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Semidefinite programming (SDP) may be seen as a generalization of linear programming (LP). In partic-
ular, one may extend interior point algorithms for LP to SDP, but it has proven much more difficult to
exploit structure in the SDP data during computation.

We survey three types of special structures in SDP data:
1. A common ‘chordal’ sparsity pattern of all the data matrices. This structure arises in applications in
graph theory, and may also be used to deal with more general sparsity patterns in a heuristic way.

2. Low rank of all the data matrices. This structure is common in SDP relaxations of combinatorial opti-
mization problems, and SDP approximations of polynomial optimization problems.

3. The situation where the data matrices are invariant under the action of a permutation group, or, more
generally, where the data matrices belong to a low dimensional matrix algebra. Such problems arise
in truss topology optimization, particle physics, coding theory, computational geometry, and graph
theory.

We will give an overview of existing techniques to exploit these structures in the data. Most of the
paper will be devoted to the third situation, since it has received the least attention in the literature so far.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

What is the difference between method and device? A method is a
device which you used twice.

George Pólya (1887–1985)
The phrase semidefinite programming (SDP) was coined in the

1990s, following the extension of interior point methods from lin-
ear programming to convex programming by Nesterov and Nemi-
rovski [39], and independent work by Alizadeh [1]. The topic itself
is somewhat older (see e.g. the 1963 paper by Bellman and Fan
[5]), and arises naturally in the study of positive polynomials,
which in turn has applications in system and control theory; for
general surveys on SDP, see Vandenberghe and Boyd [50], and
Todd [46].

It has been known since the 1970s that semidefinite programs
may be solved to any fixed accuracy in polynomial time (in the real
number model), by using the ellipsoid algorithm of Nemirovski and
Yudin [38]. The ellipsoid algorithm was later used by Khachiyan
[28] to prove the polynomial complexity of LP in the bit model.
ll rights reserved.
The complexity results surrounding the ellipsoid method
quickly drew attention in combinatorial optimization, and resulted
in notable papers on SDP in the late 1970’s. One of these papers, by
Schrijver [41], introduced a methodology that is now known as
symmetry reduction in SDP. This methodology may be seen as a
way to reduce the size of SDP instances with ‘group symmetric
data’. After the development of practical interior point methods
in the 1990s, this methodology gained new interest. The reason
being that it proved much harder to exploit general sparsity in
SDP problem data than in the LP case when using interior point
methods. Thus, researchers became interested in structures in
SDP data that allow problem size reduction.

In this paper, we will review three such structures, as well as
some of their applications.

1.1. Notation and preliminaries

The space of p� q real (resp. complex) matrices will be denoted
by Rp�q (resp. Cp�q), and the space of k� k symmetric matrices by
S

k�k.
We use In to denote the identity matrix of order n. Similarly, Jn

denotes the n� n all-ones matrix. We will omit the subscript if the
order is clear from the context. The standard unit vectors of Rn are
denoted by e1; . . . ; en, and e denotes the all-ones vector of size
depending on the context.

mailto:e.deklerk@uvt.nl
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor


1 Recall that the Laplacian matrix of a graph G takes the form L ¼ D� A, where D is
the diagonal matrix of vertex degrees of G, and A is the adjacency matrix of G.
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A complex matrix A 2 Cn�n may be decomposed as

A ¼ ReðAÞ þ
ffiffiffiffiffiffiffi
�1
p

ImðAÞ;

where ReðAÞ 2 Rn�n and ImðAÞ 2 Rn�n are the real and imaginary
parts of A, respectively. The complex conjugate transpose is defined
as:

A� ¼ ReðAÞT �
ffiffiffiffiffiffiffi
�1
p

ImðAÞT ;

where the superscript ‘T’ denotes the transpose.
A matrix A 2 Cn�n is called Hermitian if A� ¼ A, i.e. if ReðAÞ is

symmetric and ImðAÞ is skew-symmetric. A matrix Q 2 Cn�n is
called unitary if Q �Q ¼ I. A real unitary matrix is called orthogonal.

The vecð�Þ operator stacks the columns of a matrix, while the
diagð�Þ operator maps an n� n matrix to the n-vector given by its
diagonal.

The Kronecker product A� B of matrices A 2 Rp�q and B 2 Rr�s is
defined as the pr � qs matrix composed of pq blocks of size r � s,
with block ij given by AijB ði ¼ 1; . . . ; pÞ, ðj ¼ 1; . . . ; qÞ.

1.2. Structured instances in standard form

We consider the standard form SDP problem

min
X�0
ftraceðA0XÞ : traceðAkXÞ ¼ bk 8k ¼ 1; . . . ;mg; ð1Þ

where the data matrices Ai are n� n and are linearly independent,
and X � 0 means X is positive semidefinite (or psd, for short). In
most applications the Ai are real symmetric matrices, but the gen-
eral case where the Ai are Hermitian matrices is often a useful the-
oretical setting. In the latter case X is a Hermitian positive
semidefinite matrix. In what follows, we will assume the matrices
to be real, unless otherwise specified.

Using the trace inner product, the dual problem is

maxy2Rm ;S�0 bT y :
Xm

i¼1

yiAi þ S ¼ A0

( )
: ð2Þ

At some point, we will also consider the additional constraint X P 0
(nonnegativity) in the real case.

The aim of this survey is to show how certain structures in the
data matrices Ai ði ¼ 1; . . . ;mÞ may be exploited in order to reduce
the computational requirements.

There are currently three types of structures (apart from general
sparsity) that may be exploited in SDP.

1.3. Chordal structure

Here the matrices Ai (i ¼ 0; . . . ;m) have a common sparsity pat-
tern, and this pattern is the same as the sparsity pattern of the
adjacency matrix of some chordal graph. (Recall that a graph is
called chordal if it does not contain a cycle of length 4 or more
as an induced subgraph.)

1.4. Low rank

Here the matrices Ai (i ¼ 1; . . . ;m) have low rank. (The matrix A0

may be arbitrary.)

