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1. Introduction

Due to their numerous applications in various fields of sciences
and engineering, hybrid systems have become a large and growing
interdisciplinary area of research. A hybrid system is a dynamical
system that exhibits both continuous and discrete dynamic behav-
ior. The interaction of continuous- and discrete-time dynamics in a
hybrid system can lead to rich dynamical behavior and phenomena
that are not encountered in purely continuous- or discrete-time
systems and hence bring difficulties and challenges to the studies
of hybrid systems, such as their stability analysis and control de-
sign (see, e.g., Goebel, Sanfelice, and Teel (2009), Liberzon (2003),
Shorten, Wirth, Mason, Wulff, and King (2007), and van der Schaft
and Schumacher (2000) and references therein).

Impulsive differential equations or impulsive dynamical sys-
tems model real world processes that undergo abrupt changes (im-
pulses) in the state at discrete times (Lakshmikantham, Bainov,
& Simeonov, 1989). In the past decades, impulsive control and
stabilization has been shown to be a powerful tool in the the-
ory and applications of nonlinear dynamical systems. While
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difficulties and challenges remain in the area of impulsive differ-
ential equations (Lakshmikantham et al., 1989), especially those
involving time-delays (Ballinger & Liu, 1999), impulsive control
and stabilization has gained increasing popularity and found suc-
cessful applications in a wide variety of areas, such as control
systems (Ballinger & Liu, 2001; Liu, 2004), control and synchroniza-
tion of chaotic systems (Li, Liao, Yang, & Huang, 2005; Liu, 2001;
Yang & Chua, 1997), complex dynamical networks (Zhang, Liu, &
Ma, 2007), secure communication (Yang & Chua, 1997), spacecraft
maneuvers (Carter, 1991), population growth and biological sys-
tems (Liu, 1995; Liu & Rohlf, 1998), neural networks (Liu & Wang,
2008), ecosystems management (Neuman & Costanza, 1990), and
pharmacokinetics (Bellman, 1971). Impulsive dynamical systems
can be naturally viewed as a class of hybrid systems that consist
of three elements: a continuous differential equation, which gov-
erns the continuous evolution of the system between impulses; a
difference equation, which governs the way the system states are
changed at impulse times; and an impulsive law for determining
when the impulses occur (see, e.g., Haddad, Chellaboina, and Ners-
esov (2006) and Lakshmikantham et al. (1989)).

Another important type of hybrid systems are switched sys-
tems, which can be described by a differential equation whose
right-hand side is chosen from a family of functions according to
a switching signal. For each switching signal, the switched system
is a time-varying differential equation. We usually study the prop-
erties of a switched system not under a particular switching sig-
nal, but rather under various classes of switching signals (see, e.g.,
Hespanha (2004) and Liberzon (2003)).
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Impulsive systems and switched systems can be naturally
combined to form a more comprehensive model, i.e., impulsive
switched systems, in which the switching signal and the impulsive
law can be integrated as an impulsive and switching law (to
be described in this paper). Despite the apparent abundance of
applications, impulsive switched systems received only moderate
attention in the past decade (see, e.g., Haddad et al. (2006), Li, Soh,
and Wen (2005), Liu, Liu, and Xie (2009), Xie and Wang (2004)
and Xu, Liu, and Teo (2008)), although, earlier in 1984, switching
and impulses had already been combined to provide control for a
reflected diffusion (Liao, 1984).

The notions of input-to-state stability (ISS) and integral input-
to-state stability (iISS), originally introduced in Sontag (1989,
1998), have proved very useful in characterizing the effects of ex-
ternal inputs to a control system. The ISS/iISS notions are sub-
sequently extended to discrete-time systems in Jiang and Wang
(2001) and to switched systems in Mancilla-Aguilar and Garcia
(2001) and Vu, Chatterjee, and Liberzon (2007). ISS notions for hy-
brid systems are investigated in Cai and Teel (2005) and Cai and
Teel (2009), where the hybrid systems are defined on hybrid time
domains. More recently, the work of Hespanha, Liberzon, and Teel
(2008) studies Lyapunov conditions for input-to-state stability of
impulsive nonlinear systems.

The notions of ISS/iISS have been generalized to nonlinear
time-delay systems by various authors. In the seminal paper
Teel (1998), the notion of ISS is extended to time-delay sys-
tems and sufficient conditions for ISS are investigated using
Lyapunov-Razumikhin theorems. In Pepe and Jiang (2006), the
method of Lyapunov-Krasovskii functionals is proposed for study-
ing ISS/iISS of time-delay systems and several sufficient con-
ditions for ISS/ilSS of time-delay systems are presented. In
Yeganefar, Pepe, and Dambrine (2008), a link is established be-
tween exponential stability of an unforced system and the ISS
of time-delay systems using the method of Lyapunov-Krasovskii
functionals. It is also pointed out in Yeganefar et al. (2008) that
the characterization of ISS/iISS for nonlinear time-delay systems
remains a difficult task despite the recent progress. More recently,
the work of Chen and Zheng (2009) investigates both ISS and iISS
for nonlinear impulsive systems with time delays. Sufficient condi-
tions for ISS/iISS are established using the Lyapunov-Razumikhin
method.

In this paper, we study input-to-state properties of impulsive
and switching hybrid delay systems using the method of mul-
tiple Lyapunov-Krasovskii functionals. In contrast with the Lya-
punov-Razumikhin method presented in Chen and Zheng (2009),
itis well-known that the method of Lyapunov-Krasovskii function-
als are sometimes more general than the Lyapunov-Razumikhin
method in the sense that the latter can be considered as a partic-
ular case of the method of Lyapunov-Krasovskii functionals (Kol-
manovskii & Myshkis, 1999, Section 4.8, p. 254) (see also Pepe
and Jiang (2006)). For a discussion on the advantages and dis-
advantages of both methods in different situations, see Hale and
Lunel (1993, Section 5.5, pp. 164-165). Therefore, it is worthwhile
to study ISS properties of time-delay systems using the method
of Lyapunov-Krasovskii functionals, as shown in Pepe and Jiang
(2006) and Yeganefar et al. (2008). However, as far as impul-
sive stabilization of time-delay systems are concerned, the Lya-
punov-Krasovskii functional method is usually more difficult than
the Lyapunov-Razumikhin method. The reason is that, in general,
we cannot expect an impulse that occurs at a discrete time to bring
the value of a functional down instantaneously, whereas, in the
Lyapunov-Razumikhin method, the value of a function can subside
simultaneously as the impulse occurs. For impulsive stabilization
of time-delay systems using the Lyapunov-Krasovskii functional
methods, see Liu and Wang (2007) and Shen, Luo, and Liu (1999).
Moreover, to the best knowledge of the authors, there have been

no studies on the input-to-state properties of hybrid time-delay
systems with both switching and impulse effects. The main objec-
tive of this paper is to establish some results in this direction. It is
also shown that the results in the current paper can be applied to
systems with arbitrarily large delays and, therefore, improve those
results in Chen and Zheng (2009), Liu and Wang (2007) and Shen
et al. (1999). Moreover, due to existence of different switching
modes in the hybrid systems being investigated, we employ multi-
ple Lyapunov-Krasovskii functionals, in the spirit of work in Bran-
icky (1998) on multiple Lyapunov functions for switched systems.

