
Explicit Sensor Network Localization

using

Semidefinite Representations and Clique Reductions ∗

Nathan Krislock Henry Wolkowicz

May 17, 2009

University of Waterloo
Department of Combinatorics and Optimization

Waterloo, Ontario N2L 3G1, Canada
Research Report CORR 2009-04

Key Words: Sensor Network Localization, Euclidean Distance Matrix Completions, Semidef-
inite Programming, loss of the Slater constraint qualification.
AMS Subject Classification:

Abstract

The sensor network localization, SNL , problem in embedding dimension r, consists of
locating the positions of wireless sensors, given only the distances between sensors that are
within radio range and the positions of a subset of the sensors (called anchors). Current solu-
tion techniques relax this problem to a weighted, nearest, (positive) semidefinite programming,
SDP , completion problem, by using the linear mapping between Euclidean distance matrices,
EDM , and semidefinite matrices. The resulting SDP is solved using primal-dual interior point
solvers, yielding an expensive and inexact solution.

This relaxation is highly degenerate in the sense that the feasble set is restricted to a low
dimensional face of the SDP cone, implying that the Slater constraint qualification fails. The
degeneracy in the SDP arises from cliques in the graph of the SNLproblem. In this paper,
we take advantage of the absence of the Slater constraint qualification and derive a technique
for the SNL problem, with exact data, that explicitly solves the corresponding rank restricted
SDP problem. No SDP solvers are used. We are able to efficiently solve this NP-HARD prob-
lem with high probability, by finding a representation of the minimal face of the SDP cone that
contains the SDP matrix representation of the EDM . The main work of our algorithm con-
sists in repeatedly finding the intersection of subspaces that represent the faces of the SDP cone
that correspond to cliques of the SNL problem.

Contents

1 Introduction 2

∗Research supported by Natural Sciences Engineering Research Council Canada and a grant from AFOSR.

1

1.1 Related Work/Applications . 3
1.2 Outline . 4
1.3 Preliminaries . 4

2 Clique Reduction 7

2.1 Single Clique Reductions . 9
2.1.1 Disjoint Cliques Reduction . 11

2.2 Two (Intersecting) Clique Reduction . 12
2.2.1 Nonsingular Reduction with Intersection Embedding Dimension r 13
2.2.2 Singular Reduction with Intersection Dimension r − 1 17

2.3 Clique Initialization and Absorption . 20
2.3.1 Clique Absorption with Degenerate Intersection 21

3 Clique Reduction Algorithm and Numerical Results 21

3.1 Numerical Tests . 22
3.1.1 Nonsingular Subspace Intersection . 22
3.1.2 Nonsingular Subspace Intersection with Node Absorption 23
3.1.3 Singular Subspace Intersection and Node Absorption 23

4 Conclusion 23

Bibliography 23

Index 27

1 Introduction

The sensor network localization problem, SNL, consists in locating the positions of n ad hoc
wireless sensors, pi ∈ R

r, i = 1, . . . , n, given only the (squared) Euclidean distances Dij = ‖pi−pj‖2
2

between sensors that are within a given radio range, R > 0, and given the positions of a subset of
the sensors, pi, i = n−m + 1, . . . , n (called anchors); r is the embedding dimension of the problem.
Currently, many solution techniques for this problem use a relaxation to a nearest, weighted,
semidefinite approximation problem

min
Y �0, Y ∈Ω

‖W ◦ (K(Y) − D)‖ , (1.1)

where Y � 0 denotes positive semidefiniteness, Y ∈ Ω denotes additional linear constraints, K
is a specific linear mapping, and ◦ denotes the Hadamard (elementwise) product. This approach
requires semidefinite programming, SDP , primal-dual interior point (p-d i-p) techniques; see, for
example, [2, 3, 5, 9, 10, 13, 22]. This yields an expensive and inexact solution.

The SNL problem is a special case of the Euclidean Distance Matrix, EDM , completion prob-
lem, EDMC. If D is a partial EDM , then the completion problem consists in finding the missing
elements (squared distances) of D. It is shown in [14], that there are advantages for handling the
SNL problem as an EDMC, and ignoring the distinction between the anchors and the other sen-
sors until after the EDMC is solved. In this paper we use this framework and derive an algorithm
that locates the sensors by exploiting the structure and implicit degeneracy in the SNL problem.

2

In particular, we solve the SDP problems explicitly (exactly) without using programming (p-d i-p
solvers) techniques. We do so by repeatedly viewing SNL in three equivalent forms: as a graph
realization problem, as a EDMC , and as a rank restricted SDP .

A common approach to solving the EDMC is to relax the rank constraint and solve a weighted,
nearest, positive semidefinite completion problem using semidefinite programming, SDP , e.g.
(1.1). The resulting SDP is, implicitly, highly degenerate in the sense that the feasible semidef-
inite matrices have low rank. The low rank arises from cliques in the graph of the SNL . This
means that the Slater constraint qualification (strict feasibility) implicitly fails for the SDP . Our
algorithm is based on exploiting this degeneracy. We characterize the face of the SDP cone that
corresponds to a given clique in the graph, thus reducing the size of the SDP problem. Then,
we characterize the intersection of two faces that correspond to overlapping cliques. This allows
us to explicitly grow/increase the size of the cliques by repeatedly finding the intersection of sub-
spaces that represent the faces of the SDP cone that correspond to these cliques. Equivalently,
this corresponds to completing overlapping blocks of the EDM . In this way, we further reduce
the dimension of the faces until we get a completion of the entire EDM . The intersection of
the subspaces can be found using a singular value decomposition (SVD) or by exploiting the spe-
cial structure of the subspaces. No SDP solver is used. Thus we solve the SDP problem in a
finite number of steps, where the work of each step is to find the intersection of two subspaces.
(Equivalently the intersection of two faces of the SDP cone.)

Though our results hold for general embedding dimension r, our preliminary numerical tests
involve sensors with embedding dimension r = 2, i.e. in the plane. The sensors are in a square with
sides of length b units. There are n sensors, m of which are anchors. The radio range is R units.

1.1 Related Work/Applications

The number of applications for distance geometry problems is large and increasing in number
and importance. The particular case of SNL has applications to environmental monitoring of
geographical regions, as well as tracking of animals and machinery; see, for example, [5, 13]. There
have been many algorithms published recently that solve the SNL problem. Many of these involve
SDP relaxations and use SDP solvers; see, for example, [5, 6, 7, 8, 9, 10, 14] and more recently
[26]. Heuristics are presented in, for example, [12]. SNL is closely related to the EDMC problem;
see, for example, [3, 13] and the survey in [2].

Jin et al [11, 21] propose the SPASELOC heuristic. It is limited to r = 2 and uses an SDP solver
for small localized subproblems. They then sew these subproblems together. So & Ye [24] show
that the problem of solving a noiseless SNL with a unique solution can be phrased as an SDP and
thus can be solved in polynomial time. They also give an efficient criterion for checking whether a
given instance has a unique solution for r = 2.

Two contributions of this paper are: we do not use iterative programming techniques to solve
our SDPs, but rather, we solve them with a finite number of explicit solutions; we start with local
cliques and expand the cliques. Our algorithm has four different basic steps. The first basic step
takes two cliques for which the intersection contains at least r + 1 nodes and implicitly completes
the corresponding EDM to form the union of the cliques. The second step does this when one of
the cliques is a single element. Therefore, this provides an extension of the algorithm in [16], where
Eren et al have shown that the family of trilateration graphs admit a polynomial time algorithm

3

for computing a realization in a required dimension.1 Our first basic step also provides an explicit
form for finding a realization of a uniquely localizable graph2 Our algorithm repeatedly finds explicit
solutions of an SDP . Other examples of finding explicit solutions of an SDP are given in [25, 27].

The SNL problem with given embedding dimension r is NP-HARD [19, 20, 23]. However, from
our numerical tests it appears that random problems that have a unique solution can be solved in
polynomial time. This phenomenon fits into the results in [4, 17].

1.2 Outline

We continue in Section 1.3 to present notation and preliminary results. The clique reduction
process is based on the results in Section 2. The single clique reduction is given in Theorem 2.3;
the reduction of two overlapping cliques in the rigid and nonrigid cases is presented in Theorem 2.10
and Theorem 2.14, respectively; absorbing nodes into cliques in the rigid and nonrigid cases is given
in Corollaries 2.17 and 2.18, respectively. These results are then used in our algorithm in Section 3.
The numerical tests appear in Section 3.1. Our concluding remarks are given in Section 4.

1.3 Preliminaries

We work in the vector space of real symmetric k × k matrices, Sk, equipped with the trace inner
product, 〈A,B〉 = trace AB. We let Sk

+ and Sk
++ denote the cone of positive semidefinite and

positive definite matrices, respectively; A � B and A � B denote the Löwner partial order,
A−B ∈ Sk

+ and A−B ∈ Sk
++ , respectively; e denote the vector of ones of appropriate dimension;

R(L) and N (L) denote the range space and null space of the linear transformation L, respectively;
cone (S) denote the convex cone generated by the set S. We use the Matlab notation 1 : n =
{1, . . . , n}.

A subset F ⊆ K is a face of the cone K, denoted F � K, if
(

x, y ∈ K,
1

2
(x + y) ∈ F

)

=⇒ (cone {x, y} ⊆ F) .

If F �K, but is not equal to K, we write F �K. If {0} 6= F �K, then F is a proper face of K. For
S ⊆ K, we let face(S) denote the smallest face of K that contains S. A face F � K is an exposed
face if it is the intersection of K with a hyperplane. The cone K is facially exposed if every face
F � K is exposed.