1.5. Algebraic symmetry

Here the matrices Ai (i ¼ 0; . . . ;m) belong to a matrix �-algebra
of low dimension. (Recall that a matrix �-algebra over a field
F 2 fR;Cg is a subspace of Fn�n that is also closed under matrix
multiplication and taking (conjugate) transposes.) This structure
mostly arises when the data matrices are invariant under the ac-
tion of a permutation group.

2. Data matrices of low rank

Many SDP problems arising in combinatorial optimization in-
volve rank one matrices in the constraints, say

Ai ¼ aiaT
i ; ai 2 Rn; i ¼ 1; . . . ;m: ð3Þ

In this case the Schur complement matrix appearing in all interior
point methods can be formed more efficiently than in the general
case.

Indeed, the Schur complement matrix (say M) has entries of the
form

mij ¼ traceðAiZ1AjZ2Þ ði; j ¼ 1; . . . ;mÞ;

where Z1 and Z2 are positive definite matrices that depend on
the choice of the search direction; for a survey on search direc-
tions of interior point methods for SDP, see the survey by Todd
[45].

For example, in the dual logarithmic barrier (or in the dual-scal-
ing) method, one has Z1 ¼ Z2 ¼ S�1, where S is the value of the dual
matrix variable at the current iterate [6].

Substituting the expressions from (3), this reduces to:

mij :¼ traceðAiZ1AjZ2Þ ¼ traceðaiaT
i Z1ajaT

j Z2Þ ¼ ðaT
i Z1ajÞðaT

i Z2ajÞ:

For the dual methods, where Z1 ¼ Z2 ¼ S�1, this simplifies to

mij ¼ ðaT
i S�1ajÞ2 i; j ¼ 1 . . . ;m:

For SDP relaxations of Boolean quadratic problems (like the Goe-
mans–Williamson maximum cut relaxation in Example 1) this
expression simplifies even more, as ai is then simply the ith stan-
dard unit vector. In this case we have (for dual methods):

mij ¼ ðS�1Þ2ij; i; j ¼ 1; . . . ;m:

The Schur complement matrix M can therefore be formed efficiently
if S is sparse. For many applications this is indeed the case, since

S ¼ �
Xm

i¼1

yiAi þ A0;

and C often has the same sparsity structure as the adjacency matrix
of a sparse graph (see Example 1). If S is indeed sparse, one can com-
pute S�1 by doing a sparse Choleski factorization of S with pre-
ordering to reduce fill in. Although S�1 is not necessarily sparse if
S is, this is often the case in practice, and then the Schur comple-
ment matrix is also sparse and can likewise be factored using sparse
Choleski techniques.

Although we have only discussed the case where the constraint
matrices are rank 1, it is obvious that this approach can be ex-
tended to the case where the constraint matrices have ‘‘low” rank.

Example 1. Given a graph G ¼ ðV ; EÞ with Laplacian matrix L,1 the
following SDP relaxation by Goemans and Williamson [17] provides
an upper bound on the cardinality of a maximum cut in the graph:

max
X

1
4

traceðLXÞjdiagðXÞ ¼ e;X � 0
� �

: ð4Þ

This upper bound is known to be at most 1.14 times the maximum
cardinality of a cut in the graph [17].

Note that the data matrices of this SDP problem, when cast in
the standard form (1) are A0 :¼ � 1

4 L and Ai :¼ eieT
i
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ði ¼ 1; . . . ; jV j � mÞ. Thus, the matrices A1; . . . ;Am are rank-one
matrices. Moreover, the dual matrix variable takes the form

S ¼ �
Xm

i¼1

yiðeieiÞT �
1
4

L;

and therefore has the same sparsity pattern as the matrix L.

A second class of examples with rank-one data matrices arises
in the study of nonnegative polynomials and polynomial
optimization.

Example 2. Consider a n-variate, degree d polynomial

pðxÞ ¼
X

a2Nn
0 ;
P

i
ai6d

aaxa;

where xa :¼
Qn

i¼1xai
i and the aa 2 R are given coefficients. Now con-

sider the problem of determining if p may be written as a sum of
squares of polynomials.

It is well known, and easy to show, that this is the case if and
only if p may be written as:

pðxÞ ¼ bðxÞT XbðxÞ;

where b : Rn # R

nþ d
d

� �
is any basis of the n-variate polynomials

of degree at most d, and X is some positive semidefinite matrix of

order nþ d
d

� �
.

The last equation is the same as requiring that

pðxiÞ ¼ bðxiÞT XbðxiÞ � traceðbðxiÞbðxiÞT XÞ i ¼ 1; . . . ;
nþ d

d

� �
;

ð5Þ

where the xi 2 Rn are points in general position, i.e. any n-variate
polynomial of degree at most d is determined by the values it takes
at these points.

This leads to an SDP problem where the data matrices

Ai :¼ bðxiÞbðxiÞT i ¼ 1; . . . ;
nþ d

d

� �
¼: m

are all rank one matrices, namely, find an X � 0 such that (5) holds.
2.1. Software and further reading

The SDP formulation in Example 2 is due to [34]. The same for-
mulation can be applied to various SDP relaxations of polynomial
optimization problems, e.g. to the SDP relaxations of Lasserre
[30]. A recent survey of SDP relaxations for polynomial optimiza-
tion problems is [32].

‘Low rank’ structure is already exploited by the solver DSDP [6]
(that uses the dual-scaling direction), and the latest version of
SDPT3 [47].

3. ‘‘Chordal’’ data structure

The data structure we are interested in here is the one where
the nonzero elements in the data matrices correspond to the edges
of a chordal graph.

Definition 1. A graph is called chordal, if it does not contain a cycle
of length four or more as an induced subgraph.

