Taking Advantage of Degeneracy in Cone Optimization: with Applications to Sensor **Network Localization**

Henry Wolkowicz

Dept. Combinatorics and Optimization, University of Waterloo

at: MOPTA 2012, Lehigh University

Motivation: Loss of Slater CQ/Facial reduction

- optimization algorithms rely on the KKT system; and require that some constraint qualification (CQ) holds (Slater's CQ/strict feasibility for convex conic optimization)
- <u>However</u>, surprisingly many conic opt, SDP relaxations, instances arising from applications (QAP, GP, strengthened MC, SNL, POP, Molecular Conformation) do not satisfy Slater's CQ/are degenerate
- lack of Slater's CQ results in: unbounded dual solutions; theoretical and numerical difficulties, in particular for primal-dual interior-point methods.
- solution:
 - theoretical facial reduction (Borwein, W.'81)
 - preprocess for regularized smaller problem (Cheung, Schurr, W.'11)
 - take advantage of degeneracy (for SNL) (Krislock, W.'10; Krislock, Rendl, W.'10)

Outline: Regularization/Facial Reduction

- Preprocessing/Regularization
 - Abstract convex program
 - LP case
 - CP case
 - Cone optimization/SDP case
- Applications: QAP, GP, SNL, Molecular conformation ...
 - SNL; highly (implicit) degenerate/low rank solutions

Background/Abstract convex program

(ACP)
$$\inf_{\mathbf{x}} f(\mathbf{x}) \text{ s.t. } g(\mathbf{x}) \leq_{\mathcal{K}} 0, \mathbf{x} \in \Omega$$

where:

- $f: \mathbb{R}^n \to \mathbb{R}$ convex; $g: \mathbb{R}^n \to \mathbb{R}^m$ is K-convex
 - $K \subset \mathbb{R}^m$ closed convex cone; $\Omega \subseteq \mathbb{R}^n$ convex set
 - $a \leq_K b \iff b a \in K$
 - $g(\alpha x + (1 \alpha y)) \leq_{\kappa} \alpha g(x) + (1 \alpha)g(y),$ $\forall x, y \in \mathbb{R}^n, \forall \alpha \in [0, 1]$

Slater's CQ: $\exists \hat{x} \in \Omega$ s.t. $g(\hat{x}) \in -\inf K$ $(g(x) \prec_K 0)$

- guarantees strong duality
- essential for efficiency/stability in primal-dual interior-point methods

((near) loss of strict feasibility correlates with number of iterations and loss of accuracy)

Case of Linear Programming, LP

Primal-Dual Pair: $A, m \times n / P = \{1, ..., n\}$ constr. matrix/set

Slater's CQ for (LP-P) / Theorem of alternative

$$\exists \hat{y} \text{ s.t. } c - A^{\top} \hat{y} > 0, \qquad \left(\left(c - A^{\top} \hat{y} \right)_{i} > 0, \forall i \in \mathcal{P} =: \mathcal{P}^{<} \right)$$
iff
$$Ad = 0, \ c^{\top} d = 0, \ d > 0 \implies d = 0 \qquad (*)$$

implicit equality constraints: $i \in \mathcal{P}^{=}$

Finding solution $0 \neq d^*$ to (*) with max number of non-zeros determines (\mathcal{F}^y feasible set)

$$d_i^* > 0 \implies (c - A^\top y)_i = 0, \forall y \in \mathcal{F}^y \quad (i \in \mathcal{P}^=)$$

Rewrite implicit-equalities to equalities/ Regularize LP

Facial Reduction: $A^{\top}y \leq_f c$; minimal face $f \leq \mathbb{R}^n_+$

Mangasarian-Fromovitz CQ (MFCQ) holds

(after deleting redundant equality constraints!)

$$\left(\begin{array}{cc} \frac{\underline{i} \in \mathcal{P}^{<}}{\exists \hat{y} : & (A^{<})^{\top} \hat{y} < c^{<} & (A^{=})^{\top} \hat{y} = c^{=} \end{array} \right)$$
 $(A^{=})^{\top}$ is onto

MFCQ holds **ff** dual optimal set is compact

Numerical difficulties if MFCQ fails; in particular for interior point methods! Modelling issue?

Facial Reduction/Preprocessing

Linear Programming Example, $x \in \mathbb{R}^2$

max
$$(2 \ 6) y$$

s.t. $\begin{bmatrix} -1 & -1 \\ 1 & 1 \\ 1 & -1 \\ -2 & 2 \end{bmatrix} y \le \begin{pmatrix} 1 \\ 2 \\ 1 \\ -2 \end{pmatrix}$

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 feasible; weighted last two rows $\begin{bmatrix} 1 & -1 & 1 \\ -2 & 2 & -2 \end{bmatrix}$ sum to zero. $\mathcal{P}^{<} = \{1,2\}, \mathcal{P}^{=} = \{3,4\}$

Facial reduction to 1 dim; substit. for y

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \qquad -1 \le t \le \frac{1}{2}, \qquad t^* = \frac{1}{2}.$$

