CO350 Linear Programming Chapter 5: Basic Solutions

30th May 2005

Recap

Last week, we learn

- Definition of a basis B of matrix A.
- Definition of basic solution x^{*} of $A x=b$ determined by basis B.
- x^{*} is a basic solution if and only if $\left\{A_{j}: x_{j}^{*} \neq 0\right\}$ is linearly independent.
- Definition of basic feasible solution of $\{A x=b, x \geq 0\}$.
- Definition of convex sets.
- Definition of extreme points of convex sets.

Relating bfs and extreme points
Theorem 5.3 ($\mathbf{P g}$ 63) Let A be m by n with rank m. Let F be the set $\{x: A x=b, x \geq 0\}$.

$$
x^{*} \text { is a bfs of }\{A x=b, x \geq 0\}
$$

$\Longleftrightarrow \quad x^{*}$ is an extreme point of F.
Proof: " \Longrightarrow " [Contradiction]
Suppose x^{*} is a bfs.
x^{*} is a feasible solution $\Longrightarrow x^{*} \in F$.
x^{*} is basic solution $\Longrightarrow x^{*}$ is determined by some basis B.
Suppose x^{*} is not an extreme point of F.
$x^{*} \in F \Longrightarrow x^{*}$ lie strictly between two vectors in F.
I.e., there are $x^{1}, x^{2} \in F$ with $x^{1} \neq x^{2}$ and $0<\lambda<1$ such that $x^{*}=\lambda x^{1}+(1-\lambda) x^{2}$.

For each $j \notin B, x_{j}^{*}=0$.
So

$$
0=x_{j}^{*}=\lambda x_{j}^{1}+(1-\lambda) x_{j}^{2}
$$

$x^{1}, x^{2} \geq 0$ and $0<\lambda<1 \Longrightarrow \lambda x_{j}^{1}$ and $(1-\lambda) x_{j}^{2} \geq 0$. So $\lambda x_{j}^{1}=(1-\lambda) x_{j}^{2}=0$. Hence $x_{j}^{1}=x_{j}^{2}=0$.
Now $x_{j}^{1}=x_{j}^{2}=0$ for all $j \notin B$, and also $A x^{1}=A x^{2}=b$.
This means that x^{1} and x^{2} are both basic solutions of $A x=b$ determined by B.

This contradicts $x^{1} \neq x^{2}$.

Theorem 5.3 ($\mathbf{P g} \mathbf{6 3)}$ Let A be m by n with rank m. Let F be the set $\{x: A x=b, x \geq 0\}$.

$$
x^{*} \text { is a bfs of }\{A x=b, x \geq 0\}
$$

$\Longleftrightarrow \quad x^{*}$ is an extreme point of F.
Proof: " \Longleftarrow " [Contradiction]
Suppose x^{*} is an extreme point of F.
$x^{*} \in F \Longrightarrow A x^{*}=b$ and $x^{*} \geq 0$.
Suppose x^{*} is not a basic feasible solution.
x^{*} feasible $\Longrightarrow x^{*}$ is not basic.
So $\left\{A_{j}: x_{j}^{*} \neq 0\right\}$ is a linearly dependent set (Thm 5.1).
Let $J=\left\{j: x_{j}^{*} \neq 0\right\}$.
Linearly dependent: there exists $d_{j}(j \in J)$ such that not all d_{j} 's are zeros and

$$
\sum_{j \in J} d_{j} A_{j}=0
$$

Fill the remaining d_{j} 's with zeros; i.e. $d_{j}=0$ for $j \notin J$. We now have

$$
\sum_{j=1}^{n} d_{j} A_{j}=0
$$

i.e., $A d=0$.