To characterize positive semidefiniteness of matrices with a
chordal sparsity pattern, we need to recall some definitions from
graph theory. A clique in a graph G ¼ ðV ; EÞ is a subset V 0 	 V of ver-
tices such that any pair of vertices in V 0 are adjacent. A clique in G
is called maximal if it not a subset of a larger clique in G, and it is
called maximum if it is a clique of maximum cardinality in G. The
cardinality of a maximum clique in G is called the clique number
of G, denoted by xðGÞ.

Similarly, a co-clique (or stable set or independent set) is a subset
of vertices so that no two vertices in the subset are adjacent. Thus,
one may define maximal and maximum co-cliques and the co-cli-
que number of a graph as before. The co-clique number of G is usu-
ally denoted by aðGÞ.

Theorem 1 20]. Assume that the entries of a partially specified
matrix X corresponds to a chordal graph G, and denote the maximal
cliques of G by K1; . . . ;Kd. Then the following two statements are
equivalent:


 X can be completed to a psd matrix;

 XKi ;Ki

� 0 for all i ¼ 1; . . . ; d; where XKi ;Ki
is the principal subma-

trix of X with rows and columns indexed by Ki.

Formally, we now make the following assumption about the
SDP problem data.

Assumption 1. There exists a chordal graph G ¼ ðV ; EÞwith jV j ¼ n
and clique number xðGÞ � n such that fi; jg 2 E if ðAkÞij – 0 for
some k.

We can therefore do a pre-processing step to find the maximal
cliques of G. Subsequently, we can replace the primal SDP problem

min
X�0
ftraceðA0XÞ : traceðAkXÞ ¼ bk 8k ¼ 1; . . . ;mg;

by

min
XKi ;Ki

�0ði¼1;...;dÞ
ftraceðA0XÞ : traceðAkXÞ ¼ bk8k ¼ 1; . . . ;mg:

Notice that, in solving the latter SDP, only the entries of X that cor-
respond to edges in G need to be stored. If necessary, the full matrix
X may be recovered at any point by solving a matrix completion
problem.

Note that it is necessary to find all maximal cliques of G in order
to do this pre-processing. In general, it is a NP-hard problem to find
all maximal (or even one maximum) clique in a graph, but for chor-
dal graphs this can be done efficiently (i.e. in polynomial time) via
a combinatorial algorithm [40].

3.1. Chordal extensions

Notice that we did not specify how to find the chordal graph G
in Definition 1. If the graph determined by the sparsity pattern in
the data matrices is not chordal, then one may still construct a
chordal extension (or triangulation) of it, i.e. add edges to it in order
to obtain a chordal graph.

The difficulty here is that it is an NP-hard problem to find a min-
imum chordal extension, i.e. one where a minimum number of
edges are added [53].

There are several algorithms available to perform a chordal
extension, and we state one that is often used in practice. In this
algorithm, a set of additional edges E0 is generated, that gives the
chordal extension.

Algorithm 1. Elimination game

1. Input: a graph G ¼ ðV ; EÞ and an ordering of V;
2. Set G1 ¼ G; E0 ¼ ;;
3. for i ¼ 1 to n do
Add edges to Gi as necessary to make all neighbors of vertex i
pairwise adjacent, and add these new edges to the set E0;

Remove vertex i and call the resulting graph Giþ1.

4. Output: G0 ¼ ðV ; E [ E0Þ, a chordal extension of G.
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It is not difficult to verify that the algorithm outputs a chordal
extension of G.

Note that the chordal extension that is obtained depends on the
initial numbering (ordering) of the vertices. A popular heuristic is
the minimal degree ordering, i.e. to number the vertices V accord-
ing to increasing degree; see e.g. [13].

Example 3. Recall from Example 1, that the Goemans–Williamson
SDP relaxation of the maximum cut problem for a graph G ¼ ðV ; EÞ
takes the form:

max
X

1
4

traceðLXÞjdiagðXÞ ¼ e;X � 0
� �

; ð6Þ

where L is the Laplacian matrix of the graph.
Now let Ki ði ¼ 1; . . . ; dÞ denote the maximal cliques of some

chordal extension of G.
The constraint X � 0 in (6) may now be replaced by

XKi ;Ki
� 0ði ¼ 1; . . . ; dÞ. If the maximal clique sizes are sufficiently

small, then this results in a reduction of the SDP problem size.
3.2. Software and further reading

For a survey on matrix completion problems, see Laurent [31]. A
recent application of the chordal completion strategy to the covari-
ance selection problem is described in [9].

Chordal structure in SDP data is exploited by the solver SDPA-C
[37].
4. Algebraic symmetry in SDP

We say that the SDP data matrices exhibit algebraic symmetry if
they belong to a low dimensional matrix �-algebra, defined as
follows.

Definition 2. A set A# Fn�n is called a matrix �-algebra over a field
F 2 fR;Cg if, for all X;Y 2A:


 aX þ bY 2A 8a; b 2 F;

 X� 2A;

 XY 2A.

We may formally state the algebraic symmetry assumption for
SDP as follows.

Assumption 2. Algebraic symmetry There exists a ‘low dimen-
sional’ matrix �-algebra, say ASDP, that contains the data matrices
A0; . . . ;Am.

By ‘low dimensional’ we mean that dimðASDPÞ � n.
Under the algebraic symmetry assumption, we may restrict the

optimization to the algebra ASDP, in the sense of the following
theorem.

Theorem 2. If the primal SDP problem (1) and its dual problem (2)
meet the Slater condition, then there exists an optimal primal–dual
pair ðX; SÞ 2ASDP �ASDP.

Proof. For a given l > 0 the system:

traceðAkXÞ ¼ bk ðk ¼ 1; . . . ;mÞXm

i¼1

yiAi þ S ¼ A0

XS ¼ lI; X � 0; S � 0

has a unique solution, denoted by ðXðlÞ; yðlÞ; SðlÞÞ (under the Sla-
ter condition assumption). The set
fðXðlÞ; yðlÞ; SðlÞÞ : l > 0g

is known as the primal–dual central path, and is an analytic curve
with limit point (as l # 0) in the primal–dual optimal set.

