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NONLINEAR OPTIMIZATION — Assignment 2

Score composition:

(3.3) (3.6) (3.12) (3.16) (4.1) (4.8(a)) (4.8(e)) Add1 Add2 Add3 Add4 Total

5 5 5 6 6 5 5 5 5 5 5 57

(3.3) Some students made the assumption that f is continuously differentiable on (a, b)

to argue that g is concave. This assumption need not be true; for example, a convex and

increasing piecewise linear function f may not be continuously differentiable on (a, b) but

g : f(x) 7→ x is concave on (f(a), f(b)). The fact that g is concave in the general case can

be proven using either of the following arguments.

1. One may use the fact that f is convex and increasing, to show that

g(λf(x) + (1 − λ)f(y)) ≥ λg(f(x)) + (1 − λ)g(f(y))

for all λ ∈ [0, 1] and x, y ∈ (a, b).

2. Alternately, one may argue that the hypograph of g is equal to the epigraph of f

reflected in the line y = x and, hence, is a convex set.

(3.6) Be careful to avoid confusing hyperplanes with affine functions. A hyperplane H

in R
n is an affine subspace of dimension R

n−1 defined by H = {x : αT x = β} for some

α ∈ R
n, β ∈ R. In other words, every hyperplane is exactly the set of roots of some

fixed affine function. For the epigraph of function f : R
n → R to be a halfspace, the set

(x, f(x)) must be a hyperplane in R
n+1; therefore, the function f must be affine.

(3.12) Again, be careful with hyperplanes/affine functions. Arguing that because epi (f)

and hypo (g) are convex and intersect only on their boundaries there must exist a hy-

perplane that separates int (epi (f)) and hypo (g) does not prove that there is an affine

function h such that g(x) ≤ h(x) ≤ f(x) for all x ∈ R
n. One must use the equation for

this hyperplane to construct an explicit formula for h.

(3.16) - (4.8e) These questions were generally well-done but please be careful to fully

answer the questions. A number of students lost marks for not including optimal values
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for (4.1), not considering the change of the equality constraint to inequality in (4.8e), etc.

(Add2) To prove that K = K∗∗, one must prove that K ⊆ K∗∗ and K∗∗ ⊆ K. That

K ⊆ K∗∗ follows immediately from the definition of the second dual as (K∗)∗. To see that

K∗∗ ⊆ K, assume, on the contrary, that there exists k ∈ K∗∗ such thatk /∈ K. One may

reach a contradiction using the following argument.

1. Since K is closed and convex, there exists a ∈ R
n and b ∈ R such that

aT x ≥ b > aT k

for all x ∈ K by Hyperplane Separation Theorem.

2. Since K is a cone, we must have b ≤ 0 and aT k < 0. This implies that a /∈ K∗ and

that there is x̄ ∈ K such that aT x̄ < 0.

3. The fact that the ray {λx̄ : λ ≥ 0} is in K can then be used to show that there

exists λ > 0 such that

b ≤ aT (λx̄) < b.

(Add3) Most students correctly argued that S := {AT v : v ≥ 0} is a subset of V ∗ using

the definition of nonnegative polar. To show that S = V , one must also prove the opposite

inclusion. To do so, apply the hint to show that V is closed. Then it suffices to show that

S∗ ⊆ V ∗∗ = V to complete the proof.
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