The rest of this paper is organized as follows. In Section 2, we
give some necessary notations and then formulate an impulsive
and switching hybrid time-delay system with external input. The
concepts of input-to-state stability and integral input-to-state
stability are presented. The main results of this paper, presented in
Section 3, give sufficient conditions for input-to-state stability and
integral input-to-state stability of impulsive and switching hybrid
time-delay systems in terms of Lyapunov-Krasovskii functionals.
Several examples are presented in Section 4 to illustrate the main
results. The paper is concluded by Section 5, where the main
contributions of this paper are highlighted.

2. Preliminaries

Let Z* denote the set of nonnegative integers, R* the set
of nonnegative real numbers, and R" the n-dimensional real
Euclidean space. For x € R", |x| denotes the Euclidean norm of
x. For —o0 < a < b < o0, we use the notation £ C([a, b]; R")
to denote the class of functions from [a, b] to R" satisfying the
following: (i) it has at most a finite number of jump discontinuities
on (a, b}, i.e., points at which the function has finite-valued but
different left-hand and right-hand limits; (ii) it is continuous from
theright atall pointsin [a, b). We say that a function ¢ : [a, c0) —
R" belongs to the class £ C([a, oo); R"), if ¥ |q,p) (¥ restricted on
[a, b]) is in £ C([a, b]; R™) for all b > a. Givenr > 0, a norm on
PC([—r,0]; R") is defined as [|¢]| = sup_,—sq |¢(s)| for ¢ €
PC([—r, 0]; R"). For simplicity, £ € is used for 2 C([—r, 0]; R")
for the rest of this paper. Given x € LPC([—r, o0); R") and for
eacht € RT, let x, be an element of £C defined by x,(s) =
x(t+s), —-r<s<Oo.

Let M. and N, be two arbitrary index sets. Consider the follow-
ing impulsive switched delay system:

X (t) = fi (t, X, w(t)), t€ (te, tipr), ik € Ne, k€ ZY,  (2.1a)

Ax(t) = Ijk(ts xt’» 'I,U(t_)), t= tks jk € ‘Ndv k € Z+ \ {0}7(21b)

Xtg = S, (Z]C)

where £ € £C is the initial data, x(t) € R" is the system state,
X (t) the right-hand derivative of x(t), w(t) : R* — R™ the input
function, {t; : k € ZT} C RT a strictly increasing sequence such
that ty — oo ask — oo, and x,- defined by x,-(s) = x(t + s),
fors € [—r, 0), and x,- (0) = x(t7), where x(t7) = limy_, ;- x(s)
(the limit is taken from below t; similarly, w(t™) = lim,_, ,— w(s)).
Foreachi € N.andj € Ny fi : RT x € x R™ > R" and
I : RT x € x R™ > R". The input function w is assumed
to be in PC(RT; R"). Given w € LC(RT;R") andi € N, de-
fine gi(t, ¢) = fi(t, ¢, w(t)) and suppose that g; : Rt x PC
R" is composite-PC (i.e., for any function x € LC([—r, o0); R"),
the composite function t — g;(t, x;) is in 2C(R™; R")), quasi-
bounded, and continuous in its second variable so that system (2.1)
has at least one solution (see Ballinger and Liu (1999)'). Moreover,

T Ballinger and Liu (1999), the existence and uniqueness results are established
for impulsive delay systems without switching. The case for system (2.1) with
switching is essentially the same, by an argument using the method of steps over
all the switching/impulse intervals.
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each solution x belongs to the space PC([ty — r, 00); R") and is
continuous at each t # t, fort > to. We assume that, for each
i€ N andj € Ny, fi(t,0,0) = (¢, 0,0) = 0 so that system (2.1),
without input, admits a trivial solution.

In(2.1), the sequence of triples {(t, i, jx)} together imposes the
following: (1) a sequence of indices i to switch the right-hand side
of (2.1a) among the family {f; : i € M.}; (2) a sequence of indices
Ji to select the impulse functions I;, from the family {I; : j € N} to
reset the system state according to the difference equation (2.1b);
and (3) a sequence of discrete times tj, called the impulse and
switching times (except the initial time t,2), to determine when
the switching and impulse occur. Besides the family of functions
{fi - ie M}and{l; : i € N}, which govern the continuous
dynamics and the discrete dynamics of system (2.1), respectively, it
is expected that properties of solutions to system (2.1) (e.g. input-
to-state stability properties to be investigated in this paper) can
also be highly affected by the sequence of triples {(t, i, jx)}, which
we call an impulsive and switching signal. Hence, it is of interest to
characterize properties of solutions that are uniform over a certain
class of impulsive and switching signals. We may use 4 to denote
a certain class of such signals.

A function @ : R* +— R7 is said to be of class X and we write
a € X, if o is continuous, strictly increasing, and «(0) = 0. If
o € K also satisfies ¢ (t) — ocoast — o0, we say that « is of class
Koo and write @ € K. A function 8 : RT x RT — R7T is said
to be of class X £ and we write 8 € XL, if (-, t) is of class X for
eacht € R™ and B(r, t) decreases to 0 as t — oo for each fixed
reRt,

Definition 2.1. System (2.1) is said to be uniformly input-to-state
stable (ISS) over a certain class of signals 4, if there exist functions
B € KLandy € K, independent of the choice of impulsive and
switching signals {(t, ik, ji)} in 4§, such that, for each initial data
& € £e and input function w € LC(RT; R"), the solution x of
(2.1) exists globally and satisfies

x(O)] = BCIEN. t —to) + ¥ ( sup Iw(5)|> :

tp<s=<t

Definition 2.2. System (2.1) is said to be uniformly integral input-
to-state stable (ISS) over a certain class of signals 4, if there exist
functions 8 € KL and &, y € K, independent of the choice
of impulsive and switching signals {(t, ik, jx)} in &, such that, for
each initial data ¢ € £ € and input function w € LC(R™; R"), the
solution x of (2.1) exists globally and satisfies

a(jx(®)) < ﬂ(lléll,f—fo)+/ y (lw(s)Dds

+ > rwE)D.

o<ty <t

The above definitions are parallel to the ones given in Chen and
Zheng (2009), Hespanha et al. (2008) and Pepe and Jiang (2006). A
minor distinction from the definitions in Chen and Zheng (2009)
is that we consider the inputs to the continuous dynamics and the
discrete dynamics of system (2.1), namely w(t) in both (2.1a) and
(2.1b), to be the same. This simpler formulation is, nevertheless,
without loss of generality. If given w.(t) € R™ as the input
for the continuous dynamics and wg(t) € R™ as the input for
the discrete dynamics (as in Chen and Zheng (2009)), we can let
w(t) = [we(t) wq(t)] € R™*™2 and redefine f; and I; accordingly
to achieve the formulation in (2.1).

