
A bad example for the iterative rounding method for mincost k-connected
spanning subgraphs

Ashkan Aazamia, Joseph Cheriyanb,∗, Bundit Laekhanukitc

aDept. of Comb. & Opt., U. Waterloo, Waterloo ON Canada N2L 3G1.
bDept. of Comb. & Opt., U. Waterloo, Waterloo ON Canada N2L 3G1.
cDept. of Comb. & Opt., U. Waterloo, Waterloo ON Canada N2L 3G1.

Abstract

Jain’s iterative rounding method and its variants give the best approximation guarantees known for many
problems in the area of network design. The method has been applied to the mincost k-connected spanning
subgraph problem, but the approximation guarantees given by the method are weak. We construct a family of
examples such that the standard LP relaxation has an extreme point solution with infinity norm ≤ Ω(1)/

√
k,

thus showing that the standard iterative rounding method cannot achieve an approximation guarantee better
than Ω(

√
k).

Keywords: approximation algorithms, LP relaxations, iterative rounding method, graph connectivity,
k-connected spanning subgraphs, extreme point solutions,
2000 MSC: 90C27,
2000 MSC: 68W25,
2000 MSC: 05C40,

1. Introduction

The topic of network design occupies a central place in Combinatorial Optimization and Theoretical
Computer Science. A major theme within this topic focuses on the algorithmic problem of computing
minimum-cost subgraphs: given a graph G = (V,E) together with costs on the edges, find a subgraph H of
G that has minimum cost and satisfies some specified connectivity requirements. An example is the well-
known minimum-cost spanning tree problem. Most of these problems are NP-hard, implying that optimal
solutions cannot be computed in polynomial time, modulo the P6=NP conjecture. Recent research has
focused on the design and analysis of approximation algorithms for these problems. Rather than computing
an optimal solution, the goal changes to finding a sub-optimal solution whose cost is guaranteed to be within
a known factor of the optimal cost, see [14, 15]. Jain, see [10] and also see the books [14, 15], introduced
and analysed an algorithmic paradigm for solving such problems called the iterative rounding method.

Jain’s iterative rounding method [10] works as follows. Formulate the problem as a covering integer
program whose right-hand side is given by a so-called requirement function f . Then solve the LP (linear
programming) relaxation to find a basic (extreme point) optimum solution x. Pick an edge e∗ of highest
value and add it to the solution subgraph H (initially, E(H) is empty). Then update the LP and the integer
program, since the variable xe∗ is implicitly fixed at value 1. The resulting LP is the same as the LP for the
“reduced” problem where the edge e∗ is pre-selected for H. Under appropriate conditions on the requirement
function f , the problem turns out to be self reducible, i.e., the essential properties of the original problem

∗Corresponding author
Email addresses: aazami@gmail.com (Ashkan Aazami), jcheriyan@uwaterloo.ca (Joseph Cheriyan),

blaekhanukit@uwaterloo.ca (Bundit Laekhanukit)
URL: http://sites.google.com/site/aazami (Ashkan Aazami), http://www.math.uwaterloo.ca/~jcheriya (Joseph

Cheriyan), http://www.math.uwaterloo.ca/~blaekhan (Bundit Laekhanukit)

Preprint submitted to Elsevier June 23, 2010

are preserved in the reduced problem. Iteratively solve the reduced problem. Jain [10] applied this method
to the survivable network design problem (SNDP), and proved that it achieves an approximation guarantee
of 2 provided that the requirement function f is weakly supermodular.

In the mincost k-connected spanning subgraph problem, we are given a graph G together with a non-
negative cost function on the edges of G. The goal is to pick a set of edges with minimum cost such that
the picked edges and their incident nodes form a k-connected spanning subgraph of G. (A graph is called
k-connected if it has at least k+1 nodes, and the deletion of any set of k−1 nodes leaves a connected graph.
Alternatively, for any two nodes u and v, there exist k openly disjoint paths from u to v.) The problem has
attracted research interest in the area of approximation algorithms for many years. A series of improved
approximation guarantees have been obtained, see [1, 11, 4, 12]. Besides the iterative rounding method,
some other algorithmic paradigms have been applied to the problem, such as, the primal-dual method, see
[13, 12], and methods for covering deficient sets, see [11, 4].

Frank and Jordan [8] gave a setpair formulation for some problems in network design. A setpair (Wt,Wh)
consists of two disjoint node sets Wt and Wh. Each setpair (Wt,Wh) is assigned a non-negative, integer
requirement f(Wt,Wh). The goal is to find a minimum-cost subgraph H that satisfies the requirement of
every setpair, i.e., for each setpair (Wt,Wh), H should have at least f(Wt,Wh) edges that have one end-
node in Wt and the other end-node in Wh. The mincost k-connected spanning subgraph problem can be
formulated via setpairs. We focus on a standard integer programming formulation and its LP relaxation,
see below. Our main contribution is a family of examples such that the standard LP relaxation has an
extreme-point solution with infinity norm ≤ Ω(1)/