Facial Reduction on Dual/Preprocessing

Linear Programming Example, $x \in \mathbb{R}^5$

min
$$\begin{pmatrix} 2 & 6 & -1 & -2 & 7 \end{pmatrix} x$$

s.t. $\begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 1 & -1 & -1 & 0 & 1 \end{bmatrix} x = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$
 $x \ge 0$

Sum the two constraints:

$$2x_1 + x_4 + x_5 = 0 \implies x_1 = x_4 = x_5 = 0.$$

yields the equivalent simplified problem in a smaller face

min
$$\begin{pmatrix} 6 & -1 \end{pmatrix} \begin{pmatrix} x_2 \\ x_3 \end{pmatrix}$$

s.t. $\begin{bmatrix} 1 & 1 \end{bmatrix} \begin{pmatrix} x_2 \\ x_3 \end{pmatrix} = 1$

$$(x_3)$$

 $x_2, x_3 \ge 0, x_1 = x_4 = x_5 = 0$

Case of ordinary convex programming, CP

(CP)
$$\sup_{y} b^{\top} y \text{ s.t. } g(y) \leq 0,$$

where

- $b \in \mathbb{R}^m$; $g(y) = (g_i(y)) \in \mathbb{R}^n$, $g_i : \mathbb{R}^m \to \mathbb{R}$ convex, $\forall i \in \mathbb{P}$
- Slater's CQ: $\exists \hat{y}$ s.t. $g_i(\hat{y}) < 0, \forall i$ (implies MFCQ)
- Slater's CQ fails <u>implies</u> implicit equality constraints exist, i.e.:

$$\mathcal{P}^{=} := \{i \in \mathcal{P} : g(y) \leq 0 \implies g_i(y) = 0\} \neq \emptyset$$

Let $\mathcal{P}^{<} := \mathcal{P} \backslash \mathcal{P}^{=}$ and

$$g^{<} := (g_i)_{i \in \mathcal{P}^{<}}, g^{=} := (g_i)_{i \in \mathcal{P}^{=}}$$

(CP) is equivalent to $g(y) \le_f 0$, f is minimal face

$$\begin{array}{ccc} & \text{sup} & b^\top y \\ \text{s.t.} & g^<(y) \leq 0 \\ & y \in \mathcal{F}^= & \text{or } (g^=(y) = 0) \end{array}$$

where $\mathcal{F}^{=} := \{ y : g^{=}(y) = 0 \}$. Then

$$\mathcal{F}^{=} = \{ y : g^{=}(y) \leq 0 \},$$
 so is a convex set!

Slater's CQ holds for (CP_{reg})

$$\exists \hat{y} \in \mathcal{F}^{=} : g^{<}(\hat{y}) < 0$$

modelling issue again?

Faithfully convex case

Faithfully convex function f (Rockafellar'70)

f affine on a line segment only if affine on complete line containing the segment (e.g. analytic convex functions)

$$\mathcal{F}^{=} = \{y : g^{=}(y) = 0\}$$
 is an affine set

Then:

 $\mathcal{F}^{=} = \{ y : Vy = V\hat{y} \}$ for some \hat{y} and full-row-rank matrix V.

Then MFCQ holds for

Semidefinite Programming, SDP

$K = S_+^n = K^*$ nonpolyhedral cone!

(SDP-P)
$$v_P = \sup_{y \in \mathbb{R}^m} b^\top y \text{ s.t. } g(y) := \mathcal{A}^* y - c \preceq_{\mathcal{S}^n_+} 0$$

(SDP-D) $v_D = \inf_{y \in \mathcal{S}^n_+} \langle c, x \rangle \text{ s.t. } \mathcal{A} x = b, \ x \succeq_{\mathcal{S}^n_+} 0$

where:

- PSD cone $S_{+}^{n} \subset S^{n}$ symm. matrices
- $c \in S^n$, $b \in \mathbb{R}^m$
- $\mathcal{A}: \mathcal{S}^n \to \mathbb{R}^m$ is a linear map, with adjoint \mathcal{A}^* $\mathcal{A}x = (\operatorname{trace} A_i x) \in \mathbb{R}^m$ $\mathcal{A}^* y = \sum_{i=1}^m A_i y_i \in \mathcal{S}^n$

Slater's CQ/Theorem of Alternative

(Assume feasibility:
$$\exists \, \tilde{y} \text{ s.t. } c - \mathcal{A}^* \tilde{y} \succeq 0.$$
)
$$\exists \, \hat{y} \text{ s.t. } s = c - \mathcal{A}^* \hat{y} \succ 0 \qquad \text{(Slater)}$$

$$\underline{\text{iff}}$$

$$\mathcal{A}d = 0, \ \langle c, d \rangle = 0, \ d \succeq 0 \implies d = 0 \qquad (*)$$

Faces of Cones - Useful for Charact. of Opt.

Face

A convex cone F is a face of K, denoted $F \subseteq K$, if $x, y \in K$ and $x + y \in F \implies x, y \in F$ ($F \subseteq K$ proper face)

Conjugate Face

If $F \subseteq K$, the conjugate face (or complementary face) of F is $F^c := F^{\perp} \cap K^* \subseteq K^*$ If $x \in ri(F)$, then $F^c = \{x\}^{\perp} \cap K^*$.

