CO350 Linear Programming Chapter 4: Introduction to Duality

 $25\mathrm{th}$ May 2005

Economic Interpretation of Duality (Section 4.6, Pg 51)

General Production Problem

A factory makes n products from m resources. Each unit of product j requires a_{ij} units of resource i and makes a profit of c_j dollars. Each day, the factory has b_j units of resource i available.

Mathematical Model

maximize
$$\sum_{j=1}^{n} c_j x_j$$

subject to $\sum_{j=1}^{n} a_{ij} x_j \leq b_i$ $(i = 1, 2, ..., m)$
 $x_j \geq 0$ $(j = 1, 2, ..., n)$

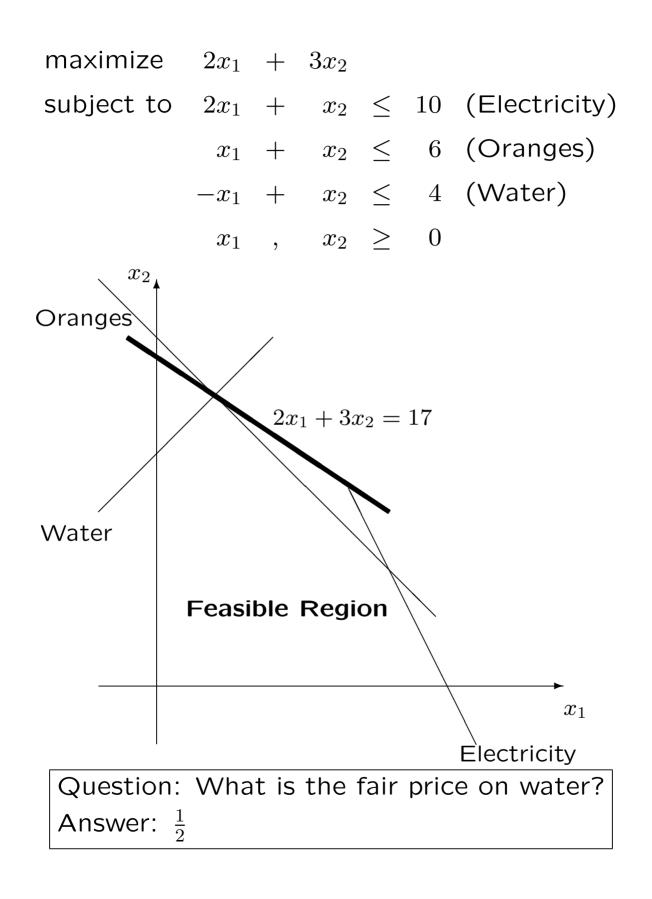
Suppose the resource constraints are not hard; i.e., we can either buy or sell each resources at certain fixed price.

What is the fair price for each resource?

Fair Price: There is no advantage to either buy or sell <u>small</u> amount the resource.

Fair prices are also called shadow prices.

Example (Not in notes)



Let
$$x_j =$$
 amount of product j produced,
 $y_i =$ Fair price of resource i .

- 1. $y_i < 0 \implies$ advantageous to buy resource *i*. Contradiction. So $y_i \ge 0$.
- 2. ONE unit of product $j \operatorname{cost} \sum_{i=1}^{m} a_{ij} y_i$.

 $\sum_{i=1}^m a_{ij}y_i < c_j \implies \text{advantageous to buy resources to}$

make product j. Contradiction. So

$$\left|\sum_{i=1}^{m} a_{ij} y_i \ge c_j.\right|$$

3.
$$\sum_{j=1}^{n} a_{ij}x_j < b_i$$
 and $y_i > 0 \implies$ advantageous to sell resource *i*. Contradiction. So $\sum_{j=1}^{n} a_{ij}x_j = b_i$ or $y_i = 0$.

4.
$$x_j > 0$$
 and $\sum_{i=1}^m a_{ij}y_i > c_j \implies$ advantageous to not make product j and sell the associated resources.
Contradiction. So $x_j = 0$ or $\sum_{i=1}^m a_{ij}y_i = c_j$.

So x_j 's and y_i 's satisfy

$$\sum_{j=1}^{n} a_{ij} x_j \leq b_i \quad (i = 1, 2, ..., m)$$

$$x_j \geq 0 \quad (j = 1, 2, ..., n)$$

$$\sum_{i=1}^{m} a_{ij} y_i \geq c_j \quad (j = 1, 2, ..., n)$$

$$y_i \geq 0 \quad (i = 1, 2, ..., m)$$

$$\sum_{j=1}^{n} a_{ij} x_j \leq b_i \quad or \quad y_i = 0 \quad (i = 1, 2, ..., m)$$

$$\sum_{i=1}^{m} a_{ij} y_i \geq c_j \quad or \quad x_j = 0 \quad (j = 1, 2, ..., n)$$

By CS Theorem, x and y are optimal solutions.

