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Abstract—We propose formal means for synthesizing switching
protocols that determine the sequence in which the modes of a
switched system are activated to satisfy certain high-level specifi-
cations in linear temporal logic (LTL). The synthesized protocols
are robust against exogenous disturbances on the continuous
dynamics and can react to possibly adversarial events (both
external and internal). Finite-state approximations that abstract
the behavior of the underlying continuous dynamics are defined
using finite transition systems. Such approximations allow us to
transform the continuous switching synthesis problem into a dis-
crete synthesis problem in the form of a two-player game between
the system and the environment, where the winning conditions
represent the high-level temporal logic specifications. Restricting
to an expressive subclass of LTL formulas, these temporal logic
games are amenable to solutions with polynomial-time complexity.
By construction, existence of a discrete switching strategy for the
discrete synthesis problem guarantees the existence of a switching
protocol that can be implemented at the continuous level to ensure
the correctness of the nonlinear switched system and to react to
the environment at run time.

Index Terms—Formal synthesis, hybrid systems, linear temporal
logic, switching protocols, temporal logic games.

I. INTRODUCTION

T HE objective of this paper is to synthesize switching pro-
tocols that determine the sequence inwhich themodes of a

switched system are activated to satisfy certain high-level spec-
ifications formally stated in linear temporal logic (LTL). Dif-
ferent modes may correspond to, for example, the evolution of
the system under different, pre-designed feedback controllers
[24], so-called motion primitives in robot motion planning [12],
or different configurations of a system (e.g., different gears in
a car or aerodynamically different phases of a flight). Each of
these modes may meet certain specifications but not necessarily
the complete, mission-level specification the system needs to
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satisfy. The purpose of the switching protocol is to identify a
switching sequence such that the resulting switched system sat-
isfies the mission-level specification.
We are interested in designing open systems that can sense

their environment and interact with it by appropriately (as
encoded by the specification) reacting to sensory inputs. Given
a family of system models, in the form of ordinary differential
equations potentially with bounded exogenous disturbances,
a description of the sensed environment, and an LTL speci-
fication, our approach builds on a hierarchical representation
of the system in each mode and the environment. In partic-
ular, we model environment as transition systems, which can
be constructed through observations of possibly continuous
signals. While the continuous evolution of the system is ac-
counted for at the low level, the higher level is composed
of a finite-state approximation of the continuous evolution.
The switching protocols are synthesized using the high-level,
discrete models. Simulation-type relations [1] between the
continuous and discrete models guarantee that the correctness
of the synthesized switching protocols is preserved in the
continuous implementation.
Our approach relies on a type of finite-state approximation

for continuous nonlinear systems, namely over-approximation.
Roughly speaking, we call a finite transition system an over-
approximation of the continuous system if for each transition
in , there is a possibility for continuously implementing the
strategy, in spite of either the exogenous disturbances or the
coarseness of the approximation. We account for the mismatch
between the continuous model and its over-approximation as
nondeterminism and treat it as adversary. Consequently, the cor-
responding switching protocol synthesis problem is formulated
as a two-player temporal logic game (see [33] and references
therein and the pioneering work in [9]). This game formula-
tion allows us to incorporate environment signals that do not
affect the dynamics of the system but constrain its behavior
through the specification. Within the game, environment is also
treated as adversarial, that is, we aim to synthesize controllers
that guarantee the satisfaction of the specification even against
the worst-case behavior of the environment.
The main contributions of the current paper are in (1)

proposing a framework for switching protocol synthesis for
continuous-time nonlinear switched systems, potentially sub-
ject to exogenous disturbances, from LTL specifications, and
(2) synthesis of controllers that can continuously sense their
environment and react to the changes in the environment ac-
cording to the specification. In contrast to much of prior work
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(described in more detail below), we consider open systems
that can maintain ongoing interaction with some external
environment and synthesize controllers that are reactive to
this environment. The use of LTL enables us to handle a wide
variety of specifications beyond mere safety and reachability.
The game formulation allows us to account for a potentially
adversarial, a priori unknown environment in which the system
operates (and therefore its correctness needs to be interpreted
with respect to the allowable environment behaviors). While
the general game structure considered in this paper can handle
full LTL specifications, such games with complete LTL specifi-
cations are known to have high computational complexity [35].
Therefore, we focus on an expressive fragment of LTL, namely
Generalized Reactivity (1) (GR(1)) specifications, for which
there exist synthesis algorithms with favorable computational
complexity [33].
Fragments of the switching protocol synthesis problem con-

sidered here have attracted considerable attention. We now give
a very brief overview of some of the existing work as it ties
to the proposed methodology (a thorough survey is beyond the
scope of this paper). Stability problems for switched systems
arise naturally in the context of switching control and consider-
able work has been focused on designing switching controllers
for stability. Hespanha and Morse [16] propose the notion of
average dwell time, generalizing that of dwell time considered
by Morse [29]. Both dwell time and average dwell time are de-
sign parameters that can be chosen to achieve stability when
switching between stabilizing controllers. Jha et al. [18] fo-
cuses on switching logics that guarantee the satisfaction of cer-
tain safety and dwell-time requirements. Taly and Tiwari [39],
Cámara et al. [8], Asarin et al. [2], and Koo et al. [21] con-
sider either switching controller synthesis for safety [8], reacha-
bility [21], or a combination of safety and reachability properties
[2], [39]. Joint synthesis of switching logics and feedback con-
trollers for stability are studied by Lee and Dullerud [23]. The
work by Frazzoli et al. [12] on the concatenation of a number of
motion primitives from a finite library to satisfy certain reach-
ability properties constitutes an instance of switching protocol
synthesis problem. Our work also has strong connections with
the automata-based composition of the so-called interfaces that
describe the functionality and the constraints on the correct be-
havior of a system [42]. Also related is the work by Moor and
Davoren [28] who use modal logic to design switching control
that is robust to uncertainty in the differential equations. The ob-
jective there is to determine a control sequence to switch among
the family of differential equations to satisfy a specification that
includes safety and event sequencing. Our work extends these
results both in terms of the family of models that can be handled
and the expressivity of the specification language used.
More broadly, this paper can be seen in the context of ab-

