$TITLE AN INTERNATIONAL GAS TRADE MODEL (GTM,SEQ=53) * THE GAS TRADE MODEL (GTM) MODELS INTERRELATED GAS MARKETS. * PRICES MAY BE FREE TO MOVE AS TO EQUILIBRIATE SUPPLIES AND * DEMAND. DISEQUILIBRIA CAN BE INTRODUCED WITH CONTROLS OVER * PRICES AND/OR QUANTITIES TRADED. * * REFERENCE: MANNE A S AND BELTRAMO M A, GTM: AN INTERNATIONAL GAS * TRADE MODEL, INTERNATIONAL ENERGY PROGRAM REPORT, * STANFORD UNIVERSITY, 1984. SETS I SUPPLY REGIONS / MEXICO, ALBERTA-BC, ATLANTIC, APPALACIA, US-GULF, MID-CONT, PERMIAN-B, ROCKIES, PACIFIC ALASKA / J DEMAND REGIONS / MEXICO, WEST-CAN, ONT-QUEBEC, ATLANTIC, NEW-ENGL, NY-NJ, MID-ATL, SOUTH-ATL, MIDWEST SOUTH-WEST, CENTRAL, N-CENTRAL, WEST, N-WEST / JFX(J) REGIONS WITH FIXED DEMAND / MEXICO, WEST-CAN, ONT-QUEBEC, ATLANTIC / IJ(I,J) FEASIBLE LINKS TABLE SDAT(I,*) SUPPLY DATA REF-P1 REF-Q1 REF-P2 REF-Q2 LIMIT * ($/MCF) (TCF) ($/MCF) (TCF) (TCF) MEXICO 2.0 .5 2.5 ALBERTA-BC 3.0 1.6 3.75 ATLANTIC .25 .03 .3 APPALACIA 3.5 .58 7.0 .65 .72 US-GULF 3.5 7.88 7.0 8.82 9.75 MID-CONT 3.5 2.07 7.0 2.31 2.55 PERMIAN-B 3.5 1.39 7.0 1.55 1.72 ROCKIES 3.5 1.16 7.0 1.30 1.44 PACIFIC 3.5 .42 7.0 .47 .52 ALASKA 2.0 .80 2.0 .1 INF TABLE DDAT(J,*) DEMAND DATA REF-P REF-Q ELAS TAX EX-DEM * ($/MCF) (TCF) ($/MCF) (TCF) MEXICO 1.0 2.2 -.5 WEST-CAN 3.0 1.47 -.5 ONT-QUEBEC 3.5 1.38 -.5 ATLANTIC 3.5 .20 -.5 NEW-ENGL 9.37 .76 -.60 NY-NJ 8.33 1.18 -.66 MID-ATL 8.26 .89 -.65 SOUTH-ATL 8.07 1.62 -.89 MIDWEST 8.01 2.96 -.65 SOUTH-WEST 7.29 6.04 -.84 CENTRAL 7.79 1.17 -.67 N-CENTRAL 8.06 1.51 -.54 WEST 8.18 2.10 -.43 N-WEST 9.39 .36 -.57 $EJECT PARAMETERS SUPA(I) SUPPLY CONSTANT A SUPB(I) SUPPLY CONSTANT B SUPC(I) SUPPLY CAPACITY DEMA(J) DEMAND CONSTANT A DEMB(J) DEMAND CONSTANT B ; SUPC(I) = SDAT(I,"LIMIT"); SUPB(I) = ((SDAT(I,"REF-P1")-SDAT(I,"REF-P2"))/(1/(SUPC(I)-SDAT(I,"REF-Q1"))-1/(SUPC(I)-SDAT(I,"REF-Q2")))) $(SUPC(I) NE INF); SUPA(I) = SDAT(I,"REF-P1") - SUPB(I)/(SUPC(I)-SDAT(I,"REF-Q1")); * WE RELY ON SUPA(I) EVALUATING TO EXACTLY ZERO IN SOME CASES SUPA(I) = ROUND(SUPA(I),4); SUPC(I)$(SUPC(I) EQ INF) = 100; SDAT(I,"SUP-A") = SUPA(I); SDAT(I,"SUP-B") = SUPB(I); DISPLAY SDAT; DEMB(J) = 1/DDAT(J,"ELAS") + 1; DEMA(J) = DDAT(J,"REF-P")/DEMB(J)/DDAT(J,"REF-Q")**(DEMB(J)-1); DDAT(J,"DEM-A") = DEMA(J); DDAT(J,"DEM-B") = DEMB(J); DISPLAY