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Abstract

In protein NMR, the 3D structure is determined by making use of a
set of distance restraints between proton pairs and exploiting the do-
main knowledge about proteins. Euclidean distance geometry meth-
ods based on semidefinite programming (SDP) provide a natural
formulation for realizing a 3D structure from a set of given distance
constraints. However, the complexity of SDP solvers is a major ob-
stacle in their applicability to the protein NMR problem. We propose
a novel SDP-based protein structure determination from NMR data,
called SPROS, which is both fast and robust. By using a technique
called ‘semidefinite facial reduction,’ the SDP matrix size and the
number of equality constraints are approximately one quarter of the
original problem. Using this technique results in a one hundred-fold
decrease in the running time required by the SDP solver. SPROS is
applied to proteins with a molecular mass less than 15 kDa, and the
predicted structures are accurate.

1. Introduction
There are two major protein structure calculation methods:
• Simulated Annealing + Gradient-descent

– Torsion angle molecular dynamics, such as CYANA
– Cartesian coordinates molecular dynamics, such as XPLOR
• Euclidean Distance Matrix Completion (EDMC)

– Directly filling in missing elements in the Euclidean Distance
Matrix (EDM), such as EMBED and DISGEO.

– Using the Gram matrix and completing the distance matrix by
semidefinite programming (SDP), such as DAFGL and DISCO.

Semidefinite Programming
Euclidean distance matrix, D, and the Gram matrix or matrix of inner
products, K, are linearly related:

Dij = (xi − xj)
>(xi − xj)

= Kii − 2Kij +Kjj

Why SDP-based EDMC is superior?
• EDM D is valid (triangle inequalities, etc) iff K is Positive

Semidefinite (K � 0).
• Embedding dimension of {xi} is rank of K. Therefore, we have

control over dimensionality of {xi}.
The protein structure determination problem can be formulated as
an instance of SDP and solved by off-the-shelf solvers:

min
K

Tr{CK}

subject to Tr{AiK} = di, i ∈ C
K � 0

Each iteration of SDP takes O
(
n3 +m3

)
, where n is the size of the

SDP matrix and m is the number of constraints. The iteration count
should be very low and independent of the dimension, but it is de-
pendent on the desired accuracy. It is known that for n > 3, 000 and
m > 10, 000, SDP is not generally tractable.

2. Semidefinite Facial Reduction

If there are cliques in the data (a set of points that all pair-wise dis-
tances between them are known), complexity of SDP can be re-
duced.
Intuition: if we fix just d + 1 points from a clique with embed-
ding dimensionality d, the remaining points can be uniquely located.
This concept is called Semidefinite Facial Reduction (Krislock and
Wolkowicz, 2010):

K = UZU>,

where size of Z is smaller than K, and U is a predetermined matrix
computed from the cliques information.
Proteins are made up of 2D (peptide planes, aromatic rings, etc)
and 3D (tetrahedral carbons, etc) cliques.

Figure 1: Two peptide planes and the ALA side chain.

SPROS Advantages
• After facial reduction, the Slater Condition (strict feasibility) is sat-

isfied, and the problem size is reduced. As a result, the SDP
problem is solved faster and is less prone to numerical problems.
• In contrast to CYANA and XPLOR, the objective function is Con-

vex, and the best conformation is always found. Therefore, there
is no need for Simulated Annealing. Moreover, the process is re-
peatable.
• Similar to the Torsion Angle space, adding each peptide plane in-

creases the SDP problem size only by two. Similarly, each side
chain dihedral angle increases the SDP problem size by one.
• In comparison to the unreduced SDP problem, m and n are re-

duced by a factor of three to four. Additionally, SDP iterations are
nearly halved, which results in a 100-fold speed up.
• SPROS tolerates erroneous upper bounds by penalizing the `1-

norm of deviations, which does not lock the structure like the `2-
norm.

3. Results

SPROS is tested on three real protein datasets: STE50, the SAM
domain of the yeast signaling regulator, AIDA1 neuronal signaling
scaffolding protein PTB domain, and Fes SH2 domain.

Figure 2: Structure determined by SPROS (in red) and the refer-
ence structure in (blue) for STE50, the SAM domain of the yeast
signaling regulator. RMSD: 3.3, ensemble RMSD: 2.5.

Figure 3: Structure determined by SPROS (in red) and the refer-
ence structure in (blue) for AIDA1 neuronal signaling scaffolding pro-
tein PTB domain. RMSD: 1.7, ensemble RMSD: 1.8.

Figure 4: Structure determined by SPROS (in red) and the refer-
ence structure in (blue) for Fes SH2 domain. RMSD: 1.5, ensemble
RMSD: 2.1.

Table 1: Test proteins’ information: n′ and n are the original and the
reduced SDP matrix size, respectively; mu is the number of NMR
constraints; and m′e and me are the number of equality constraints
for the original and the reduced SDP problem. For SPROS, the
overall number of constraints is m = me + mu and for the original
problem, it is m′ = m′e +mu.

Protein length (a.a.) time (s) n′ m′e mu n me

STE50 75 141 1403 5250 1286 405 1767
SH2 107 284 1976 8051 1944 541 2334
AIDA1 131 335 2343 8782 1538 665 2938

4. Conclusions

SPROS is an alternative to Simulated Annealing-based protein
structure determination methods. It is very fast and finishes in a
matter of minutes and always generates the same structure for a
given input data. SPROS can be extended to docking applications.
Moreover, by fixing the reliable parts of the structure, it can be used
for further refinement of erroneous structures.
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