2 Whilea switching mode is assigned by i at t = t,, we do not consider a solution
to instantly undergo an impulse at the initial time t;.

A function v : RT x R" — R is said to belong to class v,
and we write v € vy, if, for each function x € LC(R™; R"), the
composite function t > v(t, x(t)) is also in #C(R™; R") and can
be discontinuous at some t’ € R™ only if t’ is a discontinuity point
of x. A functional v : RT x #£€ +— R™ is said to belong to class v,
and we write v € vy, if, for each function x € PC([—r, 00); R"),
the composite function t — v(t, x;) is continuous in t for t > 0.

To investigate the ISS/ilSS properties of system (2.1), which

has different modes of the continuous dynamics given by {f;
i € N}, we shall choose accordingly a family of multiple
Lyapunov-Krasovskii functionals {V; : i € A}, where each V; :
R x £C +— R isgivenby Vi(t, ¢) = Vi(t, $(0)) + Vi(t, ). We
shall assume that the family {V]i : i € N} are of class vy and the
family {Vzi : 1 € N:}areofclass v,. The intuitive idea is to break the
Lyapunov-Krasovskii functionals V; into a function part V{, which
can effectively reflect the impulse effects, and a functional part Vi,
which is indifferent to impulses, so that the difficulties in analyzing
the impulse effects using Lyapunov-Krasovskii functionals can be
overcome.

To effectively analyze a family of multiple Lyapunov-Krasovskii
functionals {V; : i € A} for system (2.1), we introduce the upper
right-hand derivative of V; with respect to ith mode of system (2.1),
for eachi € N, at (t, ) € RT x PC is defined by

1

D Vi(t, ¢) = lim sup E[Vi(t +h, xe4n(t, @) = Vit, @)1, (22)
h—0

where x(t, ¢) is a solution to the ith mode of system (2.1) satisfying
X = ¢, ie, x(t) = x(t,¢) satisfies x, = ¢ and X¥'(t) =
fitt, x¢, w(t)) fort € (to, to + h), where h > 0 is some positive
number. Moreover, for a function v R — R, DM u(t) is
the upper right-hand derivative of v(t) defined by DT v(t) =
lim supj,_, o+ %[v(t +h)—wv(t)]. Let {(t, ik, jx)} be an impulsive and
switching signal and x be a solution to system (2.1) on [t, tyi1).
Define v(t) = V; (t, x;) = V{(t, x(t)) + V5 (t, x,), for t € [ty, tiq1).
The above definitions for the upper right-hand derivative of a
function v(t) and a functional V;, With respect to ith mode of system
(2.1), are connected by DT v(t) = D (t,x;) fort € (t, tyt1)-

’k
3. Main results

We first introduce two classes of impulsive and switching sig-
nals and then establish uniform input-to-state stability of system
(2.1) over these particular classes of signals. The two classes of sig-
nals to be introduced here generalize the well-known dwell-time
conditions to dwell-time conditions with respect to specific switching
modes. We say that an impulsive and switching signal {(t, ik, ji)}
belongsto & :(8), forsome$ > Oandi € N, ifitsatisfies inf{ty;—
te: k€ ZT, iy =i} > 8, where ty is the initial time. If {(ty, i, jk)}
satisfies sup{ty,1 — tx : k € Z*, i, = i} < §, it is said to belong
to 8. (8). For fixed § > 0, the well-known dwell- time signals are

sup
recovered by $i¢(8) = ﬂlew in(8) and 85, (8) = :e/v ).

In other words, an 1mpulswe and switching signal {(ty, i, ]k)i) be-
longs to 5mf(5) or 4, (8) if it assumes a dwell-time lower bound
or upper bound §, respectlvely, with respect to the ith mode.

Our first result is concerned with ISS properties of system (2.1),
in the case when all the subsystems governing the continuous
dynamics of (2.1) are stable and the impulses, on the other
hand, are destabilizing. Intuitively, the conditions in the following
theorem consist of four aspects (corresponding to each of the
conditions): (i) the Lyapunov-Krasovskii functionals satisfy certain
positive definite and decrescent conditions; (ii) the jumps induced
by the destabilizing impulses satisfy certain growth conditions;
(iii) there exist some negative estimates of the upper right-hand
derivatives of the functionals with respect to each stable mode
of (2.1); (iv) the estimates on the derivatives and the growth by
jumps satisfy certain balancing conditions in terms of the dwell-
time lower bounds.
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Theorem 3.1. Suppose that there exist a family of functions {V{ tie
M} of class vy and a family of functionals {Vzi 11 € N} of class vy,
functions a1, aa, a3, and x of class K., positive constants A > 0,
pi > 1,68, and u; > A (i € N)such that, for all i, ie Ne, ] € Mg,
teRT xR,y e R™ and ¢ € PC,

(i) e (IxD) < Vi(t,x) < aa(|x]) and 0 < Vi(t, ) < as([l¢]);

(i) Vi(t, 9(0) + Li(t,¢,y) = pVi(t™,$©0) + x(ly) and
Vi(t, ¢) < piVi(t, ¢);

(iii) D*Vi(t,¢) < —uiVit,9) + x(lw(b)]), where Vi(t, ¢) =
Vi(t, $(0)) + Vi(t, ¢);

(iv) Inpi < (i — A)d;

Moreover, suppose that sup;c v, 0; < 00, inficy, 6; > 0, and infic ,
pi > . Then system (2.1) is uniformly ISS over [;_,. 81 (8. In
particular, if 6 = sup;c . & < 00, system (2.1) is uniformly ISS over
Bint(8).

Proof. In view of condition (iv) and that sup;c . 0i < 00, infic y,
8; > 0,and infic v, (i > A, we can choose a positive constant ¢ such
that pje= iM% < 1, —p; 4+ 1/c + A < 0,and cpe "% + pi/p; <
c, foralli € M. Let x be a solution to (2.1), (tk, ix, jx) be the
corresponding impulsive and switching signal, and w(t) a given
input function. Set vi(t) = V*(¢, x(t)), v2(t) = V,*(t, ), and
v(t) = vi(t) + va(t), fort € [ty, tyyq) and k € Z7. It is clear
that v(t) defines a right-continuous function on [y, 00). We shall
show that

v < a(||E]]) + e Ty ( sup IW(S)|>

tp<s=<t

+ Y SOy (lwEe)D, t > to, (3.1)

to<tg<t

where @« = o, + «as. For convenience, write the RHS of (3.1) as
u(t) and x (t) = X(suptofsft |w(s)]). It is clear that (3.1) holds for
t = to. Define t* := inf{t € [to, t;) : v()e*T~0) > u(t) + ¢},
where ¢ > 0is an arbitrarily fixed number. It is clear that t*(¢) =
t; implies v(t)e* 0 < y(t) + e for all t € [to, t;). Therefore, if
t*(e) = t; for all ¢ > 0, we must have that (3.1) holds on [tp, t7).
Suppose this is not the case, i.e. t*(¢*) < t; for some ¢* > 0.
It follows that v(t*)e*®"~) = y(t*) + ¢* > 0, which, by (3.1),
implies that v(t*) > ¢y (t*). Hence condition (iii) of the theorem
shows that