Theorem 5.3 ($\mathbf{P g} \mathbf{6 3)}$ Let A be m by n with rank m. Let F be the set $\{x: A x=b, x \geq 0\}$.

$$
x^{*} \text { is a bfs of }\{A x=b, x \geq 0\}
$$

$\Longleftrightarrow \quad x^{*}$ is an extreme point of F.
Proof: " $\Longleftarrow " ~(c o n t ' d) ~$
So far we assumed x^{*} is an extreme point but not basic and obtained vector $d \in \mathbf{R}^{n}$ such that

$$
A d=0, \text { and } d_{j}=0 \text { whenever } x_{j}^{*}=0 .
$$

Let $x^{1}=x^{*}-\varepsilon d$ and $x^{2}=x^{*}+\varepsilon d$, where $\varepsilon>0$.
Notice that $x^{*}=\frac{1}{2} x^{1}+\frac{1}{2} x^{2}$.
For j such that $x_{j}^{*}=0$, we have $d_{j}=0$. So $x_{j}^{1}=x_{j}^{2}=0$.
For j such that $x_{j}^{*}>0$, we have $x_{j}^{1}>0$ and $x_{j}^{2}>0$ for ε small enough.

Conclusion: $x^{1}, x^{2} \geq 0$ for $\varepsilon>0$ small enough.
Also, $A x^{1}=A x^{*}-\varepsilon A d=A x^{*}=b$
and $\quad A x^{2}=A x^{*}+\varepsilon A d=A x^{*}=b$.
So x^{1} and x^{2} are both feasible; i.e., $x^{1}, x^{2} \in F$.
Now $x^{1} \neq x^{2}$ (because $x^{2}-x^{1}=2 \varepsilon d \neq 0$)
and $\quad x^{*}=\frac{1}{2} x^{1}+\frac{1}{2} x^{2}$
contradicts x^{*} is an extreme point of F.

Theorem 5.3 ($\mathbf{P g}$ 63) Let A be m by n with rank m. Let F be the set $\{x: A x=b, x \geq 0\}$.

$$
x^{*} \text { is a bfs of }\{A x=b, x \geq 0\}
$$

$\Longleftrightarrow \quad x^{*}$ is an extreme point of F.

A few remarks: (Not in notes)

- The theorem says that bfs and extreme points are algebraic and geometric counterparts.
- The assumption " \boldsymbol{A} has rank \boldsymbol{m} " is necessary! Without it, we cannot even define a basis of A. In this case, the theorem fails because F may still have extreme points but there are no bfs.
- In the proof of the second half, we see that if x^{*} is feasible but not basic, then there exists vector $d \in \mathbf{R}^{n}$ such that

$$
d \neq 0, d_{j}=0 \text { whenever } x_{j}^{*}=0, \text { and } A d=0,
$$ and there exists $\varepsilon>0$ such that both $x^{1}=x^{*}+\varepsilon d$ and $x^{2}=x^{*}-\varepsilon d$ are feasible.

Basic feasible solutions for SIF

For the Orange Factory Problem, we used the SEF to discuss basic solutions, but plotted them on a picture that represents the problem in SIF.
(Defn) Basic feasible solution for SIF
x^{*} is a bfs of $\{A x \leq b, x \geq 0\}$ if

$$
\left[\begin{array}{c}
x^{*} \\
s^{*}
\end{array}\right]=\left[\begin{array}{c}
x^{*} \\
b-A x^{*}
\end{array}\right]
$$

is a bfs of $\{A x+s=b, x, s \geq 0\}$.

Theorem 5.4 (Pg 65) Let $F=\{x: A x \leq b, x \geq 0\}$.
x^{*} is a bfs of $\{A x \leq b, x \geq 0\}$
$\Longleftrightarrow \quad x^{*}$ is an extreme point of F.
Proof: Exercise
Hint: Relate extreme points of F and

$$
\left\{\left[\begin{array}{l}
x \\
s
\end{array}\right]: A x+s=b, x, s \geq 0\right\} .
$$

This is a very good exercise for you.
Come see me if you need more help/hint for this exercise.