Note that

SðlÞ ¼ A0 �
Xm

i¼1

yiðlÞAi 2ASDP

and that XðlÞ ¼ lSðlÞ�1. Since SðlÞ 2ASDP one also has
SðlÞ�1 2ASDP, since any matrix �-algebra is closed under taking
inverses.

Consequently XðlÞ 2ASDP, and taking the limit as l # 0 com-
pletes the proof. h

The fact that the primal central path is contained in ASDP was
shown by Kanno et al. [27] for the case where ASDP is the commut-
ing algebra (centralizer ring) of a finite group (see Section 4.6).

It is also possible to drop the Slater assumption in Theorem 2.
To be precise, if (1) has an optimal solution, then it has an optimal
solution in ASDP. The proof is more elaborate than that of Theorem
2, but essentially follows from Theorem 3 in the next section.

4.1. Representations of matrix �-algebras

Matrix �-algebras have a canonical block-diagonal structure
after a suitable ‘coordinate transformation’ (unitary transform).
The details are a consequence of a theorem from 1907 by the alge-
braist Wedderburn.

Theorem 3 ([51,52]). Assume A 	 Cn�n is a matrix �-algebra over
C that contains I. Then there is a unitary matrix Q and some integer s
such that

Q �AQ ¼

A1 0 � � � 0

0 A2
..
.

..

. . .
.

0
0 � � � 0 As

0
BBBBB@

1
CCCCCA;

where each Ai is isomorphic to Cni�ni for some integers ni, and takes
the form

Ai ¼ fIki
� AjA 2 Cni�nig ði ¼ 1; . . . ; sÞ

for some integers ki ði ¼ 1; . . . ; sÞ. Thus, one has dimðAÞ ¼
Ps

i¼1n2
i and

n ¼
Ps

i¼1kini.

This block-diagonal decomposition is canonical in the sense
that it is unique up to the ordering of the blocks.

Interior point algorithms can exploit block-diagonal structure of
matrix variables.

For many matrix �-algebras that arise in applications, the
canonical decomposition in Theorem 3 is known. One simple, but
important example is the set of circulant matrices.

Example 4. An n� n circulant matrix is defined by n numbers
c0; . . . ; cn�1, and each row is a cyclic shift of the previous row:

c0 c1 c2 � � � cn�1

cn�1 c0 c1 � � �

cn�1 c0 c1
. .

. ..
.

..

. . .
. . .

. . .
. . .

.

c1

c1 � � � cn�1 c0

2
66666666664

3
77777777775
:

The n� n circulant matrices form a commutative matrix �-algebra of
dimension n (over R or C), that may be diagonalized by the unitary
matrix:



E. de Klerk / European Journal of Operational Research 201 (2010) 1–10 5
Q ij :¼ 1ffiffiffi
n
p e�2p

ffiffiffiffiffi
�1
p

ij=n ði; j ¼ 0; . . . ;n� 1Þ:

The matrix Q is known as the discrete Fourier transform matrix. Like-
wise, the real, symmetric circulant matrices form a matrix �-algebra
over R of dimension bn=2c; for more information on circulant matri-
ces, see the review [19].

If the canonical decomposition of A is not known, it may be ob-
tained using (numerical) linear algebra, since the proof of Theorem
3 is constructive; see e.g. the proof in Section 2 of [14].

Randomized algorithms for the numerical decomposition of
matrix �-algebras are described in [11,36]. One should note, how-
ever, that in many applications the order n of the matrices in ASDP

is too large to perform numerical linear algebra. In these cases a
theoretical understanding of the structure of ASDP is essential.

4.2. The regular �-representation

In general we do not know the unitary matrix Q in Theorem 3
that gives the canonical decomposition of A, and the matrix size
n may be too large to compute Q using linear algebra. In these cases
we may use other faithful representations of A. One such faithful
representation is the regular �-representation of A.

Assume now that B1; . . . ;Bd 2 Rn�n is a real, orthogonal basis of
A, seen as a matrix �-algebra over R. We normalize this basis with
respect to the Frobenius norm:

Di :¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
traceðBT

i BiÞ
q Bi ði ¼ 1; . . . ;dÞ;

and define multiplication parameters ck
i;j via:

DiDj ¼
X

k

ck
i;jDk;

and subsequently define the d� d matrices Lk ðk ¼ 1; . . . ;dÞ via

ðLkÞij ¼ ci
k;j ði; j ¼ 1; . . . ;dÞ:

The matrices Lk form a basis of a faithful (i.e. isomorphic) represen-
tation of A, say Areg, that is also a matrix �-algebra, called the reg-
ular �-representation of A.

Theorem 4 (cf. [23]). The bijective linear mapping / : A # Areg

such that /ðDiÞ ¼ Li ði ¼ 1; . . . ; dÞ defines a �-isomorphism from A to
Areg. Thus, / is an algebra isomorphism with the additional property

/ðA�Þ ¼ /ðAÞ� 8A 2A:

Since / is a homomorphism, A and /ðAÞ have the same eigenvalues (up
to multiplicities) for all A 2A. As a consequence, one has

Xd

i¼1

xiDi � 0()
Xd

i¼1

xiLi � 0:

It follows that we may work with d� d data matrices as op-
posed to n� n.

Of course, this process requires the numerical calculation of the
multiplication parameters ck

i;j, but this may often be done without
storing the basis matrices B1; . . . ;Bd (see Section 5.4 for such an
example). Thus, one may avoid calculations involving n� n
matrices.