. 1 §
D+[v(t*)ek(t —to)] < (_’uio + = _{_}L) v(t*)ek(t —to) _ 0,
C

which clearly contradicts how t* is chosen. Therefore, (3.1) holds
on [ty, t1). Now suppose that (3.1) is true on [tg, tp,), wherem > 1.
We will show that (3.1) holds on [ty tm+1) as well. First, based
on the inductive assumption, we estimate v(t,;)e”fm*fﬂ). Since
Dtu(t) < —Wi,_v(€) + x(lw(t)]) on [ty_1, t), We can obtain,
by integration, that

euim,ltmv(tn—q) _ e”"mfltm’]v(tmq)

=
Mip_4

[e“im—l tm etim—1 tm—1 ])—( (tr;)’

which implies

V(ty) < Vltm_r)e i1 Pnet 4 —— (6. (32)

Im—1

On the other hand, from (3.1) on [to, t;,), we have

V()€™ m=170) <yt _y). (3.3)

Combining (3.2) and (3.3) gives

v (t*)el(fm*fo) <
m =

iy, @ Him—1 M1 (£ )
Pim_1

+ (C,Oim_le_#im’laim*1 + Pim_q ) eA(tm—tg))—((tn:)
Mip_q

+ pim_1 e_(ﬂim71 _)‘)‘Sim71

x Y e“tk‘t")x(lw(t{)l)}

o<t =<tm—1

1 _
< u(t,,).

Im—1

Therefore, by condition (ii),
v(tm)e 0 < o () + x (lw(t,)])]ettn
< u(ty) + "0 x (Jw(t,)]) = ultm),

i.e,, (3.1) holds for t = t,. Applying the argument used to show
(3.1) on [to, t1), we can prove that (3.1) is true on [t;;, tmt1). By
induction, (3.1) is true for all t > t,. Rewrite (3.1) as

() < a(lgDe ™ +cx ( sup IW(S)I)

th<s<t
—A(t— —
+ ) e MWy w)D.
to<tp=<t
Note that
D e Wy (ug)) < x(SUD |w(s>|) Y etw
to<tg<t fo=s=t to<tx<t

1
< — sup |w(s)| ).
< 1-e%x(t0§s‘;' (>|>
We have

ar(x(t)) < v(t) < a(||E])e 0

1
+ |:C + PPy e”:| X <tos;2t|w(s)|) .

Since this estimate is independent of a particular impulsive and
switching signal, it follows from a standard argument that there
exist functions 8 and y, still independent of a particular impulsive
and switching signal, such that the estimate in Definition 2.1 for
x(t) holds, which implies uniform ISS of (2.1). The above estimate
also establishes boundedness of the state, which further implies
global existence of solutions (see Ballinger and Liu (1999)). The
proof is complete. O

Remark 3.1. Theorem 3.1 is sufficiently general to cover the
situation that the index sets ., and Ny are infinite sets. If N,
is a finite index set, then sup;cy, i < 00, infiey, 6; > 0, and
infiey, i > A are trivially satisfied in view of the theorem
conditions. Moreover, condition (iv) can be replaced by a simpler
one In p; < w;é;, since A > 0 can be chosen to be sufficiently small
such that condition (iv) holds.

Remark 3.2. Condition (iii) in Theorem 3.1 implies that each
of the continuous dynamics is ISS (see Pepe and Jiang (2006)).
Nevertheless, condition (ii) does not rule out that each of the
discrete dynamics can be destabilizing (o; > 1). Theorem 3.1
shows that system (2.1) is ISS, if it satisfies a dwell-time lower
bound condition given by condition (iv). In other words, if the
impulses and switching occur not too frequently, the ISS properties
of a hybrid time-delay system with stable continuous dynamics
can be retained despite the destabilizing impulses.
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Remark 3.3. Condition (ii) not only imposes a condition on the im-
pulse functions Ij, it also characterizes possible jumps in the values
of the multiple Lyapunov-Krasovskii functionals V; at the impul-
sive and switching times. Actually, even if there are no impulses, a
comparison factor among the multiple Lyapunov functions is nec-
essary for the average dwell-time approach to the stability analysis
of switched systems (see, e.g., Liberzon (2003) and Vu et al. (2007)
and the factor u > 1 in their results).

Remark 3.4. The positive constant A plays a role in characterizing
the ISS/ilSS properties with a “stability margin” (similar to stability
margin of linear systems). This is similar to the generalized concept
of e* -weighted ISS/iISS properties, introduced in Vu et al. (2007).

The second result is concerned with ISS properties of system
(2.1),in the case when all the subsystems governing the continuous
dynamics of (2.1) can be unstable and the impulses, on the other
hand, are stabilizing. Intuitively, the conditions in the following
theorem consist of four aspects (corresponding to each of the
conditions): (i) the Lyapunov-Krasovskii functionals satisfy certain
positive definite and decrescent conditions; (ii) the jumps induced
by the stabilizing impulses satisfy certain diminishing conditions;
(iii) there exist some positive estimates of the upper right-hand
derivatives of the functionals with respect to each unstable mode
of (2.1); (iv) the estimates on the derivatives and the growth by
jumps satisfy certain balancing conditions in terms of the dwell-
time upper bounds.

Theorem 3.2. Suppose that there exist a family of functions {V{ tie
N} of class v1 and a family of functionals {sz 1 1€ N} of class v,
functions ay, oz, a3, x of class Koo, Eositive constants p; < 1, A, §;,
ki, and w;i (i € N, )such that, foralli, i € N.,j € Ny, t € RT,x € R",
yeR™ and ¢ € PC,
(i) a1 (Ix]) < Vi(t, %) < ax(lx]) and 0 < V;(t, §) < a3 (llp);
(ii) Vi(t, 9(0) + Ii(t.¢,y)) = piVi(t™,$(0)) + x(Iy) and
VA, ) < ki SUP_y << Vi (£ +5, $(5);
(iii) DYVi(t, @) < wiVi(t,¢) + x(lw(t)]), where Vi(t,¢) =
Vi(t, ¢(0)) + Vy(t, ¢);
(iv) Inp; < —(ui + A)8;, where p; = pi + Kkie™".
Moreover, suppose that sup;cy. §; < 00,8 = infiey, 6; > O,
and supjcy, ui < 0o. Then system (2.1) is uniformly ISS over
ﬂieNC S;up(é,-). In particular, system (2.1) is uniformly ISS over
sup
Proof. Let v(t) and x (t) be the same as in the proof for Theo-

rem 3.1. In view of condition (iv) and that sup;cy, pi < oo and
SUDjey, Mi < 00, We can choose positive constants M, ci, and ¢,

such that M > etid%i petidic; 4+ piet® < ¢q, ¢, > eWit*di and
pietitM% ~ 1 We shall show that

v()e 0 < Ma(g]) + cre* 0 g ()
to Y WOy, t=t,  (34)

to<tp=<t

where o = &, + «3. For convenience, let u(t) denote the RHS of
(3.4). For k € Z™, condition (iii) on [ty, t;, 1) implies that

t
e Mty (t) — e Miu(t) < / e Mty (lw(s))ds,  t € [ty, tes1),

tk

which gives

u(t) < v(t)e! kT 4y ety (6), (3.5)

fort € [ty, tyyq1) and k € ZT. Note that (3.5) implies (3.4) on [tg, t1).
Now suppose that (3.4) is true on [tg, t;,). We will show that (3.4)

holds on [ty,, tm+1) as well. By condition (ii), the inductive assump-
tion, and the continuity of v, at t = tp,,