√
k. The existence of such examples has been claimed in

[1], but no justification has been presented till now.
The analysis of the standard iterative rounding method is based on proving a guarantee for every iteration;

in more detail, the approximation guarantee of the method is given by a lower bound on the infinity norm of an
extreme-point solution that holds for every iteration. Our example applies in the first iteration of the method,
and shows that the approximation guarantee implied by that iteration is ≥ Ω(

√
k). Thus, in a formal sense,

our example shows that the standard iterative rounding method cannot achieve an approximation guarantee
better than Ω(

√
k). This raises the intriguing possibility of modifying the iterative rounding method to

circumvent the obstacles presented by our example.
The overall construction is somewhat complicated. Rather than giving a compact presentation that may

be hard to decipher, we give a longer presentation with some redundancy that may be easier to comprehend.
The construction starts with a so-called “base graph” G0 = (V,E0) that is k-connected. There is a set of
augmenting edges F ′′ used to increase the connectivity to k + 1. The LP solution x′′ in our construction
assigns a fractional value ≤ Ω(1)/

√
k to each edge in F ′′. We describe the set F ′′ in two stages, first without

so-called breakpoints, and then we give the actual set F ′′ using breakpoints.
Our notation is as follows. Let G = (V,E) be a graph. A setpair is an ordered pair of node sets

W = (Wt,Wh), where Wt ⊆ V is called the tail and Wh ⊆ V is called the head. We denote the set of all
setpairs by S. Let e ∈ E be an edge in G. We say that e and W are incident (or W is incident to e) if e has
one end node in Wt and has its other end node in Wh. We also say that e covers W . For a setpair W , we
denote the set of edges covering W by δ(W). Given a real-valued vector on the edges, x ∈ <E , and a subset
F of E, we use x(F) to denote

∑
e∈F xe. In particular, x(δ(W)) denotes

∑
{xe | e ∈ δ(W)}.

Let U be a subset of nodes. We define the neighborhood of U as Γ(U) = {v 6∈ U : uv ∈ E, u ∈ U}. For
a subset U of nodes, let ξ(U) = V \ (U ∪ Γ(U)) denote the node-complement of U . We define two paths to
be openly disjoint if any node common to both paths is an end node of both paths. We relax some of the
standard notation for the sake of readability. Thus, if H denotes a subgraph, then we may also use H to
denote the node set V (H) of the subgraph.

We formulate the mincost k-connected spanning subgraph problem as a covering integer program by
means of an integer-valued requirement function f on the setpairs. For a setpair W , we define f(W) =
k − (|V | − |Wt ∪Wh|); informally speaking, f(W) gives the deficiency of W , the minimum number of edges
from Wt to Wh required by k openly disjoint paths from a node in Wt to a node in Wh. We focus on the
linear programming relaxation of the integer program. The LP has a variable xe for each edge e ∈ E. As
usual, x indicates the set of picked edges in a solution, i.e., the incidence vector χF of a set of picked edges

2

F ⊆ E gives a solution x = χF of the LP as well as the integer program provided that F and its incident
nodes form a k-connected spanning subgraph of G. (In more detail, for F ⊆ E we use χF to denote the
vector in {0, 1}E that has χF (e) = 1 iff the edge e is in F .)

(Setpair-LP) min
∑
e∈E

cexe

subject to x(δ(W)) ≥ f(W) ∀W ∈ S
1 ≥ xe ≥ 0 ∀e ∈ E

Given a feasible solution x to the above LP, a setpair W is called tight if x(δ(W)) = f(W).
The iterative rounding method, in fact, focuses on a family of covering integer programs and their LP

relaxations, namely, all of the covering integer programs obtained by fixing some of the variables at the
value 1 or 0. Thus, the relevant family of LP relaxations is obtained from (Setpair-LP) by fixing the values
of some of the variables xe, e ∈ E at one or zero.

Our main result is the following:

Theorem 1.1. Let k = 4p(p− 1), where p ≥ 2 is an integer. Then there exists a graph G = (V,E) and an
LP (Π) in the family of LPs obtained from (SetPair-LP) (by fixing some variables to have values of one or
zero) such that (Π) has an extreme point x such that maxe∈E xe ≤ 1

p = Θ(1)√
k

.

2. Extreme point example

2.1. Our construction: the base graph
Our construction is based on a construction by Ravi and Williamson [13]. See Figure 1 for an illustration.
First, we construct an (undirected) graph G0 = (V,E0) that we call the base graph. Let p ≥ 2 be an

integer. The base graph is constructed such that its connectivity is k = 4p(p− 1). We use L to denote k/2,
thus L = 2p(p− 1). Table 1 summarizes the parameters for our construction.

k connectivity of G0 = (V,E0) k = 2L = 4p(p− 1)
L # of setpairs per column L = 2p(p− 1)
p # of columns

of breakpoints per column p− 1

Table 1: List of parameters

• Our construction uses p copies of a particular subgraph that we call a column; the columns are indexed
1, 2, . . . , p. Moreover, there is a clique of size ≥ 2L + 2 = k + 2 that we call the central clique, denoted
C∗; it is disjoint from the columns but there are some edges between every column and the central
clique.