Minimal Faces

 $f_P := \operatorname{face} \mathcal{F}_P^s \subseteq K$, \mathcal{F}_P^s is primal feasible set $f_D := \operatorname{face} \mathcal{F}_D^x \subseteq K^*$, \mathcal{F}_D^x is dual feasible set where: K^* denotes the dual (nonnegative polar) cone; face S denotes the smallest face containing S.

Regularization Using Minimal Face

Borwein-W.'81, $f_P = \text{face } \mathcal{F}_P^s$

(SDP-P) is equivalent to the regularized

(SDP_{reg}-P)
$$V_{RP} := \sup_{y} \{\langle b, y \rangle : A^*y \leq_{f_P} c\}$$

(slacks: $\mathbf{s} = \mathbf{c} - \mathcal{A}^* \mathbf{y} \in \mathbf{f}_p$)

Lagrangian Dual DRP Satisfies Strong Duality:

(SDP_{reg}-D)
$$V_{DRP} := \inf_{X} \{ \langle c, x \rangle : A x = b, x \succeq_{f_{P}^{*}} 0 \}$$

= $V_{P} = V_{RP}$

and VDRP is attained.

(SYMMETRIC) Subspace form

Assume Linear Feasibility for $\tilde{s}, \tilde{y}, \tilde{x}$; with data A, b, c, K

$$\mathcal{A}^* \tilde{\mathbf{y}} + \tilde{\mathbf{s}} = \mathbf{c}$$
 $\mathcal{A} \tilde{\mathbf{x}} = \mathbf{b}$ $\mathcal{L}^{\perp} = \mathcal{R} (\mathcal{A}^*) \text{ (range)}$ $\mathcal{L} = \mathcal{N} (\mathcal{A}) \text{ (nullspace)}$

Equivalent P-D Pair in Subspace Form, (e.g. N&N94)

<u>Particular solution</u> + solution of homogeneous equation

(SDP-P)
$$v_P = c\tilde{x} - \inf_{s} \left\{ s\tilde{x} : s \in (\tilde{s} + \mathcal{L}^{\perp}) \cap K \right\}.$$

$$(\mathsf{SDP\text{-}D}) \quad \textit{v}_{\textit{D}} = \tilde{\textit{y}}\textit{b} + \inf_{\textit{x}} \left\{ \tilde{\textit{s}}\textit{x} : \textit{x} \in \left(\tilde{\textit{x}} + \mathcal{L} \right) \cap \textit{K}^* \right\}.$$

Minimal subspaces

Faces of Recession Directions (feasible case/homog. prob.)

$$f_P^0 := \mathrm{face}\left(\mathcal{L}^\perp \cap K\right) (\subset f_P), \qquad f_D^0 := \mathrm{face}\left(\mathcal{L} \cap K^*\right) (\subset f_D)$$

Recall: for feasible sets \mathcal{F}_{P}^{s} , \mathcal{F}_{D}^{x}

minimal faces:
$$f_P = \text{face } \mathcal{F}_P^s$$
, $f_D = \text{face } \mathcal{F}_D^x$

Minimal Subspaces/Linear Transformations

min. subsp.:
$$\mathcal{L}_{PM}^{\perp} := \mathcal{L}^{\perp} \cap (f_P - f_P), \quad \mathcal{L}_{DM} := \mathcal{L} \cap (f_D - f_D)$$
 min. Lin. Tr.: $\mathcal{A}_{PM}^*, \qquad \mathcal{A}_{DM}$

Regularization using minimal subspace

Assume K Facially Dual Complete, FDC (Pataki'07, 'nice')

i.e.
$$F \triangleleft K \implies K^* + F^{\perp}$$
 is closed. (e.g. \mathcal{S}^n_+ , \mathbb{R}^n_+ , SOC).

$$\mathcal{L}_{PM}^{\perp} = \mathcal{L}^{\perp} \cap (f_P - f_P)$$

$$V_{RP} = c\tilde{x} - \inf_{s} \left\{ s\tilde{x} : s \in (\tilde{s} + \mathcal{L}_{MP}^{\perp}) \cap K \right\}$$
(RP)

Lagrangian Dual DRP Satisfies Strong Duality:

$$v_P = v_{RP} = v_{DRP} = \tilde{y}b + \inf_{x} \{ \tilde{s}x : x \in (\tilde{x} + \mathcal{L}_{MP}) \cap K^* \}$$
 (DRP) and v_{DRP} is attained

Strong Duality for (P) $(v_P = v_D \text{ and } v_D \text{ is attained})$

Minimal Face and Minimal Subspace CQs for (P)

- 2 $\mathcal{L}^{\perp} \cap (f_P f_P) = \mathcal{L}^{\perp}_{PM} = \mathcal{L}^{\perp} \cap (K K)$ is a CQ (if K is FDC (nice))

SDP Regularization process

Alternative to Slater CQ

$$\mathcal{A}d = 0, \ \langle \boldsymbol{c}, \boldsymbol{d} \rangle = 0, \ 0 \neq \boldsymbol{d} \succeq_{\mathcal{S}^n_{\perp}} 0$$
 (*)

