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Preprocessing/Regularization

Applications: QAP, GP, SNL, Molecular conformation ...

Motivation: Loss of Slater CQ/Facial reduction

optimization algorithms rely on the KKT system;
and require that some constraint qualification (CQ) holds
(Slater’s CQ/strict feasibility for convex conic optimization)

However, surprisingly many conic opt, SDP relaxations,

instances arising from applications (QAP, GP, strengthened MC, SNL,
POP, Molecular Conformation)

do not satisfy Slater’'s CQ/are degenerate

lack of Slater’s CQ results in: unbounded dual solutions;
theoretical and numerical difficulties,
in particular for primal-dual interior-point methods.

solution:
- theoretical facial reduction (Borwein, W.81)
- preprocess for regularized smaller problem (Cheung, Schurr, W.11)
- take advantage of degeneracy (for SNL)
(Krislock, W.'10; Krislock, Rendl, W.10)
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Outline: Regularization/Facial Reduction

@ Preprocessing/Regularization

@ Abstract convex program
@ LP case

@ CP case

@ Cone optimization/SDP case

e Applications: QAP, GP, SNL, Molecular conformation ...
@ SNL; highly (implicit) degenerate/low rank solutions
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Background/Abstract convex program

(ACP) ier f(x)s.t. g(x) =k 0,x € Q

where:
@ f:R" — Rconvex; g:R"— R™is K-convex
@ K C R™ closed convex cone; 2 C R" convex set
@ a=xb «<— b-aekK

@ g(ax + (1 —ay)) =k ag(x) + (L —a)g(y),
X,y € R" Va € [0, 1]

\

Slater's CQ: 3X € Q2 s.t. g(X) € —intK
@ guarantees strong duality

@ essential for efficiency/stability in primal-dual interior-point
methods
((near) loss of strict feasibility correlates with number of
iterations and loss of accuracy)




Preprocessing/Regularization Abstract convex program
Applications: QAP, GP, SNL, Molecular conformation ... Cone optimization/SDP case

Case of Linear Programming, LP

Primal-Dual Pair: A.m xn/P = {1 n} constr. matrix/set

max b'y min c¢'x

HEg) st. Aly<c {EFE, st. Ax=b, x > 0.

Slater’'s CQ for (LP-P) /

Jyst.c—ATy >0, ((c—ATy). >0,Vie P=:P<)
iff

Ad=0,¢'d=0,d>0 = d=0 (%)

implicit equality constraints: i € P~

Finding solution 0 # d* to (x) with max number of non-zeros
determines (7Y feasible set)

d*>0 = (c—ATy)i=0,¥ycFY (icP)
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Rewrite implicit-equalities to equalities/ Regularize LP

Facial Reduction: A"y <; ¢; minimal face f < RT

max by min  (c<)Tx< + (C:<)T -
(LPreg-P) st (A9)Ty<c< | (LRegD) st [A<  A7] (Xx:) —
=TTy — o=
(A7) y=c x< > 0,x" free

Mangasarian-Fromovitz CQ holds

(after deleting redundant equality constraints!)

ieP= ieP= e
( W (AS)TYy <c< (AT)Ty =c= ) (A7) is onto

MFCQ holds | dual optimal set is compact

Numerical difficulties if MFCQ fails; in particular for interior
point methods! Modelling issue?
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Facial Reduction/Preprocessing

Linear Programming Example, x € R?

1 L 1 1
<O> feasible; weighted last two rows [_2 5 _2} sum to
zero. P< ={1,2},P= = {3,4}

Facial reduction to 1 dim; substit. for y
Y1 1 1
— - <
() =()+t(i). -rstst _

=

N[
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Facial Reduction on Dual/Preprocessing

Linear Programming Example, x ¢ R®

mn (2 6 -1 -2 7)x

et |t 1 1 10 (1
Tt -1 1017\

x>0

Sum the two constraints:
2X1 + X4+ X5 =0 = X3 =X4 =X%5 =0.

yields the equivalent simplified problem in a smaller face

min (6 -1) <§2
S
st 1 1] (}2) =1
S

Xo,X3 > 0,X1 =X4 =X%X5 =0
<3
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Case of ordinary convex programming, CP

