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Success of Linear Models/LP/Duality

Classical Linear Program

(PLP)
p∗ := min f (y) := bT y

s.t. g(y) := c − AT y ≤ 0
x ∈ Rn

Strong Duality if (LP) Feasible; and Attained if Finite

(DLP)

p∗ = d∗

:= max
x≥0

min
y

L(y , x) := bT y + xT (c − AT y)

:= max
x≥0

min
y

cT x + yT (b − Ax)

:= max
x≥0
{cT x : Ax = b, x ≥ 0} hidden constraint

Duality is behind algorithms (simplex, interior-point).
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Polyhedral (so Convex) Feasible Set
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Quadratic Models

Modelling NP-Hard Problems

(MaxCut) p∗ := max q0(x) := xT Lx
s.t. xi ∈ {±1}, x ∈ Rn

(L is Laplacian matrix of the graph)
Then, equivalent quadratic constraints to ±1 are:

p∗ = max{xT Lx : x2
i = 1, i = 1, . . . ,n}

Strong Duality Fails; No Lagrange Multiplier

Simple example:

(P) p∗ := min f (x) := x
s.t. g(x) := x2 ≤ 0

0 = ∇L(x∗, λ) = ∇f (x∗) + λ∇g(x∗) = 1 + λ2(0) impossible
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Quadratic Models; Trust Region Subproblem, (TRS)

“Nonconvex” quadratic minimization

(TRS)
q∗ = min q(x) := xT Ax − 2aT x

s.t. ‖x‖2 ≤ s2,

x ∈ Rn

A ∈ Sn - n × n symmetric (possibly indefinite) matrix

a ∈ Rn; s > 0 (TR radius);

Generalized TRS, (GTRS)

Indefinite Objective; Indefinite Two-sided Quadratic Constraint

(GTRS)
q∗ = min q(x) := xT Ax − 2aT x

s.t. ℓ ≤ q1(x) := xT Bx − 2bT x ≤ u

5



Indefinite Quadratic (Surface Plot, Saddle)
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Indefinite Quadr. with Euclid. Norm Constr., TRS
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Indefinite Quadr. with Indefinite Quadr. Constr., GTRS
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Why Convexity Matters

R. Tyrrell Rockafellar, in SIAM Review, 1993 [9]

"...in fact, the great watershed in optimization isn’t
between linearity and nonlinearity, but convexity and
nonconvexity."

If Strong Duality Holds; We Get Implicit Convexity

if

p∗ = d∗ := maxλ∈Λ minx∈Ω L(x , λ) := f (x) + λT g(x)
= maxλ∈Λ φ(λ)

φ(λ) is concave (a minimum of functions linear in λ); therefore
the dual is: concave maximization
(However, the evaluation of φ(λ) may be costly.)
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Outline

Background

Generalized Trust Region Subproblem and
Characterizations of Optimality

MoSo (1983) algorithm for TRS; within a primal-dual
framework; handling the hard case

Duality/Exploiting Sparsity & Degeneracy/Hard Case

Various primal-dual pairs with strong duality

Parametric eigenvalue problem and sparsity

Hard case is actually easiest case, with an explicit solution

Underdetermined least squares, Numerics
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Applications

Many important applications:

forming subproblems for constrained optimization

REGULARIZATION of ill-posed problems
(inverse image denoising, Electrical impedance
tomography, EIT, MRI, NMRI, MRT, CT PET...)

theoretical applications

trust region (TR) methods for unconstr. min. uses TRS
formed from second order Taylor series approximation
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Characterization of Optimality for TRS

Surprising: TRS (GTRS) is on watershed of convex/nonconvex

a characterization of optimality of a (possibly) nonconvex
problem

second order positive semidefinite necessary conditions
hold on all of Rn

Characterization of x∗ optimal for TRS (iff)

(Gay-81 [2], More-Sorensen-83 [5])

(A− λ∗I)x∗ = a,
A− λ∗I � 0, λ∗ ≤ 0

}

dual feasibility

‖x∗‖2 ≤ s2 primal feasibility
λ∗(s2 − ‖x∗‖) = 0 complementary slackness
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Characterization of Optimality for (homog) GTRS

(Mild) Slater Type Constraint Qualification

(GTRS)
q∗ = min q(x) := xT Ax − 2aT x

s.t. ℓ ≤ q1(x) := xT Bx ≤ u

(CQ) ∃x̂ s.t. l < q1(x̂) := x̂T Bx̂ < u

Characterization of x∗ optimal for GTRS (iff)

(More-93 [4], Stern-W-93 [10])

(A − λ∗B)x∗ = a,
A− λ∗B � 0

}

dual feasibility

ℓ ≤ x∗T Bx ≤ u primal feasibility
λ∗(u − x∗T Bx∗) ≥ 0 ≥ λ∗(x∗T Bx∗ − ℓ) compl. slack.
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S-Lemma Yakubovich-71,73

(survey in Polik-Terlaky:07 [6] (Farkas Lemma for quadratic
functions))

f ,g : Rn → R quadratic functions
∃x̄ s.t. g(x̄) < 0
then TFAE:

