CO350 Linear Programming Chapter 5: Basic Solutions

30th May 2005

Recap

Last week, we learn

- Definition of a basis B of matrix A.
- Definition of basic solution x^* of Ax = b determined by basis B.
- x^* is a basic solution if and only if $\{A_j : x_j^* \neq 0\}$ is linearly independent.
- Definition of basic feasible solution of $\{Ax = b, x \ge 0\}$.
- Definition of convex sets.
- Definition of extreme points of convex sets.

Relating bfs and extreme points

Theorem 5.3 (Pg 63) Let A be m by n with rank m.

Let F be the set $\{x : Ax = b, x \ge 0\}$.

 x^* is a bfs of $\{Ax = b, x \ge 0\}$

 $\iff x^*$ is an extreme point of F.

Proof: " \Longrightarrow " [Contradiction]

Suppose x^* is a bfs.

 x^* is a feasible solution $\implies x^* \in F$.

 x^* is basic solution $\implies x^*$ is determined by some basis B.

Suppose x^* is not an extreme point of F. $x^* \in F \implies x^*$ lie strictly between two vectors in F. I.e., there are $x^1, x^2 \in F$ with $x^1 \neq x^2$ and $0 < \lambda < 1$ such that $x^* = \lambda x^1 + (1 - \lambda)x^2$.

For each
$$j \notin B$$
, $x_j^* = 0$.
So $0 = x_j^* = \lambda x_j^1 + (1 - \lambda) x_j^2$

 $\begin{array}{l} x^1, x^2 \geq 0 \ \text{and} \ 0 < \lambda < 1 \implies \lambda x_j^1 \ \text{and} \ (1-\lambda) x_j^2 \geq 0. \\ \text{So} \ \lambda x_j^1 = (1-\lambda) x_j^2 = 0. \end{array} \\ \text{Hence} \ x_j^1 = x_j^2 = 0. \end{array}$

Now $x_j^1 = x_j^2 = 0$ for all $j \notin B$, and also $Ax^1 = Ax^2 = b$. This means that x^1 and x^2 are both basic solutions of Ax = b determined by B.

This contradicts $x^1 \neq x^2$.

Theorem 5.3 (Pg 63) Let A be m by n with rank m. Let F be the set $\{x : Ax = b, x \ge 0\}$. x^* is a bfs of $\{Ax = b, x \ge 0\}$ x^* is an extreme point of F. \iff **Proof**: "⇐" [Contradiction] Suppose x^* is an extreme point of F. $x^* \in F \implies Ax^* = b \text{ and } x^* \geq 0.$ Suppose x^* is not a basic feasible solution. x^* feasible $\implies x^*$ is not basic. So $\{A_j : x_j^* \neq 0\}$ is a linearly dependent set (Thm 5.1). Let $J = \{j : x_i^* \neq 0\}.$ Linearly dependent: there exists d_j $(j \in J)$ such that not all d_i 's are zeros and $\sum_{j\in J} d_j A_j = 0$

Fill the remaining d_j 's with zeros; i.e. $d_j = 0$ for $j \notin J$. We now have

$$\sum_{j=1}^{n} d_j A_j = 0$$

i.e., Ad = 0.

Theorem 5.3 (Pg 63) Let A be m by n with rank m.

Let F be the set $\{x : Ax = b, x \ge 0\}$.

 x^* is a bfs of $\{Ax = b, x \ge 0\}$

 $\iff x^*$ is an extreme point of F.

Proof: "⇐" (cont'd)

So far we assumed x^* is an extreme point but not basic and obtained vector $d \in \mathbf{R}^n$ such that

$$Ad = 0$$
, and $d_j = 0$ whenever $x_j^* = 0$.

Let
$$x^1 = x^* - \varepsilon d$$
 and $x^2 = x^* + \varepsilon d$, where $\varepsilon > 0$.
Notice that $x^* = \frac{1}{2}x^1 + \frac{1}{2}x^2$.

For j such that $x_j^* = 0$, we have $d_j = 0$. So $x_j^1 = x_j^2 = 0$. For j such that $x_j^* > 0$, we have $x_j^1 > 0$ and $x_j^2 > 0$ for ε

small enough.

Conclusion: $x^1, x^2 \ge 0$ for $\varepsilon > 0$ small enough.

Also, $Ax^1 = Ax^* - \varepsilon Ad = Ax^* = b$ and $Ax^2 = Ax^* + \varepsilon Ad = Ax^* = b$. So x^1 and x^2 are both feasible; i.e., $x^1, x^2 \in F$. Now $x^1 \neq x^2$ (because $x^2 - x^1 = 2\varepsilon d \neq 0$) and $x^* = \frac{1}{2}x^1 + \frac{1}{2}x^2$ contradicts x^* is an extreme point of F. **Theorem 5.3 (Pg 63)** Let A be m by n with rank m. Let F be the set $\{x : Ax = b, x \ge 0\}$. x^* is a bfs of $\{Ax = b, x \ge 0\}$

 \Rightarrow x^* is an extreme point of F.

A few remarks: (Not in notes)

- The theorem says that bfs and extreme points are algebraic and geometric counterparts.
- The assumption "A has rank m" is necessary!
 Without it, we cannot even define a basis of A.
 In this case, the theorem fails because F may still have extreme points but there are no bfs.
- In the proof of the second half, we see that if x^* is <u>feasible but not basic</u>, then there exists vector $d \in \mathbf{R}^n$ such that $d \neq 0, d_j = 0$ whenever $x_j^* = 0$, and Ad = 0,

and there exists $\varepsilon>0$ such that

both $x^1 = x^* + \varepsilon d$ and $x^2 = x^* - \varepsilon d$ are feasible.