(CP) supb'ystg(y)<0,
y

where
@ beR™g(y) = (gi(y)) € R", gi : R™ — R convex, Vi € P
@ Slater's CQ: 3V s.t. gi(V) < 0,Vi (implies MFCQ)
@ Slater's CQ fails implies implicit equality constraints exist,
ie.
P=:={ieP:g(y) <0 = gi(y) =0} #0
Let P := P\P~ and

9% = (Gi)iep< 9 = (Gi)iep-
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Rewrite implicit equalities to equalities/ Regularize CP

(CP)is equivalentto g(y) <; 0, f is minimal face

sup by
(CPreg) st. g=(y) <0
yeF= or(g=(y)=0)
where 7= :={y : g=(y) = 0}. Then
|7~ ={y:g (y) <0}, soisaconvexsetl|

Slater's CQ holds for (CPreg) | 3y € 7~ :9<(y) <0

modelling issue again?
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Faithfully convex case

Faithfully convex function f (Rockafellar'70 )

f affine on a line segment only if affine on complete line
containing the segment (e.g. analytic convex functions)

19~ (y) = 0} is an affine set

Then:
F=={y:Vy =Vy} forsomey and full-row-rank matrix V.
Then MECQ holds for

sup bly

(CPreg) st g=(y)
Vy

Il IA
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Semidefinite Programming, SDP

K =& = K* nonpolyhedral cone!

(SDP-P) vp = sup b'y st g(y):= A"y —c =g O
y€EeR™

(SDP-D) vp = inf (c,x) st. Ax=Db, X =gn O
xeSn i

where:
@ PSD cone S € S" symm. matrices
@ccS",beR™

® A:S8" — R"is alinear map, with adjoint A*
Ax = (trace Aix) € R™
Aty =30 Ay € ST
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Slater's CQ/Theorem of Alternative

(Assume feasibility: 7y s.t. ¢ — A*y = 0.)

Jy st.s=c—- Ay -0  (Slater)
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Faces of Cones - Useful for Charact. of Opt.

Face

A convex cone F is a face of K, denoted F < K, if
x,yeKandx+y eF = x,y eF

(F < K proper face)

Conjugate Face

If F < K, the conjugate face (or complementary face) of F is
F¢:=F+tNK*gK*

If x € ri(F), then F¢ = {x}+ NK*.

Minimal Faces

fp :=face F§ <K, o Is primal feasible set
fo :=face F§ <K*, F [ is dual feasible set
where: K* denotes the dual (honnegative polar) cone;

face S denotes the smallest face containing S.
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Regularization Using Minimal Face

Borwein-W.81 , fp = face 73

(SDP-P) is equivalent to the regularized

(SDPreg-P)  Vrp :=sup {(b,y) : A%y =, c}
y

(slacks: s =c — A"y €fy)

Lagrangian Dual DRP Satisfies Strong Duality:

(SDPreg-D) Vorp = inf {(c,x) : AX =D, X = 0}

= Vp = VRp

and vpgp is attained.
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(SYMMETRIC) Subspace form

Assume Linear Feasibility for , ;with data A, b,c, K

Ay +S=c AX =Db
L+ =TR(A%) (range) L =N (A) (nullspace)

Equivalent P-D Pair in Subspace Form, (e.g. N&N94)

Particular solution + solution of homogeneous equation

(SDP-P) vy :ci—irsmf{si 'se (§+/;L)m<}.

(SDP-D) vp :yb+ir)2f{§x X eX+L)NK*}.
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Minimal subspaces

Faces of Recession Directions (feasible case/homog. prob.)
fd :=face (L NK) (C fp), f0 :=face (£ NK*)(C fp)

| A\

Recall: for feasible sets 73, F §

minimal faces: fp = face 73, fp =face F§

| A\

Minimal Subspaces/Linear Transformations

min. subsp.: Ly, =L N (fp —fp), Lpw =L N(fo—Tp)
min. Lin. Tr.: i Abpm

\
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Regularization using minimal subspace

Assume < Facially Dual Complete, FDC (Pataki’07, 'nice’)
i.e. F <K = K*+F=isclosed. (e.g. S ,R1,SOC).