The cone Sn
+ is facially exposed. Moreover, each face F � Sn

+ is determined by the range of
any matrix S in the relative interior of the face, S ∈ relint F : if S = UΓUT is the compact spectral
decomposition of S with the diagonal matrix of eigenvalues Γ ∈ St

++, then

F = USt
+UT . (1.2)

A matrix D = (Dij) ∈ Sn with nonnegative elements and zero diagonal is called a pre-distance
matrix . In addition, if there exist points p1, . . . , pn ∈ R

r such that

Dij = ‖pi − pj‖2
2, i, j = 1, . . . , n, (1.3)

1A graph is a trilateration graph in dimension r if there exists an ordering of the nodes 1, . . . , r + 1, r + 2, . . . , n

such that: the first r + 1 nodes form a clique, and each node j > r + 1 has at least r + 1 edges to nodes earlier in the
sequence.

2A graph is uniquely localizable in dimension r if it has a unique realization in R
r and it does not have any

realization whose affine span is R
h, where h > r; see [24].

4

then D is called a Euclidean distance matrix, denoted EDM . Note that we work with squared
distances. The smallest value of r such that (1.3) holds is called the embedding dimension of D.
Throughout the paper, we assume that r is given and fixed. The set of EDM matrices forms a
closed convex cone in Sn, denoted En. If we are given a partial EDM , Dp ∈ En, let G = (V,E, ω)
be the corresponding simple graph on the vertices V = 1:n whose edges E correspond to the known
entries of Dp, with (Dp)ij = ω2

ij, for all (i, j) ∈ E.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10
Initial position of points

 # sensors n = 300, # anchors m = 9, radio range R = 1.2

sensors
anchors
sens−anch

Figure 1.1: Graph of partial EDM with sensors ◦ and anchors �

Definition 1.1. For Y ∈ Sn and α ⊆ 1 : n, we let Y [α] denote the corresponding principal
submatrix formed from the rows and columns with indices α. If, in addition, |α| = k and Ȳ ∈ Sk

is given, then we define

Sn(α, Ȳ) :=
{

Y ∈ Sn : Y [α] = Ȳ
}

, Sn
+(α, Ȳ) :=

{

Y ∈ Sn
+ : Y [α] = Ȳ

}

,

i.e. the subset of matrices Y ∈ Sn (Y ∈ Sn
+) with principal submatrix Y [α] fixed to Ȳ .

For example, the subset of matrices in Sn with the top left k × k block fixed is

Sn(1:k, Ȳ) =

{

Y ∈ Sn : Y =

[

Ȳ ·
· ·

]}

. (1.4)

A clique γ ⊆ 1 : n in the graph G corresponds to a subset of sensors for which the distances
ωij = ‖pi − pj‖2 are known, for all i, j ∈ γ; equivalently, the clique corresponds to the principal
submatrix Dp[γ] of the partial EDM matrix Dp, where all the elements of Dp[γ] are known.

Suppose that we are given a subset of the (squared) distances from (1.3) in the form of a
partial EDM ,Dp. The EDM completion problem consists of finding the missing entries of Dp

5

to complete the EDM ; see Figure 1.1. This completion problem can be solved by finding a
set of points p1, . . . , pn ∈ R

r satisfying (1.3), where r is the embedding dimension of the partial
EDM ,Dp. This problem corresponds to the graph realizability problem with dimension r, which
is the problem of finding positions in R

r for the vertices of a graph such that the inter-distances of
these positions satisfy the given edge lengths of the graph.

Let Y ∈ Mn be an n×n real matrix and y ∈ R
n a vector. We let diag(Y) denote the vector in

R
n formed from the diagonal of Y and we let Diag(y) denote the diagonal matrix in Mn with the

vector y along its diagonal. Note that diag and Diag are the adjoint linear transformations of each
other: Diag = diag∗. The operator offDiag can then be defined as offDiag(Y) := Y −Diag(diag Y).
For

P =











pT
1

pT
2
...

pT
n











∈ M n×r,

where pj, j = 1, . . . , n, are the points used in (1.3), let Y := PP T , and let D be the corresponding
EDM satisfying (1.3). Defining the linear operators K and De on Sn as follows, we see that

K(Y) := De(Y) − 2Y
:= diag(Y) eT + ediag(Y)T − 2Y

=
(

pT
i pi + pT

j pj − 2pT
i pj

)n

i,j=1

=
(

‖pi − pj‖2
2

)n

i,j=1

= D.

(1.5)

That is, K maps the positive semidefinite matrix Y onto the EDM D. More generally, we can
allow for a general vector v to replace e, and define Dv(Y) := diag(Y) vT + v diag(Y)T . By abuse
of notation, we also allow Dv to act on a vector; that is, Dv(y) := yvT + vyT . The adjoint of K is

K∗(D) = 2(Diag(De) − D). (1.6)

The linear operator K is one-one and onto between the centered and hollow subspaces of Sn,
which are defined as

SC := {Y ∈ Sn : Y e = 0} (zero row sums),
SH := {D ∈ Sn : diag(D) = 0} = R(offDiag).

(1.7)

Let J := I − 1
neeT denote the orthogonal projection onto the subspace {e}⊥ and define the linear

operator T (D) := −1
2J offDiag(D)J . Then we have the following relationships.

Proposition 1.2. ([1]) The linear operator T is the generalized inverse of the linear operator K;
that is, K† = T . Moreover:

R(K) = SH ; N (K) = R(De);
R(K∗) = R(T) = SC ; N (K∗) = N (T) = R(Diag);

(1.8)

Sn = SH ⊕R(Diag) = SC ⊕R(De). (1.9)

6

Theorem 1.3. ([1]) The linear operators T and K are one-to-one and onto mappings between the
cone En ⊂ SH and the face of the semidefinite cone Sn

+ ∩ SC . That is,

T (En) = Sn
+ ∩ SC and K(Sn

+ ∩ SC) = En.

Remark 1.4. D ∈ En has embedding dimension r if and only if K†(D) � 0 and rank(K†(D)) = r.
In addition, we get K†(D)e = 0. Therefore, we can factor K†(D) = PP T , for some P ∈ M n×r, to
recover the (centered) sensors in R

r from the rows in P . Note that rotations of the points in the rows
of P do not change the value Y = PP T , i.e. PP T = PQTQP , if Q is orthogonal. However, the
nullspace of K is related to translations of the points in P . Let D ∈ En with embedding dimension r
and let Y := K†(D) have full rank factorization Y = PP T , with P ∈ M n×r. Then the translation
of points in the rows of P to P̄ := P + ewT , for some w ∈ R

r, results in Ȳ := P̄ P̄ T = Y + De(y),

with y := Pw + wT w
2 e, and K(Ȳ) = K(Y) = D, since De(y) ∈ N (K). Note that R(Y) = R(P),

therefore y = Pw + wT w
2 e ∈ R(Y) + cone {e}, as we will also see in more generality in Lemma 2.1

below.

Let Dp ∈ Sn be a partial EDM with embedding dimension r and let W ∈ Sn be the 0–1
matrix corresponding to the known entries of Dp. One can use the substitution D = K(Y), where
Y ∈ Sn

+ ∩ SC , in the EDM completion problem

Find D ∈ En

s.t. W ◦ D = Dp

to obtain the SDP relaxation
Find Y ∈ Sn

+ ∩ SC

s.t. W ◦ K(Y) = Dp
.

This relaxation does not restrict the rank of Y and may yield a solution with embedding dimension
that is too large, if rank (Y) > r. Moreover, solving SDP problems with rank restrictions is NP-
HARD. However, we work on faces of Sn

+ described by USt
+UT , with t ≤ n. In order to find the

face with the smallest dimension t, we must have the correct knowledge of the matrix U . In this
paper, we obtain information on U using the cliques in the graph of the partial EDM .

2 Clique Reduction

We now present several techniques for reducing an EDM completion problem when one or more
(possibly intersecting) cliques are known. This extends the reduction using disjoint cliques presented
in [14, 15]. In each case, we take advantage of the loss of Slater’s constraint qualification and project
the problem to a lower dimensional SDP cone.

We first need the following two technical lemmas that exploit the structure of the SDP cone.

Lemma 2.1. Let B ∈ Sn, Bv = 0, v 6= 0, y ∈ R
n and Ȳ := B + Dv(y). If Ȳ � 0, then

y ∈ R(B) + cone {v}.

Proof. First we will show that y ∈ R(B) + span {v} = R
([

B v
])

. If this is not the case, then y
can be written as the orthogonal decomposition

y = Bu + βv + ȳ,

7

where 0 6= ȳ ∈ R
([

B v
])⊥

= N
(

[

B v
]T
)

. Note that ȳ satisfies Bȳ = 0 and vT ȳ = 0. To get a

contradiction with the assumption that Ȳ � 0, we let

z :=
1

2

v

‖v‖2
− (1 + |β|) ȳ

‖ȳ‖2
,

and observe that Bz = 0 and vT z = 1/2. Then,

zT Ȳ z = zTDv(y)z
= zT

(

yvT + vyT
)

z
= yT z
= 1

2β + ȳT z
< 1

2 (1 + |β|) + ȳT z
= −1

2(1 + |β|)
< 0,

which gives us the desired contradiction. Therefore, y ∈ R(B) + span {v}, so to show that y ∈
R(B)+cone {v}, we only need to show that if y = Bu+βv, then β ≥ 0. First note that vT y = βvT v.
Then,

vT Ȳ v = vT
(

yvT + vyT
)

v
= 2vT yvT v
= 2β(vT v)2.

Since Ȳ � 0, we have 2β(vT v)2 ≥ 0. This implies that β ≥ 0, since v 6= 0.

If Ȳ ∈ Sk
+ , then we can use the minimal face of Sk

+ containing Ȳ to find an expression for the
minimal face of Sn

+ that contains Sn
+(1:k, Ȳ).

