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Abstract
A Fan-Theobald-von Neumann system [7] is a triple (V,W, λ), where V and W are
real inner product spaces and λ : V → W is a norm-preserving map satisfying a
Fan-Theobald-von Neumann type inequality together with a condition for equality.
Examples include Euclidean Jordan algebras, systems induced by certain hyperbolic
polynomials, and normal decomposition systems (Eaton triples). The present article is
a continuation of [9] where the concepts of commutativity, automorphisms, majoriza-
tion, and reduction were introduced and elaborated. Here, we describe some transfer
principles and present Fenchel conjugate and subdifferential formulas.
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1 Introduction

Consider two real inner product spaces V andW with a (nonlinear) map λ : V → W .
For each u ∈ V , let [u] = {x ∈ V : λ(x) = λ(u)}. We say that the triple (V,W, λ) is
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a Fan-Theobald-von Neumann system (FTvN system, for short) [7] if

max
{
〈c, x〉 : x ∈ [u]

}
= 〈λ(c), λ(u)〉 (∀c, u ∈ V). (1)

It is known that themapλ in such a system is Lipschitz continuous and normpreserving
[7]. The inequality

〈x, y〉 ≤ 〈λ(x), λ(y)〉 (x, y ∈ V),

which comes from (1) will be called Fan-Theobald-von Neumann inequality and the
equality

〈x, y〉 = 〈λ(x), λ(y)〉
defines the commutativity of x and y in this system.

Examples of FTvN systems abound. Given a real inner product space V , the triple
(V,R, λ) with λ(x) = ||x || is a FTvN system in which the Fan-Theobald-von Neu-
mann inequality reduces to the Cauchy-Schwarz inequality. Taking V = Rn = W
and λ(x) = x↓ (obtained from x by rearranging its entries in the decreasing order, so
λ1(x) ≥ λ2(x) ≥ · · · ≥ λn(x)), we get a FTvN system where the Fan-Theobald-von
Neumann inequality reduces to the Hardy-Littlewood-Polya rearrangement inequal-
ity. When V = Sn (the space of all real n × n symmetric matrices with trace inner
product) and W = Rn with λ(X) denoting the vector of eigenvalues of X ∈ Sn

written in the decreasing order, we obtain the FTvN system (Sn,Rn, λ), where the
FTvN inequality reduces to the Ky Fan’s inequality 〈X ,Y 〉 ≤ 〈λ(X), λ(Y )〉 with the
corresponding equality case characterized by Theobald [16]. Considering the case of
V = Mn (the space of all n × n complex matrices), W = Rn and λ(X) = s(X) (the
vector of singular values of X written in the decreasing order), one obtains a FTvN
system where the FTvN inequality reduces to that of von Neumann. Other examples
include [7]:

(a) The triple (V,Rn, λ), where V is a Euclidean Jordan algebra of rank n carrying
the trace inner product with λ : V → Rn denoting the eigenvalue map,

(b) The triple (V,Rn, λ), where V is a finite dimensional real vector space and p is
a real homogeneous polynomial of degree n that is hyperbolic with respect to a
vector e ∈ V , complete and isometric, with λ(x) denoting the vector of roots of
the univariate polynomial t → p(te − x) written in the decreasing order, and

(c) The triple (V,W, γ ) where (V,G, γ ) is a normal decomposition system (in par-
ticular, an Eaton triple) and W := span(γ (V)).

Motivated by optimization considerations, FTvN systems were introduced in [7]
to transform linear/distance optimization problems over certain sets in V (of the form
E = λ−1(Q) - called spectral sets) to problems over sets in W . For example, it
was shown in [7], Section 3.1 that in a FTvN system (V,W, λ), for any c ∈ V ,
φ : W → R, and any spectral set E in V ,

sup
x∈E

{
〈c, x〉 + (φ ◦ λ)(x)

}
= sup

u∈λ(E)

{
〈λ(c), u〉 + φ(u)

}
(2)
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with attainment of one supremum implying the attainment of the other and additionally
implying a commutativity relation. In [8], certain commutation principles were formu-
lated and described in the setting of FTvN systems. A detailed analysis of the concepts
of commutativity, automorphisms, majorization, and reduction in Fan-Theobald-von
Neumann systems was carried out in [9].

In the present paper, we focus on FTvN systems (V,W, λ) that come with an
associated reduced system (W,W, μ); by definition, the twoFTvN systems are related
by the conditions ran μ ⊆ ran λ and μ ◦ λ = λ; see [9] for some examples and
properties of FTvN systems with associated reduced systems.

In the first part of the paper, we consider transfer principles dealing with the
invariance of certain topological/convexity properties and/or operations. While such
principles have been extensively studied in the context of Euclidean Jordan algebras
[1, 6, 10, 11, 13, 15] with many of the them relying on the spectral decomposition
theorem, our goal here is to present them in the broader context of FTvN systems. In
a FTvN system, we specifically describe statements of the form

λ−1(Q�) = (
λ−1(Q)

)�
,

where � is a topological/convexity operation such as the closure, interior, convex hull,
etc. We also formulate a generalization of the celebrated result of Davis [4] relating
the convexity of φ ◦ λ with that of φ, where φ : W → R. The second part of the
paper is devoted to the study of the Fenchel conjugate and subdifferential of φ ◦ λ. In
the setting of a FTvN system, for a spectral set S, we derive the (Fenchel conjugate)
formula

(φ ◦ λ)∗S(z) = φ∗
λ(S)

(
λ(z)

)
,

which happens to be equivalent to (1) as well as to (2). Regarding subdifferentials, we
show that

y ∈ ∂S(φ ◦ λ)(x) ⇐⇒ λ(y) ∈ ∂λ(S)φ
(
λ(x)

)
and y commutes with x,

which also happens to be equivalent to (1). These results generalize results of Lewis
[12] and Bauschke et al. [2] proved in the settings of normal decomposition systems
and hyperbolic polynomials.

Anoutline of the paper is as follows: InSect. 2,we cover somedefinitions, examples,
and someknown results. Section3 dealswith transfer principles. In Sect. 4,we describe
the Fenchel conjugate of φ ◦ λ and a subdifferential formula.

2 Preliminaries

Throughout this paper, we deal with real inner product spaces with 〈x, y〉 denoting
the inner product between two elements x and y; we let ‖x‖ denote the (induced)
norm of x . In any such space, for a set S, we write S, S◦, ∂(S), Sc, and S⊥ for the
closure, interior, boundary, (set-theoretic) complement, and orthogonal complement
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of S, respectively. We also write conv(S) (or conv S), conv S, ext(S), and span(S) for
the convex hull, closed convex hull, set of all extreme points, and span of S, respectively.
Throughout,Rn denotes the real n-dimensional Euclidean space carrying the standard
inner product.

We recall the expanded version of the definition of a FTvN system.

Definition 2.1 (FTvN system, [7]) A Fan-Theobald-von Neumann system (FTvN sys-
tem, for short) is a triple (V,W, λ), where V andW are real inner product spaces and
λ : V → W is a map satisfying the following conditions:

(A1) ‖λ(x)‖ = ‖x‖ for all x ∈ V .
(A2) 〈x, y〉 ≤ 〈λ(x), λ(y)〉 for all x, y ∈ V .
(A3) For any c ∈ V and q ∈ λ(V), there exists x ∈ V such that

λ(x) = q and 〈c, x〉 = 〈λ(c), λ(x)〉. (3)

It has been observed in [9] that conditions (A1)–(A3) are equivalent to (1).
Let (V,W, λ) be a FTvN system. The map λ will be called the eigenvalue map.

We denote the range of λ by ran λ; the λ-orbit of an element x ∈ V is defined by

[x] := {y ∈ V : λ(y) = λ(x)}.

More generally, for a set S in V , the λ-orbit of S is

[S] :=
⋃
x∈S

[x].

A set E in V is said to be a spectral set if it is of the form E = λ−1(Q) for some
Q ⊆ W , or equivalently, a union of λ-orbits. It is easy to see that a set E is a spectral
set if and only if the implication x ∈ E ⇒ [x] ⊆ E holds. For any set S in V , [S] is a
spectral set; we call it the spectral hull of S. Also, the set

〈S〉 := [Sc]c,

being the complement of a spectral set, is a spectral set; we will call this, the spectral
core of S. Note that [S] is the smallest spectral set containing S, while 〈S〉 is the largest
spectral set contained in S. Moreover, S is spectral if and only if 〈S〉 = [S].