Basic feasible solutions for SIF

For the Orange Factory Problem, we used the SEF to discuss basic solutions, but plotted them on a picture that represents the problem in SIF.

(Def<u>n</u>) Basic feasible solution for SIF x^* is a bfs of $\{Ax \le b, x \ge 0\}$ if

$$\begin{bmatrix} x^* \\ s^* \end{bmatrix} = \begin{bmatrix} x^* \\ b - Ax^* \end{bmatrix}$$

is a bfs of $\{Ax + s = b, x, s \ge 0\}$.

Theorem 5.4 (Pg 65) Let $F = \{x : Ax \le b, x \ge 0\}$.

 x^* is a bfs of $\{Ax \leq b, x \geq 0\}$

 $\implies x^*$ is an extreme point of F.

Proof: Exercise

Hint: Relate extreme points of F and

$$\left\{ \begin{bmatrix} x \\ s \end{bmatrix} : Ax + s = b, \ x, s \ge 0 \right\}.$$

This is a very good exercise for you.

Come see me if you need more help/hint for this exercise.

Example

$$A = \begin{bmatrix} -1 & 2 & 2\\ 1 & 0 & -2 \end{bmatrix} \qquad b = \begin{bmatrix} 1\\ 1 \end{bmatrix}$$

Find all extreme points of $\{x : Ax \leq b, x \geq 0\}$.

By Theorem 5.4, this is equivalent to finding all bfs of $\{Ax \leq b, \ x \geq 0\}$

By definition, this is equivalent to finding all basic feasible solutions of

$$-x_{1} + 2x_{2} + 2x_{3} + x_{4} = 1$$

$$x_{1} - x_{3} + x_{5} = 1$$

$$x_{1} , x_{2} , x_{3} , x_{4} , x_{5} \ge 0$$

$$\text{Let } A' = \begin{bmatrix} -1 & 2 & 2 & 1 & 0 \\ 1 & 0 & -2 & 0 & 1 \end{bmatrix}$$

Procedure: Go through each possible basis B of A' and decide if the basic solution determined by B is feasible.

$$A' = \begin{bmatrix} -1 & 2 & 2 & 1 & 0 \\ 1 & 0 & -2 & 0 & 1 \end{bmatrix} \quad b = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Possible candidates for basis: $\{1,2\}, \{1,3\}, \{1,4\}, \{1,5\}, \{2,3\}, \{2,4\}, \{2,5\}, \{3,4\}, \{3,5\}, \{4,5\}$

- $B = \{1, 2\}$ is a basis since $A_B = \begin{bmatrix} -1 & 2 \\ 1 & 0 \end{bmatrix}$ is nonsingular. It determines basic solution $[1, 1, 0, 0, 0]^T$ which is feasible.
- $B = \{1,3\}$ is a not basis since $A_B = \begin{bmatrix} -1 & 2 \\ 1 & -2 \end{bmatrix}$ is singular.
- $B = \{1, 4\}$ is a basis since $A_B = \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix}$ is nonsingular. It determines basic solution $[1, 0, 0, 2, 0]^T$ which is feasible.
- $B = \{1, 5\}$ is a basis since $A_B = \begin{bmatrix} -1 & 0 \\ 1 & 1 \end{bmatrix}$ is nonsingular. It determines basic solution $[-1, 0, 0, 0, 2]^T$ which is not feasible.
- $B = \{2,3\}$ is a basis since $A_B = \begin{bmatrix} 2 & 2 \\ 0 & -2 \end{bmatrix}$ is nonsingular. It determines basic solution $[0, 1, -\frac{1}{2}, 0, 0]^T$ which is not feasible.
- $B = \{2, 4\}$ is a basis since $A_B = \begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix}$ is singular.

$$A' = \begin{bmatrix} -1 & 2 & 2 & 1 & 0 \\ 1 & 0 & -2 & 0 & 1 \end{bmatrix} \quad b = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Possible candidates for basis: $\{1,2\}, \{1,3\}, \{1,4\}, \{1,5\}, \{2,3\}, \{2,4\}, \{2,5\}, \{3,4\}, \{3,5\}, \{4,5\}$

- $B = \{2, 5\}$ is a basis since $A_B = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$ is nonsingular. It determines basic solution $[0, \frac{1}{2}, 0, 0, 1]^T$ which is feasible.
- $B = \{3, 4\}$ is a basis since $A_B = \begin{bmatrix} 2 & 1 \\ -2 & 0 \end{bmatrix}$ is nonsingular. It determines basic solution $[0, 0, -\frac{1}{2}, 2, 0]^T$ which is not feasible.
- $B = \{3, 5\}$ is a basis since $A_B = \begin{bmatrix} 2 & 0 \\ -2 & 1 \end{bmatrix}$ is nonsingular. It determines basic solution $[0, 0, \frac{1}{2}, 0, 2]^T$ which is feasible.
- $B = \{4, 5\}$ is a basis since $A_B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ is nonsingular. It determines basic solution $[0, 0, 0, 1, 1]^T$ which is feasible.

In conclusion, the extreme points are $[1, 1, 0]^T, [1, 0, 0]^T, [0, \frac{1}{2}, 0]^T, [0, 0, \frac{1}{2}]^T, [0, 0, 0]^T$

9