1 ∄x ∈ Rn : f (x) < 0,g(x) ≤ 0
2 ∃λ ≥ 0 s.t. f (x) + λg(x) ≥ 0,∀x ∈ Rn

Finsler:37 , Hestenes-McShane:40
{

xT Bx = 0, x 6= 0 =⇒ xT Ax > 0
}

implies
{∃λ ≥ 0,A + λB ≻ 0}
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Mo-So Algorithm Framework

Recall: Opt. conditions of TRS

(A− λ∗I)x∗ = a,
A− λ∗I � 0, λ∗ ≤ 0

}

dual feasibility

‖x∗‖2 ≤ s2 primal feasibility
λ∗(s2 − ‖x∗‖) = 0 complementary slackness

Original view: if A− λ∗I ≻ 0, λ∗ < 0

define: x(λ) = (A− λI)−1a

SOLVE: ψ(λ) := ‖x(λ)‖ − s = ‖(A− λI)−1a‖ − s = 0

maintain: A− λI ≻ 0, λ ≤ 0
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Less Nonlinear φ(λ) for Newton’s Method

Newton for ψ(λ) = 0?

A = QΛQT orthogonal diagonalization; γ = QT a;

ψ(λ) = ‖x(λ)‖2 − s2 =
n
∑

j=1

γ2
j

(λj (A)−λ)2 − s2 highly nonlinear in

λ, in particular near λ1(A).

less nonlinear φ(λ) (Reinsch:67 [7, 8], Hebden:73 [3])

SOLVE: φ(λ) := 1
s −

1
‖x(λ)‖ = 0

Newton iterates λ(k) for φ(λ) = 0; exploit Cholesky

λ(k+1) = λ(k) − φ(λ(k))

φ′(λ(k))
Newton step

= λ(k) −
(

‖x‖
‖y‖

)2 (
‖x‖−s

s

)

,

where: A− λ(k)I = RT R (Cholesky); RT Rx = a; RT y = x
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Computing Newton direction/step Gay:81, MoSo:83

Assume λ(k) ≤ 0 and A− λ(k)I ≻ 0 (i.e. λ(k) < λ1(A))

Factor A− λ(k)I = RT R (Cholesky factorization).

Solve for x , RT Rx = a ( x = x(λ(k))).

Solve for y , RT y = x .

Let λ(k+1) = λ(k) −
[

‖x‖
‖y‖

]2 [
(‖x‖−s)

s

]

(Newton step); but,

safeguard/maintain positive definiteness A− λ(k+1)I ≻ 0
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Solve: φ(λ) := 1
s −

1
||(A−λI)†a|| = 0

Nearly linear
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Figure: “Easy” case: φ(λ) = 1
s −

1
||(A−λI)†a||
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“Easy” Case; Newton Quadr. Cvgnce from One Side
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Figure: Newton’s method with the secular function, φ(λ).
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Easy/Hard Cases for TRS; Singularity of Hessian

λ1(A) = λmin(A) > λ∗ =⇒ A− λ∗I ≻ 0
1. Easy case 2.(a)Hard case (case 1) 2.(b) Hard case (case 2)

a /∈ R(A − λ1(A)I) a ⊥ N (A − λ1(A)I) a ⊥ N (A − λ1(A)I)
but and

(stationarity implies λ∗ 6= λ1(A), λ∗ < λ1(A) λ∗ = λ1(A) singular Hessian
so that λ∗ < λ1(A), (i) ‖(A − λ∗ I)†a‖ = s or λ∗ = 0
Hessian is pos. def., nonsingular) (Hessian is pos. def., nonsingular) (ii) ‖(A − λ∗ I)†a‖ < s, λ∗ < 0

three different cases for the trust region subproblem;
two subcases (i) and (ii) for the hard case (case 2), where
A− λ∗I is positive semidefinite, SINGULAR.
(·† denotes Moore-Penrose gen. inverse.)

Hard Case is really easiest?

We take advantage of Lanczos algorithm in large sparse case.
Will see: hard case becomes easiest case.
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φ(λ) in the (near) Hard Case

Newton steps (linearizations) are “useless”
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Figure: (near) hard case case: φ(λ) = 1
s −

1
||(A−λI)†a||
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Towards a Parametrization for Large Sparse Case

Motivation: try to avoid Cholesky in large sparse case

Homogenization using y2
0 = 1; optimal value µ∗ =

= min
||x||=s, y2

0=1
x tAx − 2y0at x homogenize obj.