straction-based, hierarchical approaches to controller synthesis
for continuous and hybrid systems from high-level specifica-
tions given in terms of LTL [4], [11], [15], [20], [38]. Either
by limiting the type of dynamical systems considered [4], [15],
[20] or by considering a rich (e.g., unconstrained) control input
[11], [38], which can arbitrarily steer the system, these papers

obtain deterministic abstractions for the underlying systems
and use model-checking based methods for synthesis. The work
by Tûmová et al. [41] extends this framework by allowing
piecewise affine systems and nondeterministic transitions in the
abstraction. While allowing more flexibility in constructing the
abstraction, the presence of nondeterministic transitions render
standard model checking tools no longer applicable for finding
a control strategy. Kloetzer and Belta [19] investigate this and
propose a solution inspired from (infinite) two-player LTL
games. Compared to these results, the control authority in our
framework is fairly limited (i.e., only control input is the mode
of the switched system) which leads to a more challenging
problem.
Beyond combining ideas from and extending results in

switching protocol synthesis and abstraction-based controller
synthesis, the main difference between the aforementioned
papers [2], [4], [8], [11], [12], [15], [16], [18]–[21], [23], [28],
[29], [38], [39], [41], [42] and the work presented here is that,
in those papers, the control strategy is non-reactive in the sense
that its behavior does not take into account external events
from the environment at run time. Such runtime reactiveness is
crucial for satisfying safety properties. For instance, in cases
of emergency (e.g., in traffic when a pedestrian jumps on the
street) the system might need to take immediate action, or
when a failure occurs, the system might need to deactivate the
faulty parts promptly for safe operation. Reactive controller
synthesis, in particular by using GR(1) games, has been con-
sidered before by Kress-Gazit et al. [22] and Wongpiromsarn
et al. [44]. Kress-Gazit et al. [22] consider systems with fully
actuated dynamics , for which bisimilar continuous
implementations of discrete plans are guaranteed to exist.
Although the environment is continuously sensed in [22], one
limitation of the method is that the controller is allowed to take
actions against the environment only when certain locative
propositions are satisfied, hence the system can not synchro-
nously react to the environment at run time. Wongpiromsarn
et al. [44] focus on discrete-time linear time-invariant models
with exogenous disturbances and propose a receding horizon
framework for alleviating the computational complexity. Rea-
soning of continuous trajectories and environment behavior in
continuous time is not a concern in [44] either, as discrete-time
models are considered. Abstractions considered in both papers
are deterministic in the sense that every transition between
discrete states can be implemented, whereas in the current
paper we focus on over-approximations, which are potentially
easier to compute for switched nonlinear systems, where the
controls are limited to the discrete modes.
Contrary to existing work, one of the major contributions

of the paper is to achieve runtime reactiveness of the contin-
uous-time switching controller. To this end, we explicitly model
the environment and take into account possibly asynchronous
interactions between the system dynamics and the environment.
This is accomplished by defining product transition systems
from the abstractions and augmenting these transition systems
with additional liveness conditions to enforce progress in accor-
dance with the underlying dynamics.
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II. PRELIMINARIES

In this section, we introduce linear temporal logic (LTL) [27],
[34] as the specification language to formally specify system
properties.

A. LTL Syntax and Semantics

Standard LTL is built upon a finite set of atomic propositions,
logical operators (negation) and (disjunction), and the tem-
poral modal operators (next) and (until). LTL is a rich
specification language that can express many desired proper-
ties, including safety, reachability, invariance, response, and/or
a combination of these [27].
Syntax of LTL: Formally, the set of LTL formulas over a fi-

nite set of atomic propositions can be defined inductively as
follows:
(1) any atomic proposition is an LTL formula;
(2) if and are LTL formulas, so are , , , and

.
Additional logical operators, such as (conjunction), (mate-
rial implication), and temporal modal operators (eventually),
and (always), are defined by:
(a) ;
(b) ;
(c) , where ;
(d) ;
(e) .

A propositional formula is one that does not include any tem-
poral operators.
Semantics of LTL: An LTL formula over is interpreted over
-words, i.e. infinite sequences, in . Let
be such a word. The satisfaction of an LTL formula by at
position , written , is defined recursively as follows:
(1) for any atomic proposition , if and only

if ;
(2) if and only if ;
(3) if and only if ;
(4) if and only if or ;
(5) if and only if there exists such that

and for all .
The word is said to satisfy , written , if .
LTL Without Next Step: We denote the subset of the logic

LTL without the next operator by .

B. Finite Transition System

Definition 1: A finite transition system is a tuple
, where is a finite set of states, is

a set of initial states, and is a transition relation.
Given states , we write if the transition relation
contains the pair .
We assume that for every state , there exists a state

such that . Let be an observation
map which maps the state space to a finite set of propositions.
Definition 2: An execution of a finite transition

system is an infinite sequence ,
where and and

. The word produced by an execution is
, where for all

. An execution is said to satisfy an LTL formula ,
written , if and only if the word it produces satisfies .
If all executions of satisfy , we say that the finite transition
system satisfies and write .

C. Continuous-Time Signals

Let be a set (infinite or finite) and be an
observation map which maps to a finite set of propositions.
A continuous-time signal is a function .
Definition 3: We say that a signal is of finite vari-

ability (on bounded intervals of ) under observation if
there exists an infinite number of non-overlapping intervals

such that , for
all , and as , where denotes the
left end-point of .
The above definition is similar to the notion of finite vari-

ability for continuous-time Boolean signals [26]. Here the ob-
servation map is explicit and original signals need not to be of
finite variability. In the rest of the paper, unless otherwise stated,
we restrict our attention to signals that are of finite variability
under some observation map.
Definition 4: Let be continuous-time signal in . The word

produced by is a sequence , de-
fined recursively as follows:
• ;
• for all
such that , where is defined by and

for all
; and

• for all such that .
The word is said to be well-defined if as .
The signal is said to satisfy an LTL formula , written

, if and only if the word it produces is well-defined and
satisfies .
Intuitively, the word generated by a signal is exactly the se-

quence of sets of propositions satisfied by the signal as time
evolves. This definition is consistent with that of [20, Defi-
nition 4]. In the above definition, it is assumed that the limit

for all . This would ex-
clude certain unrealistic signals such as those with observations
1 on rationals and 0 on irrationals out of the scope. It is easy to
check that the above definition is well-posed and gives well-de-
fined words for signals of finite variability.