• A column in our construction consists of L+1 disjoint cliques with sizes 1, 2L, 2L−1, 2L−2, . . . , L+1.
Consider the column indexed by j. We denote the L + 1 cliques in it by Ci,j , i = 0, 1, . . . , L, where
C0,j consists of a single node, and for i = 1, . . . , L, Ci,j is a clique on 2L + 1 − i nodes. Moreover,
the edge set of a complete bipartite graph is placed between every pair of consecutive cliques Ci,j and
Ci+1,j for i = 0, . . . , L− 1, and also between CL,j and C∗. We use vj to denote the single node in the
clique C0,j ,∀j = 1, . . . , p and we call these nodes the v-nodes. These nodes have a special purpose in
the construction. Also, for each clique Ci,j , we pick an arbitrary node and call it the designated node
of Ci,j . We also pick a node of C∗ and call it the designated node of the central clique; we denote this
node by r∗.

3

v1 v2 vj

w1

w2

wi

wL

Complete bipartite graph

wi+1

C1,j

Ci,j

CL,j

Ci+1,j

C2,j

vp

k − p

(k − p) edges

Complete bipartite graph between the central clique and each clique CL,j

CL,1 CL,2 CL,p

C∗

Figure 1: The base graph G0 = (V,E0).

• Finally, we add L nodes that we denote by w1, w2, . . . , wL; these nodes are disjoint from the nodes in
the columns and C∗. We call these nodes the w-nodes, and these nodes have a special purpose in the
construction. For each i = 1, . . . , L, the node wi is incident to k edges; p of these edges have their other
ends at the designated nodes of the cliques Ci,j for j = 1, . . . , p; the remaining k − p edges incident to
wi have their other ends at distinct nodes of C∗ excluding r∗. We assume that each w-node is adjacent
to the same set of k − p nodes of C∗. Note that r∗ is not adjacent to any w-node.

Thus for a fixed i, each node wi is adjacent to the set of p designated nodes of Ci,1, . . . , Ci,p. For a
fixed i = 1, . . . , L, we take the i-th row of the base graph to be the subgraph induced by the node wi

and the cliques Ci,j for j = 1, . . . , p.

By an interior node we mean a node that is not a v-node, or a w-node, or a node of C∗. In other words,
an interior node is a node of

⋃L
i=1

⋃p
j=1 Ci,j . This completes the construction of the base graph.

Claim 2.1. The graph G0 = (V,E0) is k-connected.

Our proof is given in the Appendix.

2.2. Augmenting edges, preliminary version
Our construction uses a set of augmenting edges. These are the edges that may be added to the base

graph G0 = (V,E0) to make it (k + 1)-node connected. We describe the set of augmenting edges in two
stages. This subsection has a preliminary description. In the next subsection, we apply some modifications
to get the actual set of augmenting edges for our construction.

In this subsection, we use F ′ to denote the set of augmenting edges. We have two types of edges in F ′.
The edges of the first type are called long edges and they are useful for covering the v-nodes. The edges of
the second type are called short edges, and they are useful for covering the w-nodes.

• Long edges: For each j = 1, . . . , p and node vj , we add (p− 1) edges from vj to the designated node
r∗ of C∗.

4

vj

w1

w2

wi

wL

wi+1

k − p

CL,j

v1

w3

k − p

Ci+1,j

Ci,j

C2,j

C1,j

v2 vj vp

Ci,1 Ci,2 Ci,j Ci,p

Ci+1,1 Ci+1,2 Ci+1,j Ci+1,p

wi+1

wi+2

wi

(p− 1) edges

p edges

p edges

C∗ C∗

Figure 2: The augmenting edge set, preliminary version. The figure on the left shows the edges incident to
the jth column, and the figure on the right shows the edges incident to two consecutive rows.

• Short edges: For each i = 0, . . . , L − 1, we add an edge between w(i+1) and the designated node of
each of the cliques Ci,1, Ci,2, . . . , Ci,p; thus there are p edges between w(i+1) and the p cliques on the
i-th row of the base graph. Note that C0,j = {vj} (j = 1, . . . , p), so there is a short edge between the
node w1 and each of the v-nodes.

This completes the description of the edges in F ′. See Figure 2 for an illustration.
The following LP is obtained by relaxing an integer programming formulation of the problem of aug-

menting the connectivity of the base graph to k + 1 by using the edges in F ′. The LP has a variable xe for
each edge e ∈ F ′, thus x ∈ <F ′

. There are no LP variables for the edges of the base graph G0 = (V,E0).
Informally speaking, each edge in E0 contributes a value of 1 to the constraints of (Setpair-LP); formally,
we have the constraints: x(δ(W)) + χE0(δ(W)) ≥ 1 + f(W),∀W ∈ S, where the two terms on the left-hand
side account for the contribution of the edges in F ′ and E0, respectively, and the right-hand side gives the
requirement for (k + 1)-connectivity for the augmented graph.