Loy =L"N(fp —fp)

va:Cf(finf{si:se(§+ﬁﬁp)ﬁK} (RP)
S

Lagrangian Dual DRP Satisfies Strong Duality:

Vp = VRp = Vprp = Yb +ir)2f{§x ‘X €(X+Lyp)NK*} (DRP)

and vpgp is attained
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Strong Duality for (P) (ve — vy and vy s attained)

Minimal Face and Minimal Subspace CQs for (P)

Q fh=KisaCQ (Slater)
(from BW: f5 = K*)
Q Lin(fp—fo)=L3, =L'N(K-K)isaCQ (ifK is FDC
(nice))
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SDP Regularization process

Alternative to Slater CQ

Ad:O, <Cvd>:0707£d ESQO (*)

Determine a proper face f <1 S

Let d solve (x) withd = Pd,P",d, - 0,and [P Q] € R™"
orthogonal. Then

cC—AYyrsn 0 = (c-Ay,d")=0
— F3CS" Nn{d*}t=QsTQT « S

(implicit rank reduction, n < n)
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Regularizing SDP

@ at most n — 1 iterations to satisfy Slater’s CQ.
@ to check Theorem of Alternative

Ad =0, (c,d)=0,0#d =g 0, (%)

use stable auxiliary problem

. Ad
AP min § s.t. <4,
U Lol <
trace(d) = v/n,
d > 0.

@ Both (AP) and its dual satisfy Slater's CQ.
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Auxiliary Problem

AP in o s.t.
w0 e

),

trace(d) = v/n,d = 0.

Both (AP) and its dual satisfy Slater’s CQ ... but ...

Cheung-Schurr-W’11, a k = 1 step CQ
Strict complementarity holds for (AP)
iff
k = 1 steps are needed to regularize (SDP-P).
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Regularizing SDP

Minimal face containing 75 := {s :s =c — A"y = 0}

fo =QST QT
for some n x n orthogonal matrix U = [P Q]

(SPD-P) is equivalent to

sup b'yst.g=(y) <0, g=(y) =0,
y

where g=(y) == QT(Ay — c)Q

N PT(AY —C)P
(gen.) Slater CQ holds for the reduced program:
Jy sit.g=(y) <0andg=(y) = 0.
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Theoretical Connections Complementarity/Duality?

Numerical Difficulties
(Both) loss of Slater CQ (strict feasibility) and loss of strict

complementarity independently result in theoretical difficulties
and numerical difficulties for interior-point methods.

Theoretical Connection?

Is there a theoretical connection between loss of duality (from
loss of a CQ) and loss of strict complementarity?
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Complementarity Partition

Recall Faces of Recession Directions

fo .= face (EJ ﬁK>_ fg = face (£ NK*)

The pair f2, f§ define a Complementarity Partition

o face(f) C face(f3)® and face(f3) c face(fd)°.

e it is a strict complementarity partition if both
[face(f9)]¢ = face(f3) and [face(f3)]¢ = face(fd);

« it is proper if {3 and 3 are both nonempty.
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SDP Picture

For SDP (after a rotation)

f0 0 0
0 00
0 0 f2

Form Primal-Dual Pair

0 0 0
$=5=10 v=0 0| = (s,x)>|IV|3,
0 0 0

for all feasible pairs s, x. (gap is dimension of v)
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Strict Complementarity and Nonzero Gaps

Theorem (Tuncel-W.11):

Q) If fF?, fg define a proper complementarity partition with a gap
of dimension 1, so, the partition is not a strict complementarity
partition, then there exists S and X such that SDP-P and SDP-D
with data (£ ,K, S, X) has a finite nonzero duality gap.

| A\

(Partial Converse)

@) If

(a) SDP-P and SDP-D with data (£ ,K, S, x) has a finite
nonzero duality gap with both optimal values attained, and
(b) the objective functions are constant along all recession
directions of SDP-P and SDP-D,

then fg,fg has a proper complementarity partition but not a
strict complementarity partition.
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Conclusion Part |

® Minimal representations of the data regularize (P);
use min. face fp (and/or implicit rank reduction)

@ goal: a backwards stable preprocessing algorithm to
handle (feasible) conic problems for which Slater's CQ
(almost) fails

@ Failure of strict complementarity for associated recession

problems is related to existence of finite nonzero duality
gap; provides a means of generating instances for testing.