III. PROBLEM FORMULATION

In this section, we introduce the systemmodels and formulate
the main problem studied in this paper.

A. Continuous-Time Switched Systems

Consider a family of nonlinear systems,

(1)

where is the state at time and
is an exogenous disturbance, is a finite index set, and

is a family of nonlinear vector fields satisfying the
usual conditions to guarantee the existence and uniqueness of
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solutions for each of the subsystems in (1). A switched system
generated by the family (1) can be written as

(2)

where is a switching signal taking values in . The value of
at a given time may depend on or , or both, or may be

generated by using more sophisticated design techniques [24].
Given sets of initial states and initial modes ,
solutions to (2) are pairs that satisfy (2) for all and

.
In the above formulation, is the only controllable variable.

This captures different situations where control inputs are lim-
ited to a finite number of quantized levels, e.g.,

, or chosen from a family of feedback controller
. In addition, depending on

different applications, each mode in (1) may represent, for ex-
ample, a control component [42], a motion primitive (which
belongs to, e.g., a finite library of flight maneuvers [12], or
a set of pre-designed behaviors [40]), or, in general, an oper-
ating mode of a multi-modal dynamical system[18], [39]. To
achieve complex tasks, it is often necessary to compose these
basic components.

B. Environment

In this paper, we use environment to refer to the factors that
are relevant to the operation of the system, but do not impact
its dynamics directly, i.e., not explicitly present in (1) or (2).
Such factors are not necessarily controlled by the system, e.g.,
obstacles, traffic lights, weather conditions, software and hard-
ware faults and failures. As such, they are usually treated as
adversaries.
More specifically, the environment consists a set of environ-

ment variables, compactly denoted as , which can take values
in a set . While is not necessarily a finite set, we assume that
there exists an observation map which maps states
in to a finite set of observations. Real-time properties of the
environment can be captured by the definition of environment
signals. An environment signal is a function .
We restrict our attention to environment signals that are of

finite variability (in the sense of Definition 3) under the obser-
vation . For such signals, we introduce the following notion
to capture their behavior as a whole.
Definition 5: The environment transition system is a tuple

, where is a finite set of states, is
the set of initial states, is a transition relation de-
fined by if and only and there exists an environ-
ment signal and some such that and

.
In other words, the environment transition system cap-

tures all possible changes in the environment (described by a set
of environment signals). Note that this does not mean that we
have complete knowledge of the environment. Rather, con-
stitutes a finite representation of the environment model. As will
be shown in the next section, our knowledge about the allow-
able environment behavior will be reflected in the specification
as an environment assumption.

Fig. 1. represents a plant subject to exogenous disturbances,
is a family of controllers, represents the environment, which

does not directly impact the dynamics of the system but constrains its behavior
through the specification. The objective is to design such that the overall
system satisfies a high-level specification expressed in LTL.

C. Problem Formulation

The goal of this paper is to propose methods for automat-
ically synthesizing a switching protocol such that solutions
of the resulting switched system (2) satisfy, by construction, a
given linear temporal logic (LTL) specification, for all possible
exogenous disturbances. In addition, as encoded by the specifi-
cation, the switching protocol should be able to react to pos-
sibly adversarial events (both internal and external) captured by
the environment, in the sense that if a change in the environ-
ment is detected, the system can react immediately by possibly
switching to a different mode. A schematic description of the
problem is shown in Fig. 1.
To formally state the problem, let , the

finite set of atomic propositions, be defined as ,
where is a finite set of subsets of . The observation map

(3)

is defined by , where
and is defined by
, i.e., the set of elements in that contain .

Defintion 6: A trajectory of
the switched system (2) and its environment is a triplet

, where are solutions to (2) and is an
environment signal.
Now we are ready to formally state the switching synthesis

problem.
Continuous Switching Synthesis Problem: Given a family

of continuous-time subsystems in (1), a model of the environ-
ment , and a specification expressible in of the form

(4)

where is the environment assumption that encodes the
knowledge about the allowable environment behavior, and
encodes the desired behavior of the system, synthesize a

reactive switching protocol that
(i) generates only correct trajectories in the
sense that for all allowable environment behavior;
and

(ii) reacts to environment changes in real time in the sense
that a switching decision (a change in ) can be made
immediately, whenever there is a change in the environ-
ment (a change in ).
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Overview of Solution Strategy: In the next few sections,
we use a hierarchical approach to solve the switching synthesis
problem in three steps:
(i) establish finite-state approximations which abstract the
family of systems (1) in each mode;

(ii) formulate a discrete synthesis problem based on this finite
abstraction;

(iii) synthesize a switching protocol by solving the discrete
synthesis problem. This switching protocol, when imple-
mented, gives a solution to the continuous switching syn-
thesis problem.

More specifically, in Section IV, we introduce a type of dis-
crete abstractions called over-approximations, which conserva-
tively approximates the continuous dynamics. This abstraction,
together with a finite representation of the environment and an
LTL specification, defines a discrete synthesis problem.
In Section V, we reformulate and solve the discrete synthesis

problem as a two-player temporal logic game. While solving
two-player games with general LTL winning conditions is
known to have prohibitively high computational complexity
[35], we can restrict ourselves to an expressive fragment of
LTL, namely Generalized Reactivity (1), to achieve favorable
computational complexity [33]. Continuous implementations
of the switching protocol, together with its correctness and
reactiveness, are discussed in Section VI. In Section VII, we
present four illustrative examples to demonstrate our results.

IV. DISCRETE REPRESENTATION OF THE SYNTHESIS PROBLEM

In this section, we define over-approximations for the contin-
uous dynamics (1) and formulate the discrete synthesis problem.