(Augmenting-LP) min
∑
e∈F ′

cexe

subject to x(δ(W)) ≥ 1 + f(W)− χE0(δ(W)) ∀W ∈ S
xe ≥ 0 ∀e ∈ F ′

Observe that (Augmenting-LP) has been obtained from (Setpair-LP) by fixing the values of some of the
variables xe, e ∈ E at one or zero; in other words, (Augmenting-LP) belongs to the family of LP relaxations
addressed by Theorem 1.1; hence, we can prove Theorem 1.1 by showing that (Augmenting-LP) has an
extreme-point solution x such that maxe∈E xe ≤ Θ(1)√

k
. We show this via Claims 2.3–2.6 given below.

The next result is not used in the proof of Theorem 1.1, but we build upon its proof in order to prove
Claim 2.3, and our proof of Theorem 1.1 uses the latter result. The next result shows that we need a capacity
of only 1

p on each edge in F ′ for augmenting the connectivity by 1.

5

Claim 2.2. Consider the graph G′ = (V,E0 ∪ F ′). The vector given by x′(e) = 1
p , ∀e ∈ F ′ is a solution

for (Augmenting-LP).

The proof is given in the Appendix.

2.3. Augmenting edges, final version
To prove Theorem 1.1, we need to construct a family of tight setpairs and a set of augmenting edges F ′′

such that the incidence matrix (of these setpairs and edges) has full row rank. Clearly, the set of edges F ′

given in the previous subsection is not appropriate for this purpose, because the long edges have multiplicity
(p − 1) in F ′, hence, the incidence matrix cannot have full rank since the columns of the long edges are
replicated with multiplicity (p− 1). In this subsection, we describe how to modify the set F ′ to get a set F ′′

that is appropriate for Theorem 1.1.
For each j = 1, . . . , p and node vj , we replace each of the (p − 1) long edges incident to vj by a pair of

long edges. We also modify some of the short edges.
Consider any column j = 1, 2, . . . , p. Our construction uses (p − 1) special row indices that we call the

breakpoints of the column. The breakpoints of the jth column are given by the (p− 1) consecutive odd row
indices ` = 2(p− 1)(j− 1) + 1, 2(p− 1)(j− 1) + 3, . . . , 2(p− 1)(j− 1) + 2p− 3. For each of these breakpoints
`, we add a pair of long edges.

Pair of long edges for breakpoint `:

1. The first long edge (of the pair) is between vj and a non-designated node of the clique C`+2,j . There
is one exceptional case for the last breakpoint of the last column, and we discuss it below.

2. The second long edge (of the pair) is between a non-designated node of the clique C`,j and r∗.

Short edges: Consider a column j, j = 1, . . . , p. For i = 0, . . . , L− 1, if i is a breakpoint of column j, then
we place a short edge between wi+1 and r∗. Otherwise, if i is not a breakpoint of column j, then we place a
short edge between wi+1 and a node of Ci,j . The choice of the node of Ci,j depends on i, and we have two
cases: if (i − 1) is a breakpoint (i.e., if 2(p − 1)(j − 1) + 2 ≤ i ≤ 2(p − 1)(j − 1) + 2p − 2) then we place a
short edge between wi+1 and a non-designated node of Ci,j ; otherwise, if (i− 1) is not a breakpoint then we
place a short edge between wi+1 and the designated node of Ci,j . If both i and i − 1 are not breakpoints,
then observe that either i < 2(p− 1)(j − 1) + 1 or i ≥ 2(p− 1)(j − 1) + 2p− 1.

As mentioned above, one exceptional case comes up in the definition of the pairs of long edges. This is the
case for the last breakpoint of the last column, thus we have j = p and breakpoint ` = 2(p− 1)p− 1 = L− 1.
Then the first long edge for this pair appears to be ill-defined, since the edge is between vp and a node of
C`+2,p = CL+1,p, but there is no such clique in the base graph. To avoid this difficulty, we take r∗ to be
the end node of the first long edge. (Informally speaking, we are taking C∗ to be CL+1,p.) Moreover, this
exception needs special handling in the proof of Claim 2.3.

This completes the description of the edges in F ′′. See Figure 3 for an illustration.

Claim 2.3. Consider the graph G′′ = (V,E0 ∪ F ′′). The vector given by x′′(e) = 1
p , ∀e ∈ F ′′ is a solution

for (Augmenting-LP).

The Appendix has two proofs of this claim. The first proof uses general methods and is longer; the second
proof was suggested by a referee, and it is shorter, but it relies on special properties of the base graph.

2.4. Rank of the incidence matrix
In this subsection, we first define a family of tight setpairs for the feasible solution x′′ defined in Claim

2.3. Next, we show that the incidence matrix of these tight setpairs and the edges in F ′′ has full rank. This
shows that x′′ is an extreme-point solution of (Augmenting-LP), and thus completes the proof of Theorem
1.1.

6

vj

w1

w2

w5

w7

w6

C1,j

C6,j

C7,j

C5,j

C8,j

C4,j

w8

C9,j

k − p

r∗

Breakpoint

Breakpoint

w9

w10

wL

CL,j

C∗

Figure 3: The augmenting edge set, final version. The figure shows the augmenting edges incident to an
arbitrary column.

