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Abstract

We determine the rank generating function, the zeta polynomial and the Möbius
function for the poset NC(B)(p, q) of annular non-crossing partitions of type B, where
p and q are two positive integers.

1 Introduction

The enumerative properties of the lattice NC(n) of non-crossing partitions of {1, . . . , n}
have been studied since the early 1970’s, starting with the paper [8] of G. Kreweras. An
important feature of this lattice is its connection to the symmetric group Sn. More precisely,
one has a natural poset isomorphism

NC(n) ≃ [ε, αn] := {τ ∈ Sn | ε ≤ τ ≤ αn}, (1.1)

where “≤” is a natural partial order on Sn, ε is the unit of Sn, and αn is the long cycle
(1, . . . , n) (see [3], [5]).

In 1997, V. Reiner [10] introduced the lattice NC(B)(n) of non-crossing partitions of
type B. Soon after that (see [2], [6], [4]) it was noticed that one has a poset isomorphism
analogous to the one from (1.1):

NC(B)(n) ≃ [ε, γn] := {τ ∈ Bn | ε ≤ τ ≤ γn}, (1.2)

where “≤” is a natural partial order on the hyperoctahedral group Bn, ε is the unit of
Bn, and γn is the long cycle (1, . . . , n,−1, . . . ,−n). (Here Bn is viewed as the group of
permutations τ of {1, . . . , n} ∪ {−1, . . . ,−n} which satisfy the condition τ(−i) = −τ(i),
1 ≤ i ≤ n.)

The recent paper [9] introduced a family of posets NC(B)(p, q), where p, q are two
positive integers. One has a poset isomorphism

NC(B)(p, q) ≃ [ε, γp,q] ⊆ Bp+q, (1.3)

where the partial order on the hyperoctahedral group Bp+q is the same as in (1.2), and
where γp,q is now the permutation with two cycles

γp,q := ( 1, . . . , p,−1, . . . ,−p )( p + 1, . . . , p + q,−(p + 1), . . . ,−(p + q) ) ∈ Bp+q.

The elements of NC(B)(p, q) are partitions of the set {1, . . . , p + q} ∪ {−1, . . . ,−(p + q)},
and every partition π ∈ NC(B)(p, q) has the property that if A is a block of π then −A is a
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block of π as well. The partial order considered on NC(B)(p, q) is the one given by reverse
refinement (π ≤ ρ if and only if every block of π is contained in a block of ρ). The poset
NC(B)(p, q) isn’t generally a lattice, but we have a notable exception occurring in the case
when q = 1. In this case the meet operation coincides with the usual “intersection meet”
for partitions – the blocks of the meet π ∧ ρ ∈ NC(B)(p, 1) are precisely the non-empty
intersections A ∩ B where A is a block of π and B is a block of ρ.

A distinctive feature of the partitions in NC(B)(p, q) is that one can draw them as non-
crossing diagrams in an annulus with 2p points marked on its outside circle and 2q points
marked on its inside circle. (This is unlike the diagrams drawn for partitions in NC(B)(n),
which are drawn in a disc with 2n points marked on its boundary.)

In the present paper we determine the rank generating function, the zeta polynomial
and the Möbius function of the poset NC(B)(p, q). Here is how the paper is organized.
In the next Section 2 we give a brief review (following [9]) of NC(B)(p, q), and a few of
its properties that are needed in the present paper. Then in Section 3 we discuss the
special “lattice” case q = 1, when the formulas for both the rank generating function and
the Möbius function are nicer, and have simpler derivations. It is amusing to note that
NC(B)(n− 1, 1) has the same rank generating function as NC(B)(n). Nevertheless, one has
NC(B)(n − 1, 1) 6≃ NC(B)(n) for all n ≥ 3, as one sees by looking at Möbius functions.
The Möbius function calculation shown in Section 3 relies on a partial Möbius inversion
formula, specific to the framework of a lattice. (This calculation is thus taking advantage
of the fact that NC(B)(n− 1, 1) is a lattice, and does not extend to the case of NC(B)(p, q)
for p, q ≥ 2.)

Section 4 is about the rank generating function of NC(B)(p, q) for general p, q. We
observe that we still have nice formulas when we focus on partitions in NC(B)(p, q) which
have a given connectivity (the connectivity of a partition π ∈ NC(B)(p, q) is the number
of pairs of blocks A,−A of π such that A 6= −A and such that A intersects both sets
{±1, . . . ,±p} and {±(p + 1), . . . ,±(p + q)}). But when we just enumerate the partitions in
NC(B)(p, q) by their rank we get 1-parameter sums (which can be summed up to a “closed
form” when q = 1, but not for general q).

The final Section 5 of the paper is devoted to determining the Möbius function for
NC(B)(p, q). The method used here is to count multichains via suitable “systems of paren-
theses”, on the same lines that were used by Edelman [7] to count multichains in NC(n)
and then by Reiner [10] to count multichains in NC(B)(n). A benefit of this approach is
that it also yields concrete formulas for the zeta polynomial for NC(B)(p, q), and for the
number of maximal chains in NC(B)(p, q). The formulas obtained are again not in closed
form, but (again) they can be summed up to closed form in the particular case when q = 1.

2 Review of NC(B)(p, q)

In this section we review, following [9], a few basic facts about the posets NC(B)(p, q). We
start by clarifying what kind of objects we have in these posets.

Remark 2.1. (Some features of NC(B)(p, q).)
(a) The elements of NC(B)(p, q) are partitions of the set {1, . . . , p+ q}∪{−1, . . . ,−(p+ q)}.
Every partition π ∈ NC(B)(p, q) has the property that if A is a block of π then −A is a
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block of π as well. If a block A of π has the property that A = −A, then we will say that A

is inversion-invariant, or that A is a zero-block of π. Clearly, the blocks of π which are not
inversion-invariant come in pairs (A and −A, with A 6= −A). It is worth keeping in mind
that a partition π ∈ NC(B)(p, q) can never have more than one inversion-invariant block (if
such a block exists, then it is unique).
(b) The partial order considered on NC(B)(p, q) is the one given by reverse refinement (π ≤ ρ

if and only if every block of π is contained in a block of ρ). We have that 0̂, 1̂ ∈ NC(B)(p, q),
where 0̂ is the partition of {±1, . . . ,±(p+q)} into 2(p+q) singletons, while 1̂ is the partition
of {±1, . . . ,±(p + q)} which has only one block. It is clear that 0̂ and 1̂ are the minimal
and respectively maximal elements of the poset NC(B)(p, q).

The information given above about NC(B)(p, q) indicates what kind of objects we want
to look at, but does not provide a consistent definition of what NC(B)(p, q) actually is.

In order to really define NC(B)(p, q), we will next introduce a set S
(B)
nc (p, q) of “annular

non-crossing permutations of type B”, and then we will define NC(B)(p, q) in terms of

S
(B)
nc (p, q).

Remark 2.2. (Definition of S
(B)
nc (p, q).)

We will introduce S
(B)
nc (p, q) via a natural partial order on the hyperoctahedral group Bp+q.