T = Numer. Difficulties +~ 1
Slater CQ str. compl.
!
pos. duality gap
T o« str. compl. partit. homog. prob. - 1
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Part Il: Applications of SDP where Slater’'s CQ fails

SNL; highly (implicit) degenerate/low rank solutions

Instances of SDP relaxations of NP-hard combinatorial

optimization problems with row and column sum and 0, 1
constraints

@ Quadratic Assignment (Zhao-Karish-RendI-W. 96 )
@ Graph partitioning (W.-Zhao’99 )

Low rank problems

@ Sensor network localization (SNL) problem (Krislock-W.'10,
Krislock-Rend|-W.10)

@ Molecular conformation (Burkowski-Cheung-W.11 )

@ general SDP relaxation of low-rank matrix completion
problem

20
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SNL (K-W'10,K-R-W’10)

SNL; highly (implicit) degenerate/low rank solutions

Highly (implicit) degenerate/low-rank problem

- high (implicit) degeneracy translates to low rank solutions
- fast, high accuracy solutions

SNL - a Fundamental Problem of Distance Geometry;

@ r . embedding dimension

® n ad hoc wireless sensors py, ..., pn € R" to locate in R";

om Pn_mi1,---Pn (positions
known, using e.g. GPS)
@ pairwise distances Dj = ||p; — pj||?,ij € E, are known
within radio range R > 0
o
Pl =[p1 ... pn]=[XT AT] eR™"
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Sensor Localization Problem/Partial EDM

SNL; highly (implicit) degenerate/low rank solutions

Sensors o and Anchors

Initial position of points

sensors
anchors
sens-anch

#sensorsn=300, #anchorsm=9, radiorange R =12
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Underlying Graph Realization/Partial EDM  NP-Hard

SNL; highly (implicit) degenerate/low rank solutions

Graph G = (V,&,w)
@ nodesetV ={1,....n}
@ edge set (i,j) € £; wj = ||pi — p;||*> known approximately
@ The anchors form a clique (complete subgraph)

@ Realization of G in R": a mapping of nodes v; — p; € R’
with squared distances given by w.

4

Corresponding Partial Euclidean Distance Matrix, EDM
Di — dij2 if (i,j)eé&
7| 0 otherwise (unknown distance),

dij2 = wjj are known squared Euclidean distances between
Sensors p;, pj; anchors correspond to a clique.
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Connections to Semidefinite Programming (SDP)

D=K(B)c&", B=KT(D)ecS" NS (centered Be = 0)

PT=[p1 p2 ... pn] €M™,
B:=PP' &7 (Gram matrix of inner products);

rank B =r; let D € £" corresponding EDM ; e = (1 l)T
(oDeeM D = (Ip—pIB))s
n
CEETE Zpiij>ij:1

= |diag(B)e' +ediag(B)" — 2B

= K(B) (fromB e S").

22
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Euclidean Distance Matrices; Semidefinite Matrices

SNL; highly (implicit) degenerate/low rank solutions

Moore-Penrose Generalized Inverse £

B0 =— D=K(B)=dag(B)e' +ediag(B)" —2Bc ¢
Deé = B=K/(D)=-3JoffDiag (D)J= 0,Be =0

| A\

Theorem (Schoenberg, 1935)

A (hollow) matrix D (with diag (D) = 0,D € Sy)is a
Euclidean distance matrix
if and only if

B = K'(D) = 0.

And
embdim (D) = rank (}CT(D)) , YDeg"
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Popular Techniques; SDP Relax.; Highly Degen.