4.3. Symmetry reduction of SDP instances

By Theorem 2, we may rewrite the primal SDP problem (1) as:

min
X�0
ftraceðA0XÞ : traceðAkXÞ ¼ bk ðk ¼ 1; . . . ;mÞ; X 2ASDPg:

Assume now that we have a basis B1; . . . ;Bd of ASDP. We set
X ¼

Pd
i¼1xiBi to get
min
X�0
ftraceðA0XÞ : traceðAkXÞ ¼ bk ðk ¼ 1; . . . ;mÞ;X 2ASDPg

¼ minPd

i¼1
xiBi�0

Xd

i¼1

xitraceðA0BiÞ :
Xd

i¼1

xitraceðAkBiÞ ¼ bk;

(

ðk ¼ 1; . . . ;mÞ
)
:

We may now replace the linear matrix inequality (LMI) byPd
i¼1xiQ

�BiQ � 0 to get block-diagonal structure, where Q is as de-
scribed in Theorem 3, for A ¼ASDP. Subsequently, we may delete
any identical copies of blocks in the block structure to obtain a final
reformulation.

Note that, even if the data matrices Ai are real symmetric, the
final block-diagonal matrices may in principle be complex Hermi-
tian matrices, since Q may be unitary (as opposed to real orthogo-
nal). This poses no problem in theory, since interior point methods
apply to SDP with Hermitian data matrices as well. For example,
the software SeDuMi [44] can handle Hermitian data matrices. If
required, one may reformulate the LMI in terms of real matrices
by applying the relation

A � 0() ReðAÞ ImðAÞT

ImðAÞ ReðAÞ

" #
� 0 ðA ¼ A� 2 Cn�nÞ

to each block in the LMI. Note that this doubles the size of the block.
If the unitary matrix Q of the canonical decomposition in Theo-

rem 3 is not available, one may use the regular �-representation of
ASDP. In particular, the LMI

Pd
i¼1xiBi � 0 is then replaced by an LMI

of the form
Pd

i¼1xiLi � 0, where the Li’s are d� d matrices (as op-
posed to n� n) that are constructed as described in Section 4.2.
4.4. Further reading

Surveys on certain aspects of symmetry reduction in SDP are gi-
ven by Gatermann and Parrilo [12], and Vallentin [48].

4.5. Coherent configurations and nonnegative variables

A basis B1; . . . ;Bd of a matrix �-algebra is called a coherent con-
figuration if:


 The Bi’s are 0-1 matrices;

 For each i, BT

i ¼ Bi� for some i� 2 f1; . . . ; dg;


Pd

i¼1Bi ¼ J (the all-ones matrix).

If the Bi’s also commute, and B1 ¼ I, then we speak of an associ-
ation scheme; see e.g. Godsil [16]. If ASDP is spanned by an associ-
ation scheme, then the SDP problem (1) reduces to an LP problem;
see [18] for more details.

As another consequence, if ASDP is spanned by a coherent con-
figuration over the reals, and X ¼

Pd
i¼1xiBi, then X P 0 is equivalent

to x P 0. Thus, additional nonnegativity of the matrix variable X re-
quires only d additional linear inequality constraints to be added to

the final SDP problem, as opposed to nþ 1
2

� �
. This is a very useful

observation in several applications to be described later, where
typically d� n.
4.6. Algebraic symmetry from permutation groups

Let Sn denote the symmetric group on n elements, i.e. the group
of all permutations of f1; . . . ;ng.

We may represent any sub-group G#Sn as a multiplicative
group of n� n permutation matrices via
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ðPpÞi;j :¼
1 if pðiÞ ¼ j

0 else

�
p 2 G; i; j ¼ 1; . . . ;n:

The commutant of the representation is defined as

fA 2 Cn�n : APp ¼ PpA 8p 2 Gg;

and forms a matrix �-algebra over C, as is easy to show. This com-
mutant is also called the centralizer ring of the group, or the com-
muting algebra of the group.

The commutant of the representation has a basis that is a coher-
ent configuration. (A coherent configuration that arises in this way
is sometimes called Schurian [8].) One may construct this 0–1 basis
of the commutant from the orbitals of G.

Definition 3. The two-orbit or orbital of an index pair ði; jÞ is
defined as

fðpðiÞ;pðjÞÞ : p 2 Gg:

The orbitals partition f1; . . . ;ng � f1; . . . ;ng and this partition
yields the 0–1 matrices of the coherent configuration in question.

Now consider the situation that the data matrices A0; . . . ;Am are
invariant under the action of some permutation group GSDP in the
sense that

ðAkÞij ¼ ðAkÞpðiÞ;pðjÞ 8p 2 GSDP; k 2 f0; . . . ;mg; i; j 2 f1; . . . ;ng:

This is equivalent to

PpAkPT
p ¼ Ak 8p 2 GSDP; k 2 f0; . . . ;mg

or

PpAk ¼ AkPp 8p 2 GSDP; k 2 f0; . . . ;mg:

In other words, the data matrices belong to the commutant of the
permutation matrix representation of GSDP, and we may define
ASDP as this commutant.

An equivalent way to describe this situation via the automor-
phism groups of the data matrices.

Definition 4. We define the automorphism group of a given
A 2 Cn�n as

AutðAÞ :¼ fp 2 Sn : Aij ¼ ApðiÞ;pðjÞ 8 i; jg:

Thus, GSDP may be defined as the intersection GSDP ¼ \m
i¼0AutðAiÞ.

Example 5. We consider a fixed ordering v1; . . . ;v2n of f0;1gn, i.e.
of the binary vectors of length n. Now consider the matrix A with
2n rows indexed by the elements of f0;1gn, and Aij given by the
Hamming distance between v i 2 f0;1gn and v j 2 f0;1gn. (Recall
that the Hamming distance between two n-vectors is the number
of positions where they differ.)

The automorphism group of A arises as follows. Any permuta-
tion p of the index set f1; . . . ;ng induces an isomorphism of A that
maps row (resp. column) i of A to row (resp. column) pðiÞ for all i.
There are n! such permutations. Moreover, there are an additional
2n permutations that act on f0;1gn by either ‘flipping’ a given
component from zero to one (and vice versa), or not.

Thus, AutðAÞ has order n!2n. The centralizer ring of AutðAÞ is a
commutative matrix �-algebra over R and is known as the Bose–
Mesner algebra of the Hamming scheme.