DDAT; TABLE UTC(I,J) UNIT TRANSPORT COST ($ PER MCF) MEXICO WEST-CAN ONT-QUEBEC ATLANTIC NEW-ENGL NY-NJ MID-ATL SOUTH-ATL MIDWEST SOUTH-WEST MEXICO .25 2.29 2.22 2.03 1.96 1.25 ALBERTA-BC .40 .90 1.15 1.10 1.10 1.55 .80 1.25 ATLANTIC 1.50 APPALACIA .72 .46 US-GULF 2.12 1.08 1.01 .82 .75 .04 MID-CONT .86 .14 PERMIAN-B .83 .77 .05 ROCKIES .53 ALASKA 6.0 + CENTRAL N-CENTRAL WEST N-WEST MEXICO 2.13 ALBERTA-BC .80 .65 .70 .65 US-GULF .54 MID-CONT .64 PERMIAN-B .55 .94 ROCKIES .31 .58 .70 1.91 PACIFIC .43 $EJECT TABLE PC(I,J) PIPELINE CAPACITIES (TCF) MEXICO WEST-CAN ONT-QUEBEC ATLANTIC NEW-ENGL NY-NJ MID-ATL SOUTH-ATL MIDWEST SOUTH-WEST MEXICO INF .067 .067 .067 .067 ALBERTA-BC INF INF .30 .150 .10 INF ATLANTIC INF INF APPALACIA .34 .35 US-GULF INF 1.390 1.060 2.0 2.62 3.73 MID-CONT .62 2.30 PERMIAN-B .12 1.45 ROCKIES .48 ALASKA .80 + CENTRAL N-CENTRAL WEST N-WEST MEXICO .033 ALBERTA-BC INF INF INF INF MID-CONT 1.03 PERMIAN-B 1.46 ROCKIES .14 INF .10 INF PACIFIC .48 SETS CHECK1(I,J) SUPPLY LINKS WITH ZERO COST AND NON-ZERO CAPACITY CHECK2(I,J) SUPPLY LINKS WITH NONZERO COST BUT ZERO CAPACITY ; CHECK1(I,J) = YES$(UTC(I,J) EQ 0 AND PC(I,J) NE 0); CHECK2(I,J) = YES$(UTC(I,J) NE 0 AND PC(I,J) EQ 0); IJ(I,J) = YES$PC(I,J); DISPLAY CHECK1, CHECK2; VARIABLES X(I,J) SHIPMENT OF NATURAL GAS (TCF) S(I) REGIONAL SUPPLY (TCF) D(J) REGIONAL DEMAND (TCF) BENEFIT CONSUMERS BENEFITS MINUS COST POSITIVE VARIABLES X, S, D; EQUATIONS SB(I) SUPPLY BALANCE (TCF) DB(J) DEMAND BALANCE (TCF) BDEF BENEFIT DEFINITION ; SB(I).. SUM(J$IJ(I,J), X(I,J)) =L= S(I) ; DB(J).. SUM(I$IJ(I,J), X(I,J)) =G= D(J) ; BDEF.. BENEFIT =E= SUM(J, DEMA(J)*D(J)**DEMB(J)) - SUM(I, SUPA(I)*S(I) - SUPB(I)*LOG((SUPC(I)-S(I))/SUPC(I))) - SUM((I,J)$IJ(I,J), UTC(I,J)*X(I,J)); X.UP(I,J) = PC(I,J); D.LO(J) = .2; D.FX(JFX) = DDAT(JFX,"REF-Q"); S.UP(I) = 0.99*SUPC(I); MODEL GTM GAS TRANSPORT MODEL / ALL /; SOLVE GTM MAXIMIZING BENEFIT USING NLP; $EJECT PARAMETER REPORT1(I,*) SUPPLY SUMMARY REPORT REPORT2(J,*) DEMAND SUMMARY REPORT ; REPORT1(I,"SUPPLY") = S.L(I); REPORT1(I,"CAPACITY") = S.UP(I); REPORT1(I,"PRICE") = SB.M(I); REPORT2(J,"DEMAND") = D.L(J); REPORT2(J,"PRICE") = -DB.M(J); DISPLAY REPORT1, REPORT2, X.L;