A real-valued function Φ : V → R is a spectral function if it is of the form
Φ = φ ◦ λ for some function φ : W → R, or equivalently, Φ is a constant on every
λ-orbit. Note that φ need be defined only on λ(V). Also, in Sect. 4, while discussing
Fenchel conjugate and subdifferentials, we allow φ and Φ to be extended real-valued
functions.

The following result describes how spectral sets and spectral functions are related.

Proposition 2.1 Let (V,W, λ) be a FTvN system. Then the following hold.
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(a) A set E in V is spectral if and only if its indicator function 1E : V → R given by

1E (x) =
{
1 if x ∈ E,

0 if x /∈ E

is a spectral function on V .
(b) A function Φ : V → R is spectral if and only if its epigraph given by

epiΦ = {
(t, x) ∈ R × V : t ≥ Φ(x)

}

is a spectral set in the (product) FTvN system (R × V,R × W,Λ), where
Λ

(
(t, x)

) = (
t, λ(x)

)
.

Proof (a) Suppose E in V is a spectral set, i.e., E = λ−1(Q) for some Q ⊆ W . Then
it is easy to verify that 1E = 1Q ◦ λ; thus 1E is a spectral function.

Conversely, suppose the indicator function 1E : V → R is spectral so that 1E =
φ ◦ λ for some φ : W → R. Define

Q = {u ∈ W : φ(u) = 1}.

We now show E = λ−1(Q), proving that E is spectral. To see this, take x ∈ E .
Since 1 = 1E (x) = φ

(
λ(x)

)
, we have λ(x) ∈ Q. Thus, x ∈ λ−1(Q). For the

reverse implication, take x ∈ λ−1(Q). Then λ(x) ∈ Q, hence 1E (x) = φ
(
λ(x)

) = 1,
implying x ∈ E . Consequently, E = λ−1(Q).

(b) It is easy to see that (R × V,R × W,Λ) with Λ
(
(t, x)

) = (
t, λ(x)

)
is a

FTvN system. Given a spectral function Φ : V → R such that Φ = φ ◦ λ for some
φ : W → R, we show epiΦ = Λ−1(epiφ). Indeed, we have

(t, x) ∈ epiΦ ⇐⇒ t ≥ Φ(x)

⇐⇒ t ≥ φ
(
λ(x)

)

⇐⇒ Λ
(
(t, x)

) = (
t, λ(x)

) ∈ epiφ

⇐⇒ (t, x) ∈ Λ−1(epiφ).

This shows that epiΦ is a spectral set in (R × V,R × W,Λ).
For the converse, suppose epiΦ is a spectral set in (R × V,R × W,Λ) so that

epiΦ = Λ−1(Q) for some Q in R × W . Then, for each u ∈ λ(V), the set {t ∈ R :
(t, u) ∈ Q} is bounded below. We now define φ : λ(V) → R by

φ(u) := inf {t ∈ R : (t, u) ∈ Q}
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and extend it toW arbitrarily. Then, for x ∈ V , we let u = λ(x) ∈ λ(V) so that

φ(λ(x)) = inf
{
t ∈ R : (

t, λ(x)
) ∈ Q

}

= inf
{
t ∈ R : Λ

(
(t, x)

) ∈ Q
}

= inf
{
t ∈ R : (t, x) ∈ Λ−1(Q) = epiΦ

}

= Φ(x).

As x ∈ V is arbitrary, it follows that Φ = φ ◦ λ. ��
For ease of reference, we now recall some definitions, results, and examples from

earlier works.

Definition 2.2 (Commutativity and majorization) Let (V,W, λ) be a FTvN system
and x, y ∈ V . Relative to this system, we say that

(a) x and y commute if 〈x, y〉 = 〈λ(x), λ(y)〉 and
(b) x is majorized by y and write x ≺ y if x ∈ conv [y].
Proposition 2.2 ([7], Sect. 2) Let (V,W, λ) be a FTvN system. Then, the following
hold for x, y, c ∈ V:
(a) λ(t x) = tλ(x) for all t ≥ 0.
(b) ‖λ(x) − λ(y)‖ ≤ ‖x − y‖.
(c) 〈λ(c), λ(x + y)〉 ≤ 〈λ(c), λ(x)〉 + 〈λ(c), λ(y)〉. More generally, for c, x1, x2,

. . . , xk in V ,
〈
λ(c), λ(x1 + x2 + · · · + xk)

〉
≤

〈
λ(c), λ(x1) + λ(x2) + · · · + λ(xk)

〉
. (4)

(d) F := ran λ is a convex cone inW . It is closed if V is finite dimensional.
(e) The following are equivalent:

(i) x and y commute in (V,W, λ), that is, 〈x, y〉 = 〈λ(x), λ(y)〉.
(ii) λ(x + y) = λ(x) + λ(y).
(iii) ‖λ(x) − λ(y)‖ = ‖x − y‖.

From Proposition 2.2(b), we immediately see that the eigenvalue map λ is (Lips-
chitz) continuous on V .
Proposition 2.3 ([9], Proposition 4.2) Suppose (V,W, λ) is a FTvN system. If E is
convex and spectral in V , then λ(E) is convex inW .

Recall that for a set E in V , its polar and dual are defined respectively by

E p := {x ∈ V : 〈x, y〉 ≤ 0 for all y ∈ E}, E∗ = −E p.

Proposition 2.4 ([9], Proposition 4.3) Let E be a spectral set in a FTvN system
(V,W, λ). Then the following statements hold:
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(a) E, E◦, and ∂(E) are spectral.
(b) If V is a Hilbert space, then conv E is a spectral set.
(c) If V is finite dimensional, then conv E is a spectral set.
(d) If V is a Hilbert space, then E p is a spectral set. In particular, if V is a Hilbert

space and S is a spectral set which is also a subspace in V , then, S⊥ is spectral.
(e) If V is a Hilbert space, then the sum of two compact convex spectral sets in V is

spectral.
( f ) If V is finite dimensional, then the sum of two convex spectral sets is spectral.

Proposition 2.5 ([9], Corollary 5.5) Consider a FTvN system (V,W, λ), where V is
finite dimensional. Then, for all a, b ∈ V ,

conv[a + b] ⊆ conv[a] + conv[b].

We recall the definition of a reduced system.

Definition 2.3 (Reduced system) Let (V,W, λ) be a FTvN system. Suppose
(W,W, μ) is a FTvN system such that

(C1) μ ◦ λ = λ, and
(C2) ran μ ⊆ ran λ.

Then, we will say that (W,W, μ) is a reduced system of (V,W, λ).

Let (W,W, μ) be a reduced system of a FTvN system (V,W, λ). For anyw ∈ W ,
by (C2), we may choose x ∈ V such that μ(w) = λ(x). Then (C1) gives μ

(
μ(w)

) =
μ

(
λ(x)

) = λ(x) = μ(w). This implies that μ2 = μ onW . Also, from (C1), ranμ =
ran λ. Thus,

when (W,W, μ) is a reduced system of (V,W, λ), we have μ2 = μ and
ranμ = ran λ

Proposition 2.6 ([9], Theorem 9.3) Suppose (W,W, μ) is a reduced system of
(V,W, λ) with W finite dimensional. Let F := ran λ and F∗ denote the dual of
the cone F in W . Then, the following statements hold:

(a) If u, v ∈ F with u − v ∈ F∗, then v ≺ u inW .
(b) For x1, x2, . . . , xk ∈ V , λ(x1 + x2 + · · · + xk) ≺ λ(x1) + λ(x2) + · · · + λ(xk) in

W .
(c) x ≺ y inV impliesλ(x) ≺ λ(y) inW . The converse holds ifV is finite dimensional.

We now present some examples of FTvN systems with their corresponding reduced
systems.

Example 2.1 Consider the FTvN system (V,R, λ), where V is an inner product space
and λ(x) := ‖x‖ for all x ∈ V . Then, (R,R, μ) with μ(r) = |r | for r ∈ R, is a
reduced system of (V,R, λ). However, the FTvN system (R,R, ν) with ν(r) = r is
not a reduced system of (V,R, λ) because condition (C2) in the above definition fails
to hold.
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Example 2.2 Suppose V is a Euclidean Jordan algebra of rank n (with the trace inner
product). Then, (Rn,Rn, μ) with μ(q) = q↓ onRn is a reduced system of the FTvN
system (V,Rn, λ), where λ(x) is the eigenvalue vector of x ∈ V . We note that in
the FTvN system (Rn,Rn, μ) a set is spectral if and only if it is invariant under
permutation matrices. Such sets are traditionally called symmetric sets.