A basis for the centralizer ring may be derived from the orbitals
of AutðAÞ and are given by

BðkÞij ¼
1 if Hamming ðv i;v jÞ ¼ k

0 else

�
ðk ¼ 0; . . . ;nÞ;

where Hammingðv i;v jÞ is the Hamming distance between v i and v j.
The basis matrices BðkÞ are simultaneously diagonalized by the real,
orthogonal matrix Q defined by
Qij ¼ 2�
n
2ð�1Þi

T j i; j ¼ 1; . . . ;2n:

The distinct elements of the matrix QT BðkÞQ equal KjðkÞ ðj ¼ 0; . . . ;nÞ,
where

KjðxÞ :¼
Xj

k¼0

ð�1Þk
x

k

� �
n� x

j� k

� �
; j ¼ 0; . . . ;n;

are called Krawtchouk polynomials. Thus, a linear matrix inequality
of the form

Xn

k¼0

xkBðkÞ � 0

is equivalent to the system of linear inequalities

Xn

k¼0

xkKjðkÞP 0 ðj ¼ 0; . . . ; nÞ:
4.7. Further reading

The canonical decomposition of the centralizer ring of a group is
determined by the so-called irreducible representations of the
group. If all irreducible representations are known, then the canon-
ical decomposition is also available. The details are beyond the
scope of this survey, but are reviewed in Section 4 of [4], with ref-
erence to the standard work on finite group representation theory
of Serre [43], Section 13.2.

5. Applications of symmetry reduction

In this section we will consider examples of symmetry reduc-
tion for SDP instances from various sources, namely:


 The Lovász #-number for graphs;

 Error correcting binary codes;

 Kissing numbers and related problems;

 Crossing numbers of completely bipartite graphs;

 Quadratic assignment problems;

 Truss topology design.

5.1. The Lovász #-number for graphs

The # number of a given graph G ¼ ðV ; EÞmay be defined as the
optimal value of the following semidefinite program:

#ðGÞ :¼max traceðJXÞ

subject to

Xij ¼ 0; fi; jg 2 E ði – jÞ;
traceðXÞ ¼ 1;
X � 0:

The many interesting properties of the # number are surveyed in
[29]. One of these properties is known as the sandwich theorem.

Theorem 5 (Lovász ‘sandwich theorem’ [35]). Let G ¼ ðV ; EÞ be a
graph with stability number aðGÞ, and let G denote its complementary
graph. One has

aðGÞ 6 #ðGÞ 6 vðGÞ;

where vðGÞ denotes the chromatic number of G (the minimum number
of colors required to color the vertices of G such that adjacent vertices
have different colors).

For example, for the Pentagon graph (5-cycle), usually denoted
by C5, one has
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2 � aðC5Þ 6 #ðC5Þ �
ffiffiffi
5
p
6 vðC5Þ � 3:

Thus, one may view #ðGÞ as an approximation of aðGÞ or of vðGÞ.
The associated #0 number of G is obtained by adding nonneg-

ativity constraints X P 0 to the formulation of the # SDP problem.
An equivalent formulation for #0ðGÞ is:

#0ðGÞ ¼ max
X�0;XP0

ftraceðJXÞjtraceðAþ IÞX ¼ 1g; ð7Þ

where A is the adjacency matrix of the graph G. Thus, here GSDP is
simply the automorphism group AutðGÞ of the graph G, since the
data matrices of the SDP problem (7) are simply J and Aþ I, that
are invariant under AutðGÞ.

Thus, for graphs G where the commutant of AutðGÞ is low
dimensional, the SDP problem (7) may be reduced in size via sym-
metry reduction. This has been done in the literature for graphs on
the hypercube (see the next section), as well as the so-called
Erdös–Rényi graphs [26].

5.2. Upper bounds on binary code sizes

The Hamming graph Gðk; dÞ has vertices indexed by f0;1gk and
vertices adjacent if they are at Hamming distance less than d (see
Fig. 1 for an example).

In coding theory, the usual notation is aðGðk; dÞÞ ¼: Aðk; dÞ. Thus,
Aðk; dÞ is the maximum size of a binary code on k letters such that
any two words are at a Hamming distance of at least d.

For the Hamming graph, one has j AutðGðk; dÞÞ j¼ 2kk!, and the
commutant of AutðGðk; dÞÞ is the commutative Bose–Mesner algebra
of the Hamming scheme that has dimension kþ 1 (see Example 5 for
the details). Thus, the SDP matrices may be reduced from the ori-
ginal size n ¼ 2k to diagonal matrices of size kþ 1.

The resulting LP problem coincides with the LP relaxation of
Delsarte [10], as was first shown in a seminal paper by Schrijver
[41] in 1979. In fact, the symmetry reduction methodology intro-
duced in [41] was arguably even more interesting than the main
result of the paper, and pre-dated the other applications described
in this survey by more than twenty years!

In the paper [42], a stronger SDP bound for Aðk; dÞ is obtained
via the following steps:


 A stronger SDP relaxation is constructed via lift-and-project
such that some symmetry is retained in the resulting SDP.


 In the stronger relaxation, ASDP becomes the Terwilliger algebra
of the Hamming scheme, a non-commutative algebra that con-
tains the Bose–Mesner algebra of the Hamming scheme as a

sub-algebra. The Terwilliger algebra has dimension kþ 3
3

� �
and its canonical block-diagonalization is described in [42].

Thus, improved upper bounds were computed for Að19;6Þ,
Að23;6Þ, Að25;6Þ, etc.; see [42] for more details.
Fig. 1. Hamming graph with k ¼ 3 and d ¼ 2. A maximum stable set of size 4 is
shown, implying that Að3;2Þ ¼ 4.
Using other lift-and-project schemes, slightly better SDP
bounds were obtained by Laurent [33] for some values of Aðk; dÞ,
and the approach in [42] was extended to non-binary codes by
Gijswijt et al. [15].