A. Finite-State Approximations of Dynamics

Abstractions for each of the subsystems in (1) are induced
by an abstraction map , which maps each state

into a finite set and initial
states into . The map essentially defines a
partition of the state space by . We shall
refer to elements in as discrete states of an abstraction. Since
we do not distinguish the continuous states within for a
given , we require to preserve propositions of interest in the
sense that

(5)

where is as defined in (3). The proposition preserving ab-
straction map induces an observation map on the
discrete state space as

where and are such that
and .
Now consider a family of finite transition systems

(6)

where is as defined above, is a set of initial states,
and is a transition relation.

Definition 7: The family of finite transition systems in (6) is
said to be an over-approximation for (1) if the following two
statements hold.
(i) Given states such that , there is a tran-
sition , if there exists , , and
some exogenous disturbance such
that the corresponding trajectory of the th subsystem
of (1) starting from , i.e., with

satisfies

(ii) For any , there is a self-transition , if there
exists and some exogenous disturbance

such that the complete trajectory
of the th subsystem of (1) on starting from is
contained in .

Intuitively, in an over-approximation, a discrete transition
is included as long as there is a possibility (either

induced by disturbances or a coarse partition) for the th
subsystem to implement the transition. In the above definition,
time is abstracted out in the sense that we do not care how
much time it takes to reach one discrete state from another.
In Definition 7, if (ii) is not satisfied, i.e., all trajectories of the
th subsystem starting from leave it eventually, we say
that the region or state is transient for mode . This
notion of transience can be generalized for a subset of modes
in a natural way. A discrete state is said to be transient
for a subset of modes , if all trajectories of the switched
system (2) starting from leave it eventually under ar-
bitrary switching signals taking values in . A similar notion
of transience is proposed in [4] in the context of autonomous
piecewise multi-affine system. Here we define it for switched
system with possible exogenous disturbances and extend it to
ensure progress under switching among a certain set of modes,
which is particularly important when reasoning about the inter-
actions of the system with the environment at the discrete level.
The following result uses a barrier certificate [37] type con-

dition for verifying a discrete state being transient.
Proposition 1: Given and assume that is

bounded. The discrete state is transient on a family of modes
, if there exists a function and

such that

(7)

Proof: Assume, for the sake of contradiction, that there ex-
ists some and a switching signal taking values
in such that the complete trajectory of (2) on starting
from is contained in . Condition ((7)) implies that

(8)
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since and for all . Integrating
this equation would imply . Yet this
leads to a contradiction, as should be bounded if
remains in the bounded set .
Next, we provide pseudocode for an algorithm for computing

finite-approximations of (1). We focus on a particularly useful
case where are convex polytopes for all . The main
subroutines of the algorithm are as follows:
• : returns neighbors of the polytope

, i.e., polytopes that share a common facet with
;

• : returns the common
facet of and ;

• : checks whether a particular
facet of is blocked in the sense that no trajec-
tories can flow out of through this facet; and

• : checks whether is transient for
mode .

Algorithm 1 Abstraction Algorithm

1: Initialize , , and

2: for do

3: for do

4: for do

5: if then

6:

7: if then

8:

9: end if

10: else

11:

12: end if

13: end for

14: if then

15:

16: end if

17: end for

18:end for

19:return

Algorithm 1 is generic in the sense that it can build upon
existing results. In the literature, there has been considerable
amount of work on reachability analysis for systems with spe-
cific dynamics, e.g., affine systems (e.g. Habets et al. [14] multi-
affine systems (e.g. Belta and Habets [5]), and nonlinear sys-
tems (e.g. Girard and Martin [13] and Ben Sassi and Girard

[6]). Some of these results can be adapted and applied to com-
pute over-approximations using Algorithm 1 above, in partic-
ular, for evaluating the functions
and . Once such a finite-state approxima-
tion is obtained, the results in this paper can be used to synthe-
size switching controllers not only for reachability, but also for
richer specifications expressible in LTL.
Remark 1: When all ’s are polynomial vector fields and all

’s are semialgebraic, we can use sum-of-squares-based
convex optimization to search for a function satisfying the
conditions of Proposition 1 in a principled and efficient way.
This will provide computationally efficient means for evalu-
ating in Algorithm 1. Similar techniques
can be used to find certificates for .
The readers are referred to [30] for more details.

B. Product Transition System

Given an over-approximation
for the switched system (2) and an environment transition

system for its environment, we can define
a product transition system for describing the overall system
behavior.
Definition 8: The product transition system is a finite transi-

tion system with states in , ini-
tial states , and transition relation
such that if and only if either and

, or and .
It is evident from the definition that consists of two parts:
represents the plant dynamics under switching and repre-

sents environment changes. Here we consider the product transi-
tion system with interleaving semantics. That is, at each time in-
stant, either the environment state or the plant state changes
but they do not change simultaneously1. Defining the product
transition system in an asynchronous way allows the switching
mode to react in real time (in a continuous-time implementa-
tion) to environment changes. The price paid is the possibility
of the undesired behavior that the environment can make in-
finitely many transitions before can make a transition and
vice versa. However, as we assume environment signals are of
finite variability, infinitely many transitions of the environment
will require an infinite amount of time. On the other hand, due
to underlying dynamics (1), we may show that certain states are
transient under certain sets of modes, that is, the system cannot
stay in that state indefinitely if we only switch within this given
set of modes. Hence, the controller can ensure progress in a
state, , by restricting the modes to those on which is tran-
sient. To encode such transience properties of a discrete state,
we can augment the product transition system with some live-
ness assumptions expressible in .
Proposition 2: If state is transient on the family of modes

, then the following property is satisfied

(9)

1It is possible to consider a truly asynchronous execution to allow such be-
havior and the results extend to that case trivially.
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Proof: It is clear from the semantics of LTL that formula
(9) implies that the system cannot remain in state forever, if
the mode remains within the set , which is the definition of
transience.
Based on the product transition system augmented with

the liveness assumption in (9), we formulate the following
discrete synthesis problem.
Discrete Switching Synthesis Problem: Given a product

transition system and the specification

(10)

synthesize a (discrete) switching strategy that generates only
correct executions in the sense that all executions satisfy .
It will be shown that, by construction, our solution to the

discrete synthesis problem can be continuously implemented
to generate a solution for the continuous switching synthesis
problem.