Feasibility Theorems (Section 4.7, Pg 52)

Suppose an LP has no feasible solution.

How to we convince someone that the LP is infeasible?

We have seen a very short proof of infeasibility before:

$$x_1 - 2x_2 + 2x_3 = 2 - (1)$$

 $-x_1 + 3x_2 - x_3 = -3 - (2)$
 $x_1 , x_2 , x_3 \ge 0 - (3)$

 $(1) + (2): x_2 + x_3 = -1$

(3) implies

 $x_2 + x_3 \ge 0$

Contradiction!

In general:

$$\sum_{j=1}^{n} a_{ij} x_i = b_i \quad (i = 1, 2, \dots, m)$$
$$x_j \ge 0 \quad (j = 1, 2, \dots, n)$$

General idea: Find linear combination of the equations such that coefficients of x_j 's are <u>non-negative</u>

AND right hand side is negative.

Algebraically: Find $y = [y_1, y_2, \dots, y_m]^T$. such that $\sum_{\substack{i=1\\m}}^m a_{ij}y_i \ge 0 \ (j = 1, 2, \dots, n)$ AND $\sum_{\substack{i=1\\m}}^m b_iy_i < 0$.

This idea always work!

Theorem 4.10 (Farkas' Lemma)

Ax = b, $x \ge 0$ has no solution

$$\iff \quad \text{there is a } y = [y_1, y_2, \dots, y_m]^T \text{ such that} \\ A^T y \geq 0, \ b^T y < 0$$

Proof:

(\Leftarrow) [By contradiction] Suppose Ax = b, $x \ge 0$, $A^Ty \ge 0$ and $b^Ty < 0$. $0 > b^Ty = (Ax)^Ty = x^T(A^Ty) \ge 0$

Contradiction!

 (\Longrightarrow) [Using Duality Theorem] Suppose Ax = b, $x \ge 0$ has no solution.

- (P) infeasible $\stackrel{\text{Duality Thm}}{\Longrightarrow}$ (D) not optimal.
- By Fundamental Thm, (D) is unbounded or infeasible.
- (D) has feasible solution "y = 0" \implies (D) is unbounded.
- So there is feasible solution y of (D) with arbitrarily small value, say < 0;
 i.e., there is y such that A^Ty ≥ 0 and b^Ty < 0.

Farkas-type theorems for other forms

Theorem 4.11

 $Ax \leq b$, $x \geq 0$ has no solution

$$\iff \text{ there is a } y = [y_1, y_2, \dots, y_m]^T \text{ such that} \\ y \ge 0, \ A^T y \ge 0, \ b^T y < 0$$

Proof: (\Leftarrow) [By contradiction] Suppose $Ax \leq b$, $x \geq 0$, $y \geq 0$, $A^T y \geq 0$ and $b^T y < 0$. $0 > b^T y \geq (Ax)^T y = x^T (A^T y) \geq 0$

Contradiction!

 (\Longrightarrow) [Using Duality Theorem] Suppose $Ax \leq b$, $x \geq 0$ has no solution.

max	$0^T x$				min	b^Ty			
s.t.	Ax	\leq	b	(P')	s.t.	A^Ty	\geq	0	(D')
	x	\geq	0			y	\geq	0	

- (P') infeasible $\stackrel{\text{Duality Thm}}{\Longrightarrow} (D')$ not optimal.
- By Fundamental Thm, (D) is unbounded or infeasible.
- (D') has feasible solution $(y = 0) \Longrightarrow (D')$ is unbounded.
- So there is feasible solution y of (D') with arbitrarily small value, say < 0;
 i.e., there is y such that A^Ty ≥ 0, y ≥ 0 and b^Ty < 0.

Theorem 4.12

 $Ax \leq b$ has no solution

$$\iff$$
 there is a $y=[y_1,y_2,\ldots,y_m]^T$ such that $y\geq 0$, $A^Ty=0$, $b^Ty<0$

Proof: Exercise

We will learn how to detect an infeasible LP problem, and how to compute the y guaranteed by Farkas's Lemma in Chapter 7.

For now, pay no attention on how to obtain the solutions to Question 10 of "Section 4.8: Exercises".

Summary: Chapter 4

- Definition of dual LP problems (see table on pg 41).
- Weak duality and its corollaries (pg 38).
- Duality Theorem (Thm 4.6, pg 42).
- Duality Thm + Fundamental Thm ⇒ 4 possible scenarios for primal-dual pairs of LP problems.
- Complementary Slackness condition and CS Theorem (pg 47).
- Economic Interpretation of Duality (more to come in Chapter 6).
- Farkas'-type Theorems (more to come in Chapter 7).