Let us denote for convenience p + q =: n. Recall that Bn is the group of permutations τ

of {±1, . . . ,±n} that satisfy the condition τ(−i) = −τ(i), ∀ 1 ≤ i ≤ n. We will use the
following (non-minimal) set of n2 generators of Bn:

{(i, j)(−i,−j) | 1 ≤ i, j ≤ n, i 6= j} ∪ {(i,−j)(−i, j) | 1 ≤ i, j ≤ n, i 6= j}

∪{(i,−i) | 1 ≤ i ≤ n}. (2.1)

By using the generators from (2.1) one introduces a length function ℓB on Bn: for every
τ ∈ Bn the length ℓB(τ) is defined as the smallest possible k ≥ 0 such that τ can be factored
as a product of k generators (with the convention that the product of 0 generators is equal
to the unit ε of Bn). It is not hard to see that ℓB(τ) can be alternatively described in terms
of the cycle structure of τ , by the formula

ℓB(τ) = n −
1

2
·
(
# of cycles A of τ such that A 6= −A

)
. (2.2)

We next use the length function ℓB in order to define a partial order on Bn, by postulating
that for σ, τ ∈ Bn we have

σ ≤ τ
def
⇐⇒ ℓB(τ) = ℓB(σ) + ℓB(σ−1τ). (2.3)

In other words, the inequality σ ≤ τ means that one can find minimal factorizations for σ

and for σ−1τ into products of generators, such that the concatenation of these two factor-
izations gives a minimal factorization for τ .

Coming to the point of this remark, we define S
(B)
nc (p, q) as the interval [ε, γp,q] in the

group Bn, where γp,q ∈ Bn is the permutation with two cycles

γp,q := ( 1, . . . , p,−1, . . . ,−p )( p + 1, . . . , p + q,−(p + 1), . . . ,−(p + q) ) ∈ Bn. (2.4)
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We thus have
S(B)

nc (p, q) := [ε, γp,q] = {τ ∈ Bn | τ ≤ γp,q} (2.5)

(where for the second equality in (2.5) we used the fact that the condition “ε ≤ τ” is
automatically satisfied by every τ ∈ Bn).

We mention here that one can give several other equivalent descriptions for S
(B)
nc (p, q).

Two such descriptions are discussed in [9] – one of them is in terms of a “genus inequality”,
and the other is in terms of “annular crossing patterns” (see Theorem 1.1 in [9]). But these
alternative descriptions will not be used in the present paper.

Remark 2.3. (Orbit partitions and the definition of NC(B)(p, q).)
Let p, q be positive integers, and let us denote p + q =: n. For every τ ∈ Bn we will use the
notation Ω(τ) for the partition of {±1, . . . ,±n} into orbits of τ . (Thus two numbers a, b

from {±1, . . . ,±n} belong to the same block of Ω(τ) if and only if there exists m ∈ Z such
that τm(a) = b.) Moreover, we will use the notation Ω̃(τ) for the partition of {±1, . . . ,±n}
which is obtained from Ω(τ) by grouping together all the inversion-invariant blocks of Ω(τ)
(if such blocks exist) into one block of Ω̃(τ). That is: if

Ω(τ) = {A1, . . . , Ak, B1,−B1, . . . , Bl,−Bl}

with Ai = −Ai for 1 ≤ i ≤ k, then

Ω̃(τ) = {A1 ∪ · · · ∪ Ak, B1,−B1, . . . , Bl,−Bl}.

With these notations, the set NC(B)(p, q) of annular non-crossing partitions of type B is
defined as

NC(B)(p, q) := {Ω̃(τ) | τ ∈ S(B)
nc (p, q)}. (2.6)

It is remarkable that the map Ω̃ : S
(B)
nc (p, q) → NC(B)(p, q) is a poset isomorphism, where

S
(B)
nc (p, q) is partially ordered as an interval of Bn (and where Bn is partially ordered as

in Remark 2.2), while NC(B)(p, q) is partially ordered by reverse refinement. This is the
content of Theorem 1.2 in the paper [9].

Remark 2.4. (Rank and connectivity for a partition in NC(B)(p, q).)

It is immediate that S
(B)
nc (p, q) is a ranked poset, where the rank of a permutation τ ∈

S
(B)
nc (p, q) is given by the length ℓB(τ) discussed in Remark 2.2. As a consequence, we see

that NC(B)(p, q) is a ranked poset as well, where the rank of a partition π ∈ NC(B)(p, q)
is given by the formula

rank(π) = (p + q) −
1

2
·
(
# of blocks of π that are not inversion-invariant

)
. (2.7)

Another important statistic for partitions in NC(B)(p, q) is connectivity. For π ∈
NC(B)(p, q) we will call the connectivity of π the number

c :=
1

2




# of blocks A of π such that A 6= −A

and such that A intersects both sets
{±1, . . . ,±p} and {±(p + 1), . . . ,±(p + q)}


 . (2.8)
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An important fact concerning the concept of connectivity is the following:




if π ∈ NC(B)(p, q) has connectivity c > 0,

then π has no inversion-invariant blocks

(2.9)

(see [9], Proposition 3.7). Thus the blocks of a partition π with connectivity c > 0 all
come in pairs A,−A with A 6= −A; there are c pairs of blocks as in (2.8), while each of
the remaining pairs is either “exterior” (A,−A ⊆ {±1, . . . ,±p}) or “interior” (A,−A ⊆
{±(p+1), . . . ,±(p+ q)}). Note moreover that if e and i denote, respectively, the number of
exterior and of interior pairs of blocks of π, then the numbers c, e, i satisfy the inequalities:





1 ≤ c ≤ min{p, q}, and

0 ≤ e ≤ p − c, 0 ≤ i ≤ q − c.

(2.10)

Remark 2.5. It is instructive at this point to give a brief discussion, based on connectivity,

about how the adjusted orbit map Ω̃ : S
(B)
nc (p, q) → NC(B)(p, q) works. Let π be a partition

in NC(B)(p, q), and let c be the connectivity of π. There are two possible cases.
(a) c > 0. Then by the fact stated in (2.9) above we have π = Ω(τ) = Ω̃(τ), where τ is a

(uniquely determined) permutation in S
(B)
nc (p, q), and τ has no inversion-invariant orbits.

(b) c = 0. Let τ denote the unique permutation in S
(B)
nc (p, q) such that Ω̃(τ) = π. Then

every orbit of τ is contained either in {±1, . . . ,±p} or in {±(p+1), . . . ,±(p+q)} (see Lemma
3.6 of [9]). Moreover, τ can have at most one self-invariant orbit contained in {±1, . . . ,±p},
and at most one self-invariant orbit contained in {±(p+1), . . . ,±(p+ q)} (this is due to the
fundamental fact from [10] that partitions in NC(B)(p) or NC(B)(q) can have at most one
zero-block). If τ has two self-invariant orbits, then π is obtained from the orbit partition
Ω(τ) by joining together these two orbits; otherwise (if τ has at most one self-invariant
orbit) we just have π = Ω(τ).

The case (b) of the discussion was the more complicated one to describe, but one should
keep in mind that typically this is the simpler case to handle. Indeed, the case (b) can be
summarized as follows: if π ∈ NC(B)(p, q) has connectivity equal to 0, then π is obtained
by “putting together” a partition πext ∈ NC(B)(p) and a partition πint ∈ NC(B)(q), with a
special rule for what to do when both πext and πint have zero-blocks.

Remark 2.6. We conclude this section with a comment on “how to draw pictures” of
partitions in NC(B)(p, q). In fact, what one does is to draw (equivalently) pictures of

permutations in S
(B)
nc (p, q). In order to do this, one starts by representing the elements of

{±1, . . . ,±(p + q)} as points on the boundary of an annulus: on the outside circle of the
annulus we mark 2p points which we label clockwise as 1, . . . , p,−1, . . . ,−p (in this order),
and on the inside circle of the annulus we mark 2q points which we label counterclockwise
as p + 1, . . . , p + q,−(p + 1), . . . ,−(p + q) (in this order). In terms of pictures drawn in this

annulus, the fact that a permutation τ ∈ Bp+q belongs to S
(B)
nc (p, q) corresponds then to

the following prescription: one can draw a closed contour for each of the cycles of τ , such
that

(i) each of the contours does not self-intersect, and goes clockwise around the region it
encloses;
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(ii) the region enclosed by each of the contours is contained in the annulus;
(iii) regions enclosed by different contours are mutually disjoint.