SNL; highly (implicit) degenerate/low rank solutions

Nearest, Weighted, SDP Approx. (relax/discard rank B)

® mingyo [[H o (K (B) —D)|; rank B =r;

typical weights: H;j = 1/,/Dj;, if ij € E, H;j = 0 otherwise.
@ with rank constraint: a non-convex, NP-hard program
@ SDP relaxation is convex, BUT: expensive/low

accuracy/implicitly highly degenerate (cliques restrict ranks
of feasible Bs)

4

Instead: (Shall) Take Advantage of Degeneracy!

clique «. || = k (corresp. D[a]) with embed. dim. =t <r <k
— rank CT(D[a]) =t <1 = rankB[a] < rank K (D[o]) + 1
— rakB =rank KT(D)<n—|(k —t—1)| =

Slater's CQ (strict feasibility) fails
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Basic Single Clique/Facial Reduction

SNL; highly (implicit) degenerate/low rank solutions

Matrix with Fixed Principal Submatrix
ForY e S", o C {1,..., n}: Y [«] denotes principal submatrix

formed from rows & cols with indices a.

Define £"(a, D) := {D € £&" : D[a] = D}. (completions)

Given D; find a corresponding B > 0; find the corresponding
face; find the corresponding subspace.

if o = 1 : k; embedding dim embdim (D) =t <r

26
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BASIC THEOREM for Single Clique/Facial Reduction

Let:
@ D :=D[1:k] € X, k < n, embdim (D) =t < r be given;
@ B .= }CT(D) = UBSUBT, UB € ./\/lkXt, UBTUB =1, S e St++
be full rank orthogonal decomposition of Gram matrix;

— 0 1 kx (t+1 _ |Us 0
o Ug = [Us Jre| eM X(“,U.—[O Ink],and

[V HB—IZH} € M"K++1 be orthogonal.
Then the minimal face:
face KT (En(1:k,D)) = (usrk““uT) N Sc
= (UV)STKtuv)T
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The minimal face

SNL; highly (implicit) degenerate/low rank solutions

face KT (€"(1:k,D)) = (Us_f;—"““UT)msc
= (UV)ST*tuv)T

Note that the minimal face is defined by the subspace
L =R (UV). We add ﬁe to represent V' (KC ); then we use V

to eliminate e to recover a centered face.
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Facial Reduction for Disjoint Cliques

Corollary from Basic Theorem

let vy, ...,y C 1:n pairwise disjoint sets, wlog:
aj = (ki1 +1)ki,ko =0, a := Ule aj = 1:|a let
U; € Rlilx(E+1) with full column rank satisfy e € R (U;) and
ki_q t+1 n—k;
ki1 [ 0 0
Ui = |o 0 U 0 |[eRrm™O-laultitl)
n—k; 0 0 I
The minimal face is defined by £ = R (U):
tt+1 ... t+1 n—|q
| | U, ... 0 0
U.— - S : c RN (n—lal+t+1)
|aee] o ... U o0 /
n—|a| 0 S 0 I
wheret :=>'_ t +/—1.Ande € R (U).
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Sets for Intersecting Cliques/Faces

SNL; highly (implicit) degenerate/low rank solutions

a1 = lZ(E1+E2); Qp (= (E1+1)(E1+E2+E3)

aq (6%

For each clique |o| = k, we get a corresponding face/subspace
(k x r matrix) representation. We now see how to complete the
union of two cliques, a1, ay, that intersect.
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Two (Intersecting) Cligue Reduction/Subsp. Repres.

Let:
® aj,a2 C1l:n; K:=|agUay|
@ fori =1,2: Dj := D[oy] € £%, embedding dimension t;;
@ B :=K(D)=0iS0, U e Mkt 0T0; =k, S; € Y,
o U = {U| ﬁe} e MK*xW+1): and U e M kx(t+1)

satisfies | = @) - = ([Uol OD nNR (["21 UOzD with G700 = 1,4

kg 0

In—x

be orthogonal.

o U — |:l(J) 0 | ¢ px(n—k+t+1) gng [V HUTSH] € M N—k+t+1

Then N2, faceK T (e"(ey,B))) = (usifk*‘*luT)msc
= (u)stuv) T

a1
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Expense/Work of (Two) Clique/Facial Reductions

SNL; highly (implicit) degenerate/low rank solutions

Subspace Intersection for Two Intersecting Cliques/Faces

Suppose:
u; o I 0
U, = Ui’ 0 and U, = 1|0 Ué/
0 | 0 U
Then:
uj Uj(Uy)1ug
U:= uy or U:= Ul
U3(U3)10y U;
(Q1 =: (U])TUY,Q, = (U4)'U/ orthogonal/rotation)
(Efficiently) satisfies
R(U) =R (U1) "R (U2)