Example 2.3 Suppose (W,W, μ) is a FTvN system with μ2 = μ. Then, (W,W, μ)

is a reduced system of itself. In particular, every normal decomposition system has this
property. (See [12] or the Appendix in [9] for the definition of a normal decomposition
system.)

Example 2.4 Consider V = 	2(R), where 	2(R) denotes the usual Hilbert space of
all real square-summable sequences. For any x = (x1, x2, . . .) ∈ 	2(R), let |x | =
(|x1| , |x2| , . . .). For a nonzero x , we define λ(x) by considering the nonzero entries
in |x | and “rearranging” them in the decreasing order. This construction is elaborated
and made precise in [9], Example 4.11, where it is shown that (V,V, λ) is an infinite-
dimensional FTvN system. Furthermore, as λ2 = λ, this system is a reduced system
of itself.

Example 2.5 Consider two FTvN systems (V1,W1, λ1) and (V2,W2, λ2) with their
corresponding reduced systems (W1,W1, μ1) and (W2,W2, μ2). Then, see Example
2.14 in [9], their Cartesian product can be made into a FTvN system (V1 × V2,W1 ×
W2,Λ), where

Λ
(
(x1, x2)

) = (
λ1(x1), λ2(x2)

)
for (x1, x2) ∈ V1 × V2.

In this case, the triple (W1 × W2,W1 × W2, M), with

M
(
(u1, u2)

) = (
μ1(u1), μ2(u2)

)
for (u1, u2) ∈ W1 × W2

becomes the corresponding reduced system. Indeed, since ranμi ⊆ ran λi for i = 1, 2,
it is easy to see that ranM ⊆ ranΛ, proving (C1). Also, using the fact thatμi ◦λi = λi
for i = 1, 2, we have

M
(
Λ(x1, x2)

) = M
(
λ(x1), λ(x2)

) = (
μ(λ(x1)), μ(λ(x2))

)

= (
λ(x1), λ(x2)

) = Λ
(
(x1, x2)

)
,

for any (x1, x2) ∈ V1 × V2. Hence M ◦ Λ = Λ, justifying (C2).
In particular, for a FTvN system (V,W, λ) with its reduced system (W,W, μ),

the triple (R × V,R × W,Λ), where Λ(t, x) = (
t, λ(x)

)
, is a FTvN system and

(R×W,R×W, M) with M(t, u) = (
t, μ(u)

)
is the corresponding reduced system.

As an illustrative example, consider the triple (Rn+1,R2, λ) with

λ
(
(t, x)

) = (
t, ‖x‖2

)
for (t, x) ∈ R × Rn .

It is easy to see that it is the Cartesian product of two FTvN systems (R,R, Id) and
(Rn,R, ‖·‖2); hence aFTvNsystem.Here, (R2,R2, μ)withμ

(
(t, s)

) = (t, |s|) is the
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reduced system. Now, corresponding to the spectral set Q = {
(t, s) ∈ R2 : t ≥ |s| }

in (R2,R2, μ), we get the second-order cone

λ−1(Q) = {
(t, x) ∈ R × Rn : t ≥ ‖x‖2

}
.

3 Transfer Principles

Consider a FTvN system (V,W, λ). Recall that a set in V is a spectral set if it is of the
form λ−1(Q) for some Q ⊆ W . Also, a function Φ : V → R is a spectral function if
it is of the form φ ◦ λ for some function φ : λ(V) → R (without loss of generality,
we may let φ : W → R). Motivated by various transfer principles in the setting
of Euclidean Jordan algebras and normal decomposition systems [10–12], we a raise
basic question: Which topological/convexity properties of Q and φ are (respectively)
carried over to E = λ−1(Q) and Φ = φ ◦ λ? In this section, we formulate several
results addressing this and related questions.

Proposition 3.1 Let (V,W, λ) be a FTvN system, Q ⊆ W , and E := λ−1(Q). Then
the following statements hold.

(a) If Q is open (closed) inW , then E is open (respectively, closed) in V .
(b) If Q is compact inW and V is finite dimensional, then E is compact in V .
(c) If φ : W → R is continuous, then Φ = φ ◦ λ is continuous.

Proof The first statement follows from the continuity of λ. The second one follows
from the isometric property of λ (that ‖λ(x)‖ = ‖x‖ for all x) and the finite dimen-
sionality of V . Finally, the continuity of Φ comes from the continuity of φ and λ.

��
Corollary 3.1 Suppose (V,W, λ) be a FTvN system, where V is finite dimensional.
Consider a set S inV with its spectral hull [S] and spectral core 〈S〉. Then the following
statements hold.

(i) If S is closed, then λ(S) is closed inW .
(i i) If S is closed, then [S] is closed.

(i i i) If S is open, then 〈S〉 is open.
(iv) If S is compact, then [S] is compact.
Proof (i) Assume that S is closed. Consider a sequence (uk) in λ(S) with uk → u ∈
W . Let uk = λ(xk)with xk ∈ S for each k. As λ is an isometry and (uk) is bounded, we
see that (xk) is also bounded. Since V is finite dimensional, without loss of generality,
we may assume xk → x for some x ∈ S. Then, by the continuity of λ, we have
uk = λ(xk) → λ(x) ∈ λ(S). Thus, u ∈ λ(S), proving the closedness of λ(S).

(i i) From the above item, λ(S) is closed in W . Then Proposition 3.1 implies that
[S] = λ−1

(
λ(S)

)
is also closed.

(i i i) Suppose S is open. As Sc is closed, by the above item, we see that [Sc]
is closed; hence [Sc]c is open. Since, by definition, 〈S〉 = [Sc]c, we get the stated
assertion.
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(iv) Now suppose that S is compact. Then, by the continuity of λ, λ(S) is compact
in W . Then, from the above Proposition 3.1(b), we see that [S] = λ−1

(
λ(S)

)
is also

compact. ��
Remark 3.1 In general, the connectedness/convexity properties of a set need not be
carried over to its spectral hull (inverse image). For example, in the FTvN system
(R2,R2, μ)withμ(u) = u↓, one can take a connected convex set S = {(2, 1)} and see
that [S] = μ−1(S) = {(1, 2), (2, 1)}, which is neither connected nor convex.However,
in certain settings, we can show that if S is open (connected, arcwise connected), then
[S] is open (respectively, connected, arcwise connected). For example, consider the
system (V,Rn, λ), where V is a simple Euclidean Jordan algebra of rank n that carries
the trace inner product. Then, any Jordan frame in V can be mapped onto any other
by an automorphism of V . Specifically, for any u ∈ V ,

[u] = {Au : A ∈ G},

where G is the connected component of the identity transformation in the automor-
phism group of V ( [6], Proposition 2.2). So, [S] = ⋃

A∈G A(S). Now, when S is open,
each A(S) is open and so [S], being the union of open sets, is also open. Now, suppose
S is connected. Then, [S] is the union of S and connected sets [s] with s varying over
S. Since [s] ∩ S �= ∅ for every s ∈ S, we see that the above union is also connected.
Thus, [S] is connected. Finally, when S is arcwise connected, we apply Theorem 3.1
in [6] to see that [s] is arcwise connected for every s ∈ S and that [S] is also arcwise
connected.

The following example shows that, generally, the closure, interior, and convexity
properties do not behave well under inverse images.

Example 3.1 Consider the FTvN system (R2,R, λ), where λ(x) := ‖x‖ for all x ∈
R2. Then the following are easy to verify:

(i) The interval Q = (−1, 0] is not closed in R, but the set λ−1(Q) is closed in R2.
Similarly, the interval Q = [0, 1) is not open inR, while λ−1(Q) is open inR2.

(i i) For the interval Q = (−1, 0) inR, we have λ−1(Q) �= λ−1( Q ).
(i i i) For the interval Q = [0, 1] in R, we have λ−1(Q) ◦ �= λ−1(Q◦), λ−1

(
∂(Q)

) �=
∂
(
λ−1(Q)

)
, and λ−1

(
ext(Q)

) �= ext
(
λ−1(Q)

)
.

(iv) For the compact convex set Q = {1} in R, λ−1(Q) is not convex in R2 and
conv λ−1(Q) �= λ−1(conv Q).

Note that in the above example, (R,R, μ) with μ(r) = |r | is a reduced system of
(R2,R, λ), but the considered sets are not spectral in (R,R, μ). As we see below,
positive results are obtained when one works with spectral sets in a reduced system.