5.3. SDP bounds on kissing numbers

The kissing number of Rk is defined as the maximum number of
unit balls that can simultaneously touch a unit ball centered at the
origin, without any overlap.

Thus, the kissing number of R2 is 6 and in R3 it is 12. (There was
a famous disagreement between Newton and Gregory on whether
the correct answer in R3 is 12 or 13).

Not much is known about kissing numbers for general values of
k, and it is interesting to compute upper bounds for fixed k.

In a seminal paper by Bachoc and Vallentin [3], the authors
introduce new SDP relaxations of this problem, and succeeded to
compute improved upper bounds on the kissing number in the
dimensions n ¼ 5;6;7;9 and 10.

Although, the details are beyond the scope of this survey, the
basic methodology is as follows.

The kissing number problem may first be formulated as a max-
imum stable set problem in an infinite graph. The vertices of the
graph in question are the points on the unit sphere in Rk, and
two vertices adjacent if the angle between them is below a certain
value (see Fig. 2).

The rough idea is to generalize certain SDP relaxations of the
maximum stable set problem to infinite graphs, and subsequently
exploit the symmetry of the sphere (orthogonal group) to obtain a
(finite) SDP relaxation. This analysis requires tools from harmonic
analysis and the representation theory for compact topological
groups. The interested reader may find the necessary background
in the lecture notes [49].

5.4. Bounding the crossing number of complete bipartite graphs

The crossing number crðGÞ of a graph G is the minimum number
of intersections of edges (at a point other than a vertex) in a draw-
ing of G in the plane.

Paul Turán first raised the problem of calculating the crossing
number of the complete bipartite graph Kr;s in the 1940s. Kr;s

may be drawn in the plane with at most Zðr; sÞ edges crossing,
where

Zðr; sÞ ¼ r � 1
2

� �
r
2

j k s� 1
2

� �
s
2

j k
: ð8Þ

For example, Fig. 3 shows a drawing of K4;5 with 8 crossings.
The Zarankiewicz’s conjecture is that equality holds, i.e:

crðKr;sÞ ¼ Zðr; sÞ:
Fig. 2. The bottom sphere represents a infinite vertex set, with two vertices
adjacent if the angle between them are at most p=3.
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This has been verified for minfr; sg ¼ 5, but remains a famous open
problem for most other values of r and s.

de Klerk et al. [22] showed that one may obtain a lower bound
on crðKr;sÞ via the optimal value of a suitable SDP problem, namely:

crðKr;sÞP
s
2

s min
XP0;X�0

ftraceðQXÞjtraceðJXÞ ¼ 1g � r
2

j k r � 1
2

� �
;

where Q is a certain (given) matrix of order ðr � 1Þ!, and J is the all-
ones matrix of the same size. The rows and columns of Q are in-
dexed by all the cyclic orderings of r elements, which we denote
by u1; . . . ;uðr�1Þ!. Entry Qij in the matrix Q is the distance between
the cyclic orderings ui and uj. (The distance between two cyclic
orderings is the number of neighbor swaps needed to go from one
to the other; thus, the distance between 123 and 132 is one, for
example.)

It follows that GSDP is a certain representation of S2 �Sr , so
that jGSDPj ¼ 2ðr!Þ For this example the canonical decomposition
of the centralizer ring of GSDP is not known in closed form.

de Klerk et al. [22] solved the SDP problem for r ¼ 7 by using
partial symmetry reduction, to obtain the bound:

crðK7;sÞ > 2:1796s2 � 4:5s:

Using an averaging argument, the bound for crðK7;sÞ implies the fol-
lowing asymptotic bound on crðKr;sÞ:

lim
s!1

crðKr;sÞ
Zðr; sÞ P 0:83

r
r � 1

:

Thus, loosely speaking, asymptotically, Zðr; sÞ and crðKr;sÞ do not dif-
fer by more than 17%.

In subsequent, related work, de Klerk et al. [23] improved the
constant 0.83–0.859 by solving the SDP for r ¼ 9. This was possible
by using the regular �-representation of the commutant of GSDP, as
described in Section 4.2.

5.5. SDP relaxation of the quadratic assignment problem

The quadratic assignment problem (QAP) may be stated in the
following form:

min
X2Pk

traceðAXBXTÞ; ð9Þ

where A and B are given symmetric k� k matrices (called the dis-
tance and flow matrices, respectively), and Pk is the set of k� k per-
mutation matrices.

The QAP has many applications in facility location, circuit de-
sign, graph isomorphism and other problems, but is NP-hard in
Fig. 3. A drawing of K4;5 with 8 crossings. A similar strategy can be used to
construct drawings of Kr;s with exactly Zðr; sÞ crossings.
the strong sense, and hard to solve in practice for k P 30; for a re-
view, see Anstreicher [2].

An SDP relaxation of (QAP) from [54,25] takes the form:

min traceðB� AÞY
subject to
traceððI � ðJ � IÞÞY þ ððJ � IÞ � IÞYÞ ¼ 0;
traceðYÞ � 2eT y ¼ �k;

1 yT

y Y

� �
� 0;

Y P 0:

9>>>>>>>>>>>=
>>>>>>>>>>>;

ð10Þ

It is easy to verify that this is indeed a relaxation of QAP, by noting
that setting Y ¼ vecðXÞvecðXÞT and y ¼ diagðYÞ gives a feasible solu-
tion if X 2 Pk.

These SDP problems are hard to solve even for small values of k,
since the matrix variable Y is nonnegative and of order k2.

The automorphism groups of A and B determine the SDP sym-
metry group GSDP. Thus, symmetry reduction is possible if AutðAÞ
and/or AutðBÞ is large. Several instances in the QAPlib library [7]
of QAP instances have algebraic symmetry, e.g. the distance matrix
is a Hamming distance matrix (see Example 5).