Lemma 2.2. Let Ū ∈ M k×t with ŪT Ū = It. If face {Ȳ } � ŪSt
+ ŪT , then

faceSn
+(1:k, Ȳ) �

[

Ū 0
0 In−k

]

Sn−k+t
+

[

Ū 0
0 In−k

]T

. (2.1)

Furthermore, if face {Ȳ } = ŪSt
+ ŪT , then

faceSn
+(1:k, Ȳ) =

[

Ū 0
0 In−k

]

Sn−k+t
+

[

Ū 0
0 In−k

]T

. (2.2)

Proof. Since Ȳ ∈ ŪSt
+ ŪT , then Ȳ = ŪSŪT , for some S ∈ St

+ . Let Y ∈ Sn
+(1 : k, Ȳ) and choose

V̄ so that
[

Ū V̄
]

is an orthogonal matrix. Then, with Y blocked appropriately, we evaluate the
congruence

0 �
[

V̄ 0
0 In−k

]T

Y

[

V̄ 0
0 In−k

]

=

[

0 V̄ T Y T
21

Y21V̄ Y22

]

=

[

0 0
0 Y22

]

.

Therefore, Y � 0 implies that V̄ T Y T
21 = 0. Since N (V̄ T) = R(Ū), we get Y T

21 = ŪX, for some X.
Therefore, we can write

Y =

[

Ū 0
0 In−k

] [

S X
XT Y22

] [

Ū 0
0 In−k

]T

.

8

This implies that faceSn
+(1:k, Ȳ) � USn−k+t

+ UT , where

U :=

[

Ū 0
0 In−k

]

.

This proves (2.1). To prove (2.2), note that if face {Ȳ } = ŪSt
+ ŪT then Ȳ ∈ relint

(

ŪSt
+ ŪT

)

, so
Ȳ = ŪSŪT , for some S ∈ St

++ . Letting

Ŷ :=

[

Ū 0
0 In−k

] [

S 0
0 In−k

] [

Ū 0
0 In−k

]T

,

we see that Ŷ ∈ Sn
+(1 : k, Ȳ) ∩ relint

(

USn−k+t
+ UT

)

. This implies that there is no smaller face of

Sn
+ containing Sn

+(1:k, Ȳ), completing the proof.

2.1 Single Clique Reductions

If the principal submatrix D̄ ∈ Ek is given, for index set α ⊆ 1:n, with |α| = k, we define

En(α, D̄) :=
{

D ∈ En : D[α] = D̄
}

. (2.3)

Similarly, the subset of matrices in En with the top left k × k block fixed is

En(1:k, D̄) =

{

D ∈ En : D =

[

D̄ ·
· ·

]}

. (2.4)

A fixed principal submatrix D̄ in a partial EDM D corresponds to a clique α in the graph
G = (V,E, ω) of the partial EDM D. Given such a fixed clique defined by the submatrix D̄, the
following theorem shows that the following set, containing the feasible set of the corresponding
SDP relaxation,

{

Y ∈ Sn
+ ∩ SC : K(Y [α]) = D̄

}

= K† (En(α, D̄)
)

,

is contained in a proper face of Sn
+ . This means that the Slater constraint qualification (strict

feasibility) fails, and we can reduce the size of the SDP problem; see [14]. We expand on this and
find an explicit expression for face K† (En(α, D̄)

)

in the following Theorem 2.3. For simplicity, here
and below, we often work with ordered sets of integers for the two cliques. This simplification can
always be obtained by a permutation of the indices of the sensors.

Theorem 2.3. Let D ∈ En, with embedding dimension r. Let D̄ := D[1 :k] ∈ Ek with embedding
dimension t, and B := K†(D̄) = ŪBSŪT

B , where ŪB ∈ M k×t, ŪT
B ŪB = It, and S ∈ St

++. Further-

more, let UB :=
[

ŪB
1√
k
e
]

∈ M k×(t+1), U :=

[

UB 0
0 In−k

]

, and let
[

V UT e
‖UT e‖

]

∈ M n−k+t+1 be

orthogonal. Then

face K† (En(1:k, D̄)
)

=
(

USn−k+t+1
+ UT

)

∩ SC = (UV)Sn−k+t
+ (UV)T . (2.5)

Proof. Let Y ∈ K† (En(1:k, D̄)
)

and Ȳ := Y [1 : k]. Then there exists D ∈ En(1 : k, D̄) such that

Y = K†(D), implying that K(Y) = D, and that K(Ȳ) = D̄ = K(B). Thus, Ȳ ∈ B + N (K) =
B +R(De), where the last equality follows from Proposition 1.2. This implies that Ȳ = B +De(y),

9

for some y ∈ R
k. From Theorem 1.3, we get Ȳ � 0 and Be = 0. Therefore, Lemma 2.1 implies

that y = Bu + βe, for some u ∈ R
k and β ≥ 0. This further implies

Ȳ = B + BueT + euT B + 2βeeT .

From this expression for Ȳ , we can see that R(Ȳ) ⊆ R
([

B e
])

= R(UB), where the last equal-

ity follows from the fact that Be = 0. Therefore, Ȳ ∈ UBSt+1
+ UT

B , implying, by Lemma 2.2,

that faceSn
+(1 : k, Ȳ) � USn−k+t+1

+ UT . Since Y ∈ Sn
+(1 : k, Ȳ) and Y e = 0, we have that

Y ∈
(

USn−k+t+1
+ UT

)

∩ SC . Therefore, face K† (En(1:k, D̄)
)

�

(

USn−k+t+1
+ UT

)

∩ SC . Since

V T UT e = 0, we have that
(

USn−k+t+1
+ UT

)

∩ SC = UV Sn−k+t
+ V T UT . (2.6)

To show that face K† (En(1:k, D̄)
)

=
(

USn−k+t+1
+ UT

)

∩ SC , we need to find

Ŷ = UZUT ∈ K† (En(1:k, D̄)
)

, with rank (Ŷ) = n − k + t, Ŷ e = 0, Z ∈ Sn−k+t+1
+ . (2.7)

To accomplish this, we let T1 =

[

S 0
0 1

]

. Then T1 � 0 and

B +
1

k
eeT = UBT1U

T
B = P̄ P̄ T , where P̄ := UBT

1/2
1 ∈ M k×(t+1).

Let

P :=





P̄ 0

0 In−k−1

−eT P̄ −eT



 ∈ M n×(n−k+t).

Since P̄ has full-column rank, we see that P also has full-column rank. Moreover, P T e = 0.
Therefore,

Ŷ := PP T =





P̄ P̄ T 0 −e

0 In−k−1 −e
−eT −eT n − 1



 ∈ Sn
+ ,

satisfies Ŷ e = 0 and rank (Ŷ) = n − k + t. Furthermore, we have that Ŷ = UZUT , where

Z =









S 0 0 0

0 1 0 −
√

k

0 0 In−k−1 −e

0 −
√

k −eT n − 1









∈ Sn−k+t+1.

Note that we can also write Z as

Z =

[

S 0
0 T

]

∈ Sn−k+t+1,

where

T :=





1 0 −
√

k
0 In−k−1 −e

−
√

k −eT n − 1



 ∈ Sn−k+1.

10

The eigenvalues of T are 0, 1, and n, with multiplicities 1, n−k−1, and 1, respectively. Therefore,
rank (T) = n − k, which implies that rank (Z) = n − k + t and Z � 0.

Letting D̂ := K(Ŷ), we have that D̂ ∈ En(1:k, D̄), since

D̂[1 :k] = K(Ŷ [1 :k]) = K(P̄ P̄ T) = K
(

B +
1

k
eeT

)

= K(B) = D̄.

Therefore, Ŷ satisfies (2.7), completing the proof.

Remark 2.4. Theorem 2.3 provides a reduction in the dimension of the EDM completion problem.
Initially, our problem consists in finding Y ∈ Sn

+ ∩ SC such that the constraint

K(Y [α]) = D[α], α = 1:k,

holds. After the reduction, we have the smaller dimensional variable Z ∈ Sn−k+t
+ ; by construction

Y := (UV)Z(UV)T will automatically satisfy the above constraints. This is a reduction of k−t−1 =
(n − 1) − (n − k + t) in the dimension of the matrix variable. The addition of the vector e to the

range of B, i.e. using UB :=
[

ŪB
1√
k
e
]

, has a geometric interpretation. If B = PP T , P ∈ M k×t,

then the rows of P provide centered positions for the k sensors in the clique α. However, these
sensors are not necessarily centered once they are combined with the remaining n − k sensors.
Therefore, we have to allow for translations, e.g. to P + evT for some v. The multiplication
(P + evT)(P + evT)T = PP T + PveT + evT P T + evT veT is included in the set of matrices that we
get after adding e to the range of B. Note that PveT +evT P T +evT veT = De(y), for y = Pv+ 1

2evT v.

The special case k = 1 is of interest.

Corollary 2.5. Suppose that the hypotheses of Theorem 2.3 hold but that k = 1 and D̄ = 0. Then
UB = 1, U = In, and

face K† (En(1:k, D̄)
)

= face K† (En) = Sn
+ ∩ SC = V Sn−1

+ V T , (2.8)

where
[

V 1√
n
e
]

∈ M n is orthogonal.

Proof. Since k = 1, necessarily we get t = 0 and we can set UB = 1.

2.1.1 Disjoint Cliques Reduction

Theorem 2.3 can be easily extended to two or more disjoint cliques; see also [14].

Corollary 2.6. Let D ∈ En with embedding dimension r. Let k0 := 1 < k1 < . . . < kl ≤ n. For i =
1, . . . , l, let D̄i := D[ki−1 :ki] ∈ Eki−ki−1+1 with embedding dimension ti, Bi := K†(D̄i) = ŪBi

SŪT
Bi

,

where ŪBi
∈ M k×ti, ŪT

Bi
ŪBi

= Iti, Si ∈ Sti
++, and UBi

:=
[

ŪBi

1√
ki

e
]

∈ M k×(ti+1). Let

U :=











UB1 . . . 0 0
...

. . .
...

...
0 . . . UBl

0
0 . . . 0 In−kl











11

and
[

V UT e
‖UT e‖

]

∈ M n−kl+
∑

l

i=1 ti+l be orthogonal. Then

⋂l
i=1 face K† (En(ki−1 :ki, D̄i)

)

=

(

USn−kl+
∑

l

i=1 ti+l
+ UT

)

∩ SC

= (UV)Sn−kl+
∑

l

i=1 ti+l−1
+ (UV)T .