V(tm) < i v1(ty,) + x (w(t,)D) + va(ty)
Pinu(t5)e =0 e sup [v(tn + 5)|

—r<s<0

IA

+x(w(t,)D
< Piti(ty)e M0 4y (Jw(t)))- (3.6)

Applying (3.5) on [ty, tmt1) and by (3.6), we have, for t € [tp,
tm+l)'

v(t)e*T0) < 5y elim i Mo (|||
+ [y, €Him®imcy + puy, etimdim |00 5 (£)
=+ ,(-)I_me(#im-H)Bim I Z e?»(fk—fo)xﬂw(tl:)l)

o<t =tm-1
4 e(Him +2)8i, el(fm—to)x I{ w(t,;) h)
=< u(t),

i.e,, (3.4) holds on [t;;, ty+1). Hence, by induction, (3.4) is true for
all t > to. The rest of the proof is the same as that of Theorem 3.1.
The proof is complete. O

The following corollary is an immediate consequence of Theo-
rem 3.2 and gives alternative sufficient conditions for ISS of system
(2.1).

Corollary 3.1. Suppose that there exist positive constants o, o, o3,
and p such that conditions (i), (ii), and (iv) in Theorem 3.2 are replaced
by the following

(i) aq]x|P < Vi(t,X) < aoxP and 0 < Vi(t, ¢) < asl|@lP;

(ii") Vi(t, ¢(0) +Ii(t, ¢, y)) < ini(t_, $(0) + x(lyD;
(V) In p; < —(ui + A)8;, where p; = p; + e,

o1

and condition (iii) and all other assumptions remain the same. Then
the same conclusions hold as in Theorem 3.2.

Proof. It suffices to verify that condition (ii) in Theorem 3.2 is
satisfied with «; = Z—f m]

Remark 3.5. If M. is a finite index set, then sup;cy, 8 < o0,
inficy, & > 0, and sup;c v, i < oo are trivially satisfied in view
of the theorem conditions, and, moreover, condition (iv) can be
replaced by a simpler one In (p; + k;) < —u;d;, since A > 0 can
be chosen to be sufficiently small such that condition (iv) holds.

Remark 3.6. Condition (iii) in Theorem 3.2 implies that each of
the continuous dynamics can be unstable (u; > 0). Nevertheless,
condition (ii) implies that each of the discrete dynamics is
stabilizing (p; < 1). Theorem 3.2 shows that system (2.1) is ISS, if
it satisfies a dwell-time upper bound condition given by condition
(iv). In other words, if the impulses are applied sufficiently
frequently, a hybrid time-delay system with unstable continuous
dynamics can be impulsively stabilized in the ISS/iISS sense.

Remark 3.7. Condition (ii) characterizes the key distinction of
the idea of impulsive stabilization of time-delay systems using
the method of Lyapunov-Krasovskii functionals. According to
condition (ii), it is only required that the function part of V; (i.e., V{)
is stabilized by the impulses, which is reasonable, since we cannot
expect an impulse that occurs at a discrete time to bring the value
of a purely functional part of V; (e.g. an integral of ¢) down. The
factor «; plays a role in estimating the functional part of V; in terms
of V; with memory (Corollary 3.1 gives such an example), which
eventually leads to condition (iv), where the dwell-time conditions
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are given depending on the delay size r and the factor ;. It appears
that the delay size r and the factor «; have to be sufficiently small
such that p; + k;e* < 1 (implied by condition (iv)). However,
as we can see from the examples in the next section, we can
always add a tuning parameter as the coefficient of Vzi and hence
make «; sufficiently small (of course, by doing so, more burden is
going to be placed on V] and the estimates y; in condition (iii)
can become larger, which eventually leads to more restrictions on
d;). The restriction on the delay size r can also be resolved using
this technique. It is therefore remarked that Theorem 3.2 can be
applied to system (2.1) with arbitrarily large delays, whereas the
results in Chen and Zheng (2009) and Liu and Wang (2007) both
have restrictions on the delay size.

Remark 3.8. Theorems 3.1 and 3.2 each provide a set of sufficient
Lyapunov conditions to check for ISS properties of an impulsive and
switching hybrid time-delay system. Therefore, the construction
of Lyapunov-Krasovskii functionals are crucial in applying these
results. Although no universal rules exist on how to construct
these functionals, there are some guidelines on how to choose
them. As for Lyapunov-Krasovskii functionals for linear time-delay
systems, there are some commonly used candidates to perform
stability analysis of such systems, as summarized in the survey
paper Richard (2003). It can be seen that these functionals usually
consist of two parts, a function part, which can be a quadratic
function, and a functional part, which is usually an integral whose
form varies depending on the right-hand sides of the systems
being studied. These guidelines are well demonstrated by the
examples to be presented in Section 4. Under these guidelines,
and with the help of linear or non-linear feedback controllers,
hopefully one can find suitable Lyapunov functionals that can
satisfy all the conditions for ISS/iISS in Theorems 3.1 and 3.2.
Moreover, conditions in Theorems 3.1 and 3.2 are only sufficient
conditions for ISS/ilSS of the impulsive and switching hybrid time-
delay systems being investigated. Whether these conditions are
necessary or what are the necessary conditions for ISS/iISS of such
systems remains an interesting problem to be investigated.

As shown in Sontag (1998), ilSS is a weaker notion than that of
ISS and can be characterized by a weaker Lyapunov condition. In
a similar spirit, the following two theorems on ilSS of system (2.1)
are formulated with a weaker condition on continuous dynamics.

Theorem 3.3. If all the conditions in Theorem 3.1 hold, except that
condition (iii) is replaced by

(iii)” D*Vi(t, ¢) < (x((w(O)]) — uVi(t, @) + x (lw (),

then system (2.1) is uniformly ilISS over ﬂieNc J{Hf((S,-). In particu-
lar, (2.1) is uniformly iISS over $ine(5).