Some concrete examples of such drawings are given in Figure 1 below.

Figure 1. Examples of pictures of permutations in S
(B)
nc (4, 2).

3 Rank cardinalities and Möbius function for NC(B)(n−1, 1)

Whereas the posets NC(B)(p, q) aren’t lattices in general, it is nevertheless true that
NC(B)(n−1, 1) is a lattice for every n ≥ 2; and moreover, the meet operation on NC(B)(n−
1, 1) coincides with the usual “intersection meet” for partitions – the blocks of the meet
π ∧ ρ ∈ NC(B)(n − 1, 1) are precisely the non-empty intersections A ∩ B where A is a
block of π and B is a block of ρ. (For a proof of these facts, see Theorem 1.3 of [9].) The
present section is devoted to this special “lattice” case, when the formulas for both the
rank generating function and the Möbius function are nicer, and can be easily derived from
known facts about NC(n) and NC(B)(n).

The rank cardinalities for NC(B)(n − 1, 1) will be presented in Theorem 3.2. We first
record a few known facts that will be used in the proof of this theorem.

Remark 3.1. 1o We will use the well-known binomial identity

n−r∑

k=0

(
n

k

)(
n

k + r

)
=

(
2n

n − r

)
(3.1)

(holding for any given integers 0 ≤ r ≤ n), which is obtained by equating the coefficient of
Xn−r on the two sides of the polynomial identity (1 + X)n · (1 + X)n = (1 + X)2n.

2o We will use the rank generating functions for the posets NC(n)
(

= NC(A)(n)
)

and

NC(B)(n).
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(A) The rank of a partition π ∈ NC(A)(n) is given by the formula

rank(π) = n − (# of blocks of π) .

For every 0 ≤ k ≤ n − 1, we have (see Corollary 4.1 of [8]) that

{
π ∈ NC(A)(n) | rank(π) = k

}
=

1

n

(
n

k

)(
n

k + 1

)
. (3.2)

The numbers appearing on the right-hand side of (3.2) are called Narayana numbers. The
total number of partitions in NC(A)(n) is a Catalan number,

NC(A)(n) =
1

n + 1

(
2n

n

)
. (3.3)

(B) The rank of a partition π ∈ NC(B)(n) is given by the formula

rank(π) = n −
1

2

(
# of blocks A of π

such that A 6= −A

)
.

For every 0 ≤ k ≤ n, we have (see Proposition 6 of [10]) that

{
π ∈ NC(B)(n) | rank(π) = k

}
=

(
n

k

)2

. (3.4)

The total number of partitions in NC(B)(n) is

NC(B)(n) =

(
2n

n

)
. (3.5)

3o We will use a natural “absolute value map” that sends NC(B)(n) to NC(A)(n).
We start with the map Abs : {±1, . . . ,±n} → {1, . . . , n} which sends ±i to i, for every
1 ≤ i ≤ n. Note that for every π ∈ NC(B)(n) it makes sense to consider the partition of
{1, . . . , n} into blocks of the form Abs(B), with B a block of π; this partition of {1, . . . , n}
will be denoted by “Abs(π)”. It turns out that Abs(π) ∈ NC(A)(n) for every π ∈ NC(B)(n),
and moreover, that the map

NC(B)(n) ∋ π 7→ Abs(π) ∈ NC(A)(n) (3.6)

defined in this way is an (n + 1)-to-1 map (see Section 1.3 of [4]). In the proof of the next
theorem we will use the following property (also noticed in Section 1.3 of [4]) of the map
Abs from (3.6):





Given a partition πo ∈ NC(A)(n) and a block A of πo

there exists a unique π ∈ NC(B)(n) with zero-block Z

such that Abs(π) = πo and Abs(Z) = A.

(3.7)
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Theorem 3.2. Let n ≥ 2 be an integer. Then

NC(B)(n − 1, 1) =

(
2n
n

)
, (3.8)

and for every 0 ≤ k ≤ n we have that

{
π ∈ NC(B)(n − 1, 1) | rank(π) = k

}
=

(
n

k

)2

. (3.9)

Proof. Equation (3.8) follows from (3.9) by summing over k and by invoking (3.1). Thus it
will suffice to verify (3.9). For the whole proof we fix a k for which we will prove that (3.9)
holds. We will assume that k 6= 0 (the case k = 0 is obvious).

From the first inequality (2.10) in Remark 2.4 it is clear that every partition in NC(B)(n−
1, 1) has connectivity equal to 0 or 1. Let us denote





C := {π ∈ NC(B)(n − 1, 1) | π has rank k and connectivity 1}

D := {π ∈ NC(B)(n − 1, 1) | π has rank k and connectivity 0}.
(3.10)

We note that every partition π ∈ D must be of the form π = Ω̃(τ), where τ is a permu-

tation in S
(B)
nc (n − 1, 1) which leaves invariant the set {n,−n}. Clearly, there are only two

possibilities for how τ can act on {n,−n} – either τ(n) = n and τ(−n) = −n, or τ(n) = −n

and τ(−n) = n. We will denote by D+ and respectively by D− the set of partitions π ∈ D
for which the first (respectively the second) of these possibilities occurs. We thus have
D = D+ ∪ D−, disjoint, and it is clear that

{π ∈ NC(B)(n − 1, 1) | rank(π) = k} = C + D+ + D− . (3.11)

We first dispense with the immediate task of counting the partitions in D+ and in D−.
It is clear that every partition π ∈ D+ is obtained by taking a partition πo of rank k from
NC(B)(n − 1) and by adding to it two singleton blocks {n} and {−n}. This leads to

| D+ | = {πo ∈ NC(B)(n − 1) | rank(πo) = k} =

(
n − 1

k

)2

(by using (3.4)).

On the other hand, every partition π ∈ D− is canonically obtained from a partition πo of
rank k − 1 in NC(B)(n − 1): if πo has no zero-block then we add to it a 2-element block
{n,−n}, while if πo has a zero-block Z then we replace Z by Z ∪ {n,−n}. We thus get

| D− | = {πo ∈ NC(B)(n − 1) | rank(πo) = k − 1} =

(
n − 1

k − 1

)2

(by (3.4)).

Let us now count the partitions in the set C from (3.10). Let π be in C, and let
us denote by A the block of π which contains n. We know that A 6= −A, and that
A∩{±1, . . . ,±(n−1)} 6= ∅. Let πo be the partition of {±1, . . . ,±(n−1)} which is obtained
from π by taking its blocks A and −A and replacing them with just one block,

Z :=
(
A ∪ (−A)

)
\ {n,−n}.
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It is immediately seen that πo ∈ NC(B)(n− 1). (In pictorial terms, what one does in order
to obtain πo out of π is to take the union of the regions enclosed by A and by −A with the
disc bounded by the inside circle of the annulus; after also removing the labels ±n from
the picture, one remains with a region that corresponds to the block Z of πo.) From the
formulas for rank in NC(B)(n − 1) and in NC(B)(n − 1, 1) it is immediate that the newly
created partition πo ∈ NC(B)(n − 1) has rank equal to k.

In the construction π  πo described in the preceding paragraph, one cannot uniquely
recover π from πo. However, a moment’s thought shows that π can be uniquely recovered

from the pair (πo, τ(n)), where τ ∈ S
(B)
nc (n− 1, 1) is the permutation that corresponds to π.