Example

$$
A=\left[\begin{array}{ccc}
-1 & 2 & 2 \\
1 & 0 & -2
\end{array}\right] \quad b=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Find all extreme points of $\{x: A x \leq b, x \geq 0\}$.
By Theorem 5.4, this is equivalent to finding all bfs of

$$
\{A x \leq b, x \geq 0\}
$$

By definition, this is equivalent to finding all basic feasible solutions of

$$
\begin{aligned}
-x_{1}+2 x_{2} & +2 x_{3}+x_{4} \quad \\
& =1 \\
x_{1} & \\
& x_{3} \\
x_{1} & , \quad x_{2}, x_{5}
\end{aligned}=1
$$

Let $A^{\prime}=\left[\begin{array}{ccccc}-1 & 2 & 2 & 1 & 0 \\ 1 & 0 & -2 & 0 & 1\end{array}\right]$

Procedure: Go through each possible basis B of A^{\prime} and decide if the basic solution determined by B is feasible.

$$
A^{\prime}=\left[\begin{array}{ccccc}
-1 & 2 & 2 & 1 & 0 \\
1 & 0 & -2 & 0 & 1
\end{array}\right] \quad b=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Possible candidates for basis: $\{1,2\},\{1,3\},\{1,4\},\{1,5\}$, $\{2,3\},\{2,4\},\{2,5\}$, $\{3,4\},\{3,5\}$, $\{4,5\}$

- $B=\{1,2\}$ is a basis since $A_{B}=\left[\begin{array}{cc}-1 & 2 \\ 1 & 0\end{array}\right]$ is nonsingular. It determines basic solution $[1,1,0,0,0]^{T}$ which is feasible.
- $B=\{1,3\}$ is a not basis since $A_{B}=\left[\begin{array}{cc}-1 & 2 \\ 1 & -2\end{array}\right]$ is singular.
- $B=\{1,4\}$ is a basis since $A_{B}=\left[\begin{array}{cc}-1 & 1 \\ 1 & 0\end{array}\right]$ is nonsingular. It determines basic solution $[1,0,0,2,0]^{T}$ which is feasible.
- $B=\{1,5\}$ is a basis since $A_{B}=\left[\begin{array}{cc}-1 & 0 \\ 1 & 1\end{array}\right]$ is nonsingular.

It determines basic solution $[-1,0,0,0,2]^{T}$ which is not feasible.

- $B=\{2,3\}$ is a basis since $A_{B}=\left[\begin{array}{cc}2 & 2 \\ 0 & -2\end{array}\right]$ is nonsingular. It determines basic solution $\left[0,1,-\frac{1}{2}, 0,0\right]^{T}$ which is not feasible.
- $B=\{2,4\}$ is a basis since $A_{B}=\left[\begin{array}{ll}2 & 1 \\ 0 & 0\end{array}\right]$ is singular.

$$
A^{\prime}=\left[\begin{array}{ccccc}
-1 & 2 & 2 & 1 & 0 \\
1 & 0 & -2 & 0 & 1
\end{array}\right] \quad b=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Possible candidates for basis: $\{1,2\},\{1,3\},\{1,4\},\{1,5\}$, $\{2,3\},\{2,4\},\{2,5\}$, $\{3,4\},\{3,5\}$, $\{4,5\}$

- $B=\{2,5\}$ is a basis since $A_{B}=\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]$ is nonsingular. It determines basic solution $\left[0, \frac{1}{2}, 0,0,1\right]^{T}$ which is feasible.
- $B=\{3,4\}$ is a basis since $A_{B}=\left[\begin{array}{cc}2 & 1 \\ -2 & 0\end{array}\right]$ is nonsingular.

It determines basic solution $\left[0,0,-\frac{1}{2}, 2,0\right]^{T}$ which is not feasible.

- $B=\{3,5\}$ is a basis since $A_{B}=\left[\begin{array}{cc}2 & 0 \\ -2 & 1\end{array}\right]$ is nonsingular.

It determines basic solution $\left[0,0, \frac{1}{2}, 0,2\right]^{T}$ which is feasible.

- $B=\{4,5\}$ is a basis since $A_{B}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ is nonsingular. It determines basic solution $[0,0,0,1,1]^{T}$ which is feasible.

In conclusion, the extreme points are

$$
[1,1,0]^{T},[1,0,0]^{T},\left[0, \frac{1}{2}, 0\right]^{T},\left[0,0, \frac{1}{2}\right]^{T},[0,0,0]^{T}
$$