A family of tight setpairs:
Throughout this section, the notation for node-complement refers to the base graph G0 = (V,E0). For
example, if S = {v1} ∪ C1,1, then ξ(S) = V \ ({v1} ∪ C1,1 ∪ C2,1 ∪ {w1}). The word “column” may mean
either a column of a matrix or a column of the base graph; the context will resolve the ambiguity. Similarly,
the word “row” may mean either a row of a matrix or a row of the base graph.

Consider a column j = 1, . . . , p. Recall that each column consists of a single node vj together with a
sequence of L cliques Ci,j , i = 1, . . . , L. For each i = 0, . . . , L− 1, let Si,j =

⋃`=i
`=0 C`,j ; thus, Si,j contains vj

and the nodes of the first i (nontrivial) cliques of the j-th column. Each set Si,j defines a setpair (Si,j , ξ(Si,j));
for ease of notation, we may use Si,j to denote this setpair. Thus, we have L setpairs for each column. Also
for each node wi, i = 1, . . . , L, let Wi = {wi}. Each set Wi defines a setpair (Wi, ξ(Wi)); again, we may use
Wi to denote this setpair. Thus, we have pL setpairs of the form Si,j , and L setpairs of the form Wi, for a
total of (p + 1)L setpairs. Let L denote the set of all these setpairs. See Figure 4 for an illustration.

Claim 2.4. Let x′′ be the feasible solution given in Claim 2.3. Then, the setpairs in L are tight, that is, for
each W ∈ L, we have x′′(δ(W)) = 1.

Proof: First, consider any setpair (Wi, ξ(Wi)), i = 1, . . . , L, where Wi = {wi}. Observe that Γ(Wi), the
neighbourhood of wi in the base graph, consists of k− p nodes of C∗ and the designated nodes from each of
the cliques Ci,j , j = 1, . . . , p. There are p augmenting edges incident to the setpair, namely, the p short edges
incident to wi; thus |δ(Wi, ξ(Wi)) ∩ F ′′| = p; moreover, x′′(δ(Wi, ξ(Wi))) = 1 because each augmenting edge
e has x′′e = 1

p .
Next, consider any setpair (Si,j , ξ(Si,j)), i = 0, . . . , L − 1 and j = 1, . . . , p. Note that Γ(Si,j), the

7

vj

w1

w2

w3

wi

C1,j

Ci,j

C3,j

C2,j

k − p

r∗

wL−1

CL−1,j

CL,j

wL

C∗

Figure 4: An illustration of the tight setpairs (Wi+1, ξ(Wi+1)) and (Si,j , ξ(Si,j)) for i = 0, . . . , L − 1 and
fixed j. The tail of each of these 2L setpairs is indicated by a circle or oval, but the heads are not indicated.

neighbourhood of Si,j in the base graph, consists of k nodes, namely, {w1, . . . , wi} ∪ C(i+1),j . We claim that
each such setpair is covered by exactly p augmenting edges, either p long edges, or p− 1 long edges and one
short edge. As above, this claim implies that the setpair is tight.

Consider any column j and the `-th pair of long edges in the column, for ` = 1, . . . , p − 1; let β(`)
denote the associated breakpoint (thus β(`) = 2(p − 1)(j − 1) + 2` − 1). It can be seen that the setpair
(Sβ(`),j , ξ(Sβ(`),j)) is covered by both long edges of the pair, and each of the other setpairs (Si,j , ξ(Si,j)),
i = 0, . . . , L − 1, i 6= β(`), is covered by exactly one of the long edges of the pair. (To verify this, recall
that Γ(S0,j) = Γ({vj}) = C1,j , and Γ(Si,j) = Ci+1,j

⋃
{w1, . . . , wi} for i = 1, . . . , L − 1.) Hence, for each

i = 0, . . . , L − 1, if i is a breakpoint of column j, then the setpair (Si,j , ξ(Si,j)) is covered by p long edges,
otherwise, the setpair is covered by p−1 long edges (one long edge from each of the p−1 pairs). Moreover, if
i is a breakpoint of column j, then the setpair (Si,j , ξ(Si,j)) is covered by none of the short edges, otherwise,
the setpair is covered by one short edge, namely, the short edge between Ci,j and wi+1. Our claim follows,
and thus we have proved that the setpair (Si,j , ξ(Si,j)) is tight. �

The next result is not essential, but we include it since it can be used to give another proof of Claim 2.3.
Let di,j denote the designated node of the clique Ci,j ,∀i = 0, . . . , L, j = 1, . . . , p, and let D denote the set
{di,j | i = 1, . . . , L, j = 1, . . . , p}; note that D does not contain any of the nodes vj = d0,j , j = 1, . . . , p.

Corollary 2.5. Let x′′ be the feasible solution given in Claim 2.3. Then, x′′ covers all of the setpairs of the
form Si,j−D′, where D′ ⊆ D, that is, x′′(δ((Si,j−D′, ξ(Si,j−D′)))) ≥ 1 holds, ∀i = 0, . . . , L−1, j = 1, . . . , p.