= max
t

min
||x||=s, y2

0=1
x tAx − 2y0atx + ty2

0 − t

≥ max
t

min
||x||2+y2

0=s2+1
x tAx − 2y0at x + ty2

0 − t **eig prob**

≥ max
t,λ

min
x,y0

x tAx − 2y0at x + ty2
0 − t + λ(||x ||2 + y2

0 − s2 − 1)

= max
r ,λ

min
x,y0

x tAx − 2y0at x + ry2
0 − r + λ(||x ||2 − s2)

= max
λ

(

max
r

min
x,y0

x tAx − 2y0at x + ry2
0 − r + λ(||x ||2 − s2)

)

= max
λ

min
x,y2

0=1
x tAx − 2y0at x + λ(||x ||2 − s2)

= µ∗,

equated r with t + λ.

used strong duality for TRS for last two equalities.
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Parametric Eigenvalue Problem

max
t

min
||x||2+y2

0=s2+1
x tAx − 2y0atx + ty2

0 − t

k(t) := (s2 + 1)λ1(D(t))− t D(t) =
[

t −at

−a A

]

An Unconstrained dual problem to (TRS)

max
t

k(t) (concave max)
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k ′(t) = (s2 + 1)y0(t)2 − 1

If λ1(D(t)) is simple

y(t) normalized eigenvector for λ1(D(t))

y(t) =
(

y0(t)
x(t)

)

1
y0(t)

‖x(t)‖ = s if, and only if, k ′(t) = 0
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Linear Primal-Dual SDP Pair

From parametric eigenvalue problem

(DSDP)
µ∗ = maxλ,t (s2 + 1)λ− t

s.t. D(t) � λI (λmin(D(t)) ≥ λ)

(with λ ≤ 0 for inequality constraint TRS)

(PSDP)

µ∗ = min trace D(0)X
s.t. trace X = s2 + 1

X11 = 1
X � 0

X ∼=

(

1
x

)(

1
x

)T
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Hard Case is Easiest Case: Shift and Deflation

If λmin < 0 use A← A− λmin(A)

hard case (case 2) happens only when λ∗ = λmin(A) < 0

A � 0 after the shift (objective changes by a constant)

Lemma Fortin-W:03 [1]

A =
∑n

i=1 λi(A)vi vT
i = QΛQT

orthogonal spectral decomposition of A; with γi = (QT a)i
S1 = {i : γi 6= 0, λi(A) > λmin(A)}
S2 = {i : γi = 0, λi(A) > λmin(A)}
S3 = {i : γi 6= 0, λi(A) = λmin(A)}
S4 = {i : γi = 0, λi(A) = λmin(A)}

For k = 1,2,3,4,: Ak =
∑

i∈Sk
λi(A)vivT

i
Then:

26



Lemma Conclusions

1 If S3 6= ∅ (easy case), then (x∗, λ∗) solves TRS iff (x∗, λ∗)
solves TRS when A is replaced by A1 + A3.

2 If S3 = ∅ (hard case), let i0 = 1 ∈ S4, then
(x∗, λ∗) solves TRS iff
(x∗, λ∗) solves TRS when A is replaced by

A1 + λi0(A)vi0vT
i0

. (DEFLATE)

3 Let x(λ∗) = (A− λ∗I)†a, then (x∗, λ∗), where
x∗ = x(λ∗) + z, z ∈ N (A − λ∗I) and ‖x∗‖ = s solves TRS
iff (x(λ∗), λ∗ − λmin(A)) solves TRS when A is replaced by
A− λmin(A)I.

4 If λmin(A) ≥ 0, then (x∗, λ∗) solves TRS iff
(x∗, λ∗) solves TRS when A is replaced by
A +

∑

i∈S4
αivivT

i , with αi ≥ 0. (DEFLATE all in S4)
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Shift/Deflate: Solve Hard Case Explicitly

Summary - sometimes you get !lucky!

eigenpair λmin(A) = λ1(A), v1 found; large sparse case; so,

assume possible hardcase: λ1(A) < 0 and vT
1 a = 0

!we have λ1(A)! so shift: A← A− λmin(A)I � 0; !optimum
unchanged, objective value changed by λ1s2!.

!we have v1, vT
1 a = 0! so deflate:

A← A + α1vvT , ‖A‖ > α1 >> 0; (repeat deflation if

needed, i.e as long as λmin(A) = 0 and vT a = 0 )
!objective value/optima unchanged!.

if vT a 6= 0, then continue with TRS algorithm, i.e. hard
case (case 1); otherwise, A ≻ 0, so (using prec. conj grad.)
calculate x̄ = A−1a; if ‖x(λ∗)‖ > s, then continue with TRS
algorithm, i.e. hard case (case 1); otherwise ‖x(λ∗)‖ ≤ s,
then we have hard case (case 2) and !we have an explicit
solution : ‖x∗‖ = ‖x̄ + βv1‖ = s, !since v1 ∈ N (A− λ∗I)!.
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cputime in the hard case (case 2)
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Figure: cputime in the hard case (case 2)
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log of cputime in the hard case (case 2)
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Conclusion

Importance of Duality/Convexity; Exploit Singularity

The TRS (quadratic objective, one quadratic constraint) is
an implicit convex problem.

Convexity allows one to exploit the special structure of the
dual along with information from the primal problem.

Singularity is usually an indication of
difficulty/ill-posedness. However, if the structure is well
known, then one can often exploit singularity to improve
the algorithm.
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