(2.9)

Proof. The result follows from noting that the range of U is the intersection of the ranges of the
matrices UBi

with appropriate identity blocks added.

2.2 Two (Intersecting) Clique Reduction

The construction (2.6) illustrates how we can find the intersection of two faces. Using this approach,
we now extend Theorem 2.3 to two cliques that (possibly) intersect; see the ordered indices in (2.10)
and the corresponding Venn diagram in Figure 2.1. We also find expressions for the intersection
of the corresponding faces in Sn

+ ; see equation (2.12). The key is to find the intersection of the
subspaces that represent the faces, as in condition (2.11).

k̄2 k̄3k̄1

α2α1

Figure 2.1: Venn diagram of the sets of ordered indices, α1 and α2, in Theorem 2.7

Theorem 2.7. Let D ∈ En with embedding dimension r and, as in Figure 2.1, define the sets of
positive integers

α1 := 1:(k̄1 + k̄2), α2 := (k̄1 + 1):(k̄1 + k̄2 + k̄3) ⊆ 1:n,
k1 := |α1| = k̄1 + k̄2, k2 := |α2| = k̄2 + k̄3,

k := k̄1 + k̄2 + k̄3.
(2.10)

For i = 1, 2, let D̄i := D[αi] ∈ Eki with embedding dimension ti, and Bi := K†(D̄i) = ŪiSiŪ
T
i ,

where Ūi ∈ M ki×ti , ŪT
i Ūi = Iti, Si ∈ Sti

++, and Ui :=
[

Ūi
1√
ki

e
]

∈ M ki×(ti+1). Let t and

Ū ∈ M k×(t+1) satisfy

R(Ū) = R
([

U1 0
0 Ik̄3

])

∩R
([

Ik̄1
0

0 U2

])

, with ŪT Ū = It+1. (2.11)

Let U :=

[

Ū 0
0 In−k

]

∈ M n×(n−k+t+1) and
[

V UT e
‖UT e‖

]

∈ M n−k+t+1 be orthogonal. Then

2
⋂

i=1

face K† (En(αi, D̄i)
)

=
(

USn−k+t+1
+ UT

)

∩ SC = (UV)Sn−k+t
+ (UV)T . (2.12)

12

Proof. From Theorem 2.3, we have that

face K† (En(α1, D̄1)
)

=











U1 0 0
0 Ik̄3

0

0 0 In−k



Sn−k1+t1+1
+





U1 0 0
0 Ik̄3

0

0 0 In−k





T





∩ SC

and, after a permutation of rows and columns in Theorem 2.3,

face K† (En(α2, D̄2)
)

=











Ik̄1
0 0

0 U2 0

0 0 In−k



Sn−k2+t2+1
+





Ik̄1
0 0

0 U2 0

0 0 In−k





T





∩ SC .

The range space condition (2.11) then implies that

R(U) = R









U1 0 0
0 Ik̄3

0

0 0 In−k







 ∩R









Ik̄1
0 0

0 U2 0

0 0 In−k







 ,

giving us the result (2.12).

Remark 2.8. Theorem 2.7 provides a reduction in the dimension of the EDM completion problem.
Initially, our problem consists in finding Y ∈ Sn

+ ∩ SC such that the two constraints

K(Y [αi]) = D[αi], i = 1, 2,

hold. After the reduction, we want to find the smaller dimensional Z ∈ Sn−k+t
+ ; by construction

Y := (UV)Z(UV)T will automatically satisfy the above constraints.

The explicit expression for the intersection of the two faces is given in equation (2.12) and uses
the matrix Ū obtained from the intersection of the two ranges in condition (2.11). Finding a matrix
whose range is the intersection of two subspaces can be done using [18, Algorithm 12.4.3]. However,
our subspaces have special structure. We can exploit this structure to find the intersection; see
Lemma (2.9) and Lemma (2.13) below.

The dimension of the face in (2.12) is reduced to n − k + t. However, we can get a dramatic
reduction if we have a common block with embedding dimension r, and a reduction in the case
the common block has embedding dimension r − 1 as well. This provides an algebraic proof using
semidefinite programming of the rigidity of the union of the two cliques under this intersection
assumption.

2.2.1 Nonsingular Reduction with Intersection Embedding Dimension r

We now consider the case when the intersection of the two cliques results in D[α1 ∩ α2] having
embedding dimension r; see Figure 2.2. We see that we can explicitly find the completion of the
EDM D[α1∪α2]. We first need the following result on the intersection of two structured subspaces.

Lemma 2.9. Let

U1 :=

[

U ′
1

U ′′
1

]

, U2 :=

[

U ′′
2

U ′
2

]

, Û1 :=





U ′
1 0

U ′′
1 0
0 I



 , Û2 :=





I 0
0 U ′′

2

0 U ′
2





13

Ci

Cj

Figure 2.2: Two clique reduction with intersection with embedding dimension r

be appropriately blocked with U ′′
1 , U ′′

2 ∈ M k×l full column rank and R(U ′′
1) = R(U ′′

2). Furthermore,
let

Ū1 :=





U ′
1

U ′′
1

U ′
2(U

′′
2)†U ′′

1



 , Ū2 :=





U ′
1(U

′′
1)†U ′′

2

U ′′
2

U ′
2



 . (2.13)

Then Ū1 and Ū2 are full column rank and satisfy

R(Û1) ∩R(Û2) = R
(

Ū1

)

= R
(

Ū2

)

.

Moreover, if el ∈ R
l is the lth standard unit vector, and Uiel = αie, for some αi 6= 0, for i = 1, 2,

then Ūiel = αie, for i = 1, 2.

Proof. From the definitions, x ∈ R(Û1) ∩R(Û2) if and only if

x =





x1

x2

x3



 =





U ′
1v1

U ′′
1 v1

v2



 =





w1

U ′′
2 w2

U ′
2w2



 , for some v =

[

v1

v2

]

, w =

[

w1

w2

]

.

Note that U ′′
1 v1 = U ′′

2 w2 if and only if w2 = (U ′′
2)†U ′′

1 v1; this follows from the facts that U ′′
2 full

column rank implies (U ′′
2)†U ′′

2 = I, and R(U ′′
1) = R(U ′′

2) implies U ′′
2 (U ′′

2)†U ′′
1 = U ′′

1 . Therefore,
x ∈ R(Û1) ∩R(Û2) if and only if

x =





x1

x2

x3



 =





U ′
1v1

U ′′
1 v1

U ′
2(U

′′
2)†U ′′

1 v1



 = Ū1v1, for some v1,

with v2 := U ′
2(U

′′
2)†U ′′

1 v1, w1 := U ′
1v1, and w2 := (U ′′

2)†U ′′
1 v1, implying that R(Û1)∩R(Û2) = R(Ū1);

a similar argument shows that R(Û1) ∩R(Û2) = R(Ū2).
Now suppose, for i = 1, 2, that Uiel = αie, for some αi 6= 0. Then e ∈ R(Û1) ∩ R(Û2), so

e ∈ R(Ū1), implying that Ū1v = e, for some vector v. Since Ū1 =

[

U1

U ′
2(U

′′
2)†U ′′

1

]

, we have U1v = e.

14

Furthermore, since U1 has full column rank, we conclude that v = 1
α1

el, implying that Ū1el = α1e.

Similarly, we can show that Ū2el = α2e.

We now state and prove a key result that shows we can complete the distances in the union of
two cliques provided that their intersection has embedding dimension equal to r.

Theorem 2.10. Let the hypotheses of Theorem 2.7 hold. Let

β ⊆ α1 ∩ α2, D̄ := D[β], B := K†(D̄), Ūβ := Ū [β, :],

where Ū ∈ M k×(t+1) satisfies equation (2.11). Let
[

V̄ ŪT e
‖ŪT e‖

]

∈ M t+1 be orthogonal. Let

Z := (JŪβ V̄)†B((JŪβ V̄)†)T . (2.14)

If the embedding dimension for D̄ is r, then t = r, Z ∈ Sr
++ is the unique solution of the equation

(JŪβ V̄)Z(JŪβ V̄)T = B, (2.15)

and
D[α1 ∪ α2] = K

(

(Ū V̄)Z(Ū V̄)T
)

. (2.16)

Proof. Since the embedding dimension of D̄ is r, we have rank (B) = r. Furthermore, we have

Be = 0 and B ∈ S |β|
+ , implying that |β| ≥ r+1. In addition, since the embedding dimension of D is

also r, we conclude that the embedding dimension of D̄i is r, for i = 1, 2. Similarly, the embedding
dimension of D[α1 ∩ α2] is also r.

Since Ū ∈ M k×(t+1) satisfies equation (2.11), we have that

R(Ū) = R









U ′
1 0

U ′′
1 0
0 Ik̄3







 ∩R









Ik̄1
0

0 U ′′
2

0 U ′
2







 .

Note that we have partitioned Ui =
[

Ūi
1√
ki

e
]

∈ M ki×(r+1) so that U ′′
i =

[

Ū ′′
i

1√
ki

e
]

∈
M |α1∩α2|×(r+1), for i = 1, 2. Moreover, we have used the fact that the embedding dimension
of D̄i is r, so that ti = r, for i = 1, 2.

We claim that U ′′
1 and U ′′

2 have full column rank and that R(U ′′
1) = R(U ′′

2). First we let

Y := K†(D[α1 ∪α2]). Then Y ∈ K† (Ek(α1, D̄1)
)

. By Theorem 2.3, there exists Z1 ∈ S k̄3+r+1
+ such

that

Y =





U ′
1 0

U ′′
1 0
0 Ik̄3



Z1





U ′
1 0

U ′′
1 0
0 Ik̄3





T

.

Therefore, Y [α1 ∩ α2] =
[

U ′′
1 0

]

Z1

[

U ′′
1 0

]T ∈ U ′′
1 Sr+1

+ (U ′′
1)T , so

R(Y [α1 ∩ α2]) ⊆ R(U ′′
1).