Determine a proper face $f \triangleleft S_{+}^{n}$

Let d solve (*) with $d = Pd_+P^\top$, $d_+ \succ 0$, and $[P \ Q] \in \mathbb{R}^{n \times n}$ orthogonal. Then

$$\begin{aligned} c - \mathcal{A}^* y \succeq_{\mathcal{S}^n_+} 0 &\implies \langle c - \mathcal{A}^* y, d^* \rangle = 0 \\ &\implies \mathcal{F}^s_P \subseteq \mathcal{S}^n_+ \cap \{d^*\}^\perp = Q \mathcal{S}^{\bar{n}}_+ Q^\top \lhd \mathcal{S}^n_+ \end{aligned}$$

(implicit rank reduction, $\bar{n} < n$)

Regularizing SDP

- at most n − 1 iterations to satisfy Slater's CQ.
- to check Theorem of Alternative

$$\mathcal{A}d = 0, \ \langle c, d \rangle = 0, \ 0 \neq d \succeq_{\mathcal{S}^n_{+}} 0,$$
 (*)

use stable auxiliary problem

(AP)
$$\min_{\delta,d} \delta$$
 s.t. $\left\| \begin{bmatrix} \mathcal{A}d \\ \langle c,d \rangle \end{bmatrix} \right\|_2 \leq \delta$, $\operatorname{trace}(d) = \sqrt{n}$, $d \succeq 0$.

• Both (AP) and its dual satisfy Slater's CQ.

Auxiliary Problem

(AP)
$$\min_{\delta,d} \delta \text{ s.t. } \left\| \begin{bmatrix} \mathcal{A}d \\ \langle c,d \rangle \end{bmatrix} \right\|_2 \leq \delta,$$
 $\operatorname{trace}(d) = \sqrt{n}, d \geq 0.$

Both (AP) and its dual satisfy Slater's CQ ... but ...

Cheung-Schurr-W'11, a k = 1 step CQ

Strict complementarity holds for (AP)

k = 1 steps are needed to regularize (SDP-P).

Regularizing SDP

Minimal face containing $\mathcal{F}_{P}^{s} := \{s : s = c - \mathcal{A}^{s}y \succeq 0\}$

$$f_P = Q \mathcal{S}_+^{\bar{n}} Q^{\top}$$

for some $n \times n$ orthogonal matrix $U = [P \ Q]$

(SPD-P) is equivalent to

$$\sup_{y} b^{\top} y \text{ s.t. } g^{\prec}(y) \leq 0, \ g^{=}(y) = 0,$$

where

$$\begin{split} g^{\prec}(y) &:= \ \mathsf{Q}^{\top}(\mathcal{A}^*y - c)\,\mathsf{Q} \\ g^{=}(y) &:= \begin{bmatrix} P^{\top}(\mathcal{A}^*y - c)P \\ P^{\top}(\mathcal{A}^*y - c)\,\mathsf{Q} + \mathsf{Q}^{\top}(\mathcal{A}^*y - c)P \end{bmatrix}. \end{split}$$

(gen.) Slater CQ holds for the reduced program:

$$\exists \hat{y} \text{ s.t. } g^{\prec}(y) \prec 0 \text{ and } g^{=}(y) = 0.$$

Theoretical Connections Complementarity/Duality?

Numerical Difficulties

(Both) loss of Slater CQ (strict feasibility) and loss of strict complementarity independently result in theoretical difficulties and numerical difficulties for interior-point methods.

Theoretical Connection?

Is there a theoretical connection between loss of duality (from loss of a CQ) and loss of strict complementarity?

Complementarity Partition

Recall Faces of Recession Directions

$$f_P^0 := \operatorname{face}\left(\mathcal{L}^\perp \cap K\right), \qquad f_D^0 := \operatorname{face}\left(\mathcal{L} \cap K^*\right)$$

The pair f_P^0, f_D^0 define a Complementarity Partition

- $face(f_P^0) \subset face(f_D^0)^c$ and $face(f_D^0) \subset face(f_P^0)^c$.
- it is a strict complementarity partition if both $[face(f_P^0)]^c = face(f_D^0)$ and $[face(f_D^0)]^c = face(f_P^0)$;
- it is proper if f_P^0 and f_D^0 are both nonempty.

SDP Picture

For SDP (after a rotation)

$$\begin{bmatrix} f_D^0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & f_P^0 \end{bmatrix}$$

Form Primal-Dual Pair

$$\tilde{\mathbf{x}} = \tilde{\mathbf{s}} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & \mathbf{v} \succ \mathbf{0} & 0 \\ 0 & 0 & 0 \end{bmatrix} \implies \langle \mathbf{s}, \mathbf{x} \rangle \ge \|\mathbf{v}\|_F^2,$$

for all feasible pairs s, x. (gap is dimension of v)

Strict Complementarity and Nonzero Gaps

Theorem (Tuncel-W.'11): K is a proper cone

(1) If f_P^0 , f_D^0 define a proper complementarity partition with a gap of dimension 1, so, the partition is not a strict complementarity partition, then there exists \bar{s} and \bar{x} such that SDP-P and SDP-D with data $(\mathcal{L}, K, \bar{s}, \bar{x})$ has a finite nonzero duality gap.