Let (W,W, μ) be a reduced system of (V,W, λ). Recall that a set inW is spectral
if it is so in (W,W, μ). Theμ-orbit of an element inW is denoted by the same bracket
notation that we use in V .

As a prelude to our positive results, we present a technical result.

Proposition 3.2 Suppose (W,W, μ) is a reduced system of (V,W, λ). Then the fol-
lowing statements hold:
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(a) If E = λ−1(Q) with Q ⊆ W , then λ(E) = Q ∩μ(Q). If Q is spectral inW , then
μ(Q) ⊆ Q and λ(E) = μ(Q).

(b) Every spectral set in V can be written as the λ-inverse image of a spectral set in
W . In fact, for any Q ⊆ W , the set Q̃ := [Q ∩ μ(Q)] is spectral inW and

λ−1(Q) = λ−1(Q̃).

(c) If Q is spectral inW , then Q = [μ(Q)] and

λ−1(Q) = λ−1(μ(Q)
)
.

(d) Every spectral function on V can be written as the composition of a spectral
function onW and λ.

Proof (a) Consider E = λ−1(Q), where Q ⊆ W . For any x ∈ E , q := λ(x) ∈ Q;
so, by (C1) (of Definition 2.3), λ(x) = μ

(
λ(x)

) = μ(q) ∈ μ(Q). Hence, λ(E) ⊆
Q∩μ(Q). To see the reverse inclusion, let p ∈ Q∩μ(Q). Then, p ∈ Q and p = μ(q)

for some q ∈ Q. By (C2), we can write p = μ(q) = λ(x) for some x ∈ V . Clearly,
x ∈ E and p ∈ λ(E). Hence λ(E) = Q ∩ μ(Q).

Now suppose Q is spectral inW . Sinceμ2 = μ, for any u ∈ Q, we haveμ(μ(u)) =
μ(u). So, μ(u) is in the μ-orbit of u. As Q is a spectral set inW , we have μ(u) ∈ Q.
This proves that μ(Q) ⊆ Q. Then the equality λ(E) = Q ∩ μ(Q) = μ(Q) follows.

(b) Consider a spectral set E = λ−1(Q) with Q ⊆ W . Clearly, λ−1
(
Q ∩μ(Q)

) ⊆
λ−1(Q). On the other hand, if x ∈ λ−1(Q) = E , then λ(x) ∈ λ(E) = Q ∩ μ(Q) by
Item (a). Hence, λ−1(Q) ⊆ λ−1

(
Q ∩ μ(Q)

)
. Thus,

λ−1(Q) = λ−1(Q ∩ μ(Q)
)
.

We now claim

λ−1(Q ∩ μ(Q)) = λ−1([Q ∩ μ(Q)]).

Let y ∈ λ−1
([Q ∩ μ(Q)]) so that λ(y) = p ∈ [q] for some q ∈ Q ∩ μ(Q). Then,

from (C1), λ(y) = μ
(
λ(y)

) = μ(p) = μ(q). However, q = μ(r) for some r ∈ Q
and so, μ(q) = μ2(r) = μ(r) = q. It follows that λ(y) = μ(q) = q ∈ Q ∩ μ(Q).
Hence,

λ−1([Q ∩ μ(Q)]) ⊆ λ−1(Q ∩ μ(Q)
)
.

Since the reverse inclusion is obvious, we see that E = λ−1(Q) = λ−1(Q̃), where
Q̃ := [Q ∩ μ(Q)] is spectral inW .

(c) Suppose Q is spectral in W . By (a), μ(Q) ⊆ Q. Then, [μ(Q)] ⊆ [Q] = Q.
As observed before, for every u ∈ Q, u and μ(u) lie in the same μ-orbit; hence,
Q ⊆ [μ(Q)]. Thus, Q = [μ(Q)].
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Now we show that λ−1(Q) = λ−1
(
μ(Q)

)
. From μ(Q) ⊆ Q, we have

λ−1(μ(Q)) ⊆ λ−1(Q). To see the reverse inclusion, let x ∈ λ−1(Q) so that λ(x) ∈ Q.
Then, λ(x) = μ

(
λ(x)

) ∈ μ(Q). This proves that x ∈ λ−1
(
μ(Q)

)
. Thus, we have

λ−1(Q) = λ−1
(
μ(Q)

)
.

(d)Consider a spectral functionΦ onV that iswritten asφ◦λ for someφ : W → R.
Define φ̃ : W → R by φ̃(u) := φ

(
μ(u)

)
for any u ∈ W . Clearly, φ̃ is constant on the

μ-orbits, hence a spectral function on W . Additionally, if u = λ(x) for some x ∈ V ,
then

φ̃
(
λ(x)

) = φ
(
μ

(
λ(x)

)) = φ
(
λ(x)

) = Φ(x),

where we have used condition (C1) in Definition 2.3. Hence Φ = φ̃ ◦ λ, where φ̃ is a
spectral function onW . ��

We now come to first of several key results of this section. For results of this type
in the settings of Euclidean Jordan algebras and normal decomposition systems, see
[11, 12].

Theorem 3.1 Suppose (V, W, λ) is aFTvNsystemwith its reduced system (W, W, μ).
Let E = λ−1(Q), where Q is a spectral set inW . Then

(a) E = λ−1(Q) = λ−1( Q ).
(b) E◦ = λ−1(Q) ◦ = λ−1(Q◦).
(c) ∂(E) = λ−1

(
∂(Q)

)
.

Proof (a) By the continuity of λ, E = λ−1(Q) ⊆ λ−1( Q ). To see the reverse
inclusion, let x ∈ λ−1( Q ) so that λ(x) ∈ Q. Then, there exists a sequence (uk) in
Q such that uk → λ(x). By the continuity of μ, we have μ(uk) → μ

(
λ(x)

) = λ(x).
Note that μ(uk) ∈ μ(W) ⊆ λ(V). Thus, by (A3) in Definition 2.1, for each k, there
exists xk ∈ V such that λ(xk) = μ(uk) with xk and x commuting. Since λ is distance-
preserving on two commuting elements (see Proposition 2.2), we have

‖xk − x‖ = ‖λ(xk) − λ(x)‖ = ‖μ(uk) − λ(x)‖ .

From Proposition 3.2(a), μ(Q) ⊆ Q. So, λ(xk) = μ(uk) ∈ μ(Q) ⊆ Q. Hence,
xn ∈ λ−1(Q) and

lim
k→∞ ‖xk − x‖ = lim

k→∞ ‖μ(uk) − λ(x)‖ = 0.

This shows that x ∈ λ−1(Q), implying λ−1( Q ) ⊆ λ−1(Q). Hence we have Item (a).
(b) Since Q is spectral inW , Qc is also spectral inW . Since E◦ = (

Ec
)c, we see,

by (a), that

E◦ =
(
λ−1(Q)

) ◦ =
(

λ−1(Q)c
)c =

(
λ−1(Qc)

)c

=
(
λ−1( Qc

))c = λ−1
( (

Qc
)c )

= λ−1(Q◦).
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(c) As ∂(E) = E \ E◦, the result follows from (a) and (b) and the set-theoretic
properties of λ−1. ��

Suppose (V,W, λ) is a FTvN system. By the continuity of λ we know (from
Proposition 3.1) that the inverse image of a closed set (open set) is closed (respectively,
open).Also, the inverse imageof a compact set is compactwhenV is finite dimensional.
In the following result, we show that under appropriate conditions, a set Q is closed
(open, compact) inW if and only if its inverse image λ−1(Q) is closed (respectively,
open, compact) in V .

Proposition 3.3 Suppose (V, W, λ) is a FTvN system with its reduced system
(W, W, μ). Let E = λ−1(Q), where Q is a spectral set in W . Then the follow-
ing statements hold.

(i) Suppose V is finite dimensional. If E is closed (open) in V , then Q is closed
(respectively, open) inW .

(i i) Suppose both V and W are finite dimensional. If E is compact in V , then Q is
compact inW .

Proof (i) Suppose E is closed in V; let (uk) be a sequence in Q such that uk →
u ∈ W . We show that u ∈ Q. Since Q is spectral and μ(μ(uk)) = μ(uk), we have
μ(uk) ∈ [Q] ⊆ Q and μ(uk) → μ(u) by the continuity of μ. Now, for each μ(uk),
there exists xk ∈ E such that λ(xk) = μ(uk) by Proposition 3.2(a). Since (uk) is
convergent, it is bounded. As λ and μ are norm-preserving, for all k we have

‖xk‖ = ‖λ(xk)‖ = ‖μ(uk)‖ = ‖uk‖ .