(The number τ(n) ∈ {±1, . . . ,±(n−1)} could simply be described as “the point of A which
follows to n”, when we move around A in clockwise order.) We thus have a one-to-one map

C ∋ π 7→
(
πo, τ(n)

)
∈
{

(πo,m)
πo ∈ NC(B)(n − 1) of rank k and
with zero-block Z, and m ∈ Z

}
. (3.12)

It is quite easy to see that the map in (3.12) is surjective as well. In pictorial terms: given
πo ∈ NC(B)(n − 1, 1) with zero-block Z, and given an element m ∈ Z, we always know
how to deform the region enclosed by Z so that it becomes a union of three regions – a
small disc, and two regions enclosed by blocks of π. (The given element m ∈ Z determines
what side of the region enclosed by Z has to be deformed, and also indicates where on the
emerging small disc we should place the labels n and −n.)

Let us next observe that by using the “Abs” map and its property reviewed in (3.7) of
Remark 3.1.2, we get another bijection

(πo,m) 7→
(

Abs(πo),m
)

(3.13)

which sends the set
{

(πo,m)
πo ∈ NC(B)(n − 1) of rank k and
with zero-block Z, and m ∈ Z

}

onto the Cartesian product
{
ρ ∈ NC(A)(n − 1) | rank(ρ) = k − 1

}
× {±1, . . . ,±(n − 1)}.

By using the bijections (3.12) and (3.13) we thus find that

C =
{

ρ ∈ NC(A)(n − 1) | rank(ρ) = k − 1
}

· 2(n − 1)

=
1

n − 1

(
n − 1

k − 1

)(
n − 1

k

)
· 2(n − 1) (by (3.2))

= 2

(
n − 1

k − 1

)(
n − 1

k

)
.

We finally return to (3.11) and substitute on its right-hand side the values found for
the cardinalities of C,D+ and D−. We obtain that the number of elements of rank k in
NC(B)(n − 1, 1) is equal to

2

(
n − 1

k − 1

)(
n − 1

k

)
+

(
n − 1

k

)2

+

(
n − 1

k − 1

)2

=

[(
n − 1

k

)
+

(
n − 1

k − 1

)]2

=

(
n

k

)2

,

as required. �
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Remark 3.3. We note the somewhat surprising fact that NC(B)(n − 1, 1) has exactly
the same rank generating function as the lattice NC(B)(n). For n = 2 we have in fact
NC(B)(1, 1) = NC(B)(2) (equality of sets of partitions of {1, 2}∪{−1,−2}). But already for
n = 3 it is no longer true that NC(B)(2, 1) = NC(B)(3); moreover, by comparing the Hasse
diagrams of NC(B)(2, 1) and of NC(B)(3), one easily sees that NC(B)(2, 1) 6≃ NC(B)(3).
(The Hasse diagram for NC(B)(2, 1) is drawn in Figure 2 of this paper, and the one for
NC(B)(3) appears for instance on page 199 of Reiner’s paper [10]. In order to establish
that NC(B)(2, 1) 6≃ NC(B)(3) one can for instance count edges in the Hasse diagrams – the
Hasse diagram for NC(B)(2, 1) has 46 edges, while the one for NC(B)(3) has 44 edges.)

And actually, by comparing the specific formulas which give the Möbius functions for
NC(B)(n) and for NC(B)(n − 1, 1), one sees that in fact NC(B)(n − 1, 1) 6≃ NC(B)(n) for
all n ≥ 3; see Remark 3.7 below.

Figure 2. The Hasse diagram for NC(B)(2, 1). The bracket notations ((· · · ))
and [· · · ] refer to the cycles of the corresponding permutations
(e.g. ((1, 2,−3)) and ((1,−2))[3] are shorthand notations for the
permutations (1, 2,−3)(−1,−2, 3) and (1,−2)(−1, 2)(3,−3), respectively).
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We now take on the Möbius function of NC(B)(n−1, 1). Its calculation will be presented
in Theorem 3.6, and will be based on a partial Möbius inversion formula which is described
as follows.

Lemma 3.4. Let P be a finite lattice, let 0̂ and 1̂ denote the minimal and the maximal
element of P , respectively, and let ω be a fixed element of P , where ω 6= 1̂. Then

∑

π∈P
π∧ω=b0

µ
P
(π, 1̂ ) = 0. (3.14)

For a proof of Lemma 3.4, see Corollary 3.9.3 of [11]. A few other facts needed in the
proof of Theorem 3.6 are collected in the next remark.

Remark 3.5. 1o We will use the explicit formulas known for the Möbius functions of the
posets NC(A)(n) and NC(B)(n).

(A) For every n ≥ 1 we have that

µNC(A)(n)( 0̂, 1̂ ) = (−1)n+1 (2n − 2)!

(n − 1)! n!
, (3.15)

where µNC(A)(n) is the Möbius function of NC(A)(n), and 0̂, 1̂ are the minimal and respec-

tively the maximal element of NC(A)(n). (See Theorem 6 of [8].)
(B) For every n ≥ 1 we have that

µNC(B)(n)( 0̂, 1̂ ) = (−1)n ·

(
2n − 1

n

)
, (3.16)

where µNC(B)(n) is the Möbius function of NC(B)(n), and 0̂, 1̂ now stand for the minimal

and respectively the maximal element of NC(B)(n). (See Proposition 7 of [10].)
2o Let p, q be positive integers. It is an easy exercise (left to the reader) to check that

the formula
C(τ) := τ−1γp,q, τ ∈ S(B)

nc (p, q), (3.17)

defines a bijection C : S
(B)
nc (p, q) → S

(B)
nc (p, q), which is order-reversing – for σ, τ ∈ S

(B)
nc (p, q)

one has that σ ≤ τ ⇔ C(σ) ≥ C(τ), where the partial order on S
(B)
nc (p, q) is as reviewed in

Remark 2.2.
Now, by using the canonical isomorphism Ω̃ : S

(B)
nc (p, q) → NC(B)(p, q) defined in Re-

mark 2.3, we can transport the map C from (3.17) to an anti-isomorphism K : NC(B)(p, q) →
NC(B)(p, q), defined via the formula

K( Ω̃(τ) ) = Ω̃(τ−1γp,q), τ ∈ S(B)
nc (p, q). (3.18)

This anti-isomorphism K is the NC(B)(p, q)–analogue for an anti-isomorphism of the lat-
tice NC(A)(n) introduced by Kreweras in [8], and which is commonly called the Kreweras
complementation map. Following this trend, we will also refer to the map K from (3.18)
by calling it the Kreweras complementation map of NC(B)(p, q). Note that, due to the fact
that it is an anti-isomorphism, the Kreweras complementation map has the property that

µ(π, ρ) = µ(K(ρ),K(π) ), ∀π, ρ ∈ NC(B)(p, q) such that π ≤ ρ, (3.19)

where µ is the Möbius function of NC(B)(p, q).
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Theorem 3.6. Let n ≥ 2 be an integer, let µNC(B)(n−1,1) be the Möbius function of

NC(B)(n−1, 1), and let 0̂, 1̂ be the minimal and respectively maximal elements of NC(B)(n−
1, 1). Then

µNC(B)(n−1,1)( 0̂, 1̂ ) = (−1)n ·

(
2n − 1

n

)
·
5n − 4

4n − 2
. (3.20)

Proof. Throughout the whole proof we will write for short “µ” instead of “µNC(B)(n−1,1)”.

We will apply Lemma 3.4 to the particular case when P = NC(B)(n − 1, 1) and

ω :=
{

{±1, . . . ,±(n − 1)}, {n}, {−n}
}

. (3.21)

By taking into account that the meet operation of NC(B)(n−1, 1) is just the usual “intersec-
tion” meet, one immediately sees that the partitions in the set {π ∈ NC(B)(n−1, 1) | π∧ω

= 0̂ } can be listed explicitly as 0̂, π0, π1, . . . , πn−1, π−1, . . . , π−(n−1), where

π0 :=
{

{n,−n}, {1}, {−1}, . . . , {n − 1}, {−(n − 1)}
}

and where for every i ∈ {±1, . . . ,±(n − 1)} we put

πi :=
{

{i, n}, {−i,−n}
}
∪
{
{j} | j ∈ {±1, . . . ,±(n − 1)}, |j| 6= |i|

}
.

