayed use of Anchor Locations)

Rotate to Align the Anchor Positions

- Given $P=\left[\begin{array}{l}P_{1} \\ P_{2}\end{array}\right] \in \mathbb{R}^{n \times r}$ such that $D=\mathcal{K}\left(P P^{T}\right)$
- Solve the orthogonal Procrustes problem:

$$
\begin{array}{cc}
\min & \left\|A-P_{2} Q\right\| \\
\text { s.t. } & Q^{T} Q=I
\end{array}
$$

$P_{2}^{T} A=U \Sigma V^{T}$ SVD decomposition; set $Q=U V^{T}$;
(Golub/Van Loan, Algorithm 12.4.1)

- Set $X:=P_{1} Q$

Algorithm: Four Cases

Non-rigid

ALGOR: clique union; facial reduct.; delay compl.

Initialize: Find initial set of cliques.

$$
C_{i}:=\left\{j:\left(D_{p}\right)_{i j}<(R / 2)^{2}\right\}, \quad \text { for } i=1, \ldots, n
$$

Iterate

- For $\left|C_{i} \cap C_{j}\right| \geq r+1$, do Rigid Clique Union
- For $\left|C_{i} \cap \mathcal{N}(j)\right| \geq r+1$, do Rigid Node Absorption
- For $\left|C_{i} \cap C_{j}\right|=r$, do Non-Rigid Clique Union (lower bnds)
- For $\left|C_{i} \cap \mathcal{N}(j)\right|=r$, do Non-Rigid Node Absorp. (lower bnds)

Finalize

When \exists a clique containing all anchors, use computed facial representation and positions of anchors to solve for X

Results - Data for Random Noisless Problems

- 2.16 GHz Intel Core 2 Duo, 2 GB of RAM
- Dimension $r=2$
- Square region: $[0,1] \times[0,1]$
- $m=9$ anchors
- Using only Rigid Clique Union and Rigid Node Absorption
- Error measure: Root Mean Square Deviation

$$
\operatorname{RMSD}=\left(\frac{1}{n} \sum_{i=1}^{n}\left\|p_{i}-p_{i}^{\mathrm{true}}\right\|^{2}\right)^{1 / 2}
$$

n \# of Sensors Located

n \# sensors $\backslash R$	0.07	0.06	0.05	0.04
2000	2000	2000	1956	1374
6000	6000	6000	6000	6000
10000	10000	10000	10000	10000

CPU Seconds

\# sensors $\backslash R$	0.07	0.06	0.05	0.04
2000	1	1	1	3
6000	5	5	4	4
10000	10	10	9	8

RMSD (over located sensors)

n \# sensors $\backslash R$	0.07	0.06	0.05	0.04
2000	$4 e-16$	$5 e-16$	$6 e-16$	$3 e-16$
6000	$4 e-16$	$4 e-16$	$3 e-16$	$3 e-16$
10000	$3 e-16$	$5 e-16$	$4 e-16$	$4 e-16$

Results - N Huge SDPs Solved

Large-Scale Problems

\# sensors	\# anchors	radio range	RMSD	Time
20000	9	.025	$5 e-16$	25 s
40000	9	.02	$8 e-16$	1 m 23 s
60000	9	.015	$5 e-16$	3 m 13 s
100000	9	.01	$6 e-16$	9 m 8 s

Size of SDPs Solved: $N=\binom{n}{2}$ (\# vrbls)

$\mathcal{E}_{n}($ density of $\mathcal{G})=\pi R^{2} ; M=\mathcal{E}_{n}(|E|)=\pi R^{2} N$ (\# constraints)
Size of SDP Problems:

$$
\begin{aligned}
& M=\left[\begin{array}{lllll}
3,078,915 & 12,315,351 & 27,709,309 & 76,969,790
\end{array}\right] \\
& N=10^{9}\left[\begin{array}{llll}
0.2000 & 0.8000 & 1.8000 & 5.0000
\end{array}\right]
\end{aligned}
$$

Locally Recover Exact EDMs

Nearest EDM

- Given clique α; corresp. EDM $D_{\epsilon}=D+N_{\epsilon}, N_{\epsilon}$ noise
- we need to find the smallest face containing $\mathcal{E}^{n}(\alpha, D)$.
- $\left\{\begin{array}{cl}\min & \left\|\mathcal{K}(X)-D_{\epsilon}\right\| \\ \text { s.t. } & \operatorname{rank}(X)=r, X e=0, X \succeq 0 \\ & X \succeq 0 .\end{array}\right.$
- Eliminate the constraints: $V e=0, V^{\top} V=I$,
$\mathcal{K}{ }_{V}(X):=\mathcal{K}\left(V X V^{T}\right):$

$$
\begin{array}{cl}
U_{r}^{*} \in \underset{\operatorname{argmin}}{ } & \frac{1}{2}\left\|\mathcal{K}_{V}\left(U U^{T}\right)-D_{\epsilon}\right\|_{F}^{2} \\
\text { s.t. } & U \in M^{(n-1) r} .
\end{array}
$$

The nearest EDM is $D^{*}=\mathcal{K}_{v}\left(U_{r}^{*}\left(U_{r}^{*}\right)^{T}\right)$.

Solve Overdetermined Nonlin. Least Squares Prob.

Newton (expensive) or Gauss-Newton (less accurate)

$$
F(U):=u s 2 \operatorname{vec}\left(\mathcal{K}_{V}\left(U U^{T}\right)-D_{\epsilon}\right), \quad \min _{U} f(U):=\frac{1}{2}\|F(U)\|^{2}
$$

Derivatives: gradient and Hessian

$$
\begin{gathered}
\nabla f(U)(\Delta U)=\left\langle 2\left(\mathcal{K}_{V}^{*}\left[\mathcal{K}_{V}\left(U U^{T}\right)-D_{\epsilon}\right]\right) U, \Delta U\right\rangle \\
\nabla^{2} f(U)=2 \operatorname{vec}\left(\mathcal{L}_{U}^{*} \mathcal{K}_{V}^{*} \mathcal{K}_{V} \mathcal{S}_{\Sigma} \mathcal{L}_{U}+\mathcal{K}_{V}^{*}\left(\mathcal{K}_{V}\left(U U^{T}\right)-D_{\epsilon}\right)\right) \text { Mat } \\
\text { where } \mathcal{L} U(\cdot)=\cdot U^{T} ; \quad \mathcal{S}_{\Sigma}(U)=\frac{1}{2}\left(U+U^{T}\right)
\end{gathered}
$$

random noisy probs; $r=2, m=9, n f=1 e-6$

- Using only Rigid Clique Union, preliminary results:

Summary Part I

- SDP relaxation of SNL is highly (implicitly) degenerate: The feasible set of this SDP is restricted to a low dim. face of the SDP cone, causing the Slater constraint qualification (strict feasibility) to fail
- We take advantage of this degeneracy by finding explicit representations of intersections of faces of the SDP cone corresponding to unions of intersecting cliques
- Without using an SDP-solver (eg. SeDuMi or SDPT3), we quickly compute the exact solution to the SDP relaxation

Thanks for your attention!

Taking advantage of Degeneracy in Cone Optimization with Applications to Sensor Network Localization and Molecular Conformation

Henry Wolkowicz

Dept. of Combinatorics and Optimization University of Waterloo

Tues. July 19, 3-5PM, Room:14