So, (xk) is bounded in V . As V is finite dimensional, (xk) will have a convergent
subsequence. Without loss of generality, let xk → x for some x ∈ V . As E is closed,
we have x ∈ E . Since λ(xk) → λ(x) and λ(xk) = μ(uk) → μ(u), we must have
λ(x) = μ(u), that is,μ(u) = λ(x) = μ

(
λ(x)

)
. This shows that u ∈ [λ(E)]. However,

since Q is spectral, we have [λ(E)] = [μ(Q)] = Q by Proposition 3.2(a, c); hence
u ∈ Q as we wanted.

When E is open, we work with the closed set Ec = λ−1(Qc). Since Qc is spectral
inW , from the above, Qc is closed, i.e., Q is open.

(i i) Now suppose that V and W are finite dimensional with E compact. Then, by
the continuity of λ, λ(E) is compact in W . So, the set μ(Q) (which is λ(E) from
Proposition 3.2(a)) is compact inW . Now, from Proposition 3.1 (applied to the finite
dimensional FTvN system (W,W, μ)), [μ(Q)] = μ−1(μ(Q)) is compact in W . As
Q = [μ(Q)] from Proposition 3.2(c), we see that Q is compact inW . This completes
the proof. ��

Our next result deals with convexity issues when both E and Q are spectral sets in
their respective spaces.

Theorem 3.2 Suppose (V, W, λ) is aFTvNsystemwith its reduced system (W, W, μ).
Let E = λ−1(Q), where Q is a spectral set inW . Then the following statements hold.
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(a) SupposeW is finite dimensional. If Q is convex, then E is convex. More generally,

conv λ−1(Q) ⊆ λ−1(conv Q).

(b) Suppose V is a Hilbert space and W is finite dimensional. Then,

conv λ−1(Q) = λ−1(conv Q)
.

(c) Suppose both V and W are finite dimensional. If E is convex, then Q is convex.
Thus, in this setting, every convex spectral set in V arises as the λ-inverse image
of a convex spectral set inW .

(d) Suppose both V and W are finite dimensional. If Q is compact, then

conv λ−1(Q) = λ−1(conv Q).

Moreover, if Q is also convex, then λ−1(Q) is compact and convex. Thus, in this
setting, every compact convex spectral set in V arises as the λ-inverse image of a
compact convex spectral set inW .

Proof (a) Suppose first that Q is convex (in the finite dimensional spaceW). We show
that E = λ−1(Q) is convex. Fix x, y ∈ E and 0 ≤ t ≤ 1 in R. Then, as W is finite
dimensional, from Proposition 2.6(b),

u := λ(t x + (1 − t)y) ≺ tλ(x) + (1 − t)λ(y) =: v.

Since λ(x), λ(y) ∈ Q and Q is convex, we have v ∈ Q. As u ≺ v, we have u ∈
conv[v]; thus, we can write u as a convex combination of vks, where vk ∈ [v]. Now,
as Q is spectral with v ∈ Q and vk ∈ [v], we have vk ∈ Q for each k. Hence, by the
convexity of Q, we have u ∈ Q. It follows that t x + (1 − t)y ∈ λ−1(Q) = E . This
proves the convexity of E in V .

Now consider a general spectral set Q in W . As W is finite dimensional, we can
apply Proposition 2.4(c) in the system (W,W, μ) to see that conv Q is convex and
spectral in W . Hence, by what we have proved above, λ−1(conv Q) is convex and
spectral. As λ−1(Q) ⊆ λ−1(conv Q), we see that conv λ−1(Q) ⊆ λ−1(conv Q).

(b) Assume that V is a Hilbert space andW is finite dimensional. As Q is spectral
in W , by Proposition 2.4(b), conv Q is closed, convex, and spectral in W . By the
continuity of λ and Item (a), λ−1

(
conv Q

)
is closed and convex as well. Since this

set contains λ−1(Q), we have

conv λ−1(Q) ⊆ λ−1( conv Q)
. (5)

We now prove the reverse inclusion. Suppose y ∈ λ−1
(
conv Q

)
, but y /∈ convλ−1(Q).

Since V is a Hilbert space, by the separation theorem, there exist c ∈ V and an α ∈ R
such that

〈y, c〉 > α ≥ 〈x, c〉 for all x ∈ convλ−1(Q).
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In particular, the inequality holds for all x ∈ λ−1(Q). Now, for each q ∈ Q, we have
(from Proposition 3.2(a)) that μ(q) ∈ μ(Q) = λ(E), so there exists (by applying
(A3) in Definition 2.1) x ∈ V such that λ(x) = μ(q) and

〈x, c〉 = 〈λ(x), λ(c)〉 = 〈μ(q), λ(c)〉.

Since λ(x) = μ(q) ∈ μ(Q) ⊆ Q (from Proposition 3.2(a)), we have x ∈ λ−1(Q).
Thus, for all q ∈ Q, we see that

〈q, λ(c)〉 ≤ 〈μ(q), μ(λ(c))〉 = 〈μ(q), λ(c)〉 = 〈x, c〉 ≤ α.

As q ∈ Q is arbitrary, by linearity and continuity of the inner product, 〈p, λ(c)〉 ≤ α

for all p ∈ conv Q. Specializing this to p = λ(y) ∈ conv Q, we get

〈λ(y), λ(c)〉 ≤ α.

However, this contradicts the inequalities

α < 〈y, c〉 ≤ 〈λ(y), λ(c)〉.

We thus have the required reverse inclusion. Hence, the inclusion in (5) becomes an
equality.

(c) Now, suppose both V andW are finite dimensional and E = λ−1(Q) is convex
in V . We claim that Q is convex in W . Let u, v ∈ Q and 0 ≤ t ≤ 1 in R. Since
μ(u), μ(v) ∈ μ(Q) = λ(E) by Proposition 3.2(a), we may choose x, y ∈ E such
that

λ(x) = μ(u) and λ(y) = μ(v).

Now, put w := tv + (1 − t)u ∈ W . Then, by (C1) in Definition 2.3, there exists
z ∈ V such that λ(z) = μ(w). In the proof given below, we will show that z belongs
to E . Then, μ(w) = λ(z) ∈ λ(E) = μ(Q) ⊆ Q; hence we have w ∈ Q due to the
spectrality of Q, proving the convexity of Q.

First, note that (W, W, μ) is a reduced system of itself (see the description after
Definition 2.3). Hence, applying Proposition 2.6(b) with the assumption that W is
finite dimensional, we have

λ(z) = μ(w) = μ
(
tv + (1 − t)u

) ≺ tμ(v) + (1 − t)μ(u).

Now, applying (A3) in Definition 2.1 with q = λ(x) and c = y, we choose x ∈ V
such that

λ(x) = λ(x) and 〈y, x〉 = 〈λ(y), λ(x)〉.

The second equation above implies that y and x commute. Hence, t y and (1− t)x also
commute; consequently, by Proposition 2.2(e), λ

(
t y+(1−t)x

) = tλ(y)+(1−t)λ(x).

123



Journal of Optimization Theory and Applications

Now, since E is spectral, λ(x) = λ(x) and x ∈ E imply that x ∈ E ; hence we have
t y + (1 − t)x ∈ E by the convexity of E . It follows that

λ(z) = μ(w) = μ(tv + (1 − t)u)

≺ tμ(v) + (1 − t)μ(u)

≺ tλ(y) + (1 − t)λ(x)

= λ
(
t y + (1 − t)x

)
.

Since V is also assumed to be finite dimensional, this gives z ≺ t y + (1− t)x ∈ E by
Proposition 2.6(c). Finally, as E is convex and spectral, this implies that z ∈ E as we
have wanted.

Lastly, consider a convex spectral set E in V . From Proposition 3.2(b), there exists
a spectral set Q̃ in W such that E = λ−1(Q̃). Moreover, this Q̃ must be convex by
the argument we had earlier.

(d) SinceW is finite dimensional and Q is compact (and spectral), it follows (see,
for example, [14], Theorem 3.25) that conv Q is compact and convex. So, conv Q =
conv Q. Since V is finite dimensional, λ−1(Q) is also compact in V by Proposition
3.1. Therefore, its closed convex hull is just conv λ−1(Q). Thus, by (b),

conv λ−1(Q) = conv λ−1(Q) = λ−1(conv Q) = λ−1(conv Q).

