Due: Thursday Nov. 17/05 (Show details of your work. Grade is out of 32.)

1 Linear Independent Sets of Vectors

9 marks

Let V be the vector space of all continuous real valued functions defined on the interval $[0, \pi]$. Consider the following subsets of V. Which of the subsets are linearly independent and why?

1.

$$S_1 = \{\sin(t), \cos(t)\},$$
 (two functions)

2.

$$S_2 = \left\{ \sin^4(t), \cos^4(t), \sin^2(t) \cos^2(t) \right\},$$
 (three functions)

3.

$$S_3 = \{\sin^4(t), \cos^4(t), \sin^2(t)\cos^2(t), 3.1\},$$
 (four functions)

Note: $f(t) = \sin^2(t)\cos^2(t)$ is a function of t and g(t) = 3.1 is also a function of t, i.e. the latter is the constant function that takes the value 3.1 for all t.

2 A Rotation in the Plane

12 marks

Suppose that the vector in the plane $v = \binom{x_1}{x_2}$ is given. Define the transformation T on v to be the clockwise rotation in the plane through an angle $\theta = 45$ degrees, i.e. T(v) is the vector in the plane obtained by rotating v clockwise 45 degrees. Similarly, define the transformation S on v to be the counter-clockwise rotation in the plane through an angle $\theta = 60$ degrees, i.e. S(v) is the vector in the plane obtained by rotating v counter-clockwise 60 degrees.

1. Show that T (and so also S) is a linear transformation and find the matrix representations T_A, T_S of T and S, respectively.

- 2. What is W(v) = S(T(v))? Find a simpler description of the product W = ST; and find a matrix representation T_W of W.
- 3. Confirm that $T_W = T_S T_T$.

3 Page 235, Problem 40

Note: This can be done by hand or with the help of MATLAB. 4 marks

4 Page 243, Problem 4

3 marks

5 Page 243, Problem 10

4 marks