Recap

Terminology

- Objective function
 Objective value
- Constraints
- Feasible solution
 Optimal value
- Feasible region

- Optimal solution

Geometry of LP (Orange Factory Problem)

More Examples: A transportation problem

minimize $\sum_{i=1}^{p} \sum_{j=1}^{q} c_{ij} x_{ij}$ $\sum_{j=1}^{q} x_{ij} = s_i \quad (i = 1, 2, \dots, p)$ $\sum_{i=1}^{p} x_{ij} = t_i \quad (j = 1, 2, \dots, q)$ $x_{ij} \ge 0 \quad \begin{pmatrix} i = 1, 2, \dots, p, \\ j = 1, 2, \dots, q \end{pmatrix}$ subject to

Some More Examples

Overdetermined System of Equations

$$\sum_{j=1}^{n} a_{ij} x_j = b_i \ (i = 1, 2, \dots, m)$$

Suppose the system does not have a solution.

Problem: Find $x \in \mathbf{R}^n$ that is "closest" to solving the system. m

Error of solution x is

where

$$e_i := \left| \sum_{j=1}^n a_{ij} x_j - b_i \right|$$

Mathematical model

minimize $\sum_{i=1}^{m} \left| \sum_{j=1}^{n} a_{ij} x_j - b_i \right|$ Not an LP!

 (\ldots, m)

Convert to LP

minimize

minimize
$$\sum_{i=1}^{m} e_i$$

subject to $\left|\sum_{j=1}^{n} a_{ij}x_j - b_i\right| = e_i$ $(i = 1, 2, ...$

Chapter 1: An Introduction

Convert to LP (cont'd)

minimize
$$\sum_{i=1}^{m} \overset{y_i}{\underset{i=1}{\times}_i}$$
subject to $\left|\sum_{j=1}^{n} a_{ij}x_j - b_i\right| \stackrel{\leq}{\underset{i=1}{\times}} \overset{y_i}{\underset{i=1}{\times}_i} (i = 1, 2, \dots, m)$

Observation: (x^*, y^*) optimal $\implies y_i^* = e_i \ (i = 1, 2, ..., m).$

$$\left|\sum_{j=1}^{n} a_{ij} x_j - b_i\right| \le y_i \iff -y_i \le \sum_{j=1}^{n} a_{ij} x_j - b_i \le y_i$$

minimize
$$\sum_{i=1}^{m} y_i$$

subject to
$$\sum_{j=1}^{n} a_{ij}x_j - b_i - y_i \leq 0 \quad (i = 1, 2, ..., m)$$
$$\sum_{j=1}^{n} a_{ij}x_j - b_i + y_i \geq 0 \quad (i = 1, 2, ..., m)$$

CO350 Linear Programming Chapter 2: Optimality and Its Alternatives

 $6\mathrm{th}~\mathrm{May}~2005$

Optimality

Recall our proof that $[1,5]^T$ is an optimal solution for the Orange Factory Problem:

maximize $2x_1 + 3x_2$

subject to

 $\begin{array}{l} x_1 = 1 \ \text{and} \ x_2 = 5 \ \underline{\text{satisfy all inequalities}} \ \text{and achieves a} \\ \text{profit of 17.} \\ (2) + (3) : 2x_2 \leq 10 \implies x_2 \leq 5 - (4) \\ \text{So, profit} = 2x_1 + 3x_2 = 2(x_1 + x_2) + x_2 \leq 2 \times 6 + 5 = 17. \\ \text{Thus, profit} \leq 12 + 5 = 17 \implies [1, 5]^T \text{ optimal.} \end{array}$

In short, profit =
$$2x_1 + 3x_2 = 2 \times eq.(2) + eq.(4)$$

= $2 \times eq.(2) + \frac{1}{2} \times [eq.(2) + eq.(3)]$
= $\frac{5}{2} \times eq.(2) + \frac{1}{2} \times eq.(3)$
 $\leq \frac{5}{2} \times 6 + \frac{1}{2} \times 4 = 17$

We shall see in "Chapter 6: The Simplex Method" how to obtain such proof in general.