(Partial Converse)

- (2) If
- (a) SDP-P and SDP-D with data $(\mathcal{L}, K, \bar{s}, \bar{x})$ has a finite nonzero duality gap with both optimal values attained, and
- (b) the objective functions are constant along all recession directions of SDP-P and SDP-D,

then f_P^0 , f_D^0 has a proper complementarity partition but not a strict complementarity partition.

Conclusion Part I

- Minimal representations of the data regularize (P);
 use min. face f_P (and/or implicit rank reduction)
- goal: a backwards stable preprocessing algorithm to handle (feasible) conic problems for which Slater's CQ (almost) fails
- Failure of strict complementarity for associated recession problems is related to existence of finite nonzero duality gap; provides a means of generating instances for testing.

Part II: Applications of SDP where Slater's CQ fails

Instances of SDP relaxations of NP-hard combinatorial optimization problems with row and column sum and 0, 1 constraints

- Quadratic Assignment (Zhao-Karish-Rendl-W.'96)
- Graph partitioning (W.-Zhao'99)

Low rank problems

- Sensor network localization (SNL) problem (Krislock-W.'10, Krislock-Rendl-W.'10)
- Molecular conformation (Burkowski-Cheung-W.'11)
- general SDP relaxation of low-rank matrix completion problem

SNL (K-W'10,K-R-W'10)

Highly (implicit) degenerate/low-rank problem

- high (implicit) degeneracy translates to low rank solutions
- fast, high accuracy solutions

SNL - a Fundamental Problem of Distance Geometry; easy to describe - dates back to Grasssmann 1886

- r: embedding dimension
- n ad hoc wireless sensors $p_1, \ldots, p_n \in \mathbb{R}^r$ to locate in \mathbb{R}^r ;
- m of the sensors p_{n-m+1}, \ldots, p_n are anchors (positions known, using e.g. GPS)
- pairwise distances $D_{ij} = ||p_i p_j||^2$, $ij \in E$, are known within radio range R > 0

0

$$P^{\top} = [p_1 \dots p_n] = [X^{\top} A^{\top}] \in \mathbb{R}^{r \times n}$$

Sensor Localization Problem/Partial EDM

Underlying Graph Realization/Partial EDM NP-Hard

Graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \omega)$

- node set $V = \{1, \dots, n\}$
- edge set $(i,j) \in \mathcal{E}$; $\omega_{ij} = \|\mathbf{p}_i \mathbf{p}_j\|^2$ known approximately
- The anchors form a clique (complete subgraph)
- Realization of \mathcal{G} in \mathbb{R}^r : a mapping of nodes $v_i \mapsto p_i \in \mathbb{R}^r$ with squared distances given by ω .

Corresponding Partial Euclidean Distance Matrix, EDM

$$D_{ij} = \left\{ egin{array}{ll} d_{ij}^2 & ext{if } (i,j) \in \mathcal{E} \ 0 & ext{otherwise} \ ext{(unknown distance)}, \end{array}
ight.$$

 $d_{ij}^2 = \omega_{ij}$ are known squared Euclidean distances between sensors p_i , p_i ; anchors correspond to a clique.

Connections to Semidefinite Programming (SDP)

Euclidean Distance Matrices; Semidefinite Matrices

Moore-Penrose Generalized Inverse Kt

$$B \succeq 0 \implies D = \mathcal{K}(B) = \operatorname{diag}(B) e^{\top} + e \operatorname{diag}(B)^{\top} - 2B \in \mathcal{E}$$

 $D \in \mathcal{E} \implies B = \mathcal{K}^{\dagger}(D) = -\frac{1}{2} \operatorname{JoffDiag}(D) \operatorname{J} \succeq 0, Be = 0$

Theorem (Schoenberg, 1935)

A (hollow) matrix D (with diag $(D) = 0, D \in S_H$) is a Euclidean distance matrix

if and only if

$$B = \mathcal{K}^{\dagger}(D) \succeq 0.$$

And

$$\operatorname{\mathsf{embdim}}(D) = \operatorname{\mathsf{rank}}\left(\mathcal{K}^\dagger(D)\right), \quad \forall D \in \mathcal{E}^n$$

Popular Techniques; SDP Relax.; Highly Degen.