Nowsuppose that Q, in addition to being compact and spectral, is also convex. Then,
as noted previously, λ−1(Q) is compact. Since conv Q = Q, we have conv λ−1(Q) =
λ−1(conv Q) = λ−1(Q). Thus, λ−1(Q) is compact and convex in V .

Finally, suppose E is a compact convex spectral set in V . Based on the previous
results, we write E = λ−1(Q̃), where Q̃ is spectral and convex in W . We now claim
that Q̃ is also compact. As E is compact and λ is continuous, λ(E) is compact in
W . Since μ(Q̃) = λ(E) (see Proposition 3.2(a)) and Q̃ = μ−1

(
μ(Q̃)

)
, we see from

Proposition 3.1 that Q̃ is compact inW . This completes the proof. ��
Corollary 3.2 SupposeV andW are finite dimensional. Suppose Q is a spectral convex
cone inW . Then, λ−1(Q) is a spectral convex cone in V .
Remark 3.2 In the setting of a Euclidean Jordan algebra, the formula stated in Theorem
3.2(d) holds even without the assumption that Q is compact; see Proposition 12 in
[11] – the proof of which relies on the spectral decomposition theorem. It is not known
if the compactness condition can be dispensed with in this formula.

We now investigate the spectrality of the set of extreme points of a compact convex
spectral set. We recall the Krein-Milman theorem ( [3], Theorems 7.4 and 7.8) stated
in our setting of an inner product space: Every nonempty compact convex set K is
the closed convex hull of its extreme points. Moreover, if S is any subset of K whose
closed convex hull is K , then ext(K ) ⊆ S. We note that ext(K ) may not be closed
even in a finite dimensional space, see [3], page 148.

Lemma 3.1 Consider a FTvN system (V,W, λ), where V is finite dimensional. If E
is a convex spectral set in V , then ext(E) and ext(E) are spectral in V .
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Proof Assuming that ext(E) is nonempty, let x ∈ ext(E) and take y ∈ V such that
λ(y) = λ(x). We will show that y ∈ ext(E). Now, as E is spectral, we have y ∈ E .
If possible, let y = a+b

2 , where a, b ∈ E . Using Proposition 2.5, we have

x ∈ [y] =
[a + b

2

]
⊆ conv[a] + conv[b]

2
⊆ E,

where the last inclusion follows from the convexity and spectrality of E . Since x ∈
ext(E), we must have x ∈ [a] and x ∈ [b]; so, λ(y) = λ(x) = λ(a) = λ(b). This
implies that ‖y‖ = ‖a‖ = ‖b‖. From the strict convexity of the norm, we must have
y = a = b. This proves that ext(E) is spectral. Consequently, from Proposition 2.4,
ext(E) is also spectral. ��
Theorem 3.3 Suppose (V,W, λ) is aFTvN systemwith its reduced system (W,W, μ),
whereV andW are finite dimensional. Let E = λ−1(Q), where Q is a compact convex
spectral set inW . Then,

λ−1( ext(Q)
) ⊆ ext

(
λ−1(Q)

) ⊆ λ−1( ext(Q)
)
, (6)

and

λ−1
(
ext(Q)

) = ext
(
λ−1(Q)

) = λ−1( ext(Q)
)
. (7)

Proof We prove the first inclusion in (6). As V and W are finite dimensional, from
Theorem 3.2(b), we see that E is compact, convex, and spectral. Let u ∈ λ−1

(
ext(Q)

)
so λ(u) ∈ ext(Q). To see that u ∈ ext

(
λ−1(Q)

)
, that is, u is an extreme point of E ,

suppose u = a+b
2 , where a, b ∈ E . We will show that u = a = b. Now, asW is finite

dimensional, by Proposition 2.6,

λ(u) = λ(a + b)

2
≺ λ(a) + λ(b)

2
.

This means that

λ(u) ∈ conv
[
λ(a) + λ(b)

]

2
⊆ conv[λ(a)] + conv[λ(b)]

2
,

where we have used Proposition 2.5 (specialized to W). As [λ(a)] and [λ(b)] are
subsets of the compact convex set Q (in W) and λ(u) ∈ ext(Q), we see that λ(u) =
w1 = w2, where w1 ∈ [λ(a)] and w2 ∈ [λ(b)], i.e., μ(w1) = μ(λ(a)) and μ(w2) =
μ(λ(b)). Since μ ◦ λ = λ and λ(u) = w1, we get

λ(u) = μ(λ(u)) = μ(w1) = μ(λ(a)) = λ(a).

Similarly, we get λ(u) = λ(b). Hence, λ(u) = λ(a) = λ(b) and so ‖u‖ = ‖a‖ = ‖b‖.
Now, using the strict convexity of the (inner product) norm and u = a+b

2 we see that
u = a = b. Thus, u ∈ ext(E), proving the first inclusion in (6). By the above Lemma,
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ext(Q) is spectral inW . The set ext(Q), being a closed subset of the compact convex
set Q, is compact. Since W is finite dimensional, its convex hull, conv ext(Q) is
compact and convex and also a subset of Q. In view of the Krein-Milman theorem,
we have

Q = conv ext(Q) ⊆ conv ext(Q) ⊆ Q.

Thus, we have Q = conv ext(Q).
We now prove the second inclusion in (6). Define the closed set S by S :=

λ−1
(
ext(Q)

)
. As ext(Q) is compact and spectral inW, by Theorem 3.2(d),

conv S = λ−1( conv ext(Q)
) = λ−1(Q).

Consequently, the closed convex hull of S is λ−1(Q); by [3], Theorem 7.8,

ext
(
λ−1(Q)

) ⊆ S = S.

Thus, we have both the inclusions in (6). We now apply Theorem 3.1(a) to the spectral
set ext(Q) to see

λ−1
(
ext(Q)

) = λ−1( ext(Q)
)
.

Using this and taking closures of sets in (6), we get (7). ��
Note: It is unclear if/when the equality holds in the first inclusion in (6).

The following theorem extends a result proved in the setting of Euclidean Jordan
algebras, see [10], Theorem 3.3.

Theorem 3.4 Suppose (V,W, λ) is aFTvN systemwith its reduced system (W,W, μ),
where V and W are finite dimensional. If Q1 and Q2 are convex spectral sets in W ,
then

λ−1(Q1 + Q2) = λ−1(Q1) + λ−1(Q2).

Proof By relying only on the finite dimensionality ofW , we first prove the inclusion

λ−1(Q1) + λ−1(Q2) ⊆ λ−1(Q1 + Q2). (8)

Let ui ∈ λ−1(Qi ) for i = 1, 2. Then, we have λ(ui ) ∈ Qi . Since W is finite dimen-
sional, by Proposition 2.6(b),

λ(u1 + u2) ≺ λ(u1) + λ(u2).

So,

λ(u1 + u2) ∈ conv[λ(u1) + λ(u2)] ⊆ conv[λ(u1)] + conv[λ(u2)],
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where the inclusion on the right comes from Proposition 2.5 (applied in W). As Q1
and Q2 are spectral and convex, we see that conv[λ(ui )] ⊆ Qi and so

λ(u1 + u2) ∈ Q1 + Q2.

This proves (8).
We now prove the reverse inclusion

λ−1(Q1 + Q2) ⊆ λ−1(Q1) + λ−1(Q2). (9)

Let Ei := λ−1(Qi ) for i = 1, 2 and take u ∈ λ−1(Q1 + Q2) so that λ(u) = q1 + q2
for some q1 ∈ Q1 and q2 ∈ Q2. Then, by Proposition 3.2(a),

wi := μ(qi ) ∈ μ(Qi ) = λ(Ei ) ⊆ Qi ,

for i = 1, 2. Hence, wi = μ(qi ) = λ(ui ), where ui ∈ Ei for i = 1, 2. Now, the
orbit [wi ], in addition to being spectral, is compact inW (asW is finite dimensional);
hence, by Proposition 2.4(c), conv[wi ] is compact, convex, and spectral in W . Since
V is finite dimensional, by Theorem 3.2,

Fi := λ−1( conv[wi ]
)

is compact, convex, and spectral. Thus, F1 + F2 is compact and convex.
We now claim that u ∈ F1 + F2. If we assume the contrary, then there exist c ∈ V

and α ∈ R such that

〈c, u〉 > α ≥ 〈c, x1〉 + 〈c, x2〉 for all x1 ∈ F1, x2 ∈ F2.