Proof: Fix i and j, and consider any set S = Si,j −D′ and the associated setpair (S, ξ(S)); we may assume
D′ ⊆ {d1,j , . . . , di,j}. First, observe that Γ(S) has the same size as Γ(Si,j), namely, k, because Γ(S) can be
obtained from Γ(Si,j) by replacing the node w` by the node d`,j , for each designated node in Si,j−S. Hence,
for each ` = 1, . . . , i, note that Γ(S) has exactly one of the two nodes w` or d`,j .

If S = Si,j , then Claim 2.4 implies that x′′(δ(Si,j)) = 1, so the result follows. Otherwise, consider the
smallest ` such that w` 6∈ Γ(S). If ` = 1, then the short edge between vj and w1 together with the long
edges incident to the setpair Si,j suffice to cover the setpair (S, ξ(S)). If ` ≥ 2, then we have w`−1 ∈ Γ(S),

8

and d(`−1),j ∈ S, hence, the short edges between d(`−1),j and w` together with the long edges incident to the
setpair Si,j suffice to cover the setpair (S, ξ(S)). The result follows. �

The incidence matrix:
Consider the incidence matrix B of setpairs in L and edges in F ′′. The rows of B are labeled by the setpairs
of L, and the columns are labeled by the edges of F ′′. Let W ∈ L and e ∈ F ′′. The entry of B corresponding
to the pair (W, e) is given by:

B(W, e) =

{
1 if e ∈ δ(W),
0 otherwise

The matrix B has dimension (p + 1)L× (p + 1)L. To see this, consider the setpairs in L first. As noted
above, we have pL setpairs of the form Si,j and L setpairs of the form Wi. The rows of B are partitioned
into two parts; in the illustration of B (see below), the first part is above the double horizontal line, and the
second part is below that line. The first part corresponds to the setpairs of the form Si,j , and the second
part corresponds to the setpairs of the form Wi. Now consider the augmenting edges. The base graph has p
columns, and there are 2(p− 1) long edges in each column; moreover, there are p short edges per w-node. In
total, there are 2(p−1)p+pL = L+pL = (p+1)L augmenting edges. The columns of B are also partitioned
into two parts; in the illustration of B, the first part is to the left of the double vertical line, and the second
part is to the right of that line. The first part corresponds to the L = 2(p− 1)p long edges, and the second
part corresponds to the pL short edges.

We show below that the rows and columns of the matrix B can be indexed such that B has the following
structure:

B =


Q1 0 0 Î1 0 0

0
. . . 0 0

. . . 0
0 0 Qp 0 0 Îp

0 . . . 0 IL×L . . . IL×L

 ,

where IL×L denotes the L×L identity matrix, and 0 denotes a matrix of zeros of the appropriate dimension.
The matrices Qj and Îj are described below.

In order to describe the indexing of the rows and columns of B, it is convenient to partition the rows and
columns into a few blocks, and then describe the indexing with respect to the blocks.

The rows of the first part of B (above the double horizontal line) are partitioned into p blocks corre-
sponding to the p columns of the base graph. The jth block, for j = 1, . . . , p, has L rows for the L setpairs
S0,j , S1,j , . . . , SL−1,j , and these L rows are indexed in the natural order, i.e., the ith row for the setpair
Si−1,j . The rows of the second part of B (below the double horizontal line) form one block that has L rows
for the L setpairs W1,W2, . . . ,WL; these L rows are indexed in the natural order, i.e., the ith row for the
setpair Wi.

The matrix-columns of the first part of B (to the left of the double vertical line) are partitioned into
p blocks corresponding to the p columns of the base graph. The jth block, for j = 1, . . . , p, has 2(p − 1)
matrix-columns for the (p − 1) pairs of long edges incident to the jth column of the base graph, and these
2(p−1) matrix-columns are indexed in the natural order, i.e., the (2`−1)th and 2`th matrix-columns are for
the first and second long edge of the pair of long edges corresponding to the `th breakpoint, ` = 1, . . . , p− 1.
The matrix-columns of the second part of B (to the right of the double vertical line) are partitioned into
p blocks corresponding to the p columns of the base graph. The jth block, for j = 1, . . . , p, has L matrix-
columns for the L short edges associated with the jth column of the base graph, and these L matrix-columns
are indexed in the natural order, i.e., the ith matrix-column for the short edge that is associated with the
jth column of the base graph and is incident to wi. Recall from Section 2.3 that for each i = 0, . . . , L − 1,
there is a short edge associated with the jth column of the base graph. If i is not a breakpoint, then the
associated short edge has one end in Si,j and the other end in Wi+1. If i is a breakpoint, then the associated
short edge has one end at r∗ and the other end in Wi+1. Thus the matrix-column for a short edge either has

9

two nonzeros (a 1 for the incident setpair of the form Wi and another 1 for the incident setpair of the form
Si−1,j) or has one nonzero (a short edge associated with a breakpoint has a single 1 for the incident setpair
of the form Wi).