Furthermore, since K(Y) = D[α1∪α2], we have that K(Y [α1∩α2]) = D[α1∩α2] = K
(

K†(D[α1 ∩ α2])
)

,

so Y [α1 ∩ α2] ∈ K†(D[α1 ∩ α2]) + N (K). Since N (K) = R(De), there exists a vector y such that

Y [α1 ∩ α2] = K†(D[α1 ∩ α2]) + De(y) = K†(D[α1 ∩ α2]) + yeT + eyT .

15

By Lemma 2.1, y ∈ R
([

K†(D[α1 ∩ α2]) e
])

. Therefore,

R(Y [α1 ∩ α2]) = R
([

K†(D[α1 ∩ α2]) e
])

.

Moreover, rank K†(D[α1 ∩ α2]) = r and K†(D[α1 ∩ α2])e = 0, so

r + 1 = dimR(Y [α1 ∩ α2]) ≤ dimR(U ′′
1) ≤ r + 1.

Therefore, U ′′
1 has full column rank and R(U ′′

1) = R(Y [α1 ∩ α2]). Similarly, we can show that U ′′
2

has full column rank and R(U ′′
2) = R(Y [α1 ∩ α2]), so we conclude that R(U ′′

1) = R(U ′′
2).

We now claim that t = r, where Ū ∈ M k×(t+1) satisfies equation (2.11). Since U ′′
1 , U ′′

2 ∈
M |α1∩α2|×(r+1) have full column rank and R(U ′′

1) = R(U ′′
2), we have by Lemma 2.9 that R(Ū) =

R(Ū1) = R(Ū2), where

Ū1 :=





U ′
1

U ′′
1

U ′
2(U

′′
2)†U ′′

1



 and Ū2 :=





U ′
1(U

′′
1)†U ′′

2

U ′′
2

U ′
2



 .

Therefore,
t + 1 = dimR(Ū) = dimR(Ū1) = dimR(Ū2) = r + 1,

so we have t = r, as claimed.
Recall, Y = K†(D[α1 ∪ α2]), so Y ∈ ∩i=1,2 K† (Ek(αi, D̄i)

)

. Thus, Theorem 2.7 implies that
there exists Z̄ ∈ Sr

+ such that Y = (Ū V̄)Z̄(Ū V̄)T . Observe that K(Y [β]) = D[β] = D̄. Thus,

K
(

(ŪβV̄)Z̄(ŪβV̄)T
)

= D̄,

implying that
K†K

(

(ŪβV̄)Z̄(Ūβ V̄)T
)

= B.

Since K†K is the projection onto R(K∗) = SC , we have that K†K(·) = J(·)J . Therefore, we have
that Z̄ satisfies equation (2.15). It remains to show that equation (2.15) has a unique solution. Let
A := JŪβV̄ ∈ M |β|×r. Then AZ̄AT = B and rank (B) = r implies that rank (A) ≥ r, so A has full
column rank. This implies that equation (2.15) has a unique solution, and that Z̄ = A†B(A†)T = Z.
Finally, since Y = (Ū V̄)Z(Ū V̄)T and D[α1 ∪ α2] = K(Y), we get equation (2.16).

The following result shows that if we know the minimal face of Sn
+ containing K†(D), and we

know a small submatrix of D, then we can compute a set of points in R
r that generate D by solving

a small equation.

Corollary 2.11. Let D ∈ En with embedding dimension r, and let β ⊆ 1 :n. Let U ∈ M n×(r+1)

satisfy
face K† (D) =

(

USr+1
+ UT

)

∩ SC ,

let Uβ := U [β, :], and let
[

V UT e
‖UT e‖

]

∈ M r+1 be orthogonal. If D[β] has embedding dimension r,

then
(JUβV)Z(JUβV)T = K†(D[β])

has a unique solution Z ∈ Sr
++, and D = K(PP T), where P := UV Z1/2 ∈ R

n×r.

16

Proof. Apply Theorem 2.10 with α1 = α2 = 1:n.

Remark 2.12. A more efficient way to calculate Z uses the full rank factorization

B = QD1/2
(

QD1/2
)T

, QT Q = Ir, D ∈ Sr
++.

Let C = (JŪβV̄)†
(

QD1/2
)

. Then Z in (2.14) can be found from Z = CCT . Note that our algorithm
postpones finding Z until the end, i.e. until we can no longer perform any clique reductions. At
each iteration, we compute the matrix Ū that represents the face corresponding to the union of two
cliques; Ū is chosen from one of Ūi, for i = 1, 2 in (2.13). Moreover, for stability, we maintain
ŪT Ū = I, Ūer+1 = αe.

For many of our test problems, we can repeatedly apply Theorem 2.10 until there is only one
clique left. Since each repetition reduces the number of cliques by one, this means that there are at
most n such steps.

2.2.2 Singular Reduction with Intersection Dimension r − 1

Cj

Ci

Figure 2.3: Two clique reduction with intersection having embedding dimension < r

We now show that if the embedding dimension of the intersection is r−1 (is deficient), then we
can find at most two completions. And then, the correct one can generally be chosen by using the
radio range R as a lower bound; see Figure 2.3. We first need the following extension of Lemma 2.9
on the intersection of two structured subspaces for the case where the common middle blocks are
not full rank.

Lemma 2.13. Let Ui, Ûi, Ūi, for i = 1, 2, be defined and appropriately blocked as in Lemma 2.9,
with U ′′

i ∈ M k×(r+1) having rank r, for i = 1, 2, and R(U ′′
1) = R(U ′′

2). Let 0 6= ui ∈ N (U ′′
i), for

i = 1, 2. If Ū ∈ M k×(t+1) satisfies R(Ū) = R(Û1) ∩R(Û2), then t = r + 1 and

R(Ū) = R









U ′
1 0

U ′′
1 0

U ′
2(U

′′
2)†U ′′

1 U ′
2u2







 = R







Ū1





0
0

U ′
2u2













= R









U ′
1(U

′′
1)†U ′′

2 U ′
1u1

U ′′
2 0

U ′
2 0







 = R







Ū2





U ′
1u1

0
0











 .

(2.17)

17

Moreover, if el ∈ R
l is the lth standard unit vector, and Uiel = αie, for some αi 6= 0, for i = 1, 2,

then Ūiel = αie, for i = 1, 2.

Proof. From the definitions, x ∈ R(Ū) if and only if

x =





x1

x2

x3



 =





U ′
1v1

U ′′
1 v1

v2



 =





w1

U ′′
2 w2

U ′
2w2



 , for some v =

[

v1

v2

]

, w =

[

w1

w2

]

. (2.18)

Since R(U ′′
1) = R(U ′′

2), and U ′′
i , i = 1, 2, are both rank r, we conclude that x2 = U ′′

1 v1 = U ′′
2 w2, for

some v1, w2 if and only if x2 ∈ R(U ′′
1), with v1, w2 determined by

v1 = (U ′′
1)†x2 + α1u1, for some α1 ∈ R, w2 = (U ′′

2)†U ′′
1 v1 + α2u2, for some α2 ∈ R.

i.e. we get

x2 = U ′′
1 v1 = U ′′

2 w2, for some v1, w2,
if and only if

x2 = U ′′
1 v1, for some v1, with w2 = (U ′′

2)†U ′′
1 v1 + α2u2, for some α2 ∈ R.

(2.19)

After substituting for v2 with v2 = U ′
2w2 = U ′

2

(

(U ′′
2)†U ′′

1 v1 + α2u2

)

, we conclude that (2.18) holds
if and only if the first equality in (2.17) holds, i.e. if and only if

x =





x1

x2

x3



 =





U ′
1v1

U ′′
1 v1

U ′
2(U

′′
2)†U ′′

1 v1 + α2U
′
2u2



 , for some v1, α2,

where
v2 = U ′

2(U
′′
2)†U ′′

1 v1 + α2U
′
2u2, w1 = U ′

1v1, w2 = (U ′′
2)†U ′′

1 v1 + α2u2.

The second equality in (2.17) follows similarly. The last statements about Ūie` follow as in the
proof of Lemma 2.9.

In the rigid case in Theorem 2.10, we use the expression for Ū from Lemma 2.9 to obtain a
unique Z in order to get the completion of D[α1 ∪α2]. The Z is unique because the r + 1 columns
of Ū that represent the new clique α1 ∪ α2 are linearly independent, e ∈ R(Ū), rank (B) = r,
and Be = 0. This means that the solution C of (JŪβ V̄)C = QD1/2 in Remark 2.12 exists and is
unique. (Recall that JŪβV̄ is full column rank.) This also means that the two matrices, U1 and U2,
that represent the cliques, α1 and α2, respectively, can be replaced by the single matrix Ū without
actually calculating C; we can use Ū to represent the clique α1 ∪α2 and complete all or part of the
partial EDM D[α1 ∪ α2] only when needed.

We have a similar situation for the singular intersection case following Lemma 2.13. We have
the matrix Ū to represent the intersection of the two subspaces, where each subspace represents
one of the cliques, α1 and α2. However, this is not equivalent to uniquely representing the union of
the two cliques, α1 and α2, since there is an extra column in Ū compared to the nonsingular case.
In addition, since rank (B) = r−1, then JŪβ V̄ is not necessarily full column rank. Therefore, there
may be infinite solutions for C in Remark 2.12; any C ∈ (JŪβ V̄)†

(

QD1/2
)

+N (JŪβV̄) will give us
a solution. Moreover, these solutions will not necessarily satisfy K

(

(ŪC)(ŪC)T
)

= D[α1∪α2]. We
now see that we can continue and use the Ū to represent a set of cliques rather than just α1 ∪ α2.
Alternatively, in many cases, we can use the radio range R as a lower bound and then evaluate
the correct C in order to get the correct number of columns for Ū ; we can then get the correct
completion of D[α1 ∪ α2].