When applied to this particular situation, Lemma 3.4 thus implies that

0 = µ( 0̂, 1̂ ) + µ
(
π0, 1̂

)
+

n−1∑

i=1

µ
(
πi, 1̂

)
+

n−1∑

i=1

µ
(
π−i, 1̂

)
. (3.22)

It is convenient to consider the equivalent restatement of (3.22) which is obtained by taking
Kreweras complements and by invoking the formula (3.19) from Remark 3.5.2:

0 = µ( 0̂, 1̂ ) + µ
(
0̂, ρ0

)
+

n−1∑

i=1

µ
(

0̂, ρi

)
+

n−1∑

i=1

µ
(

0̂, ρ−i

)
, (3.23)

where we denoted ρi := K(πi), for i ∈ {0} ∪ {±1, . . . ,±(n − 1)}.
Let us now compute explicitly what are the partitions ρ0 and ρ±1, . . . , ρ±(n−1). We do

this by using the corresponding permutations in S
(B)
nc (n−1, 1), and the formula (3.18) from

Remark 3.5.2. For i ∈ {±1, . . . ,±(n−1)} we write π = Ω̃(τi) with τi = (i, n)(−i,−n) ∈ Bn,
and we compute

τ−1
i γn−1,1 =

(
(i, n)(−i,−n)

) (
(1, . . . , n − 1,−1, . . . ,−(n − 1))(n,−n)

)

=
(
(1, . . . , i − 1, n,−i, . . . ,−(n − 1)

)(
(−1, . . . ,−(i − 1),−n, i, . . . , n − 1

)
.

Since ρi = K( Ω̃(τi) ) = Ω̃( τ−1
i γn−1,1 ), we thus obtain that

ρi =
{
{1, . . . , i − 1, n,−i, . . . ,−(n − 1)}, {−1, . . . ,−(i − 1),−n, i, . . . , n − 1}

}
. (3.24)
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For ρ0 one does a similar calculation, by writing π0 = Ω̃(τ0) for τ0 = (n,−n) ∈ Bn. The
reader should have no difficulty to check that this calculation simply leads to the equality
ρ0 = ω, with ω taken from (3.21).

From the explicit form found in (3.24) for ρi with i ∈ {±1, . . . ,±(n−1)}, one easily infers
that the interval [ 0̂, ρi] of NC(B)(n − 1, 1) is poset isomorphic with the lattice NC(A)(n).
Indeed, the process of constructing a partition σ ∈ NC(B)(n−1, 1) such that σ ≤ ρi amounts
precisely to breaking in a non-crossing way the block {1, . . . , i − 1, n,−i, . . . ,−(n − 1)} of
ρi, where the cyclic order of the n elements of the block is as listed above. (This must be
of course matched by the corresponding, uniquely determined, non-crossing breaking of the
other block {−1, . . . ,−(i− 1),−n, i, . . . , n− 1} of ρi.) The isomorphism [ 0̂, ρi] ≃ NC(A)(n)
and (3.15) thus give us that

µ( 0̂, ρi) = (−1)n+1 (2n − 2)!

(n − 1)! n!
.

In a similar way, one finds that the interval [ 0̂, ρ0] of NC(B)(n − 1, 1) is isomorphic with
NC(B)(n − 1), and hence that (by (3.16)) we have

µ
(
0̂, ρ0

)
= (−1)n−1

(
2n − 3

n − 1

)
.

Finally, by substituting in (3.23) the concrete values obtained above for the µ( 0̂, ρi), we
find that

−µ( 0̂, 1̂ ) = (−1)n−1

(
2n − 3

n − 1

)
+ (2n − 2) · (−1)n−1 ·

(2n − 2)!

(n − 1)! n!
,

and the required formula for µ( 0̂, 1̂ ) follows by straightforward calculation. �

Remark 3.7. By comparing the formula (3.20) found in Theorem 3.6 against the corre-
sponding formula (3.16) which holds for NC(B)(n), we see that µNC(B)(n)( 0̂, 1̂ ) is different

from µNC(B)(n−1,1)( 0̂, 1̂ ) for all n ≥ 3. This implies, of course, that NC(B)(n − 1, 1) 6≃

NC(B)(n) for n ≥ 3.

4 Rank generating function for NC(B)(p, q)

In this section, we determine the rank generating function for NC(B)(p, q). Our results
follow directly from a bijection, in Proposition 4.2 below, which is similar to Lemma 2.1
of [7] and Proposition 6 of [10]. As a preliminary, we have the following discussion of strings
of parentheses.

Remark 4.1. We let {(, )}∗ be the set of strings of left parentheses “(” and right parentheses
“)”. With multiplication given by concatenation, this set forms a monoid, with the empty
string acting as identity element.

If s = s1 . . . sn ∈ {(, )}∗, n ≥ 1, then the nontrivial left-substrings of s are given by
ui := s1 . . . si, i = 1, . . . , n. If all nontrivial left-substrings of s have (strictly) more left
parentheses than right parentheses, then we will say that s is legal from the left.
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For s = s1 . . . sn ∈ {(, )}∗, n ≥ 1, the cyclic shifts of s are the n strings

s(1) = s2 · · · sns1, s(2) = s3 · · · sns1s2, . . . , s(n−1) = sns1s2 · · · sn−1, s(n) = s.

Suppose that s has m more left parentheses than right parentheses, for some m ≥ 1. Then
the well-known Cycle Lemma (see for instance the discussion on page 67 of [12]) says that
exactly m of the cyclic shifts of s are legal from the left.

For example, if s is the string ( ) ( ( ) ( ( which has 5 left parentheses and 2 right paren-
theses, then the 3 cyclic shifts of s that are legal from the left are

s(2) = ( ( ) ( ( ( ), s(5) = ( ( ( ) ( ( ), s(6) = ( ( ) ( ( ) ( .

Symmetrically, if all nontrivial right-substrings of s have more right parentheses than
left parentheses, then we say that s is legal from the right. For this case, suppose that s has
m more right parentheses than left parentheses, for some m ≥ 1. Then the Cycle Lemma
says that exactly m of the cyclic shifts of s are legal from the right.

Proposition 4.2. Let p, q be positive integers. Suppose that c, e, i are integers satisfying
the inequalities stated in (2.10) of Remark 2.4, that is: 1 ≤ c ≤ min{p, q} and 0 ≤ e ≤ p−c,
0 ≤ i ≤ q − c. Then there exists a bijection between the set



(d, LE , RE , LI , RI)

1 ≤ d ≤ 2c
LE , RE ⊆ {1, . . . , p}, |LE| = e + c, |RE| = e,

LI , RI ⊆ {p + 1, . . . , p + q}, |LI | = i, |RI | = i + c



 (4.1)

and the set of partitions in NC(B)(p, q) which have connectivity equal to c, have e exterior
pairs of blocks, and have i interior pairs of blocks.

Proof. We will describe explicitly the constructions for two maps (d, LE , RE , LI , RI) 7→ π

and π 7→ (d, LE , RE , LI , RI), and we will leave it as an exercise to the reader to check that
these two maps are inverse to each other (thus giving together a bijection as stated). We
recommend that the general descriptions given below for the two maps are read in parallel
with Remark 4.3, which illustrates how the maps work on a concrete example.