V. DISCRETE SYNTHESIS AS A TWO-PLAYER GAME

In this section, we propose a two-player temporal logic game
approach to the discrete switching synthesis problem formu-
lated in the previous section. In particular, we recast the discrete
synthesis problem as an infinite horizon game. We will first in-
troduce the elements of the game structure.

A. Game Formulation

We consider two-player games, where, at each turn, a move
of player 1 is followed by a move of player 2. We treat player 1
as adversarial, which tries to falsify the specification, whereas
player 2 tries to satisfy it. Formally, a game is defined as follows.
Definition 9: [7] A game structure is a tuple

where
• is a finite set of state variables,
• is a set of input variables, i.e., variables controlled
by player 1,

• is the set of output variables, i.e., variables
controlled by player 2,

• is an atomic proposition over characterizing initial
states of the input variables,

• is an atomic proposition over characterizing initial
states of the output variables,

• is the transition relation for player 1, which is
an atomic proposition that relates a state and possible next
input values (primed variables represent the value of a vari-
able in the next step),

• is the transition relation for player 2, which
is an atomic proposition that relates a state and an input
value to possible output values,

• is the winning condition given by an LTL formula over
.

The above definition gives a general game structure for LTL
games. It is interpreted as follows in order to solve the discrete
switching synthesis problem.
Game Structure for Switching Synthesis: Let be the

product transition system given by Definition 8, which consists

of an over-approximation of (1) and an environment transition
system, the game structure. We construct the game structure for
solving the switching synthesis problem as follows:
• , where is the plant variable taking values
in , the environment variable taking values in , the
mode variable taking values in ;

• and . In other words, both are
controlled by player 1 and regarded as adversarial;

• defines the initial states of and captures that
of ;

• and are determined by the transition relation of ,
which encode both the non-deterministic transitions of the
over-approximation and the transitions of the environ-
ment allowed in ; and

• the winning condition is set to be in (10), i.e., the
specification of the discrete synthesis problem.

We aim to solve this game in an efficient way, which will
provide a solution to the discrete switching synthesis problem.

B. Switching Synthesis by Game Solving

While automatic synthesis of digital designs from general
LTL specifications is one of the most challenging problems
in computer science [7], for specifications in the form of the
so-called Generalized Reactivity 1, or simply GR(1), formulas,
it has been shown that checking its realizability and synthe-
sizing the corresponding automaton can be accomplished in
polynomial time in the number of states of the reactive system
[7], [33].
GR(1) Game: A game structure defined in Definition 9 is

a GR(1) game if the winning condition of the game structure
is of the assume-guarantee form and, for

, is of the form

(11)

where are propositional formulas characterizing safe,
allowable moves, and invariants; and are propositional
formulas characterizing states that should be attained infinitely
often. Many interesting temporal specifications can be trans-
formed into GR(1) specifications of the form (11). The readers
can refer to [7], [33] for more precise treatment on how to use
GR(1) game to solve LTL synthesis in many interesting cases
(see also [44] for more examples).
Switching Synthesis as a GR(1) Game: Recall the assume-

guarantee specification for the discrete synthesis problem:

(12)

where is the liveness assumption in (9) encoding the tran-
sience properties in the product transition system , spec-
ifies a priori knowledge about the allowable environment be-
havior (beyond what is represented by the environment transi-
tion system), and describes the correct behavior of the overall
system. While the liveness assumption is already of the form
(11), we assume that, for , each in (12) also has
the structure in (11). Thus, we obtain a GR(1) game formula-
tion for the switching synthesis problem, which can be solved
efficiently.
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Fig. 2. Part of a synthesized automaton that can be used to extract a switching
strategy. Suppose that the system arrives at state number 6, where and

. It chooses mode according to the automaton. Following this
mode, if the environment does not change, i.e. is maintained, the system
may end up at two different states and after a certain period
of time, due to non-deterministic state transitions in the over-approximation.
If the environment changes to before changes, the system can react
accordingly by possibly switching to a different mode (in this case ).
Following the mode , if does not change, the system will end up in
state number 17, where and and the system will switch to .

Winning Strategy: A winning strategy for the system (player
2) is a partial function

which chooses a switching mode based on the state sequence
so far and the current moves of the environment and the plant
such that formula (12) is satisfied. We say that is realizable
if such a winning strategy exists. In addition, for two player
LTL games, there always exists finite memory strategies that
can be represented by finite automata. Thus, if the specifica-
tion is realizable, solving the two-player game gives a finite
automaton that encodes the winning strategy. A feedback
switching protocol can be readily extracted from this winning
automaton. More specifically, a mode switch by is triggered
only by a change of state of either or . If there is no change
in the environment, following a specific mode, the system will
eventually go to a number of possible states that are allowed by
the over-approximation. If there is a change in the environment,
the system is allowed to react to this change immediately, i.e.
without waiting until changes its state. Thus, by observing
both the plant and environment states, the next switching
mode can always be chosen accordingly by reading the finite
automaton. Fig. 2 shows a typical automaton given by solving
a two-player game and how it is interpreted as a switching
strategy for the system.
Remark 2: Given a two-player game structure and a GR(1)

specification, the digital design synthesis tool implemented in
JTLV [36] (a framework for developing temporal verification
algorithm [7], [33]) generates a finite automaton that represents
a switching strategy for the system. The Temporal Logic Plan-
ning (TuLiP) Toolbox, a collection of Python-based code for
automatic synthesis of correct-by-construction embedded con-
trol software as discussed in [45] provides an interface to JTLV,

which has been used for other applications [31], [32], [43], [45]
and is also used to solve the examples later in this paper.
Remark 3: If there is no external environment and the over-

approximation computed for (1), e.g., using Algorithm 1, hap-
pens to be deterministic in the sense that each of the transi-
tion systems in (6) is deterministic, the game synthesis problem
reduces to a model checking problem [25]. In this sense, the
temporal logic game approach outlined in this section covers
model-checking basedmethods for controller synthesis as a spe-
cial case [4], [11], [15], [20], [38]. There are certain trade-offs
among computational complexity, conservatism in models and
approximations, and expressivity of specifications, which may
make one approach preferable to the other. On the one hand,
model checking is amenable to highly-optimized software [10],
[17], with computational complexity that is linear in the size of
the state space [3], but it requires an approximation that needs to
be deterministically implemented for all allowable exogenous
disturbances. Such approximations are potentially difficult to
obtain, in the sense that one may not be able to establish a suffi-
cient number of (deterministic) transitions to make the problem
solvable. On the other hand, over-approximations account for
mismatch between the continuous model and its approximation
as adversarial uncertainty and model it nondeterministically.
Sufficient approximations of this type are potentially easier to
establish and also allow us to further incorporate environmental
adversaries, yet the resulting formulation is a two-player tem-
poral logic game.