18

Theorem 2.14. Let the hypotheses of Theorem 2.10 hold with the special case that UT
i Ui = I,

Uier+1 = αie, for i = 1, 2. In addition, let Ū be defined by one of the expressions in (2.17) in
Lemma 2.13. For i = 1, 2, let β ⊂ δi ⊆ αi and Ai := JŪδi

V̄ , where Ūδi
:= Ū(δi, :). Furthermore,

let Bi := K†(D[δi]), define the linear system

A1ZAT
1 = B1

A2ZAT
2 = B2,

(2.20)

and let Z̄ ∈ St be a particular solution of this system (2.20). If the embedding dimensions of D[δ1]
and D[δ2] are both r, but the embedding dimension of D̄ := D[β] is r − 1, then the following holds.

1. dimN (Ai) = 1, for i = 1, 2.

2. For i = 1, 2, let ni ∈ N (Ai), ‖ni‖2 = 1, and ∆Z := n1n
T
2 + n2n

T
1 . Then, Z is a solution of

the linear system (2.20) if and only if

Z = Z̄ + τ∆Z, for some τ ∈ R. (2.21)

3. There are at most two nonzero solutions, τ1 and τ2, for the generalized eigenvalue problem
−∆Zv = τZ̄v, v 6= 0. Set Zi := Z̄ + 1

τi
∆Z, for i = 1, 2. Then

D[α1 ∪ α2] ∈
{

K(Ū V̄ ZiV̄
T ŪT) : i = 1, 2

}

.

Proof. We follow a similar proof as in the nonsingular case. For simplicity, we assume that δi = αi,
for i = 1, 2 (choosing smaller δi can reduce the cost of solving the linear systems).

That a particular solution Z̄ exists for the system (2.20), follows from the fact that Ū provides
a representation for the intersection of the two faces (or the union of the two cliques).

Since the embedding dimension of D̄ is r − 1, we have rank (B) = r − 1. Furthermore, we have

Be = 0 and B ∈ S |β|
+ , implying that |β| ≥ r. Without loss of generality, and for simplicity, we

assume that |β| = r. Therefore, there exists 0 6= ui ∈ N (U ′′
i), for i = 1, 2. From Lemma 2.13, we

can assume that we maintain ŪT
i Ūi = I, Ūier+1 = αie, for some αi 6= 0, for i = 1, 2. Therefore,

the action of V̄ is equivalent to removing the r + 1 column of Ūi. We can then explicitly use ui to
write down ni ∈ N (Ai). By construction, we now have Ai(n1n

T
2 + n2n

T
1)AT

i = 0, for i = 1, 2.
From the first expression for Ū in (2.17), we see that the choices for n1 and n2 in Part 1 are

in the appropriate nullspaces. The dimensions follow from the assumptions on the embedding
dimensions.

Part 2 now follows from the definition of the general solution of a linear system of equations,
i.e. the sum of a particular solution with any solution of the homogeneous equation.

Part 3 now follows from the role that Ū plays as a representation for the union of the two
cliques.

Remark 2.15. As above in the nonsingular case, a more efficient way to calculate Z̄ uses the full
rank factorization

Bi = QD1/2
(

QiD
1/2
i

)T
, QT

i Qi = Ir, Di ∈ Sr
++, i = 1, 2.

(We have assumed that both have embedding dimension r, though we only need that one does.) We

solve the equations AiC =
(

QiD
1/2
i

)

Q̄i, Q̄iQ̄
T
i = I, for i = 1, 2, for the unknowns C, and Q̄i,

19

for i = 1, 2. Then a particular solution Z̄ in (2.20) can be found from Z̄ = CCT . Note that the
additional orthogonal matrices Q̄i, for i = 1, 2 are needed since, they still allow AiC(AiC)T = Bi,
for i = 1, 2. Also, without loss of generality, we can assume Q̄1 = I.

2.3 Clique Initialization and Absorption

Using the above clique reductions, we now consider techniques that allow one clique to grow/absorb
other cliques. This applies Theorem 2.10. We first consider an elementary and fast technique to
find some of the existing cliques.

Lemma 2.16. For each i ∈ {1, . . . , n}, use half the radio range and define the set

Ci :=
{

j ∈ {1, . . . , n} : Dij ≤ (R/2)2
}

.

Then each Ci corresponds to a clique of sensors that are within radio range of each other.

Proof. Let j, k ∈ Ci for a given i ∈ {1, . . . , n}. An elementary application of the triangle inequality
shows that

√

(Djk) ≤
√

(Dji) +
√

(Dki) ≤ R.

We can now assume that we have a set of indices C ⊆ 1:n corresponding to at most n cliques,
{Ci}i∈C . We can combine cliques using the reductions given in Theorems 2.10 and 2.14. We now
see how a clique can grow further by absorbing individual sensors; see Figure 2.4.

Ci

j

Figure 2.4: Absorption with intersection having embedding dimension r

Corollary 2.17. Let Ck, for k ∈ C, be a given clique with node l /∈ Ck, β := {j1, . . . , jr+1} ⊆ Ck,
and Dlji

≤ R2, for i = 1, . . . , r + 1. (Alternatively, the distances Dlji
, for i = 1, . . . , r + 1 are

known.) If
rank K†(D[β]) = r, (2.22)

then l can be absorbed by the clique Ck and we can complete the missing elements in column (row)
l of D[Ck ∪ {l}].
Proof. Let α1 := Ck, α2 := {j1, . . . , jr+1, l}, and β := α1∩α2 = {j1, . . . , jr+1}. Then the conditions
in Theorem 2.10 are satisfied and we can recover all the missing elements in D[Ck ∪ {l}].

20

2.3.1 Clique Absorption with Degenerate Intersection

We can apply the same reasoning as for the clique absorption in the nonsingular case, except now we
apply Theorem 2.14. We still use the radio range as a lower bound to obtain a unique completion.
See Figure 2.5.

Ci

j

Figure 2.5: Degenerate absorption with intersection with embedding dimension < r

Corollary 2.18. Let Ck, for k ∈ C, be a given clique with node l /∈ Ck, β := {j1, . . . jr} ⊆ Ck, and
Dlji

≤ R2, for i = 1, . . . , r. (Alternatively, the distances Dlji
, for i = 1, . . . , r are known.) If

rank K†(D[β]) = r − 1, (2.23)

then we can use the lower bound given by the radio range, and l can be absorbed by the clique Ck.
We can also complete the missing elements in column (row) l of D[Ck ∪ {l}].

Proof. Let α1 := Ck, α2 := {j1, . . . , jr, l}, and β := α1 ∩ α2 = {j1, . . . , jr}. Then the conditions in
Theorem 2.14 are satisfied and we can recover all the missing elements in D[Ck ∪ {l}].

3 Clique Reduction Algorithm and Numerical Results

Our algorithm starts by forming a clique Ci around each sensor i using Lemma 2.16. If and when
we use this clique, we find a subspace representation from the r eigenvectors corresponding to the
r nonzero eigenvalues of B = K†(D[Ci]).

The algorithm then grows and combines cliques using Theorem 2.10, Theorem 2.14, Corol-
lary 2.17, and Corollary 2.18. In particular, we do not complete the EDM each time we combine
or grow cliques, i.e. we do not evaluate the missing distances. Instead, we use the subspace represen-
tations of the corresponding faces of the SDP cone and then find the intersection of the subspaces
that represent the faces. This yields a subspace representation of the new smaller face representing
the larger clique. This is based on Lemma 2.9 and Lemma 2.13 and is therefore inexpensive.

Once we cannot, or need not, grow cliques, we complete the distances using Corollary 2.11.
This is also inexpensive. Finally, we rotate and translate the anchors to their original positions
using the approach outlined in [14].

21

n / R 0.9 0.8 0.7 0.6 0.5 0.4
1000 23.5 18.8 14.6 10.8 7.6 5.0
2000 47.0 37.5 29.0 21.5 15.1 9.7
3000 70.6 56.3 43.5 32.3 22.6 14.6
4000 94.1 75.0 58.0 42.9 30.1 19.4
5000 117.6 93.7 72.4 53.7 37.6 24.3
6000 141.3 112.6 87.1 64.5 45.3 29.2
7000 164.7 131.4 101.5 75.2 52.7 34.0
8000 188.3 150.1 116.0 86.0 60.2 38.9
9000 211.9 169.0 130.6 96.8 67.8 43.8
10000 235.6 187.8 145.1 107.5 75.3 48.7

Table 3.1: Average Degree of Graph

3.1 Numerical Tests

Our tests use 9 anchors positioned in a 10 × 10 square, as in Figure 1.1. The sensors are placed
randomly, by means of a uniform random distribution, in the same square region. We vary the
number of sensors n from 1000 to 9000 in steps of 1000, and the radio range R from .9 to .4 in
steps of −.1. See Table 3.1 for the average degree of a vertex (sensor) of the graph. Each number
of our output is the average taken over 10 instances. Our tests were done using Matlab version
7.8.0.347 (R2009a) on a DELL T7400 running Windows Vista, with a 2.50 GHz Core 4 processor
and with 4 GB of RAM.

We in particular emphasize the low CPU times and the high accuracy of the solutions. Our
algorithm compares well with the recent work in [22, 26], where they use, for example, R = .6 for
n = 1000, 2000, R = .35 for n = 4000, R = .2 for n = 10000, and also use 10% of the sensors as
anchors and limit the degree for each node in order to maintain a low sparsity for the graph.

3.1.1 Nonsingular Subspace Intersection

In our first set of tests we used only the nonsingular subspace intersection step (Theorem 2.10); see
Table 3.2.

1. The remaining cliques at the end of the algorithm. This number is at least 1; and it is exactly
1 if all the sensors were found, i.e. if the EDM was completed.

2. CPU seconds.

3. The maximum distance between the positions of the sensors found and the original positions
of those sensors, defined as

Max Error := max
i positioned

‖pi − ptrue
i ‖2.

4. The root-mean-square deviation of the positions of the sensors found and the original positions
of those sensors, defined as

RMSD :=

(

1

positioned

∑

i positioned

‖pi − ptrue
i ‖2

2

)
1
2

.