Noting that ui ∈ Fi for i = 1, 2, we vary x1 over [u1] (which is a subset of F1) and x2
over [u2] (a subset of F2). Applying (1) and using the equality μ ◦ λ = λ, we see that

〈c, u〉 > α ≥ 〈λ(c), λ(u1)〉 + 〈λ(c), λ(u2)〉
= 〈λ(c), μ(q1)〉 + 〈λ(c), μ(q2)〉
= 〈μ(λ(c)), μ(q1)〉 + 〈μ(λ(c)), μ(q2)〉
≥ 〈λ(c), q1〉 + 〈λ(c), q2〉
= 〈λ(c), q1 + q2〉
= 〈λ(c), λ(u)〉
≥ 〈c, u〉.

This contradiction justifies the claim that u ∈ F1 + F2. Consequently,

u ∈ λ−1( conv[w1]
) + λ−1( conv[w2]

) ⊆ λ−1(Q1) + λ−1(Q2).

Since u is arbitrary in λ−1(Q1 + Q2), we get the inclusion (9). Combining this
with the inclusion (8), we have the stated equality in the theorem. ��
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In all of the previous results, we considered transfer principles for spectral sets.
Now, we present a transfer principle for spectral functions.

A celebrated result of Davis [4] says that a unitarily invariant function on Hn (the
space of all n×n complex Hermitian matrices) is convex if and only if its restriction to
diagonal matrices is convex. This result has numerous applications in various fields. A
generalization of this result for Euclidean Jordan algebras has already been observed
in [1]. In what follows, we consider a generalization to the setting of FTvN systems. In
the result below, we relate the convexity (lower semi-continuity) of a spectral function
Φ (= φ ◦λ) to that of φ. Recall that a real-valued function f on an inner product space
X is lower semi-continuous if for each real number t , the set {x ∈ X : f (x) ≤ t} is
closed in X .

Theorem 3.5 Suppose (W,W, μ) is a reduced system of (V,W, λ) with a spectral
functionφ : W → R. LetΦ = φ◦λ. If W is finite dimensional andφ is convex (lower
semi-continuous), then Φ is convex (respectively, lower semi-continuous). Moreover,
if V and W are both finite dimensional, then the convexity (lower semi-continuity) of
Φ implies that of φ.

Proof Recall that (R×W,R×W, M)with M(t, u) = (
t, μ(u)

)
is a reduced system

of (R × V,R × W,Λ) with Λ
(
t, x

) = (
t, λ(x)

)
(see Example 2.5 for details). We

prove our assertions by considering the epigraphs of Φ and φ, denoted by epiΦ and
epiφ, respectively. Note, from Proposition 2.1, that two epigraphs are spectral sets in
their respective spaces and they are related by the equality

epiΦ = Λ−1(epiφ). (10)

Suppose first that φ is convex (resp. lower semi-continuous). Then epiφ is a convex
(resp. closed) spectral set in the FTvN system (R×W,R×W, M). Thus, assuming
W is finite dimensional, we see that epiΦ is convex (resp. closed) by Theorem 3.2(a).
This shows that Φ is convex (resp. lower semi-continuous) on V .

Conversely, if Φ is convex (resp. lower semi-continuous), then epiΦ is a convex
(resp. closed) spectral set in the FTvN system (R × V,R × W,Λ). In this case,
assuming both V andW are finite dimensional, we see that epi φ is also convex (resp.
closed) and spectral onR×W by Theorem 3.2(c) (resp. by Proposition 3.3) applied
to the relation (10). This proves that φ is convex (resp. lower semi-continuous) onW .
��

4 Fenchel Conjugate and Subdifferential of � ◦ �

Consider a FTvN system (V,W, λ). In the previous sections, we only considered
spectral functions that were real-valued. Now, in this section, we allow functions
to take the value positive infinity. Given a function φ : W → R ∪ {∞}, we let
Φ := φ ◦λ : V → R∪{∞} and (still) call it a “spectral function” on V (equivalently,
Φ : V → R∪ {∞} is constant on λ-orbits.) The goal of this section is to describe the
Fenchel conjugate and the subdifferential of φ ◦ λ in terms of those of φ. Motivation
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for these come from similar results proved in the setting of normal decomposition
systems [12] and hyperbolic polynomials [2].

Let X be a real inner product space. Consider f : X → R ∪ {∞} with dom( f ) =
{x ∈ X : f (x) ∈ R}. Given S ⊆ X and x ∈ S∩dom( f ), we define the subdifferential
of f at x relative to S by

∂S f (x) = {d ∈ X : f (x) − f (x) ≥ 〈d, x − x〉 ∀x ∈ S}.

Next, we recall the definition of Fenchel conjugate of f relative to S:

f ∗
S (z) = sup

x∈S
{〈x, z〉 − f (x)

}
(z ∈ X).

When S = X , we suppress S from the above notation/definitions. We recall the
following proposition.

Proposition 4.1 Suppose f : X → R∪ {∞} and S ⊆ X with S ∩ dom( f ) nonempty.
Let x ∈ S ∩ dom( f ). Then the following hold:

(a) (Fenchel inequality) f (x) + f ∗
S (y) ≥ 〈x, y〉 for all x ∈ S and y ∈ X.

(b) d ∈ ∂S f (x) if and only if f (x) + f ∗
S (d) = 〈x, d〉.

Proof (a) This is clear from the definition of Fenchel conjugate.
(b) Suppose d ∈ ∂S f (x). Then from the definition, we have f (x)+〈d, x〉− f (x) ≤

〈d, x〉 for all x ∈ S. Thus, f (x) + f ∗
S (d) ≤ 〈d, x〉. Since f (x) + f ∗

S (d) ≥ 〈d, x〉
holds from (a), we have the desired equality.

Conversely, assume f (x) + f ∗
S (d) = 〈d, x〉. Then, by (a) we see that

〈d, x〉 = f (x) + f ∗
S (d) ≥ f (x) + 〈d, x〉 − f (x),

for all x ∈ S. Rewriting the inequality above, we get f (x) − f (x) ≥ 〈d, x − x〉 for
all x ∈ S; hence d ∈ ∂S f (x). ��

Theorem 4.1 Consider a FTvN system (V,W, λ), φ : W → R∪ {∞}, and S ⊆ V . If
S is a spectral set in V , then

(φ ◦ λ)∗S(z) = φ∗
λ(S)

(
λ(z)

)
(∀z ∈ V). (11)

Moreover, if (W,W, μ) is a reduced system of (V,W, λ) and φ is a spectral function,
then

φ∗
λ(S)(λ(z)) = φ∗

[λ(S)]
(
λ(z)

)
(∀z ∈ V). (12)
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Proof Fix z ∈ V and suppose S is a spectral set. Since S = [S], we see that

φ∗
λ(S)

(
λ(z)

) = sup
w∈λ(S)

{
〈w, λ(z)〉 − φ(w)

}

= sup
x∈S

{
〈λ(x), λ(z)〉 − φ

(
λ(x)

)}

= sup
x∈S

{
max
y∈[x]

{〈y, z〉 − φ
(
λ(x)

)}}

= sup
x∈S

{
max
y∈[x]

{〈y, z〉 − φ
(
λ(y)

)}}

= sup
y∈[S]

{
〈y, z〉 − φ

(
λ(y)

)}

= sup
y∈S

{
〈y, z〉 − φ

(
λ(y)

)}

= (φ ◦ λ)∗S(z).

(In the above, we have used the equalities maxy∈[x]〈y, z〉 = 〈λ(x), λ(z)〉 and
φ(λ(y)) = φ(λ(x)) for all y ∈ [x].) Thus we have (11).

Now, let (W,W, μ) be a reduced system of (V,W, λ). Since λ(S) ⊆ [λ(S)], the
inequality

φ∗
λ(S)

(
λ(z)

) ≤ φ∗
[λ(S)]

(
λ(z)

)

follows immediately. We now prove the reverse inequality when φ is spectral. By
the spectrality of φ, we see that φ(u) = φ(μ(u)) for all u ∈ W . Also, we have
λ(z) = μ

(
λ(z)

)
for all z ∈ V . It follows that μ([λ(S)]) = λ(S) and

φ∗
[λ(S)](λ(z)) = sup

u∈[λ(S)]

{
〈u, λ(z)〉 − φ(u)

}

≤ sup
u∈[λ(S)]

{
〈μ(u), μ(λ(z))〉 − φ

(
μ(u)

)}

= sup
w∈μ([λ(S)])

{
〈w, λ(z)〉 − φ(w)

}

= sup
w∈λ(S)

{
〈w, λ(z)〉 − φ(w)

}

= φ∗
λ(S)

(
λ(z)

)
.