Proof. Choose a positive constant ¢ such that pe#i+»% < 1 and

1 < cpe ™% 4 p; < cforalli € M. Instead of showing (3.1), we
prove that

(D) < &(t, to) [a(lléll) +Cew7’°)/ X(Iw(S)l)dS}

to
+ Y SEOy (), t =1, (3.7)

o<ty <t

where ¢ = o; + a3 and &(t,s), fort > s > ty, is defined by
&(t,s) = exp(fst x (Jw(s)|)ds). As usual, we let u(t) denote the
RHS of (3.7). For k > 1, condition (iii’) on [t,_1, t;) implies that

t .
e7 ftk*] X(Iw(s)l)d5+ﬂ/lk71 [U(t) _ eMik*l tk—1 U(tk—l)

t s
< f e o KONy (u(s)lhds, ¢ € [t ),

lie—1

which gives

v(t) < &(t, tk—1) |:v(tk_1)e“ik1 (t—te—1)

+ / x(lw(s)l)ds}, (3.8)
k-1

fort € [t,_1,t) and k > 1. Note that (3.8) implies (3.7) on
[to, t1). Now suppose that (3.7) is true on [ty, t,), where m > 1. We
will show that (3.7) holds on [t,, t;11) as well. First, based on the
inductive assumption, we estimate v(t,, ye*(m=0)  Applying (3.8)
on [ty,_1, tym) gives

u(ty) < E(tm, tm_a[v(tm_l)e“fw“m‘m-”

tm
+ / x(lw(S)I)dS}-

Moreover, by (3.7) on [to, tm), v(tm_q)e*m-1710)
Combining this and the last display equation gives

< u(tm-1).

v (t*)el(tm*fo) <
m =

pi [pfmlewfmlmfml & (tm, o) (£ 1))
Im—1

+ (Cpim,le_’“m*l‘s"mfl + pi,_ )€ (tm, to)e*(tm—t0)

tm
x / K (w©)Dds + py, e in-1 =iy

to

x o @y (lw()))

to<tp<tm_1

1 _
< u(t,,),

in—1

where the relation &(t,s) = &(t, t)&é(r,s),fort > t > s, are
used. Therefore, by condition (ii),

V(tm)e* ™0 < [ v(ty) + x (lw(ty,)])]er

< u(ty) + O x (Jw(t,)]) = ultm). (39)
Applying (3.8) on [ty tn+1) and using (3.9), we obtain

v(t)ett 70 < e Win TP e (¢ gy )ar([1£]])

tm
+E&(t, to) (Ce_"‘m (t_[r”)em"’_t“)/ x (lw(s)ds

to

A

t
4w / x(lw(S)I)dS>

m

+ e~ (im =) (t=tm) Z e)‘(t"_[O)X(|w(t,:)|)

to<tp<t
t € [tm, tm+1).

That is, (3.1) is true on [t;;, tymy1). By induction, (3.1) is true for all
t > to. To show uniform iISS of (2.1), note that

E(t, to)a (&1 = &) + (&, to) — Da(lIE])

1 2 1 2
= a(l§) + S (1§ + L&, o) — 117 (3.10)

< u(t),

A

Define 91(r) = r + 5 and 9,(r) = 3(e" — )2 +re’,r > 0.1t is
clear that ¥ and ¢}, are both of class K. Applying (3.10) to (3.7),
we obtain

t
o(®) < D1(@(ED) + 9 (/ x(lw(S)I)dS>
to
+ ) Oy (lw(g)D.

to<tp<t
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Uniform iISS of (2.1) follows from the previous inequality by a
standard argument, and global existence of solutions follows from
the boundedness of the state (see Ballinger and Liu (1999)). The
proof is complete. O

Since condition (iii’) in Theorem 3.3 is weaker than condition
(iii) in Theorem 3.1, the following is an immediate consequence of
Theorem 3.3.

Corollary 3.2. Under the same conditions as in Theorem 3.1, sys-
tem (2.1) is uniformly iISS over ﬂie& &1 ¢(8;) and Sine(8).

Theorem 3.4. If all the conditions in Theorem 3.2 hold, except that
condition (iii) is replaced by

(iii") DFVi(t, ¢) < (x(lw(®)]) + wVi(t, ¢) + x (w(O)]),

then system (2.1) is uniformly iISS over ﬂiewf Jéup(&). In particular,
system (2.1) is uniformly iISS over 84, (5).

Proof. Instead of showing (3.4), we can show that
t
()T < g(t, to) [Ma||$||p+c1ex<t_t°>f X(Iw(S)I)dS}
fo

+o Yy Oy u)D), €= b,

to<tp<t

where &(t, tp) is defined as in the proof of Theorem 3.3 and the
constants are chosen as in the proof of Theorem 3.2. The proof can
be completed by induction and the argument is similar to that in
the proof of Theorem 3.2. The details are omitted. O

Since condition (iii”) in Theorem 3.4 is weaker than condition
(iii) in Theorem 3.2, the following is an immediate consequence of
Theorem 3.4.

Corollary 3.3. Under the same conditions as in Theorem 3.2, sys-
tem (2.1) is uniformly iISS over ﬂie% 8L, (1) and S4yp(8).

sup
4. Examples

In this section, we present several examples to illustrate our
main results.

Example 4.1. Consider the following nonlinear impulsive swit-
ched delay system

X (t) = —sat(x(t)) + a; sat(x(t — 1))
+ by sat(w(t)), t € (te, tip1), k € Z7F, (4.1a)
Ax(t) = g sat(w(t™)), t=t, keZ"\ {0}, (4.1b)

where a;,, b, € {—0.2, —0.1, 0.1, 0.2}, ¢j, € [—3, 3], and sat(x)
is a saturation function defined by sat(x) = %(|x + 1] — |x — 1)).
To investigate the ISS properties of (4.1), let M. £ {1, 2, 3, 4}
and N; & [—%, %]. Fori € N.andj € Ny let [a; a; a3 a4] =
[b1 by by by] = [-0.2 — 0.1 0.1 0.2] and ¢ = j. Choose
Lyapunov-Krasovskii functionals Vi(t, ¢) = Vi(t, $(0))+Vi(t, ¢),
with
2

i X, Xl <1,
Vi(t,x) = {ez(x|—1)

x| > 1,

0
Vi o) =lal | sat@o) [k +1+ 5

-

where « > 0. Condition (i) of Theorem 3.1 is clearly satisfied. Next
we verify condition (ii) of Theorem 3.1. For |¢(0) + [i(t, ¢, y)| < 1,

Vi(t, (0) + I, 6,9)) = [$(0) +jsat()]?
< 20°(0) + 507 < Wi(t, 6(0) + 2.

For [¢(0) + I;(t, ¢, y)| > 1,itis implied that |[¢(0)| > %,We have

VI(E, $(0) + [i(t, ¢, y)) = e2POHROI2 < (20O
ee?POID = evi(t, $(0)), [p(0)] > 1,

= 2 i 1
2e|p(0)|” = 2eVy(t, $(0)), [¢(0)] € (5, 1],

where the fact that 2x*> > e2®~D forx e (%, 1], has been used.