Chapter 2: Optimality and Its Alternatives

Infeasibility

An LP problem is said to be <u>infeasible</u> if it does not have any feasible solution.

Example:

maximize x_1

subject to

x_1	—	$2x_2$	+	$2x_3$	=	2	— (1)
$-x_{1}$	+	$3x_2$	—	x_3	=	-3	— (2)
x_1	,	x_2	,	x_3	\geq	0	—(4)

 $(1) + (2): x_2 + x_3 = -1$

(4) implies

 $x_2 + x_3 \ge 0$

Contradiction!

We shall see in "Chapter 7: The Two-Phase Method" how to obtain such proof in general.

Unboundedness

An LP problem is said to be <u>unbounded</u> if there exist feasible solutions of arbitrarily good objective value.

I.e., for maximization (or minimization) objective, there are feasible solutions with value as high (or low) as one wishes.

Example:

Example:

Let

 $egin{array}{rll} x_1(t) &=& 1 &+& 2t \ x_2(t) &=& & t \end{array}$

Claim: When $t \ge 0$, $[x_1(t), x_2(t)]^T$ is feasible. **Proof:** $-x_1(t) + x_2(t) = -1 - 2t + t = -1 - t \le -1 \le 1$ $x_1(t) - 2x_2(t) = 1 + 2t - 2t = 1 \le 1$ $x_1(t) = 1 + 2t \ge 1 \ge 0$ $x_2(t) = t \ge 0$ $\implies [x_1(t), x_2(t)]^T$ is feasible.

Objective value of $[x_1(t), x_2(t)]^T$:

$$2x_1(t) - 3x_2(t) = 2(1+2t) - 3t = 2+t$$

can be made as high as one wishes by choosing t large. Conclusion: The LP is unbounded.

We shall see in "Chapter 6: The Simplex Method" how to obtain such proof in general.

A Preview: Looking Ahead

The Fundamental Theorem of LP

There are exactly **three** possibilities for each LP problem.

- 1. It has an optimal solution;
- 2. It is <u>infeasible</u>;
- 3. It is <u>unbounded</u>.

Will be proved much later (after mid-term).

Duality Theory

The algebraic arguments that we saw for specific examples can be made general with the help of <u>duality theory</u> so that they apply to any LP problem.

Basic Solutions

The geometric picture of having an optimal solution at some "corner point" is, in some sense, accurate. Algebraically, these "corner points" will be described as feasible solutions that are <u>basic</u>.

Simplex Method

Motivated by the preceding paragraph, we will develop a practical algorithm called the simplex method to solve LP problems.

Matrix Notation

The LP

maximize
$$\sum_{j=1}^{n} c_j x_j$$

subject to $\sum_{j=1}^{n} a_{ij} x_j \leq b_i$ $(i = 1, ..., m)$
 $x_j \geq 0$ $(j = 1, ..., n)$

written in matrix notation is

maximize
$$c^T x$$

subject to $Ax \leq b$
 $x \geq 0$

where

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}, \quad b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$
$$c^T = \begin{bmatrix} c_1 & c_2 & \dots & c_n \end{bmatrix}$$

Chapter 2:	Optimality	and Its	Alternatives
------------	------------	---------	--------------

Example

	maximize	$2x_1$	+	$3x_2$		
	subject to					
		$2x_1$	+	x_2	\leq	10
		x_1	+	x_2	\leq	6
		$-x_{1}$	+	x_2	\leq	4
		x_1	,	x_2	\geq	0
in matrix	notation is					
	maxim	nize	$c^T x$			
	subjec	t to				
			Ax	\leq	b	
			x	\geq	0	
with	$A = \begin{bmatrix} 2 & 1 \\ 1 & 1 \\ -1 & 1 \end{bmatrix},$	b =	$\begin{bmatrix} 10\\6\\4 \end{bmatrix}$)],	<i>x</i> =	$=\begin{bmatrix}x_1\\x_2\end{bmatrix}$

10