VI. CONTINUOUS IMPLEMENTATIONS OF REACTIVE
SWITCHING PROTOCOLS

As discussed in the previous section, a (discrete) switching
strategy, represented as a finite automaton, solves the discrete
switching synthesis problem. In this section, we show that we
can implement the (discrete) switching strategy at the contin-
uous level, to provide a solution to the continuous switching
synthesis problem we posed in Section III.
We define continuous implementations of executions of the

product transition as follows. Let be an execution of , i.e.,
an infinite sequence of triplets

and a trajectory of the switched system (2) and its
environment.
Definition 10: The trajectory is said to be a continuous im-

plementation of , if there exists a sequence of non-overlapping
intervals such that and

Furthermore, if as , where denotes the
left end-point of , the implementation is said to be non-Zeno.
Lemma 1: Let be an formula. If is a non-Zeno

implementation of , then

(13)

Proof: The implementation is non-Zeno guarantees that
produces a well-defined word, say . Let be the word pro-
duced by . We can easily show that and are stutter-
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equivalent [3, Definition 7.86]. Therefore, we have
if and only if [3, Theorem 7.92]. The statement (13)
follows by definition.
In this subsection, we show that every continuous implemen-

tation of the discrete strategy is provably correct in the sense
that it only generates trajectories satisfying the given LTL spec-
ification, due to the way we construct the discrete abstraction
of the continuous-time switched systems and solve the discrete
synthesis problem. By exploiting properties of an over-approx-
imation, we can show the following result.
Theorem 1: Given an over-approximation of (1), continuous

implementations of the switching strategy obtained by solving
a two-player game solve the continuous switching synthesis
problem, if these implementations are non-Zeno.

Proof: By definition, the switching strategy given by
solving a two-player game is a finite automaton that represents
the winning switching strategy for the system. The automaton
provides a switching mode for all possible moves of the envi-
ronment and the plant. In view of Proposition 1, the theorem
is proved, if we show that the switching strategy generates
trajectories that continuously implement some execution, say

, of the winning automata. The semantics of
the above switching strategy, applied to the switched system
(2), are as follows. Given any initial state
and an initial observation of the environment , we choose

, by reading the automaton. From this point on,
evolves continuously following the dynamics of
(subject to possible exogenous disturbances denoted by ).
Environment signals are monitored in real time. If a change
in environment is detected and this change does not violate
the environment assumption, we update the switching mode
immediately according to the automaton. If no environment
changes are detected, by the definition of an over-approxi-
mation, there are two possibilities. First, could stay in

for all . In this case, we must have a self-tran-
sition in for this particular mode. The sequence of intervals
in Definition 10 can be chosen arbitrarily as long as they are
non-overlapping (Zenoness can also be avoided by choosing
the intervals that as ). Second, there may
exist some interval (before environment changes its states)
and such that for all , and either
(i) for all sufficiently small and

; or (ii) and , where is a right
end-point of . In other words, the discrete state make a transi-
tion from to (while environment state remains the same).
In either case, we can choose the next mode from the automata,
by observing the evolution of the trajectory (among the two
possibilities above). Note that even if an environment change is
detected at the same time when enters (although ruled
out in our definition of product transition systems), we can
update in two separate steps. Once a next mode is generated,
we repeat the same procedure as above. It is clear that the
trajectory generated this way implements one discrete
execution of the winning automata.

A. Discussions on Non-Zeno Implementations

We discuss in this subsection the possibility of Zeno behavior
in the continuous implementations of a discrete strategy and

propose appropriate assumptions to exclude such behavior. As
discussed in Section V-B, a switching strategy given by solving
a two-player game is a finite-state automaton. Each continuous
implementation of the switching strategy correspond to an ex-
ecution of this finite-state automaton, which is an infinite se-
quence of discrete states of the form .
Let be a synthesized automaton. Consider simple cycles

in , i.e., directed paths in that start and end with the same
state and no other repeated states in between. Let
denote the collection of simple cycles in which include at
least two states whose -components are different, i.e., triplets

and with . For each ,
, we can enumerate its states as
, where is the length of the cycle , and consider

the set .
The following proposition can be used to rule out Zeno im-

plementation of the strategy encoded in .
Proposition 3: If

(14)

holds for where indicate the closure of a set
, and the environment signals are of finite variability,

then all continuous implementations of the switching strategy
given by are non-Zeno.

Proof: Note that a Zeno implementation of requires vis-
iting an infinite number of discrete states within a finite time.
This means that the trajectory should visit at least one simple
cycle infinitely many times within a finite time. If the environ-
ment is of finite variability, this simple cycle should include
at least two states with different -components. Condition (14)
excludes the possibility of visiting this simple cycle infinitely
many times within a finite time (as completing one cycle would
require a definite amount time).
Remark 4: Since for , the above

emptiness criterion is essentially on the boundaries of the cells
. Furthermore, if we can check that trajectories imple-

menting the discrete transitions can only exit within a subset of
the boundaries, such as the so-called exit set in [14], the above
emptiness criterion for non-zenoness can be checked for subsets
of the partitions , which give more relaxed assumptions
than (14). We also remark that even if the assumption is not sat-
isfied for all possible executions of a given , Zenoness can
still be avoided at the discrete level by recomputing abstrac-
tions such that the assumption holds, or by adding appropriate
specifications to rule out executions whose periodic part can vi-
olate (14). Particularly, since the discrete states in the periodic
part typically correspond to liveness specifications, by appropri-
ately designing abstraction and specifying liveness properties,
Zenoness can be avoided.