Moreover, Vg(t, ¢) < ZVZi(t, ¢). In either case, condition (ii) is
verified with p; = 2e. Now we check condition (iv). If |¢(0)| < 1,
we have

D Vi(t, ¢)

2¢(0)[—sat(¢(0)) + a; sat(¢(—r)) + b; sat(w(t))]
+lail(x + 1) sat®(¢(0)) — |a;| sat*(¢p(—r))

c 0
-~ lail sat(¢(s))ds

—r

IA

-2 = lail(k +2) = 2|b)Vi(t, $(0))

— i g+ 2y
k+Dr 27 2

IA

. K
— min {(2 — lai|(k +2) — 2|by]), (K—l—l)r}

bl
x Vi(t, ¢) + EEA

If |¢(0)| > 1, we have

D*Vi(t, ¢) = 2¢O Vsgn(¢(0))
x [—sat(¢(0)) + a; sat(¢(—r)) + b sat(w(t))]
+ |ail (k + 1) sat®(¢(0)) — |a;| sat*(p(—1))

K 0
- —lai sat® (¢ (s))ds

< —2e* POV (1 — b Vi(t, ¢)
+ |a;][2e* OV sat(p (—r))|
—sat?(¢(—1)) + (k + 1)]

< =2 — lail(k +2) — 2|bi)Vi(t, $(0))

K i
- sz(f, )

=< —min{(Z— lail (x4 2) — 2|bil), }Vi(f,¢),

(k + Dr
where, to derive the second inequality above, we have used the fact
that —x> + 2bx 4+ (k + 1) < 2b 4+ k < b(k + 2),forx € [0, 1],
b > 1,and « > 0. Therefore, taking

i = —min{(2— lail (< + 2) — 2|bi]), (4.2)

K
kK +Dr ]’
condition (iii) of Theorem 3.1 is satisfied, provided that 2 — |a;| (k +
2) — 2|bj] > Oforalli € M. According to Theorem 3.1 (and
Remark 3.1), if § > ”ﬂﬂ for all i € A, then system (4.1) is

uniformly ISS over (), . 81 +(8). For illustration, choosing x = 0.2
and r = 0.1, we can compute from (4.2) that 1 = 4 = 1.16 and
U2 = m3 = 1.58, which gives dwell-time conditions §; = 84 >
1.4596 and 8, = 63 > 1.0716. Simulation results for system (4.1)
with these parameters are shown in Fig. 1.

Next, we apply Theorems 3.3 and 3.4 to study integral input-to-
state stability of a bilinear impulsive switched delay system.

Example 4.2. Consider the following bilinear impulsive switched
delay system

X(0) = Ax(®) + Y wp(t)(Akx(t) + Bix(t — 1))
p=1
+Cikw(t)7

t € (t, ti1), ke Z™, (4.3a)
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the impulsive and switching signal

system response with exponentially decaying input

system response with bounded input
and random valued impulses

m i i TT TT TT 1

i €{1,2,3, 4} (switching)
*  j,€1-05,05] (impulse)

(i Ji)

0.8

08

10 15 20 0 500 1000 1500 2000 2500 3000

t t

Fig. 1. Simulation results for Example 4.1.

Ax(t) = Dpx(t7) + Ejw(t™), t=t, keZ"\ {0}, (4.3b)

where iy € M, jkx € My, and both A, and -A; are finite index sets.
Foreachie M andj e My, p=1,2,..., m,Ai,A;J, B;,,and Djarein
R™", and C; and E;j are in R™*™. The input function w is in R™ and
its components are wp, p = 1,2, ..., m.

The ISS properties of (4.3) obtamed by Theorems 3.3 and 3.4 are
summarized in the following proposition.

Proposition 4.1. If

(i) all A; are Hurwitz and P; are positive definite matrices such that
AI»TP,' + PA; = —I and there exist triples of positive numbers

(mi, pi, 8;), 1 € N, such that §; > h/% > 0and

1 1 }
Amax (Py) “or)’
pi > Mmax )\max(P,'il(ln + Dj)Tpi(‘ln + Dj)),

JENg. €N

0 < @i < min {
(4.4)

foralli € N, where {, denotes the n x n identity matrix, then

system (4.3) is uniformly iISS over (.. &i,+(8:). In particular,

for § = maxie . 8, system (4.3) is uniformly iISS over 8ine(5).
(ii) there exist triples of positive numbers (ui, pi, i), i € N, such

that all positive and

5 N0

i > MaxX Amax(dn + D)7 (1n + D)),
JEN4

i > )\max(A,T +A1)»
(4.5)
for all i

€ N, then system (4.3) is uniformly iISS over
ﬂie% /S;up((sf)' In particular, for 6 = min;e, 8, system (4.3) is
uniformly iISS over 85,,(5).

Proof. We outline the proof as follows. For part (i), choose
Vi(t, ¢) = Vi(t, ¢(0)+Vi(t, ), with Vi(t, x) = x> and Vi(t, ) =
sffr(Z + 2)|¢(0)|*ds, where ¢ € (0, 3). For part (ii), choose
Vi(t, ) = Vi(t, p(0))+Vi(t, ), with Vi(t, x) = x> and Vi(t, §) =
ffr |¢(0)|?ds, where & > 0. The conclusion follows from that of
Theorem 3.4. O

Remark 4.1. Proposition 4.1 partially extends Theorem 3.10 in
Pepe and Jiang (2006), where necessary and sufficient conditions
for the ilISS of a bilinear delay system are studied, to impulsive
hybrid systems with time-delay. Proposition 4.1 also shows that,
if each of the bilinear delay systems is unstable (i.e., A; is not
Hurwitz), we can still apply impulse control to achieve iISS for the
hybrid time-delay system.

The following example presents a network based impulse con-
trol strategy to achieve ISS/iISS properties of estimation errors over
a hybrid delayed system.

Example 4.3. Consider the following hybrid delayed networked
control system

X(t) = Apx(t) + fi, (x(t — 1))

+Bjw(t), t € [te, tr1), ke Zb, (4.6a)
y() = x(t) +v(t), t=>to, (4.6b)
R(t) = AR + fi R(E = 1)), t €[t tiyr), k€ ZT,  (460)
ooy Vi @), =]k,
() = {&l(t)’ %] lef{1,2,...,n}, (4.6d)

where x(t) € R" is the system state, w(t) € R™ is the disturbance
input, y(t) € R" is the state measurement, v(t) € R" is the
measurement noise, X(t) € R" is the remote estimate of x(t),
fix(t—r))and fi(fc(t —r)) are the nonlinear delayed perturbations
of the state and their estimations, respectively, with r > 0 as a
constant time-delay. Moreover, i, € N, and A, is a finite index
set; {ty} is a monotonically increasing transmission time sequence
satisfying ty — o0 as k — o00; at each transmission time
t = ty, a try-once-discard (TOD)-like protocol (Walsh, Beldiman,
& Bushnell, 2001) to determine the index j, € {1, 2, ..., n}, i.e, jk
is the index j corresponding to the largest |X;(t,) — y;(t; )]
lej(t,) — vj(t, )|, where j € {1,2,...,n}. Whent € (t, tyt1),
we can estimate x(t) by letting x(t) evolve according to (4.6¢); at
t = ty, a measurement y;, (based on a TOD-like protocol) is sent
to the remote estimator and provides feedback impulse control to
the estimate X;,. The objective is to achieve ISS/ilSS properties of
the estimation error E(t), which is defined by E(t) = x(t) — x(t)
and can be shown to satisfy the following impulsive and switching
hybrid delayed systems