Thus, we have the equality (12), completing the proof. ��

Remark 4.1 In the proof of the above theorem, in particular, in that of (11), we relied
on (1), namely, the defining condition of a FTvN system. It turns out by specializing
(11), we can recover condition (1). To see this, consider two real inner product spaces

123



Journal of Optimization Theory and Applications

V and W with a map λ : V → W . Suppose

(φ ◦ λ)∗S(z) = φ∗
λ(S)

(
λ(z)

)
,

for any φ : W → R and any set S in V of the form λ−1(Q) with Q ⊆ W . We
specialize this condition by taking (the constant function) φ = 0, z = c, and letting
for any u ∈ V , S = λ−1({λ(u)}) (which, in our notation is [u]). Then,

sup
x∈[u]

〈c, x〉 = (φ ◦ λ)∗S(c) = φ∗
{λ(u)}

(
λ(c)

) = 〈λ(c), λ(u)〉.

The following result generalizes Theorem 4.4 in [12] proved in the setting of normal
decomposition systems.

Corollary 4.1 Let (V,W, λ) be a FTvN system with its corresponding reduced system
(W,W, μ). If φ : W → R ∪ {∞} is spectral on W , then

(φ ◦ λ)∗ = φ∗ ◦ λ.

Proof We let S = V in the above theorem. As the ranges of λ and μ are the same and
λ = μ ◦ λ, we see that for any w ∈ W , there is an x ∈ V such that μ(w) = λ(x) =
μ

(
λ(x)

)
. This means that (the above) w and λ(x) are in the same μ-orbit. It follows

that W = [λ(V)]. We now have

(φ ◦ λ)∗V (z) = φ∗
λ(V)

(
λ(z)

) = φ∗
[λ(V)]

(
λ(z)

) = φ∗
W

(
λ(z)

)
.

By suppressing V and W , we get (φ ◦ λ)∗ = φ∗ ◦ λ. ��
Our next result deals with a subdifferential formula. We recall the definition of

commutativity: x and y commute in V if 〈x, y〉 = 〈λ(x), λ(y)〉, or equivalently,
λ(x + y) = λ(x) + λ(y).

Theorem 4.2 Let (V,W, λ) be a FTvN system. Suppose Φ = φ ◦ λ, where φ : W →
R ∪ {∞}. Let S ⊆ V be a spectral set and x ∈ S ∩ dom(Φ). Then,

y ∈ ∂SΦ(x) ⇐⇒ λ(y) ∈ ∂λ(S)φ
(
λ(x)

)
and y commutes with x . (13)

Additionally, if (W,W, μ) is a reduced system of (V,W, λ) and φ is spectral, then,

y ∈ ∂SΦ(x) ⇐⇒ λ(y) ∈ ∂[λ(S)]φ
(
λ(x)

)
and y commutes with x .

In particular, y ∈ ∂Φ(x) ⇐⇒ λ(y) ∈ ∂φ
(
λ(x)

)
and y commutes with x.

Proof First, assume λ(y) ∈ ∂λ(S)φ(λ(x)) and the commutativity of x and y. Then, we
have

〈x, y〉 = 〈λ(x), λ(y)〉 = φ
(
λ(x)

) + φ∗
λ(S)(λ(y)),
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by Proposition 4.1(b) applied to φ. Since φ∗
λ(S)(λ(y)) = Φ∗

S(y) from Theorem 4.1,
we see that

〈x, y〉 = Φ(x) + Φ∗
S(y),

implying y ∈ ∂SΦ(x).
Conversely, given y ∈ ∂SΦ(x), we have Φ(x) + Φ∗

S(y) = 〈x, y〉 by Proposition
4.1(b). Since S is assumed to be spectral, we have Φ∗

S(y) = φ∗
λ(S)(λ(y)); so,

φ
(
λ(x)

) + φ∗
λ(S)

(
λ(y)

) = 〈x, y〉 ≤ 〈λ(x), λ(y)〉. (14)

On the other hand, note that φ(λ(x)) + φ∗
λ(S)(λ(y)) ≥ 〈λ(x), λ(y)〉 by Proposition

4.1(a). Hence, we have the equality throughout (14), i.e.,

φ
(
λ(x)

) + φ∗
λ(S)

(
λ(y)

) = 〈x, y〉 = 〈λ(x), λ(y)〉.

The equalities above imply that λ(y) ∈ ∂λ(S)φ
(
λ(x)

)
and the commutativity of x and

y. Thus we have proved the equivalence in (13).
For the second part, we (further) assume that φ is spectral on a reduced system

(W,W, μ). Since Φ∗
S(y) = φ∗

[λ(S)](λ(y)) by Theorem 4.1, the same argument above
with λ(S) replaced by [λ(S)] yields the desired conclusion.

The final statement comes from the second part by taking S = V and noting
W = [λ(V)]. ��
Remark 4.2 As noted in the Introduction, in a FTvN system, one has (2), which, when
specialized, yields (1). Changing φ to −φ in (2) we get the equality

sup
x∈S

{
〈y, x〉 − Φ(x)

}
= sup

u∈λ(S)

{
〈λ(y), u〉 − φ(u)

}
, (15)

where S ⊆ V is a spectral set, Φ = φ ◦ λ : V → R is a spectral function, and
y ∈ V . Moreover, if x solves the problem on the left, then x commutes with y and
the maximum value is given by 〈λ(y), λ(x)〉 − φ

(
λ(x)

)
. We now remark that when

φ is real-valued, (15) is equivalent to (13). To see this, given x, y ∈ V , notice that
y ∈ ∂SΦ(x) if and only if x is a maximizer of the problem supx∈S

{〈y, x〉 − Φ(x)
}
.

Similarly, we have λ(x) ∈ ∂λ(S)φ
(
λ(x)

)
if and only if λ(x) is a maximizer of the

problem supu∈λ(S)

{〈λ(y), u〉 − φ(u)
}
. These justify that (15) is equivalent to (13).

Finally, in view of an earlier remark, we conclude that (1), (2), (11), and (13) are all
equivalent.

We note a simple consequence of the above theorem.

Corollary 4.2 (Geometric commutation principle, [5]) Suppose S is a spectral set in
the FTvN system (V,W, λ) and x ∈ S. Then, every element in the normal cone of S
at x commutes with x.
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Proof Recall that the normal cone of S at x is the set

{
d ∈ V : 〈d, x − x〉 ≤ 0 ∀x ∈ S

}
.

Every d in this set belongs to ∂S(φ ◦ λ)(x), where φ is the constant function zero. By
the above theorem, d commutes with x . ��

Remark 4.3 Throughout this paper, we have considered spectral functions defined on
the entire space. In some applications, we may need to consider functions that are
partially defined (say, on a subset); for instance, in the proof of Theorem 4.1, it is
sufficient to assume thatφ is spectral on [λ(S)] ⊆ W . In such a situation,we can extend
the partially defined function to the entire space still maintaining its spectrality. Here
is a brief justification: Given a spectral set E = λ−1(Q) in (V,W, λ) with Q ⊆ W ,
let Φ : E → R be spectral on E , meaning that there exists a function φ : Q → R
such that Φ = φ ◦ λ on E . Then, as λ(Ec) ∩ Q = ∅, we can extend φ to all of W
by defining its values on Qc arbitrarily. By composing this extension with λ, we get
an extension of Φ to all of V . When the given FTvN system has a reduced system,
say, (W,W, μ), we can modify this construction. Starting with E = λ−1(Q), we
rewrite E as E = λ−1(Q̃), where Q̃ = [

Q ∩ μ(Q)
]
is spectral inW , see Proposition

3.2(a). Observing that Φ(x) = φ
(
λ(x)

) = φ̃
(
λ(x)

)
for all x ∈ E , we follow the

construction given above to extend φ̃ to all of W and correspondingly extend Φ to
all of V . Clearly, appropriate modifications can be done if the functions involved are
extended real-valued.

5 Concluding Remarks

In this article, working in the unified framework of Fan-Theobald-von Neumann sys-
tems, we presented transfer principles dealing with topological/convexity properties
of spectral sets and functions.We also presented Fenchel conjugate and subdifferential
formulas, generalizing the results of Lewis and Bauschke et al. proved in the settings
of normal decomposition systems and hyperbolic polynomials.
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