Let ei denote the i-th column of the L× L identity matrix IL×L. Let fi denote a column vector of size
L with a 1 in entries 1, . . . , i and a 0 in entries i + 1, . . . , L. A column vector of size L with a 1 in all entries
is denoted by 1L = fL. Recall from the previous subsection that the breakpoints of the j-th column of the
base graph are given by the indices 2(p − 1)(j − 1) + 2` − 1, for ` = 1, . . . , (p − 1). Whenever we refer to
breakpoint indices with respect to B or a submatrix of B, then we add an offset of 1 to these indices to
account for the fact that the indices of the rows of a matrix start with 1 whereas the indices of the rows of
the base graph start with 0.

Consider the j-th column of the base graph, for any j = 1, . . . , p. This column is associated with the
matrix Qj , and the matrix has L rows corresponding to the L setpairs of the form Si,j , and it has 2(p− 1)
columns corresponding to the (p − 1) pairs of long edges. Let h denote 2(p − 1)(j − 1) + 2; note that h
is determined by j. For each ` = 1, . . . , (p − 1), recall that there is a pair of long edges corresponding
to the `-th breakpoint; the `-th breakpoint has the index 2(p − 1)(j − 1) + 2` − 1 = h + 2` − 3. The
first long edge (of the `-th pair of long edges) has end nodes at vj and Ch+2`−1,j , and covers the setpairs
S0,j , . . . , Sh+2`−3,j . The second long edge (of the pair) has end nodes at r∗ and Ch+2`−3,j , and covers the
setpairs Sh+2`−3,j , . . . , SL−1,j . Hence, for each ` = 1, . . . , (p− 1), the columns 2`− 1 and 2` of Qj are given
by the vectors e1 + e2 + . . . + eh+2`−2 and eh+2`−2 + eh+2`−1 + . . . + eL, respectively. See Figure 5 for an
illustration. Thus, we have

Qj =
(
fh, 1L − fh−1, fh+2, 1L − fh+1, . . . , fh+2(p−2), 1L − fh+2(p−2)−1

)
.

The matrix Îj has L rows and L columns; the rows of Îj correspond to the rows of Qj and both sets of
rows correspond to the setpairs Si,j , i = 0, . . . , L− 1; each column of Îj corresponds to a short edge incident
to a w-node. Recall that a short edge connects wi+1 and a node of Ci,j provided i is not a breakpoint
of column j (of the base graph), for each i = 0, 1, . . . , L − 1. The matrix Îj is a diagonal matrix whose
(i, i)-entry is 0 if i is the index of a breakpoint, and the entry is 1 otherwise. See Figure 5 for an illustration.

The following claim completes the proof of Theorem 1.1.

Claim 2.6. The matrix B has full rank.

The proof is given in the Appendix.
Recall from Section 2.3 that an exceptional case arises for the last column p of the base graph, and the

pair of long edges associated with the last breakpoint of p, namely, L− 1. No special handling is needed for
this exceptional case either in the definition of the matrix B or in the proof of Claim 2.6.

3. Conclusions

We constructed a family of examples of the mincost k-connected spanning subgraph problem such that
the standard LP relaxation has an extreme point solution with infinity norm ≤ Ω(1)/

√
k. The number of

nodes in our construction is Θ(p5) = Θ(k2.5). The example applies for the special case of the problem where
a k-connected spanning subgraph of the input graph is given, and the goal is to find a mincost set of edges
whose addition increases the connectivity to k + 1. The family of tight setpairs used in our proof has the
following property: if we take the smaller of the head and the tail for each setpair, then we get a laminar
family of sets.

Over the past decade, the iterative rounding method and its variants have been used to achieve many
remarkable results in areas such as network design for edge connectivity requirements. But these achieve-
ments have not been extended to other areas, even closely related ones such as network design for node
connectivity requirements. Our main result gives some explanation for this lack of success for the iterative
rounding method, but one can hope for the discovery of new algorithmic paradigms that will surmount the
obstacles.

10

Q2 =



1 1
1 1
1 1
1 1
1 1
1 1 1

1 1
1 1 1
1 1
1 1
1 1
1 1



Î2 =



1
1

1
1

1
0

1
0

1
1

1
1


Figure 5: Let p = 3 and L = 2(p − 1)p = 12. The matrices Q2 and Î2 corresponding to the second column
in the construction are illustrated; the entries indicated by blanks are all zero; Q2 is an L× 2(p− 1) matrix,
and Î2 is an L × L matrix. The breakpoints of the second column have indices 2(p − 1)(2 − 1) + 2`, for
` = 1, . . . , (p− 1), namely, 6, 8.

11

v1 vj

w1

w2

wi

wL

wi+1

C1,j

Ci,p

CL,j

Ci+1,j

C2,j

vp

k − p

p paths

(k − p) edges

Ci,jCi,1

Ci+1,pCi+1,1

CL,pCL,1

C∗

(a) k-fan from a w-node.

C1,j

C2,j

CL,j

Ci,j

vj

w1

w2

wi

wL

L paths

uwi+1

wi−1

Ci+1,j

Ci−1,j

C∗

(b) k-fan from interior node
u.