A. Description of the map (d, LE , RE , LI , RI) 7→ π. Given (d, LE , RE , LI , RI) as in
(4.1), insert left and right parentheses into the string

1, . . . , p,−1, . . . ,−p

by placing a left (respectively right) parenthesis before (respectively after) each occurrence
of j and −j, for each value j in LE (respectively RE). In this way we obtain the string
u of length 2(p + 2e + c), consisting of numbers and parentheses. In u, there are 2c more
left parentheses than right parentheses, so the Cycle Lemma in Remark 4.1 implies that
there are 2c cyclic shifts of u beginning with a left parenthesis such that the subsequence
consisting of parentheses only is legal from the left. Suppose that these 2c cyclic shifts are
given by u(i1), . . . , u(i2c), ordered so that i1 < · · · < i2c. Then let t1 = u(id).

Similarly, insert left and right parentheses into the string

p + 1, . . . , p + q,−(p + 1), . . . ,−(p + q)
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by placing a left (respectively right) parenthesis before (respectively after) each occurrence
of j and −j, for each value j in LI (respectively RI), to obtain the string v of numbers
and parentheses. In v there are 2c more right parentheses than left parentheses, so the
Cycle Lemma in Remark 4.1 implies that there are 2c cyclic shifts of v ending with a right
parenthesis such that the subsequence consisting of parentheses only is legal from the right.
If these 2c cyclic shifts are given by v(j1), . . . , v(j2c), ordered so that j1 < · · · < j2c, then let
t2 = v(j1).

Now consider the concatenation t1t2 of the two strings t1 and t2 found above. From
the string t1t2 we read off a unique partition π in NC(B)(p, q) in the following way: the
numbers inside a lowest-level pair of matching parentheses form a block of π; remove these
numbers and this pair of parentheses from the string, and iterate until the string is empty.
(See part A of Remark 4.3 below, for a concrete example of how this works.)

B. Description of the map π 7→ (d, LE , RE, LI , RI). Let π be a partition in NC(B)(p, q)
which has connectivity equal to c, has e pairs of external blocks and has i pairs of internal
blocks. A significant fact we we will use here is that (even though π is drawn on a circular
picture) every block of π that is either an external block or an internal block comes with a
canonical total order on it, and thus has a first element and a last element.

Indeed, say for instance that A is an external (i.e. such that A ⊆ {±1, . . . ,±p}) block
of π. Let us choose an element i ∈ −A and, by starting from this i, let us travel around
the external circle of the annulus (in the sense that we always use for this circle – that
is, clockwisely). When we do this, we encounter the elements of A in a certain order, and
this order does not depend on our choice of the starting point i ∈ −A. (The latter fact is
an immediate consequence of the fact that the blocks A and −A of π do not cross.) We
thus end with a “canonical” total order for the elements of A. Clearly, a similar argument
can be made when we deal with an internal block of π. And moreover, this very same
argument can be also used to introduce a total order on each of the sets A ∩ {±1, . . . ,±p}
and A ∩ {±(p + 1), . . . ,±(p + q)}, in the case when A is a connecting block of π.

So then, starting from the given π ∈ NC(B)(p, q), let us draw some parentheses on the
picture representing π, according to the following recipe:
(a) For every block A of π which is either an external block or an internal block, we
draw a left parenthesis immediately before the first element of A, and a right parenthesis
immediately after the last element of A.
(b) For every connecting block A of π we draw a left parenthesis immediately before the
first element of A∩{±1, . . . ,±p}, and a right parenthesis immediately after the last element
of A ∩ {±(p + 1), . . . ,±(p + q)}.

But now, if the parentheses added to the picture of π are read starting from 1 on
the outside circle and starting from p + 1 on the inside circle, then one gets two strings of
numbers and parentheses u and v, which are exactly of the same kind as the strings denoted
by “u” and “v” in part A of the proof. Furthermore, it is immediate that the strings u and
v obtained here correspond to some subsets

LE, RE ⊆ {1, . . . , p}, LI , RI ⊆ {p + 1, . . . , p + q}

which have the properties required in (4.1).
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In order to complete the description of the map π 7→ (d, LE , RE , LI , RI), we are thus
left to explain how we obtain the number d ∈ {1, . . . , 2c}. It is immediate that determining
d (in the context where we know already what are the strings u and v) is equivalent to
choosing one of the 2c cyclic shifts of u which are legal from the left. Expressed directly
in terms of the partition π, this in turn amounts to choosing one of the 2c connecting
blocks of π. (To be precise: if a connecting block A is chosen, then we pick the cyclic shift
of u which starts with the left parenthesis placed immediately before the first element of
A ∩ {±1, . . . ,±p}.) So what we have to do is indicate a procedure for how to canonically
select a connecting block of π. The procedure goes by looking at how the connecting blocks
intersect the interior circle of the annulus: we start from p+1 and move counterclockwisely
around the interior circle, and we stop the first time when we meet an element belonging
to a connecting block. (See part B of Remark 4.3 below for a concrete example of how this
works.) �

Remark 4.3. Let us illustrate how the two maps described in the proof of the preceding
proposition work on a concrete example. Consider the situation when the integers p, q, c, e, i

given in Proposition 4.2 are p = 5, q = 3, c = 1, e = 2, i = 1.

A. Let us determine explicitly the partition π ∈ NC(B)(5, 3) that corresponds (by the
first of the two maps described in the proof of Proposition 4.2) to the tuple (d, LE , RE, LI , RI)
where

d = 2, LE = {2, 4, 5}, RE = {1, 2}, LI = {7}, RI = {6, 7}. (4.2)

By inserting parentheses in 1, . . . , 5,−1, . . . ,−5 we obtain the following string of length 20,
consisting of numbers and parentheses:

u = 1 ) ( 2 ) 3 ( 4 ( 5 − 1 ) (−2 ) − 3 (−4 (−5. (4.3)

The two cyclic shifts of u that begin with a left parenthesis and are legal from the left are
u(6) and u(16). Since we have d = 2, the string t1 from the description of the above bijection
is hence:

t1 = u(16) = (−4 (−5 1 ) ( 2 ) 3 ( 4 ( 5 − 1 ) (−2 ) − 3.

In a similar way, by inserting parentheses in 6, 7, 8,−6,−7,−8 we get

v = 6 ) ( 7 ) 8 − 6 ) (−7 ) − 8 (4.4)

and then
t2 = v(2) = (7 ) 8 − 6 ) (−7 ) − 8 6 ).

Finally, we concatenate t1 and t2, and from the string t1t2 we read off the desired partition
π ∈ NC(B)(5, 3), which is

π =
{
{1,−5}, {−1, 5}, {2}, {−2}, {3,−4, 6,−8}, {−3, 4,−6, 8}, {7}, {−7}

}
. (4.5)

B. Conversely, let us now start from the partition π ∈ NC(B)(5, 3) that appeared in
(4.5) above, and let us determine explicitly the tuple (d, LE , RE , LI , RI) that corresponds
to π by the second map described in the proof of Proposition 4.2.
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The annular picture for π and the parentheses that have to be added to it are shown
in Figure 3 below. When looking at Figure 3, the reader should keep in mind that the
placing of a parenthesis “immediately before” (or “imediately after”) a labelled point on
one of the circles of the annulus must be always done in agreement with the chosen running
direction on that particular circle. Thus for instance the parenthesis sitting next to −5 in
Figure 3 is a “left parenthesis placed immediately before −5”, since the outside circle is run
clockwisely; while next to 6 we have a “right parenthesis placed immediately after 6”, as
the running direction on the inside circle is counterclockwise.

Figure 3. Adding parentheses to the picture of a partition in NC(B)(p, q).

If we read Figure 3 starting with 1 on the outside circle and staring with 6 on the inside
circle, we find the strings u and v displayed in (4.3) and respectively (4.4), and from these
u and v we clearly get back to the sets LE , RE , LI , RI indicated in (4.2).