VII. EXAMPLES

A. Temperature Control

Consider a thermostat system [18] with four modes, ON,
OFF, Heating, Cooling, as shown in Fig. 3, where the heating
and cooling modes are included to capture what happens while
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Fig. 3. Four-mode thermostat system.

the heater is heating up to a desired temperature and cooling
down to an allowable temperature, respectively. The dynamics
of the four modes are also shown in Fig. 3, where denotes the
room temperature and the temperature of the heater. In the
OFF mode, the temperature changes at a rate proportional to
the difference between the room temperature and the outside
temperature, which is equal to 16 in this case, according to
Newton’s law of cooling. In other modes, the change is at a rate
proportional to the difference between the room temperature
and the temperature of the heater. In the ON mode, the

temperature of the heater is kept constant. In the heating mode,
the temperature of the heater increases to 22 at a rate 0.1 per
second; in the heating mode, the temperature of the heater
decreases to 20 at a rate 0.1 per second.
We want the system to satisfy the following specifications:
(P1) Starting from any room temperature and heater tem-
perature , the system has to reach a room temperature be-
tween 18 and 20 and a heater temperature between 20 and
22, i.e.,

(P2) If the room and heater temperatures are already in the
desired range, they should stay so for all future time, i.e.,
the following requirement is enforced

(P3) Transitions among the different modes have to be in
the order shown in Fig. 3.

The specification consists of a reachability property and
an invariance property in the -plane, together with a
sequential constraint in the modes. We start with the syn-
thesis of a switching strategy that guarantees the reachability
property. To obtain a proposition preserving abstraction, we
partition the plane into 12 regions as shown in Fig. 4. The
abstraction consists of plant variable , whose states belong
to , and a mode variable , which takes
values in , which represent the ON, OFF,
Heating, and Cooling modes, respectively. By determining the
transition relations among the regions in each mode, we obtain
an over-approximation of the system in the sense of Definition
7.
To synthesize a switching protocol that realizes the reach-

ability , we solve a two-player game as introduced in

Fig. 4. Partition of the -plane for the thermostat system for synthesizing
a switching protocol that guarantees that the system reaches the region .

Fig. 5. Further partition of the region (indicated by the red square) in Fig. 4
for synthesizing a switching protocol that achieves invariance within the region
.

Section V-B. The switching protocol can be extracted from a
finite automaton with 32 state.
We then consider the synthesis of a switching protocol that

guarantees the invariance property, i.e., . For this
purpose, we further partition into six subregions as shown
in Fig. 5. We again obtain an over-approximation and solve a
two-player game. The winning protocol can be extracted from a
finite automaton with 8 states. A simulation result illustrating a
continuous implementation of this protocol is shown in Fig. 6.

B. Automatic Transmission

Consider a 3-gear automatic transmission system [18] shown
in Fig. 7. The longitudinal position of the car and its velocity
are denoted by and , respectively. The transmission model
has three different gears. For simplicity, the throttle position,
denoted by , takes value 1 in accelerating mode and 1 in
decelerating modes. The specification concerns the efficiency
of the automatic transmission and we use the functions

to model the efficiency of gears ,2,3, where ,
, , as similarly considered in [18]. The acceleration in
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Fig. 6. Simulation illustrating the continuous implementation of a switching
protocol that guarantees the invariance property

: the red line represents the temperature of the heater and blue line
indicates the room temperature .

Fig. 7. A 3-gear automatic transmission.

mode is given by the product of the throttle and transmission
efficiency.
Let be an environment signal taking value in {1,2}. The

switching synthesis problem is to find a gear switching strategy
to maintain a certain level of transmission efficiency when the
speed is above certain value, while being reactive to the envi-
ronment signal . Formally, we consider a specification

which consists of a minimum efficiency of 50% when the
speed is greater than 5, and a speed limit of 40. In addition, the
switching protocol is required to react to the continuous-time
environment signal by switching to a decelerating mode if

and , i.e.,

Since the properties of interest here are related to only,
we partition the -axis into a union of intervals that pre-
serves the proposition on efficiency. The abstraction consists of
a plant variable , which takes values in , and a mode vari-
able , which takes values in . Here, + and
– denotes accelerating modes and decelerating modes, respec-
tively. According to this abstraction, we have a deterministic
transition system for each of the 7 modes. The switching syn-
thesis problem can be solved by using the procedure outlined
in Section V-B. The resulting switching controller can be repre-
sented by a finite automaton with 46 states. A simulation result
is shown in Fig. 8, illustrating a continuous implementation of
this strategy. The runtime reactiveness of the switching protocol
is evident from the simulation.

Fig. 8. Simulation results for Example 2: the upper figure shows the speed
and environment vs. time, while the lower figure shows the real-time

efficiency of the transmission, where the specified level 50% is indicated
by the red line. It is evident from the upper figure that the system immediately
switches to a decelerating mode if is satisfied.

Fig. 9. Eight different heading angles of the robot.

C. Robot Motion Planning

Consider a kinematic model of a unicycle-type wheeled mo-
bile robot [40] in 2D plane:

(15)

Here, are the coordinates of the middle point between the
driving wheels; is the heading angle of the vehicle relative
to the -axis of the coordinate system; and are the control
inputs, which are the linear and angular velocity, respectively.
To cast the motion planning of this robot as a switching syn-

thesis problem, we consider a situationwhere the heading angles
are restricted to a finite set , where
and are non-overlapping subintervals of . Here we
allow the heading angle to be within certain intervals to capture
possible measurements errors or disturbances. The set of angles
considered in this example is shown in Fig. 9, where can be
an arbitrary angle in , for .
Equation (15) can now be viewed as a switched system with

four different modes

(16)
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Fig. 10. Workspace for the Example 3 and its partition.

where is some constant speed. These dynamics can be
achieved with inputs in (15) with a desired
heading angle in . In addition, we include a stop mode

with zero dynamics, i.e., when .
Transitions between different heading angles are now regarded
as mode transitions, and the transition can be rendered through

and , by letting inputs
in (15). In this sense, transitions can be made freely among dif-
ferent modes.
We consider a workspace shown on the left side of Fig. 10,

which is a square of size 10. The robot is expected to satisfy the
following desired properties:

(P1) Visit each of the blue cells, labeled as , , and ,
infinitely often, and avoid obstacles.
(P2) Eventually go to the green cell after a PARK signal
is received.
(P3) Stop whenever required.