Nearest, Weighted, SDP Approx. (relax/discard rank B)

- $\min_{B\succeq 0} \|H\circ (\mathcal{K}(B)-D)\|$; rank B=r; typical weights: $H_{ij}=1/\sqrt{D_{ij}}$, if $ij\in E$, $H_{ij}=0$ otherwise.
- with rank constraint: a non-convex, NP-hard program
- SDP relaxation is convex, <u>BUT</u>: expensive/low accuracy/implicitly highly degenerate (cliques restrict ranks of feasible Bs)

Instead: (Shall) Take Advantage of Degeneracy!

clique
$$\alpha$$
, $|\alpha| = k$ (corresp. $D[\alpha]$) with embed. dim. $= t \le r < k$ $\implies \operatorname{rank} \mathcal{K}^{\dagger}(D[\alpha]) = t \le r \implies \operatorname{rank} B[\alpha] \le \operatorname{rank} \mathcal{K}^{\dagger}(D[\alpha]) + 1$ $\implies \operatorname{rank} B = \operatorname{rank} \mathcal{K}^{\dagger}(D) \le n - (k - t - 1) \implies$ Slater's CQ (strict feasibility) fails

Basic Single Clique/Facial Reduction

Matrix with Fixed Principal Submatrix

For $Y \in S^n$, $\alpha \subseteq \{1, ..., n\}$: $Y[\alpha]$ denotes principal submatrix formed from rows & cols with indices α .

$$\bar{D} \in \mathcal{E}^k$$
, $\alpha \subseteq 1:n$, $|\alpha| = k$

Define $\mathcal{E}^n(\alpha, \bar{D}) := \{ D \in \mathcal{E}^n : D[\alpha] = \bar{D} \}.$ (completions)

Given \overline{D} ; find a corresponding $B \succeq 0$; find the corresponding face; find the corresponding subspace.

if $\alpha = 1 : k$; embedding dim embdim $(\bar{D}) = t \le r$

$$D = \begin{bmatrix} \bar{D} & \cdot \\ \cdot & \cdot \end{bmatrix}$$
.

BASIC THEOREM for Single Clique/Facial Reduction

Let:

- $\bar{D} := D[1:k] \in \mathcal{E}^k$, k < n, embdim $(\bar{D}) = t \le r$ be given;
- $B := \mathcal{K}^{\dagger}(\bar{D}) = \bar{U}_B S \bar{U}_B^{\dagger}, \ \bar{U}_B \in \mathcal{M}^{k \times t}, \ \bar{U}_B^{\dagger} \bar{U}_B = I_t, \ S \in \mathcal{S}_{++}^t$ be full rank orthogonal decomposition of Gram matrix;
- $U_B := \begin{bmatrix} \bar{U}_B & \frac{1}{\sqrt{k}}e \end{bmatrix} \in \mathcal{M}^{k \times (t+1)}, \ U := \begin{bmatrix} U_B & 0 \\ 0 & I_{n-k} \end{bmatrix}$, and $\begin{bmatrix} V & \frac{U^\top e}{\|U^\top e\|} \end{bmatrix} \in \mathcal{M}^{n-k+t+1}$ be orthogonal.

Then the minimal face:

face
$$\mathcal{K}^{\dagger}\left(\mathcal{E}^{n}(1:k,\bar{D})\right) = \left(U\mathcal{S}_{+}^{n-k+t+1}U^{\top}\right) \cap \mathcal{S}_{C}$$

= $(UV)\mathcal{S}_{+}^{n-k+t}(UV)^{\top}$

The minimal face

face
$$\mathcal{K}^{\dagger}\left(\mathcal{E}^{n}(1:k,\bar{D})\right) = \left(U\mathcal{S}_{+}^{n-k+t+1}U^{\top}\right) \cap \mathcal{S}_{C}$$

= $(UV)\mathcal{S}_{+}^{n-k+t}(UV)^{\top}$

Note that the minimal face is defined by the subspace $\mathcal{L} = \mathcal{R}(UV)$. We add $\frac{1}{\sqrt{k}}e$ to represent $\mathcal{N}(\mathcal{K})$; then we use V to eliminate e to recover a centered face.

Facial Reduction for Disjoint Cliques

Corollary from Basic Theorem

let $\alpha_1, \ldots, \alpha_\ell \subseteq 1:n$ pairwise disjoint sets, wlog:

$$\alpha_i = (k_{i-1} + 1) : k_i, k_0 = 0, \ \alpha := \bigcup_{i=1}^{\ell} \alpha_i = 1 : |\alpha| \text{ let}$$

 $\bar{U}_i \in \mathbb{R}^{|\alpha_i| \times (t_i + 1)}$ with full column rank satisfy $e \in \mathcal{R}(\bar{U}_i)$ and

$$U_{i} := \begin{vmatrix} k_{i-1} & k_{i-1} & 0 & 0 \\ |\alpha_{i}| & 0 & \bar{U}_{i} & 0 \\ n-k_{i} & 0 & 0 & I \end{vmatrix} \in \mathbb{R}^{n \times (n-|\alpha_{i}|+t_{i}+1)}$$

The minimal face is defined by $\mathcal{L} = \mathcal{R}(U)$:

$$U:= \begin{array}{c} |\alpha_1| & \overline{U_1} & \dots & t_{\ell+1} & n-|\alpha| \\ |\overline{U_1} & \dots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ |\alpha_{\ell}| & 0 & \dots & \overline{U_{\ell}} & 0 \\ |n-|\alpha| & 0 & \dots & 0 & I \end{array} \right] \in \mathbb{R}^{n\times(n-|\alpha|+t+1)},$$
 where $t:=\sum_{i=1}^{\ell}t_i+\ell-1$. And $e\in\mathcal{R}(U)$.