Finally, let us also follow on Figure 3 the procedure for finding the value of d. What
we have to do is start from p + 1(= 6) and move counterclockwisely around the interior
circle of the annulus, and stop the first time when we meet an element belonging to a
connecting block. But in this example the number 6 belongs itself to the connecting block
A = {3,−4, 6,−8} of π; so this is the connecting block of π that is chosen. The first element
of A ∩ {±1, . . . ,±p} is −4, hence we choose the cyclic shift of u which starts with “( −4”,
and this corresponds to the value d = 2.

Corollary 4.4. Let p, q, c, e, i be integers such that 1 ≤ c ≤ min{p, q} and such that 0 ≤
e ≤ p − c, 0 ≤ i ≤ q − c. Then there are exactly

2c

(
p

e

)(
p

e + c

) (
q

i

)(
q

i + c

)
(4.6)
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partitions in NC(B)(p, q) which have connectivity equal to c, have e exterior pairs of blocks,
and have i interior pairs of blocks.

Proof. This follows by taking cardinalities in the bijection from Proposition 4.2. �

As an immediate consequence of the above corollary, one can enumerate the partitions
in NC(B)(p, q) by their connectivity.

Theorem 4.5. Let p, q be positive integers.
1o For every 1 ≤ c ≤ min{p, q}, there are exactly

2c

(
2p

p − c

)(
2q

q − c

)
(4.7)

partitions in NC(B)(p, q) which have connectivity equal to c.
2o There are exactly (

2p

p

)(
2q

q

)
(4.8)

partitions in NC(B)(p, q) which have connectivity equal to 0.
3o The total number of partitions in NC(B)(p, q) is

∣∣∣NC(B)(p, q)
∣∣∣ =

p + q + pq

p + q
·

(
2p

p

)(
2q

q

)
. (4.9)

Proof. 1o From Proposition 4.2, the number of partitions of connectivity c in NC(B)(p, q)
equals

2c
∑

e,i≥0

(
p

e

)(
p

e + c

) (
q

i

)(
q

i + c

)
= 2c

( p−c∑

e=0

(
p

e

)(
p

e + c

))( q−c∑

i=0

(
q

i

)(
q

i + c

))

= 2c

(
2p

p − c

)(
2q

q − c

)

(where at the second equality sign we used the identity (3.1)).
2o As observed in Remark 2.5, the partitions with connectivity 0 in NC(B)(p, q) are

given by the direct product of NC(B)(p) with NC(B)(q); hence their number is

∣∣∣NC(B)(p)
∣∣∣ ·
∣∣∣NC(B)(q)

∣∣∣ =

(
2p

p

)
·

(
2q

q

)
(by using (3.5)).

3o From the above it follows that
∣∣∣NC(B)(p, q)

∣∣∣ =

(
2p

p

)(
2q

q

)
+
∑

c≥1

2c

(
2p

p − c

)(
2q

q − c

)
. (4.10)

In the summation over c that has just appeared, we observe that the ratio of two consecutive
terms is a rational fraction of c, hence we are dealing with a hypergeometric series. Referring
to the standard notations for hypergeometric series one sees, more precisely, that

∑

c≥1

2c

(
2p

p − c

)(
2q

q − c

)
= 2

(
2p

p − 1

)(
2q

q − 1

)
· 3F2

(
2, −(p − 1), −(q − 1)

p + 2, q + 2
; 1

)
. (4.11)
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(For the precise definition of 3F2 see for instance formula (2.1.2) on page 62 of [1].)
Now, it turns out that the special 3F2 series on the right-hand side of (4.11) can be

summed in closed form; this is by a theorem of Dixon (see formula (2.2.11) on page 72 of
[1]), which gives us that

3F2

(
2, −(p − 1), −(q − 1)

p + 2, q + 2
; 1

)
=

(p + 1)(q + 1)

2(p + q)
. (4.12)

By substituting (4.12) into (4.11), and then by plugging the result into (4.10), we obtain
the stated formula for the cardinality of NC(B)(p, q). �

From Corollary 4.4 one can also infer a formula for the rank generating function of
NC(B)(p, q).

Theorem 4.6. Let p, q be positive integers and let F (x) denote the rank generating function
for NC(B)(p, q). Then

F (x) =
∑

i,j≥0

(
p

i

)2(
q

j

)2

xi+j +
∑

c≥1

∑

e,i≥0

2c

(
p

e

)(
p

e + c

)(
q

i

)(
q

i + c

)
xp+q−e−i−c. (4.13)

Proof. The first summation on the right-hand side of (4.13) gives the contribution to F (x)
from partitions π ∈ NC(B)(p, q) which have connectivity equal to 0. Indeed, we saw in
Remark 2.5 how such a partition π is obtained by putting together a partition πext ∈
NC(B)(p) and a partition πint ∈ NC(B)(q); it is moreover immediate that when this is
done, the rank of π in NC(B)(p, q) is sum of the ranks of πext and πint in NC(B)(p) and
in NC(B)(q), respectively. Thus when summing over partitions π ∈ NC(B)(p, q) with
connectivity equal to 0 we get

∑

π

xrank(π) =
( ∑

πext∈NC(B)(p)

xrank(πext)
) ( ∑

πint∈NC(B)(q)

xrank(πint)
)

=
( p∑

i=0

(
p

i

)2

xi
) ( q∑

j=0

(
q

j

)2

xj
)

(by (3.4)).

On the other hand, let us observe that if π ∈ NC(B)(p, q) has connectivity c ≥ 1, has e

pairs of exterior blocks and has i pairs of internal blocks, then from (2.7) it follows that

rank(π) = (p + q) − (c + e + i).

Hence in view of Corollary 4.4, the contribution to F (x) of the partitions π ∈ NC(B)(p, q)
which have connectivity different from 0 is given precisely by the second summation on the
right-hand side of (4.13). �

Remark 4.7. It can be shown that the second summation on the right-hand side of (4.13)
can be reexpressed with only two summation indices instead of three, in the form:

2pq

p + q

∑

i,j≥1

((
p

i

)(
q

j − 1

)
+

(
p

i − 1

)(
q

j

))(
p − 1

i − 1

)(
q − 1

j − 1

)
xi+j−1. (4.14)

The proof of this fact is technical, and is omitted.
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5 Zeta polynomial and Möbius function for NC(B)(p, q)

In this section, we determine the zeta polynomial and Möbius function for NC(B)(p, q).
These follow immediately by extending the bijection given in Proposition 4.2 to count
multichains in NC(B)(p, q), similar to Theorem 3.2 of [7] and Proposition 7 of [10].

Proposition 5.1. For p, q ≥ 1, m ≥ 2 and c ≥ 1, the bijection given in Proposition 4.2
extends to a bijection between





1 ≤ d ≤ 2c

(d;LE , RE
1 , . . . , RE

m−1; LE , RE
1 , . . . , RE

m−1 ⊆ {1, . . . , p}
LI , RI

1, . . . , R
I
m−1) |LE | = |RE

1 | + · · · + |RE
m−1| + c

LI , RI
1, . . . , R

I
m−1 ⊆ {p + 1, . . . , p + q}

|LI | = |RI
1| + · · · + |RI

m−1| − c





(5.1)

and the set of multichains π1 ≤ · · · ≤ πm−1 in NC(B)(p, q), in which πm−1 has connectivity
c. In this bijection, we have

rank(πi) = p + q −
(
|RE

i | + · · · + |RE
m−1| + |RI

i | + · · · + |RI
m−1|

)
, 1 ≤ i ≤ m − 1. (5.2)

Proof. This proof is to a good extent a repetition of the one shown earlier for Proposition
4.2 (which corresponds to the case m = 2 of the present proposition). Because of this, we
will only give an outline of the argument, with emphasis on the points that are specific to
the situation at hand.