22

Remaining Cliques CPU Seconds

n / R 0.9 0.8 0.7 0.6 0.5 0.4
1000 2.6 8.3 44.6 128.1 242.6 387.7
2000 1.0 1.0 1.2 4.3 79.9 333.8
3000 1.0 1.0 1.0 1.4 5.1 142.5
4000 1.0 1.0 1.0 1.0 1.4 19.2
5000 1.0 1.0 1.0 1.0 1.0 4.2
6000 1.0 1.0 1.0 1.0 1.0 1.6
7000 1.0 1.0 1.0 1.0 1.0 1.1
8000 1.0 1.0 1.0 1.0 1.0 1.0
9000 1.0 1.0 1.0 1.0 1.0 1.0
10000 1.0 1.0 1.0 1.0 1.0 1.0

n / R 0.9 0.8 0.7 0.6 0.5 0.4
1000 1.7 1.6 1.5 1.4 1.3 0.9
2000 3.3 3.2 3.2 3.2 3.2 3.0
3000 5.1 5.0 4.8 4.7 4.7 4.7
4000 6.5 6.6 6.7 6.6 6.5 6.4
5000 8.4 8.4 8.5 8.6 8.5 8.3
6000 10.9 10.6 10.6 10.8 10.7 10.5
7000 14.1 13.2 12.7 12.9 13.0 12.8
8000 18.0 16.3 15.7 15.3 15.2 14.7
9000 21.8 19.7 18.3 17.8 17.9 17.4
10000 27.7 24.0 21.5 21.0 20.3 20.2

log(Max Error) log(RMSD)

n / R 0.9 0.8 0.7 0.6 0.5 0.4
1000 −11.2 −10.7 − − − −

2000 −11.6 −11.2 −10.7 −10.4 − −

3000 −11.6 −11.3 −11.1 −10.7 −9.9 −

4000 −11.7 −11.5 −11.0 −10.9 −10.4 −9.6
5000 −11.7 −11.5 −11.1 −11.0 −10.6 −9.8
6000 −11.9 −11.5 −11.3 −11.0 −10.5 −10.1
7000 −12.0 −11.7 −11.2 −11.1 −10.5 −10.1
8000 −11.8 −11.6 −11.5 −11.0 −10.8 −10.2
9000 −11.9 −11.7 −11.5 −11.2 −10.8 −10.2
10000 −12.0 −11.7 −11.2 −11.2 −10.8 −10.4

n / R 0.9 0.8 0.7 0.6 0.5 0.4
1000 −11.7 −11.5 − − − −

2000 −12.1 −11.6 −11.2 −10.9 − −

3000 −12.2 −11.9 −11.5 −11.3 −10.5 −

4000 −12.2 −12.0 −11.4 −11.4 −10.9 −10.3
5000 −12.2 −12.0 −11.5 −11.4 −11.0 −10.3
6000 −12.4 −12.0 −11.8 −11.5 −11.0 −10.6
7000 −12.4 −12.2 −11.7 −11.7 −11.0 −10.5
8000 −12.2 −12.2 −11.9 −11.5 −11.2 −10.7
9000 −12.4 −12.2 −11.9 −11.7 −11.1 −10.7
10000 −12.5 −12.2 −11.8 −11.6 −11.4 −10.8

Table 3.2: Results using nonsingular subspace intersection step (Theorem 2.10)

3.1.2 Nonsingular Subspace Intersection with Node Absorption

Our next tests raise the level of the algorithm and use Theorem 2.10 and Corollary 2.17. The
results are in Table 3.3. We see that the number of successul completions has increased and that
there has been a small increase in CPU time.

3.1.3 Singular Subspace Intersection and Node Absorption

Using the singular intersection and node absorption further increases the class of problems that
we can complete, i.e. we can use Theorem 2.14 and Corollary 2.18. These tests are still ongoing.
Preliminary results using Theorem 2.10, Corollary 2.17, and Theorem 2.14, are given in Table 3.4.
Again, the set of problems that are completed (1 clique remaining) has increased.

4 Conclusion

The SDP relaxation of SNL is highly (implicitly) degenerate, since the feasible set of this SDP is
restricted to a low dimensional face of the SDP cone, resulting in the failure of the Slater con-
straint qualification (strict feasibility). We take advantage of this degeneracy by finding explicit
representations of intersections of faces of the SDP cone corresponding to unions of intersecting
cliques. In addition, from these representations we force further degeneracy in order to find the
minimal face that contains the optimal solution. In many cases, we can efficiently compute the
exact solution to the SDP relaxation without using any SDP solver.

Our numerical tests show that the CPU times are extremely low, while the accuracy of the
solutions is very high. These tests are ongoing.

23

Remaining Cliques CPU Seconds

n / R 0.9 0.8 0.7 0.6 0.5 0.4
1000 1.0 1.2 2.5 14.9 156.4 351.9
2000 1.0 1.0 1.0 1.1 2.6 73.8
3000 1.0 1.0 1.0 1.0 1.1 3.8
4000 1.0 1.0 1.0 1.0 1.0 1.5
5000 1.0 1.0 1.0 1.0 1.0 1.0
6000 1.0 1.0 1.0 1.0 1.0 1.0
7000 1.0 1.0 1.0 1.0 1.0 1.0
8000 1.0 1.0 1.0 1.0 1.0 1.0
9000 1.0 1.0 1.0 1.0 1.0 1.0
10000 1.0 1.0 1.0 1.0 1.0 1.0

n / R 0.9 0.8 0.7 0.6 0.5 0.4
1000 1.5 1.6 2.0 3.0 3.1 2.2
2000 3.0 3.0 3.0 3.1 4.1 7.5
3000 4.7 4.8 4.7 4.7 4.8 6.6
4000 6.5 6.6 6.6 6.5 6.4 6.7
5000 8.3 8.3 8.4 8.6 8.4 8.3
6000 10.8 10.5 10.8 10.9 10.8 10.6
7000 14.3 13.7 13.3 13.3 13.3 12.9
8000 17.8 16.3 15.9 15.7 15.7 15.1
9000 22.4 20.3 18.7 17.6 17.7 17.2
10000 27.2 23.8 21.4 21.0 20.4 20.1

log(Max Error) log(RMSD)

n / R 0.9 0.8 0.7 0.6 0.5 0.4
1000 −11.2 −10.8 −10.4 −9.4 − −

2000 −11.6 −11.2 −10.7 −10.4 −9.5 −

3000 −11.6 −11.3 −11.1 −10.7 −9.9 −9.2
4000 −11.7 −11.5 −11.0 −10.9 −10.4 −9.4
5000 −11.7 −11.5 −11.1 −11.0 −10.6 −9.8
6000 −11.9 −11.5 −11.3 −11.0 −10.5 −10.1
7000 −12.0 −11.7 −11.2 −11.1 −10.5 −10.1
8000 −11.8 −11.6 −11.5 −11.0 −10.8 −10.2
9000 −11.9 −11.7 −11.5 −11.2 −10.8 −10.2
10000 −12.0 −11.7 −11.2 −11.2 −10.8 −10.4

n / R 0.9 0.8 0.7 0.6 0.5 0.4
1000 −11.7 −11.5 −11.0 −10.2 − −

2000 −12.1 −11.6 −11.2 −10.9 −10.2 −

3000 −12.2 −11.9 −11.5 −11.3 −10.5 −9.8
4000 −12.2 −12.0 −11.4 −11.4 −10.9 −10.3
5000 −12.2 −12.0 −11.5 −11.4 −11.0 −10.3
6000 −12.4 −12.0 −11.8 −11.5 −11.0 −10.6
7000 −12.4 −12.2 −11.7 −11.7 −11.0 −10.5
8000 −12.2 −12.2 −11.9 −11.5 −11.2 −10.7
9000 −12.4 −12.2 −11.9 −11.7 −11.1 −10.7
10000 −12.5 −12.2 −11.8 −11.6 −11.4 −10.8

Table 3.3: Results using nonsingular subspace intersection with node absorption (Theorem 2.10
and Corollary 2.17)

Remaining Cliques CPU Seconds

n / R 0.9 0.8 0.7 0.6 0.5 0.4
1000 1.0 1.2 2.0 9.4 93.0 260.0
2000 1.0 1.0 1.0 1.1 2.2 35.7
3000 1.0 1.0 1.0 1.0 1.1 3.4
4000 1.0 1.0 1.0 1.0 1.0 1.1
5000 1.0 1.0 1.0 1.0 1.0 1.0
6000 1.0 1.0 1.0 1.0 1.0 1.0
7000 1.0 1.0 1.0 1.0 1.0 1.0
8000 1.0 1.0 1.0 1.0 1.0 1.0
9000 1.0 1.0 1.0 1.0 1.0 1.0

n / R 0.9 0.8 0.7 0.6 0.5 0.4
1000 1.6 1.8 2.3 6.1 6.3 6.5
2000 3.3 3.3 3.2 3.3 5.3 39.1
3000 5.1 5.1 5.1 5.1 5.4 12.4
4000 6.9 7.0 7.1 7.1 7.0 10.7
5000 8.8 9.0 9.1 9.1 9.1 9.0
6000 11.6 11.2 11.3 11.4 11.3 11.1
7000 14.7 14.0 13.5 13.7 13.7 13.4
8000 19.0 17.1 16.4 16.1 16.1 15.7
9000 24.1 20.8 19.5 18.9 19.1 18.5

log(Max Error) log(RMSD)

n / R 0.9 0.8 0.7 0.6 0.5 0.4
1000 −11.2 −10.8 −10.3 −8.7 − −

2000 −11.6 −11.2 −10.7 −10.4 −9.5 −6.9
3000 −11.6 −11.3 −11.1 −10.7 −10.0 −9.1
4000 −11.7 −11.5 −11.0 −10.9 −10.4 −9.4
5000 −11.7 −11.5 −11.1 −11.0 −10.6 −9.8
6000 −11.9 −11.5 −11.4 −11.0 −10.5 −10.1
7000 −12.0 −11.7 −11.2 −11.2 −10.5 −10.1
8000 −11.8 −11.6 −11.5 −11.0 −10.8 −10.2
9000 −11.9 −11.7 −11.5 −11.2 −10.8 −10.2

n / R 0.9 0.8 0.7 0.6 0.5 0.4
1000 −11.7 −11.5 −10.9 −9.8 − −

2000 −12.1 −11.6 −11.2 −10.9 −10.2 −8.2
3000 −12.2 −11.9 −11.5 −11.3 −10.5 −9.7
4000 −12.2 −12.0 −11.4 −11.4 −10.9 −10.3
5000 −12.3 −12.0 −11.5 −11.4 −11.0 −10.3
6000 −12.4 −12.0 −11.8 −11.5 −11.0 −10.6
7000 −12.4 −12.2 −11.7 −11.7 −11.0 −10.6
8000 −12.2 −12.2 −11.9 −11.5 −11.2 −10.7
9000 −12.4 −12.2 −11.9 −11.7 −11.1 −10.7