E'(t) = AE(t) +fik(f<(f — 1) = fi(x(t —1))

—Byw(t), t€ [ty tip1), keZt, (4.7a)
2 i (6 I = .(1
E(t) = {gkét_))’ l;éj'; le{1,2,...,n). (4.7b)

It is assumed that there exist positive constants L; (i € M) such
that

Ifi (%)
To investigate the ISS properties of (4.7), choose Lyapunov-
Krasovskii functionals Vi(t,¢) = Vj(t, ¢(0)) + Vi(t, ¢), with
Vi(t,E) = E? and Vi(t,$) = ki [° |¢(s)[>ds, where k; > O.
According to Hespanha et al. (2008), for each p € ((n — 1)/n, 1),

one can find a function ¥ € X such that, for all k € Z* and
i€ N,

Vit E(t) < pVi(t  Et) + x (v(t).

—fi®)| <Ljx—X, Vx,X€R" icAN,. (4.8)

(4.9)
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error system response with exponentially decaying input
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error system response with periodic input

system state: a switching delayed
Chua’s circuit
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Fig. 2. Simulation results for Example 4.3.

Moreover, one can easily verify

0 -
lp(s)|*ds < kir sup Vi(t +s5, p(5)),

—r —r<s<0

V(t, ) < K (4.10)

where t > t, i, ie N, and ¢ € PC. Therefore, condition (ii) of
Theorem 3.2 is satisfied with the constants p and /qu,.2 in place of
pi and «;, respectively. Computing the upper right-hand derivative
of Vi(t, ¢) along the ith mode of (4.7) gives

D Vi(t, ) = 20" (0)(Aip(0) + fi(&(t — 1)) — filx(t — 1))
—Biw()) + ki(I9(0)* — [¢p(=1)I*)

12 .
=< <)\max(A;r +A,') + Kfl + K + 8) V1l (t, ¢(0)

+ x:(lw(®)), (4.11)

where ¢ > 0 is an arbitrary positive constant and . is a function
in K, which depends on &. We claim that, if

n—1 r I?
In <T + K,‘T') < — (A-max(Ai +Ai) + ; +K,‘> 8 <0, (4.12)
1
holds for some §; > 0 (i e M), then the error system (4.7) is
uniformly ISS over ﬂlew (8 ). In particular, for § = minje ;. &,
system (4.3) is umformly ISS over 4, (8). Actually, if (4.12) holds,
one can choose p € ((n — 1)/n, 1), ui > Amax(Al + A) +
L,-Z//cl- 4+ ki > 0, and A > O sufficiently small such that In(p +
kire*) < —(ui+1)8;, i.e., condition (iv) of Theorem 3.2 is satisfied.
In view of (4.11), we can choose ¢ > 0 sufficiently small such
that D,-*Vi(t, @) < wuiVi(t, ¢), i.e., condition (iii) of Theorem 3.2 is
satisfied. Our claim follows from the conclusion of Theorem 3.2. As
a numerical example, we take B; = [1 0.1 0], fi(x) = fi(x) =
[ei(a —b) 0 0]Tsat(x;), and

—Oli(l - b) (4] 0
A= 1 -1 1],
0 -8 0

wherei € Ne = {], 2},anda1 = 9,/3] = 100/7,0(2 = 10,/32 = 16,
a = 8/7,b = 5/7. Therefore, the state system can be regarded as a
hybrid system switching between two delayed Chua’s circuits with
slightly different parameters, which both exhibit chaotic behaviors
under the given parameters. It is easy to verify that (4.8) is satisfied
with L; = 27/7 and L, = 30/7. Moreover, Amx(A] + A)) =
14.8685 and Amax(Ag + A,) = 16.7839. Now (4.12) specifies
a condition on the dwell-time upper bound §; for the ith mode
with k; > 0 as a tuning parameter. Withr = 0.02andn = 3
and choosing k1 = 2.2 and k;, = 2.4, (4.12) boils down to
81 < 0.0143 and 6, < 0.0125. Therefore, with §; = 0.014 and
8 = 0.012, Theorem 3.2 guarantees that the error system (4.7)

is uniformly 1SS over (1)_; , 8%,,(8). In particular, for § = 0.012,
system (4.3) is uniformly ISS over 4,,(6). Simulation results for
both the state system (4.6) and the error system (4.7), under the
above parameters, are shown in Fig. 2.

Remark 4.2. As discussed in Remark 3.7 after Theorem 3.2, the
parameters k; here play important roles in allowing our results to
be applied to systems with arbitrarily large delays. Especially, in
this example, the impulse amplitude, characterized by the factor
p, is not arbitrarily chosen, since we have p € ((n — 1)/n, 1). The
result in Chen and Zheng (2009) (if adapted to hybrid systems with
switching modes and applied to deal with this example) would
have a restriction on the delay size as (according to their analysis,
but using our notation)

__ Ingp) _ (&)
)\max(A;‘r + A,‘) + ZLi )\max(A;r + A,‘) + 2Li '

which, in our numerical example, gives r < 0.0160. Therefore, the
result in Chen and Zheng (2009) cannot be applied to deal with
r = 0.02 in the above example. Using our results, the parameters
k; can be chosen sufficiently small so that, even if the delay size r is
arbitrarily large, one can still verify inequality (4.12) for §; > 0
sufficiently small, i.e., the transmission sequence that gives the
feedback impulse control is sufficiently frequent. Therefore, we
remark that one of the contributions of our results is making the
impulse control strategy applicable to systems with arbitrarily
large delays.

5. Conclusions

A method of multiple Lyapunov-Krasovskii functionals for
investigating input-to-state stability properties for impulsive and
switching hybrid time-delay systems has been presented. We have
established sufficient conditions for input-to-state stability and
integral input-to-state stability of hybrid time-delay systems with
both switching and impulse effects. The formulation of hybrid
systems are quite general in that it allows both the continuous
dynamics and the discrete dynamics to be chosen from a certain
family, according to a general impulsive and switching signal. The
idea of impulsive stabilization for time-delay systems using the
method of Lyapunov-Krasovskii functionals is exploited, whereas,
even for the classical notion of stability (Lyapunov stability), there
are very few results concerning the impulsive stabilization of time-
delay systems using the Lyapunov-Krasovskii functional method.
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