Sets for Intersecting Cliques/Faces

For each clique $|\alpha| = k$, we get a corresponding face/subspace $(k \times r)$ matrix) representation. We now see how to *complete* the union of two cliques, α_1, α_2 , that intersect.

Two (Intersecting) Clique Reduction/Subsp. Repres.

Let:

- $\alpha_1, \alpha_2 \subseteq 1: n$; $k := |\alpha_1 \cup \alpha_2|$
- for i = 1, 2: $\bar{D}_i := D[\alpha_i] \in \mathcal{E}^{k_i}$, embedding dimension t_i ;
- $\bullet \ \ B_i := \mathcal{K}^{\dagger}(\bar{D}_i) = \bar{U}_i \mathcal{S}_i \bar{U}_i^{\top}, \ \bar{U}_i \in \mathcal{M}^{k_i \times t_i}, \ \bar{U}_i^{\top} \bar{U}_i = I_{t_i}, \ \mathcal{S}_i \in \mathcal{S}_{++}^{t_i};$
- $U := \begin{bmatrix} \bar{\upsilon} & 0 \\ 0 & I_{n-k} \end{bmatrix} \in \mathcal{M}^{n \times (n-k+t+1)}$ and $\begin{bmatrix} v & \frac{U^{\top}e}{\|U^{\top}e\|} \end{bmatrix} \in \mathcal{M}^{n-k+t+1}$ be orthogonal.

$$\begin{array}{ccccc} \text{Then} & \frac{\bigcap_{i=1}^2 \operatorname{face} \mathcal{K}^{\dagger} \left(\mathcal{E}^{n}(\alpha_i, \bar{D}_i)\right)}{\mathbb{C}} & = & \left(\mathcal{U}\mathcal{S}_+^{n-k+l+1}\mathcal{U}^{\top}\right) \cap \mathcal{S}_{\mathbb{C}} \\ & = & \left(\mathcal{U}\mathcal{V}\right)\mathcal{S}_+^{n-k+l}\left(\mathcal{U}\mathcal{V}\right)^{\top} \end{array}$$

Expense/Work of (Two) Clique/Facial Reductions

Subspace Intersection for Two Intersecting Cliques/Faces

Suppose:

$$U_1 = \begin{bmatrix} U_1' & 0 \\ U_1'' & 0 \\ 0 & I \end{bmatrix} \quad \text{and} \quad U_2 = \begin{bmatrix} I & 0 \\ 0 & U_2'' \\ 0 & U_2' \end{bmatrix}$$

Then:

$$U := \begin{bmatrix} U_1' \\ U_1'' \\ U_2'(U_2'')^{\dagger} U_1'' \end{bmatrix} \quad \text{or} \quad U := \begin{bmatrix} U_1'(U_1'')^{\dagger} U_2'' \\ U_2'' \\ U_2' \end{bmatrix}$$

 $(Q_1=:(U_1'')^\dagger U_2'',Q_2=(U_2'')^\dagger U_1''$ orthogonal/rotation) (Efficiently) satisfies

$$\mathcal{R}\left(U\right) = \mathcal{R}\left(U_1\right) \cap \mathcal{R}\left(U_2\right)$$

Two (Intersecting) Clique Explicit Delayed Completion

Let:

- Hypotheses of intersecting Theorem (Thm 2) holds
- $\bar{D}_i := D[\alpha_i] \in \mathcal{E}^{k_i}$, for $i = 1, 2, \beta \subseteq \alpha_1 \cap \alpha_2, \gamma := \alpha_1 \cup \alpha_2$
- $\bar{D} := D[\beta]$ with embedding dimension r
- $B := \mathcal{K}^{\dagger}(\bar{D}), \quad \bar{U}_{\beta} := \bar{U}(\beta,:), \text{ where } \bar{U} \in \mathcal{M}^{k \times (t+1)}$ satisfies intersection equation of Thm 2
- $\left[\bar{v} \quad \frac{\bar{v}^{\top} e}{\|\bar{v}^{\top} e\|}\right] \in \mathcal{M}^{t+1}$ be orthogonal.

<u>THEN</u> t = r in Thm 2, and $Z \in \mathcal{S}_+^r$ is the unique solution of the equation $(J\bar{U}_\beta\bar{V})Z(J\bar{U}_\beta\bar{V})^\top = B$, and the exact completion is

$$oxed{D[\gamma] = \mathcal{K} \; (PP^ op)}$$
 where $oxed{P := UVZ^rac{1}{2} \in \mathbb{R}^{|\gamma| imes r}}$

Completing SNL (Delayed use of Anchor Locations)

Rotate to Align the Anchor Positions

- Given $P = \begin{bmatrix} P_1 \\ P_2 \end{bmatrix} \in \mathbb{R}^{n \times r}$ such that $D = \mathcal{K}(PP^T)$
- Solve the orthogonal Procrustes problem:

min
$$||A - P_2 Q||$$

s.t. $Q^T Q = I$

$$P_2^{\top} A = U \Sigma V^{\top}$$
 SVD decomposition; set $Q = U V^{\top}$; (Golub/Van Loan'79, Algorithm 12.4.1)