Table 3.4: Results using nonsingular subspace intersection, nonsingular node absorption, and sin-
gular subspace intersection (Theorem 2.10, Corollary 2.17, and Theorem 2.14)

24

References

[1] S. AL-HOMIDAN and H. WOLKOWICZ. Approximate and exact completion problems for
Euclidean distance matrices using semidefinite programming. Linear Algebra Appl., 406:109–
141, 2005. 6, 7

[2] A. ALFAKIH, M.F. ANJOS, N. KRISLOCK, V. PICCIALLI, and H. WOLKOWICZ. Eu-
clidean distance matrices, semidefinite programming, and sensor network localization. Tech-
nical Report in progress, University of Waterloo, Waterloo, Ontario, 2009. 2, 3

[3] A. ALFAKIH, A. KHANDANI, and H. WOLKOWICZ. Solving Euclidean distance matrix
completion problems via semidefinite programming. Comput. Optim. Appl., 12(1-3):13–30,
1999. Computational optimization—a tribute to Olvi Mangasarian, Part I. 2, 3

[4] B. AMES and S.A. VAVASIS. Nuclear norm minimization for the planted clique and biclique
problems. Technical report, University of Waterloo, 2009. 4

[5] P. BISWAS. Semidefinite programming approaches to distance geometry problems. PhD thesis,
Stanford University, 2007. 2, 3

[6] P. BISWAS, T.C. LIANG, K.C. TOH, T.C. WANG, and Y. YE. Semidefinite programming
approaches for sensor network localization with noisy distance measurements. IEEE Transac-
tions on Automation Science and Engineering, 3:360–371, 2006. 3

[7] P. BISWAS, T.C. LIANG, K.C. TOH, and Y. YE. An SDP based approach for anchor-free 3D
graph realization. Technical report, Operation Research, Stanford University, Stanford, CA,
2005. 3

[8] P. BISWAS, K.C. TOH, and Y. YE. A distributed SDP approach for large-scale noisy anchor-
free graph reailzation with applications to molecular conformation. SIAM J. Sci. Comput.,
30(3):1251–1277, 2008. 3

[9] P. BISWAS and Y. YE. Semidefinite programming for ad hoc wireless sensor network local-
ization. In Information Processing In Sensor Networks, Proceedings of the third international
symposium on Information processing in sensor networks, pages 46–54, Berkeley, Calif., 2004.
2, 3

[10] P. BISWAS and Y. YE. A distributed method for solving semidefinite programs arising from ad
hoc wireless sensor network localization. In Multiscale optimization methods and applications,
volume 82 of Nonconvex Optim. Appl., pages 69–84. Springer, New York, 2006. 2, 3

[11] M.W. CARTER, H.H. JIN, M.A. SAUNDERS, and Y. YE. SpaseLoc: an adaptive subproblem
algorithm for scalable wireless sensor network localization. SIAM J. Optim., 17(4):1102–1128
(electronic), 2006. 3

[12] A. CASSIOLI. Global optimization of highly multimodal problems. PhD thesis, Universita di
Firenze, Dipartimento di sistemi e informatica, Via di S.Marta 3, 50139 Firenze, Italy, 2008. 3

[13] J. DATTORRO. Convex Optimization & Euclidean Distance Geometry. Meboo Publishing,
USA, 2005. 2, 3

25

[14] Y. DING, N. KRISLOCK, J. QIAN, and H. WOLKOWICZ. Sensor network localization,
Euclidean distance matrix completions, and graph realization. Optimization and Engineering,
to appear(CORR 2006-23, to appear), 2006. 2, 3, 7, 9, 11, 21

[15] Y. DING, N. KRISLOCK, J. QIAN, and H. WOLKOWICZ. Sensor network localization,
Euclidean distance matrix completions, and graph realization. In Proceedings of MELT08,
San Francisco, pages 129–134, 2008. 7

[16] T. EREN, D.K. GOLDENBERG, W. WHITELEY, Y.R. YANG, A.S. MORSE, B.D.O. AN-
DERSON, and P.N. BELHUMEUR. Rigidity, computation, and randomization in network
localization, 2004. IEEE INFOCOM. 3

[17] U. FEIGE and R KRAUTHGAMER. Finding and certifying a large hidden clique in a semi-
random graph. Random Structures and Algorithms, 16(2):195–202, 2000. 4

[18] G.H. GOLUB and C.F. VAN LOAN. Matrix Computations. Johns Hopkins University Press,
Baltimore, Maryland, 3nd edition, 1996. 13

[19] B. HENDRICKSON. The molecule problem: Determining conformation from pairwise dis-
tances. PhD thesis, Cornell University, Ithaca, New York, 1991. 4

[20] B. HENDRICKSON. Conditions for unique graph realizations. SIAM J. Comput., 21(1):65–84,
1992. 4

[21] H. JIN. Scalable Sensor Localization Algorithms for Wireless Sensor Networks. PhD thesis,
Toronto University, Toronto, Ontario, Canada, 2005. 3

[22] T.K. PONG and P. TSENG. (Robust) edge-based semidefinite programming relaxation of
sensor network localization. Technical Report Jan-09, University of Washington, Seattle, WA,
2009. 2, 22

[23] J. B. SAXE. Embeddability of weighted graphs in k-space is strongly NP-hard. Proc. 17th
Allerton Conf. in Communications, Control, and Computing, pages 480–489, 1979. 4

[24] A.M-C. SO and Y. YE. Theory of semidefinite programming for sensor network localization.
Math. Program., 109(2-3, Ser. B):367–384, 2007. 3, 4

[25] R.J. VANDERBEI and Y. BING. The simplest semidefinite programs are trivial. Math. Oper.
Res., 20(3):590–596, 1995. 4

[26] Z. WANG, S. ZHENG, S. BOYD, and Y. YE. Further relaxations of the semidefinite pro-
gramming approach to sensor network localization. SIAM J. Optim., 19(2):655–673, 2008. 3,
22

[27] H. WOLKOWICZ. Explicit solutions for interval semidefinite linear programs. Linear Algebra
Appl., 236:95–104, 1996. 4

26

Index

1 : n = {1, . . . , n}, 4
J , orthogonal projection onto {e}⊥, 6, 15
En(α, D̄), principal submatrix of EDM , 9
Sn(1 : k, Ȳ), principal submatrix top-left block,

5
Sn(1:k, Ȳ)), top-left block fixed, 5
T = K†, 6
n × n matrices, Mn , 6
EDM , 2
EDM completion problem, 6
SNL , sensor network localization, 2

clique, 5
clique index set, C, 20
cone generated by C, cone (C), 4
cone of EDM , Ek, 5
cone of positive definite matrices, Sk

++ , 4
cone of positive semidefinite matrices, Sk

+ , 4

diagonal matrix from a vector, Diag v, 6
diagonal of a matrix, diag M , 6

embedding dimension (fixed), r, 2, 3, 5–7
embedding dimension, r, 4
Euclidean distance matrix, EDM , 5
exposed face, 4

face, F � K, 4
facially exposed cone, 4

graph of the EDM , G = (V,E, ω), 5
graph realizability, 6

Hadamard product, 2
half radio range clique centered at node i, Ci, 20

Löwner partial order, A � B, 4

matrix of points in space, P , 6

nonsingular reduction, 13
null space of L, N (L), 4

offDiag operator of a matrix, offDiag M , 6

pre-distance matrix, D, 4

principal submatrix of EDM , En(α, D̄), 9
principal submatrix positive semidefinite set, Sn

+(α, Ȳ),
5

principal submatrix set, Sn(α, Ȳ), 5
principal submatrix top-left block, En(1:k, D̄), 9
principal submatrix top-left block, Sn(1 : k, Ȳ),

5
principal submatrix, Y [α], 5
proper face, 4

radio range, R, 2, 3
range space of L, R(L), 4
relative interior, relint ·, 4
rigidity, 13

sensor network localization, SNL , 2
singular intersection, 17
singular reduction, 17
symmetric k × k matrices, Sk , 4

top-left block fixed, En(1:k, D̄), 9
top-left block fixed, Sn(1:k, Ȳ)), 5
trace inner product, 〈A,B〉 = trace AB, 4
trilateration graph, 3

uniquely localizable graph, 4

vector of ones, e, 4

27

	Introduction
	Related Work/Applications
	Outline
	Preliminaries

	Clique Reduction
	Single Clique Reductions
	Disjoint Cliques Reduction

	Two (Intersecting) Clique Reduction
	Nonsingular Reduction with Intersection Embedding Dimension r
	Singular Reduction with Intersection Dimension r-1

	Clique Initialization and Absorption
	Clique Absorption with Degenerate Intersection

	Clique Reduction Algorithm and Numerical Results
	Numerical Tests
	Nonsingular Subspace Intersection
	Nonsingular Subspace Intersection with Node Absorption
	Singular Subspace Intersection and Node Absorption

	Conclusion
	Bibliography
	Index