Given a tuple (d;LE , RE
1 , . . . , RE

m−1;L
I , RI

1, . . . , R
I
m−1) as in (5.1), insert left and right

parentheses into the string
1, . . . , p,−1, . . . ,−p,

with m − 1 types of right parentheses )k for k = 1, . . . ,m − 1, as follows: place a left
parenthesis before each occurrence of j and −j, for each value j in LE; for k = 1, . . . ,m−1,
place a right parenthesis of type )k after each occurrence of j and −j, for each value j in
RE

k . (If j occurs in both RE
a and RE

b , for a < b, then place the corresponding )b to the
right of the )a.) In the resulting string of numbers and parentheses there are 2c more left
parentheses than right parentheses, so the Cycle Lemma in Remark 4.1 implies that there
are 2c cyclic shifts of the string beginning with a left parenthesis such that the subsequence
consisting of parentheses only is legal from the left. Order these 2c cyclic shifts in the
canonical way (by the same method as in the proof of Proposition 4.2), and choose the dth
them to give the string t1.

Similarly, insert left and right parentheses into the string

p + 1, . . . , p + q,−(p + 1), . . . ,−(p + q)

by placing a left parenthesis before each occurrence of j and −j, for each value j in LI ;
for k = 1, . . . ,m − 1, place a right parenthesis of type )k after each occurrence of j and
−j, for each value j in RI

k. In the resulting string of numbers and parentheses there are 2c
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more right parentheses than left parentheses, so the Cycle Lemma in Remark 4.1 implies
that there are 2c cyclic shifts of the sequence ending with a right parenthesis such that the
subsequence consisting of parentheses only is legal from the right. Let t2 be the canonical
choice (found in the same way as in the proof of Proposition 4.2) from among these 2c cyclic
shifts.

Now, from the string t1t2, we create a partition π1 in NC(B)(p, q) in the following way:
the numbers inside a lowest-level pair of matching parentheses form a block of π1; remove
these numbers and this pair of parentheses from the string, and iterate until the string is
empty. Then for j = 2, . . . ,m − 1, remove the right parentheses of type )1, . . . , )j−1 from
t1t2, together with the left parentheses that pair with them, and read the remaining string
as above to obtain πj. This produces the multichain π1 ≤ . . . ≤ πm−1 in NC(B)(p, q), and
gives a bijection with the required properties. �

Remark 5.2. As a concrete example for how Proposition 5.1 works, suppose we have
p = 6, q = 3,m = 3, c = 2, with d = 1, LE = {1, 2, 3, 5, 6}, RE

1 = {1, 3}, RE
2 = {3}, and

LI = {8, 9}, RI
1 = {7, 8, 9}, RI

2 = {7}. By inserting parentheses in 1, . . . , 6,−1, . . . ,−6 we
obtain the string

(1)1(2(3)1)24(5(6(−1)1(−2(−3)1)2 − 4(−5(−6,

which has 4 cyclic shifts that we might consider. Since we are given that d = 1, the cyclic
shift that we select is the one that begins with “(5”, thus getting

t1 = (5(6(−1)1(−2(−3)1)2 − 4(−5(−6(1)1(2(3)1)24.

Similarly, we obtain
t2 = (8)1(9)1 − 7)1)2(−8)1(−9)17)1)2,

and from the string t1t2, we obtain the partitions

π1 =
{
{4,−6,−7}, {−4, 6, 7}

}
∪
{

{i} 1 ≤ |i| ≤ 9, |i| 6= 4, 6, 7
}

π2 =
{
{1, 4,−5,−6,−7, 8, 9}, {−1,−4, 5, 6, 7,−8,−9}, {2, 3}, {−2,−3}

}
.

Note that π1 ≤ π2, and that π2 has connectivity c = 2, as claimed.

As an immediate enumerative consequence of Proposition 5.1, we obtain the zeta poly-
nomial for NC(B)(p, q).

Theorem 5.3. Let p, q be positive integers.
1o The zeta polynomial of NC(B)(p, q) is given by the formula:

ZNC(B)(p,q)(m) =

(
mp

p

)(
mq

q

)
+

p∑

c=1

2c

(
mp

p − c

)(
mq

q + c

)
. (5.3)

2o The number of maximal chains in NC(B)(p, q) is equal to

(
p + q

p

)
ppqq +

∑

c≥1

2c

(
p + q

p − c

)
pp−cqq+c. (5.4)
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Proof. 1o The zeta polynomial ZP of a partially ordered set P is defined via the condition
that for every m ≥ 2, the value ZP (m) is equal to the number of multichains π1 ≤ · · · ≤ πm−1

in P (see Section 3.11 of [11]). From Proposition 5.1, the number of such multichains in
which πm−1 has connectivity c ≥ 1 is given by

2c
∑

aj ,bj≥0,
j=0,...,m−1

(
p

a1 + . . . + am−1 + c

)(
q

b1 + . . . + bm−1 − c

)m−1∏

j=1

(
p

aj

)(
q

bj

)
. (5.5)

The number from (5.5) can be written in a simpler form if one invokes a well-known multi-
nomial formula (which incidentally is a generalization of the binomial identity (3.1) used in
the preceding sections), stating that for any integers A1, . . . , Ak, Ak+1 ≥ 0 and 0 ≤ b ≤ Ak+1

we have

∑

a1,...,ak≥0

(
A1

a1

)
· · ·

(
Ak

ak

)(
Ak+1

a1 + · · · + ak + b

)
=

(
A1 + · · · + Ak+1

Ak+1 − b

)
. (5.6)

By applying (5.6) to (5.5), we find that the quantity in (5.5) is equal to just

2c

(
mp

p − c

)(
mq

q + c

)
. (5.7)

On the other hand, we also have a simple formula for multichains π1 ≤ · · · ≤ πm−1

where πm−1 has connectivity equal to 0. Indeed, these are simply multichains in the direct
product of NC(B)(p) with NC(B)(q), and thus the number of these is given by

ZNC(B)(p)(m) · ZNC(B)(q)(m) =

(
mp

p

)(
mq

q

)
, (5.8)

from Proposition 7 of [10].
The expression for ZNC(B)(p,q)(m) now follows by summing over c ≥ 0, and by taking

(5.7) and (5.8) into account.
2o For any partially ordered set P , the number of maximal chains is given by d! times the

coefficient of md in ZP (m), where the zeta polynomial ZP (m) has degree d (see Proposition
3.11.1(a) of [11]). By part 1o of the theorem, here we have d = p + q, and the result follows
from the expression for ZNC(B)(p,q)(m) that was obtained above. �

Corollary 5.4. For p, q ≥ 1, NC(B)(p, q) has Möbius function

µNC(B)(p,q)( 0̂, 1̂ ) = (−1)p+q

((
2p − 1

p

)(
2q − 1

q

)
+

p∑

c=1

2c

(
2p − c − 1

p − 1

)(
2q + c − 1

q − 1

))
.

Proof. This follows immediately from Theorem 5.3, using the fact that for any partially
ordered set P one has µP ( 0̂, 1̂ ) = ZP (−1) (see Proposition 3.11.1(c) of [11]). �

Remark 5.5. It is straightforward to specialize Corollary 5.4 to the case p = n− 1, q = 1,
either by directly evaluating the summation or by setting p = 1, q = n − 1 and using the
symmetry between p and q. Using either of these means, we obtain the expression given in
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Theorem 3.6. Note further that we can specialize Theorem 5.3 itself in the same way, to
obtain that for every n ≥ 2, the zeta polynomial of NC(B)(n− 1, 1) is given by the formula

ZNC(B)(n−1,1)(m) =
(
2 +

mn

(m − 1)(n − 1)

)
·

(
m(n − 1)

n

)
. (5.9)
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