Vil



Preprocessing/Regularization e L .
Applications: QAP, GP, SNL, Molecular conformation ... SNL; highly (implicit) degenerate/low rank solutions

Two (Intersecting) Clique Explicit Delayed Completion

Let:
@ Hypotheses of intersecting Theorem (Thm 2) holds
® D; :=D|qaj] € EX fori=1,2,8C a1 Nag,v:=a Uay
@ D := D[] with embedding dimension r
@ B:=KT(D), Usz:=U(B,:), where U ¢ M Kkx(t+1)
satisfies intersection equation of Thm 2
o [V =] € M' be orthogonal.

(*) ‘z = (305V)TB((@G5V)HT ‘

THENt =rinThm 2, and Z € &' is the unique solution of the
equation (JUgV)Z (JUgV)T = B, and the exact completion is

D[] = K (PPT)| where|P := UvZz ¢ R0
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Completing SNL (Delayed use of Anchor Locations)

SNL; highly (implicit) degenerate/low rank solutions

Rotate to Align the Anchor Positions

@ Given P = [El} € R"™ such that D = K (PPT)
2

@ Solve the orthogonal Procrustes problem:

min [|A - P2Q|
st QTQ =1

P, A =UXV ' SVD decomposition; set Q = UV ';
(Golub/Van Loan’79, Algorithm 12.4.1)
® Set X :=P;0
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Summary: Facial Reduction for Cliques

SNL; highly (implicit) degenerate/low rank solutions

@ Using the basic theorem: each clique corresponds to a
Gram matrix/corresponding subspace/corresponding face
of SDP cone (implicit rank reduction)

@ In the case where two cliques intersect, the union of the
cligues correspond to the (efficiently computable)
intersection of the corresponding faces/subspaces

@ Finally, the positions are determined using a Procrustes
problem
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Results - Data for Random Noisless Problems

SNL; highly (implicit) degenerate/low rank solutions

2.16 GHz Intel Core 2 Duo, 2 GB of RAM

Dimensionr = 2

Square region: [0, 1] x [0, 1]

m = 9 anchors

Using only Rigid Clique Union and Rigid Node Absorption
Error measure: Root Mean Square Deviation

1/2
RMSD—( Z”p, pie|| )
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(SDP size O(n?))

Results - Large n

SNL; highly (implicit) degenerate/low rank solutions

n # of Sensors Located

n # sensors \ R 0.07 0.06 0.05 0.04
2000 2000 2000 1956 1374
6000 6000 6000 6000 6000
10000 10000 | 10000 | 10000 | 10000

CPU Seconds
#sensors\R | 0.07 | 0.06 | 0.05 | 0.04
2000 1 1 1 3
6000 5 5 4 4
10000 10 10 9 8
RMSD (over located sensors)

n # sensors \ R 0.07 0.06 0.05 0.04
2000 4e—16 | 5e—16 | 6e—16 | 3e—16
6000 4e—16 | 4e—16 | 3e—16 | 3e—16
10000 3e—16 | 5e—16 | 4e—16 | 4e—16
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Results - N Huge SDPs Solved

SNL; highly (implicit) degenerate/low rank solutions

Large-Scale Problems

#sensors #anchors radio range | RMSD Time
20000 9 .025 5e—16 25s
40000 9 .02 8e—16 | 1m 23s
60000 9 .015 5e—16 | 3m 13s
100000 9 .01 6e—16 | 9m 8s

Size of SDPs Solved:

En(density of G) = 7R?; M = &,(|E|) = mR2N (# constraints)

Size of SDP Problems:

M = [3,078,915 12,315,351 27,709,309 76,969,790]

(# vrbls)

N = 10° [0.2000 0.8000 1.8000 5.0000]
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Thanks for your attention!
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Optimization: with Applications to Sensor
Network Localization

Henry Wolkowicz

Dept. Combinatorics and Optimization, University of Waterloo

at: MOPTA 2012, Lehigh University




	Preprocessing/Regularization
	Abstract convex program
	Cone optimization/SDP case

	Applications: QAP, GP, SNL, Molecular conformation ...
	SNL; highly (implicit) degenerate/low rank solutions