Here, the PARK signal is an environment signal that con-
strains the behavior of the robot. The following assumption is
made on the PARK signal.

(S1) Infinitely often, PARK signal is not received.
To synthesize a planner for this example, we introduce a par-

tition of the workspace as shown on the right side of Fig. 10,
in which each cell of size 1 is partitioned into two triangles. In
eachmode, we can determine the discrete transition relations ac-
cording to Definition 7 and obtain an over-approximation of the
system. Solving a two-player game as introduced in Section V-B
gives a winning strategy that guarantees that the robot satisfies
the given properties (P1)–(P3). Figs. 11 and 12 present simula-
tion results under different situations. In the case of static obsta-
cles with crossing objects, the resulting finite automaton of the
switching protocol has 161 states, while it has 37628 states in
the case of moving obstacles.
Remark 5: As all cells are transient under each of the modes

in , we encode these transience properties as addi-
tional assumptions as justified by Proposition 1. It is noted that,
without these additional assumptions, the specifications in this
example turn out to be unrealizable.

D. Numerical Example

We consider the polynomial dynamical system

(17)

Fig. 11. Simulation results for Example 3. The upper figures show simula-
tion results with static obstacles and possible crossing objects at intersections
(marked as yellow regions). The robot is required to stop at intersections imme-
diately if crossing objects (indicated by black crosses) are present. This requires
runtime reactiveness of the switching protocol as further illustrated in Fig. 12.
The lower figures show simulation results with a moving obstacle that occu-
pies a square of size 2 and rambles horizontally under certain assumptions on
its speed. The blue squares are the regions that the robot has to visit infinitely
often. The green square is where the robot should eventually visit once a PARK
signal is received. The obstacles are indicated by red, the trajectories of the robot
are depicted by black curves, and the current positions of the robot are repre-
sented by the magenta dots.

Fig. 12. Following Fig. 11, this figure shows the runtime reactiveness of the
switching signal to changes in the environment for Example 3. Here is an
environment signal that indicates presence of crossing objects at intersections.
In addition, is a signal taking values in {0,1}, a change in whose value indi-
cates that the robot enters a different cell (i.e., a change in ). It can be seen that
in addition to reacting to changes in , the switching signal also reacts imme-
diately to changes in the environment signal , by switching to the stop mode

in the presence of crossing objects at intersections (when ,3).

where lies in the domain
and the disturbance lies in

. The control inputs are given by
, , which are four

different state feedback controllers designed for this system,
with two stabilizing it around desired equilibrium points, and
the other two providing some fast dynamics within the region
of interest . In particular, the following controllers are used:
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Fig. 13. Workspace for Example 4 and its partition.

, , ,
and , where renders the point
( 0.669, 1.1540) as a locally stable equilibrium point, and

renders the origin as a globally stable equilibrium point.
These equilibrium points correspond to two desired operating
conditions. The goal of the switching protocol is to safely steer
the system in between these two. The domain, , together with
regions of interest, are shown on the left side of Fig. 13. Let
, and correspond to the red, blue and black regions,

respectively. Formally, we would like to find a switching pro-
tocol such that the system satisfies the following specification:

(P1) Remain in and visit the red and blue regions infin-
itely often, while avoiding the black region, i.e.,

In addition, the switching protocol and the system is required
to react to a continuous-time environment signal taking value
in {1,2} according to the following rules:

(P2.1) when , the switching protocol is required to
steer the system to the red region and stay there, without
using the controller ; and
(P2.2) when , the switching protocol is required to
steer the system to the blue region and stay there, without
using the controller .

The following assumptions are made on the environment
signal :

(S1) takes each of the values in {1,2} infinitely often; and
(S2) changes its value only when the system is either in
the red or blue region.

Based on a partition of the workspace as shown on the right
side of Fig. 13, an over-approximation of system (17) can
be computed using Algorithm 1 and sum-of-squares-based
techniques as pointed in Remark 1. A switching protocol can
be obtained by solving a two-player game as introduced in
Section V-B. The resulting finite automaton that represents the
switching protocol has 55 states. Simulation results, shown in
Fig. 14, illustrate continuous implementations of the switching
protocol, as well as its runtime reactiveness to the environment
signal .

VIII. CONCLUSIONS

In this paper, we considered the problem of synthesizing
switching protocols for nonlinear hybrid systems subject to
exogenous disturbances. These protocols guarantee that the tra-
jectories of the system satisfy certain high-level specifications

Fig. 14. Simulation results for Example 4. The upper figures show snapshots
of a state trajectory in simulation. The blue and red regions are required to be
visited infinitely often, while the black region is to be avoided. The lower three
figures depict the switching signal , the environment signal , and the changes
in (indicated by , a signal taking values in {0,1}), as functions of time. It can
be seen that reacts immediately to changes in and .

expressed in linear temporal logic. We employed a hierarchical
approach where the switching synthesis problem was lifted to
discrete domain through finite-state abstractions. A family of
finite-state transition systems, namely over-approximations,
that abstract the behavior of the underlying continuous dynam-
ical system were introduced. It was shown that the discrete
synthesis problem for an over-approximation can be recast as a
two-player temporal logic game and off-the-shelf software can
be used to solve the resulting problem. Existence of solutions
to the discrete synthesis problem guarantees the existence of
continuous implementations that are correct by construction.
In contrast to existing work, we achieve runtime reactive-

ness of the continuous-time switching controller by explicitly
modeling the environment and taking into account possibly
asynchronous interactions between the system dynamics and the
environment. We have accomplished this by defining product
transition systems from the abstractions and augmenting these
transition systems with additional liveness conditions to en-
force progress in accordance with the underlying dynamics.
As discussed in the paper, there are certain trade-offs between

the fidelity of the abstractions, expressiveness of the specifica-
tions that can be handled and computational complexity. To al-
leviate the latter issue and to further improve the scalability of
the approach, future research directions include combining the
results of this paper with a receding horizon framework and/or
a distributed synthesis approach.
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