• Set $X := P_1 Q$

Summary: Facial Reduction for Cliques

- Using the basic theorem: each clique corresponds to a Gram matrix/corresponding subspace/corresponding face of SDP cone (implicit rank reduction)
- In the case where two cliques intersect, the union of the cliques correspond to the (efficiently computable) intersection of the corresponding faces/subspaces
- Finally, the positions are determined using a Procrustes problem

Results - Data for Random Noisless Problems

- 2.16 GHz Intel Core 2 Duo, 2 GB of RAM
- Dimension r=2
- Square region: [0, 1] × [0, 1]
- Using only Rigid Clique Union and Rigid Node Absorption
- Error measure: Root Mean Square Deviation

$$\mathsf{RMSD} = \left(\frac{1}{n} \sum_{i=1}^{n} \|p_i - p_i^{\mathsf{true}}\|^2\right)^{1/2}$$

Results - Large n

(SDP size $O(n^2)$)

n # of Sensors Located

n #	sensors \ R	0.07	0.06	0.05	0.04
	2000	2000	2000	1956	1374
	6000	6000	6000	6000	6000
	10000	10000	10000	10000	10000

CPU Seconds

# sensors \ R	0.07	0.06	0.05	0.04	
2000	1	1	1	3	
6000	5	5	4	4	
10000	10	10	9	8	

RMSD (over located sensors)

n# sensors \ R	0.07	0.06	0.05	0.04
2000	4e-16	5e-16	6e-16	3e-16
6000	4e-16	4e-16	3e-16	3e-16
10000	3e-16	5e-16	4e-16	4e-16

Results - N Huge SDPs Solved

Large-Scale Problems

# sensors	# anchors	radio range	RMSD	Time
20000	9	.025	5e-16	25s
40000	9	.02	8e-16	1m 23s
60000	9	.015	5e-16	3m 13s
100000	9	.01	6e-16	9m 8s

Size of SDPs Solved: $N = \binom{n}{2}$ (# vrbls)

 $\mathcal{E}_n(\text{density of }\mathcal{G}) = \pi R^2$; $M = \mathcal{E}_n(|E|) = \pi R^2 N$ (# constraints) Size of SDP Problems:

 $M = [3,078,915 \ 12,315,351 \ 27,709,309 \ 76,969,790]$ $N = 10^9 [0.2000 \ 0.8000 \ 1.8000 \ 5.0000]$

- J.M. Borwein and H. Wolkowicz, *Characterization of optimality for the abstract convex program with finite-dimensional range*, J. Austral. Math. Soc. Ser. A **30** (1980/81), no. 4, 390–411. MR 83i:90156
- F. Burkowski, Y-L. Cheung, and H. Wolkowicz, *Semidefinite programming and side chain positioning*, Tech. Report CORR 2011, in progress, University of Waterloo, Waterloo, Ontario, 2011.
- Y-L. Cheung, S. Schurr, and H. Wolkowicz, *Preprocessing and reduction for degenerate semidefinite programs*, Tech. Report CORR 2011-02, URL: www.optimization-online.org/DB_HTML/2011/02/2929.html, University of Waterloo, Waterloo, Ontario, 2011, 49 pages.
- G.H. Golub and C.F. Van Loan, *Matrix computations*, 3nd ed., Johns Hopkins University Press, Baltimore, Maryland, 1996.

N. Krislock, F. Rendl, and H. Wolkowicz, *Noisy sensor network localization using semidefinite representations and facial reduction*, Tech. Report CORR 2010-01, University of Waterloo, Waterloo, Ontario, 2010.

N. Krislock and H. Wolkowicz, *Explicit sensor network localization using semidefinite representations and facial reductions*, SIAM Journal on Optimization **20** (2010), no. 5, 2679–2708.

Y.E. Nesterov and A.S. Nemirovski, *Interior point polynomial algorithms in convex programming*, SIAM Publications, SIAM, Philadelphia, USA, 1994.

G. Pataki, *Bad semidefinite programs: they all look the same*, Tech. report, Department of Operations Research, University of North Carolina, Chapel Hill, 2011.

- R. Tyrrell Rockafellar, *Some convex programs whose duals are linearly constrained*, Nonlinear Programming (Proc. Sympos., Univ. of Wisconsin, Madison, Wis., 1970), Academic Press, New York, 1970, pp. 293–322.
- H. Wolkowicz and Q. Zhao, Semidefinite programming relaxations for the graph partitioning problem, Discrete Appl. Math. **96/97** (1999), 461–479, Selected for the special Editors' Choice, Edition 1999. MR 1 724 735
- Q. Zhao, S.E. Karisch, F. Rendl, and H. Wolkowicz, Semidefinite programming relaxations for the quadratic assignment problem, J. Comb. Optim. 2 (1998), no. 1, 71–109, Semidefinite programming and interior-point approaches for combinatorial optimization problems (Fields Institute, Toronto, ON, 1996). MR 99f:90103

Thanks for your attention!

Taking Advantage of Degeneracy in Cone Optimization: with Applications to Sensor Network Localization

Henry Wolkowicz

Dept. Combinatorics and Optimization, University of Waterloo

at: MOPTA 2012, Lehigh University