Some numerical results, after doing the SDP symmetry reduc-
tion are shown in Table 1. These results are taken from [25], and
involve QAP instances with Hamming distance matrices. We
emphasize that, for the problems in Table 1, the SDP relaxation
(10) is too large even to solve by lower order methods. After sym-
metry reduction, however, they may be solved using interior point
methods in a few seconds on a standard Pentium IV PC.

5.6. The traveling salesman problem

It is well known that the QAP contains the symmetric traveling
salesman problem (TSP) as a special case. To show this, we denote
the complete graph on n vertices with edge lengths Dij ¼ Dji > 0
ði–jÞ, by KnðDÞ, where D is called the matrix of edge lengths. The
TSP is to find a Hamiltonian circuit of minimum length in KnðDÞ.

To see that TSP is a special case of QAP, let C denote the adja-
cency matrix of the standard circuit on n vertices:

C :¼

0 1 0 � � � 0 1
1 0 1 0 � � � 0

0 1 0 1 . .
. ..

.

..

. . .
. . .

. . .
. . .

.

0 0 1
1 0 � � � 0 1 0

2
66666666664

3
77777777775
:

Now the TSP problem is obtained from the QAP problem (9) by set-
ting A ¼ 1

2 D and B ¼ C. To see this, note that every Hamiltonian cir-
cuit in a complete graph has adjacency matrix XCXT for some
X 2 Pn. Thus, we may concisely state the TSP as

min
X2Pn

trace
1
2

DXCXT
� �

:

Table 1
SDP lower bounds for two QAP instances from QAPlib. l.b. = lower bound, u.b. = upper
bound.

Instance k Previous
l.b.

SDP l.b.
(10)

Best known
u.b.

CPU time
(seconds)

esc64a 64 47 98 116 13
esc128a 128 2 54 64 140
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The matrix C is symmetric circulant, and therefore belongs to a ma-
trix �-algebra of dimension d ¼ 1

2 n
	 


(see Example 4). By exploiting
this symmetry, De Klerk et al. [24] showed that the SDP relaxation
(10) reduces to the following problem in the special case of TSP.

min
1
2

traceðDXð1ÞÞ

subject to

XðkÞ P 0; k ¼ 1; . . . ;dPd
k¼1

XðkÞ ¼ J � I;

I þ
Pd
k¼1

cos 2pik
n

� �
XðkÞ � 0; i ¼ 1; . . . ;d

XðkÞ 2 Sn�n; k ¼ 1; . . . ;d;

9>>>>>>>>>=
>>>>>>>>>;

ð11Þ

where d ¼ 1
2 n
	 


. Note that this problem only involves matrix vari-
ables Xð1Þ; . . . ;XðdÞ of order n as opposed to the matrix variable of or-
der n2 in (10), i.e. the problem size is reduced by a factor n in this
sense.

In addition to the size reduction, the variables of the reduced
problem have an interesting interpretation in terms of association
schemes.

In particular, one may construct a feasible solution by setting:

XðkÞij ¼
1 if distði; jÞ ¼ k

0 else

�
ði; j ¼ 1; . . . ;nÞ; k ¼ 0; . . . ; d;

where distði; jÞ is the length of the shortest path from i to j in the
minimum length Hamiltonian cycle. It is well known (see e.g. Chap-
ter 12 in [16]), that the matrices constructed in this way form an
association scheme, since a cycle is a distance regular graph.

Thus, the symmetry reduction process may also provide unex-
pected theoretical insight into a specific SDP problem.
Fig. 4. Top and side views of a spherical lattice dome with D6 symmetry. The black
nodes are free and the white nodes fixed.
5.7. Truss topology design problems

A truss structure (like the Eiffel tower) is defined by a ground
structure of nodes and bars. Letting t denote the number of bars,
and ‘ 2 Rt the vector of bar lengths, a truss topology design prob-
lem is to find a vector z 2 Rt of cross-sectional areas of the bars,
such that some objective is optimized.

A specific topology optimization problem, introduced in [21], is
to find a truss of minimum volume such that the fundamental fre-
quency of vibration is higher than some prescribed critical value:

ðTOPÞ min
Pt
i¼1
‘izi

s:t: S ¼
Pt

i¼1
ðKi �XMiÞzi �XM0;

zi P 0 i ¼ 1; . . . ; t;

S � 0;

ð12Þ

where X is a lower bound on the (squared) fundamental frequency
of vibration of the truss, and M0 is the so-called non-structural mass
matrix. The matrices xiKi and xiMi are called the stiffness and mass
matrices of bar i, respectively. The order of these matrices is the
number of free nodes in the structure times the degrees of freedom.

If the ground structure of nodes and bars has isometries, then
the SDP problem has algebraic symmetry that may be exploited.
An example of such a truss from [27] is shown in Fig. 4.

The ground structure of nodes in Fig. 4 has the same symmetry
as a hexagon, i.e. the associated group is the dihedral group D6.

To understand the size reduction that is possible for ground
structures of this type, consider the generalization where the hexa-
gon in the figure is replaced by a regular k-gon, so that the symme-
try group becomes Dk. Bai et al. [4] have shown that the SDP
problem (12) reduces to one with only 3 scalar variables, and
block-diagonal matrix variables with block sizes at most 4, regard-
less of the value of k. Without symmetry reduction, the SDP
problem (12) has 3k scalar variables, and a matrix variable of order
3k.

6. Summary and conclusion

There are three types of structure in SDP data that may be
exploited by interior point methods, namely low rank, chordal spar-
sity structure and algebraic symmetry. The first two are well-estab-
lished and have been incorporated in some software packages.

The third (symmetry reduction in SDP) may best be described as
the application of representation theory to reduce the size of spe-
cially structured SDP instances. The most notable applications so
far are in computer assisted proofs (bounds on crossing numbers,
kissing numbers, code sizes, etc.), but also in pre-processing of
some SDP problems arising in optimal design (truss design, QAP,
etc.)

The symmetry reduction ‘device’ introduced in 1979 has be-
come a method!
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