next up previous
Next: About this document ...

C&O 367, Winter 2001
Assignment 2
Due on Thursday, Jan. 25, (at start of class)
Instructor H. Wolkowicz


  1. (10 marks) (Text: Problem 31, page 36)
    1. Let $A$ be an $n \times n$ symmetric matrix. Diagonalize $A$ to show that (the Raleigh quotient)

      \begin{displaymath}
\frac{x^tAx}{\vert\vert x\vert\vert^2}
\end{displaymath}

      is greater than or equal to the smallest eigenvalue of $A$ for all $x
\neq 0$ in $\Re^n$.
    2. Show that the quadratic form $Q_A(x) = x^tAx$ is coercive if and only if $A$ is positive definite.
    3. Conclude from 1b that if

      \begin{displaymath}f(x) = a + b^tx + \frac 12 x^t A x
\end{displaymath}

      is any quadratic function where $a \in \Re,~ b \in \Re^n$ and $A$ is an $n \times n$ symmetric matrix, then $f(x)$ is coercive if and only if $A$ is positive definite.

  2. (5 marks) Suppose that

    \begin{displaymath}f(x) = b^tx + \frac 12 x^t A x
\end{displaymath}

    where $b \in \Re^n$ and $A$ is an $n \times n$ symmetric matrix. Show that $f(x)$ is bounded below on $\Re^n$ if and only if the minimum of f on $\Re^n$ is attained (i.e. there exists $\bar{x}$ such that $f(\bar{x})=\min\limits_{x\in\Re^n} f(x)$).
  3. (5 marks) (Text: Problems 1a and 1d, page 77)
  4. (5 marks) (Text: Problems 2b and 2c, page 77)
  5. (5 marks) (Text: Problems 9, page 78)



next up previous
Next: About this document ...
Henry Wolkowicz
2001-01-22