Figure A.6: Illustration of k-fans for w-nodes and for interior nodes.

Appendix A. Proofs of claims

This Appendix has the proofs of the claims from Section 2.

Appendix A.1. Proof of Claim 2.1

Claim 2.1 The graph G0 = (V,E0) is k-connected.
Proof: We prove that G0 is k-connected by using a standard k-connectivity algorithm, see [2, 3]: First, pick
k nodes and prove that there are k openly disjoint paths between every two of them. We say that these k
nodes have been successfully “scanned.” Then we scan the remaining nodes in some order; if all the nodes
can be successfully scanned, then G0 is k-connected. To scan one of the remaining nodes z, we construct a
k-fan from z to the set of nodes that have been already scanned. A k-fan from a node z to a set of nodes
U, z 6∈ U means a set of k openly disjoint paths, where each path starts at z and ends at a node of U , and
moreover, z is the only node that occurs in two or more of these paths. See Even [2] and Even and Tarjan
[3], for a proof of correctness and further details.

For the sake of convenience, we allow some informality in the following discussion. In particular, when
we say that a path P is in column j, we mean that all the interior nodes of P are in column j; thus, one or
both end-nodes of P may not be in the column.

See Figure A.6 for an illustration.
To pick the initial set of k nodes, we exclude r∗ from the central clique C∗, and pick any k of the remaining

nodes; let r1, . . . , rk denote the picked nodes. Since C∗ has order ≥ 2L + 2, it contains ≥ k = 2L openly
disjoint paths between any two of its nodes. Thus the initial set of k nodes has the required property.

We scan the remaining nodes in the following order:

1. Central clique: Let u be a node of C∗, where u 6∈ {r1, . . . , rk}. Clearly, the central clique contains a
k-fan from u to {r1, . . . , rk}.

12

2. w-nodes: Consider any i = 1, . . . , L and the node wi. A k-fan from wi to {r1, . . . , rk} can be constructed
by sending k − p paths via the k − p nodes of C∗ adjacent to wi. The remaining p paths of the k-fan
are given by paths of length 2 + L − i in each of the p columns; the j-th of these paths starts at wi,
then uses one node from each of the cliques Ci,j , C(i+1),j , . . . , CL,j .

3. Interior nodes: Consider any clique Ci,j and any node u in it. To scan u, we construct two L-fans
that have no nodes in common except u. The first L-fan is from u to a set of L nodes of C∗, call
it {r1, . . . , rL}; each path in this L-fan has length 1 + L − i and uses exactly one node of Ci+h,j for
h = 1, 2, . . . , L − i. The second L-fan is from u to the w-nodes w1, w2, . . . , wL; each of these L paths
uses one node from each of the cliques “lying between” u and the w-node. (For example, if i < L
and h ∈ {1, 2, . . . , (L− i)}, then the path from u to wi+h uses one node of Ci,j , Ci+1,j , . . . , Ci+h−1,j

and the designated node of Ci+h,j .) Thus, for i < L and each h ∈ {1, 2, . . . , (L− i)}, the number of
openly disjoint paths from the two L-fans incident to Ci+h,j equals the cardinality of Ci+h,j , namely,
2L + 1− i− h.
Moreover, we can augment the above k-fan to get a k-fan from u to k nodes of C∗, by adding (the
edge set of) a matching between {w1, . . . , wL} and L of the neighbours of {w1, . . . , wL} in C∗, call
them r′1, . . . , r

′
L; such matchings exits in the base graph since it contains a complete bipartite graph

on the node sets {w1, . . . , wL} and k − p > L nodes of C∗. Thus, by adding the matching edges, we
can augment the path from u to w` in the original k-fan to get a path from u to r′` in the new k-fan.
We get a k-fan from u to {r1, . . . , rL, r′1, . . . , r

′
L}, and the latter set is contained in C∗.

4. v-nodes: Consider any j = 1, . . . , p and the node vj . Observe that vj is adjacent to the k nodes of C1,j ,
and each of those nodes is an interior node. We scan vj by constructing a k-fan to its k neighbours in
C1,j .

This completes the description of the scanning procedure. We successfully scanned all nodes, hence, G0

is k-connected. �

Appendix A.2. Proof of Claim 2.2
Claim 2.2 Consider the graph G′ = (V,E0 ∪ F ′). The vector given by x′(e) = 1

p , ∀e ∈ F ′ is a solution for
(Augmenting-LP).
Proof: We prove that G′ is fractionally (k +1)-connected using an argument similar to the one in the proof
of Claim 2.1.

A fractional |U |-fan from a node z to a set of nodes U, z 6∈ U , means a flow of value |U | between z and
U such that the flow transiting via each node has value ≤ 1 and the flow terminating at each node has
value ≤ 1. More formally, a fractional |U |-fan from z to U is defined in the associated directed graph, where
each undirected node v is replaced by a pair of nodes vin, vout with a unit-capacity arc (vin, vout), and each
undirected edge uv is replaced by a pair of arcs (uout, vin), (vout, uin) of infinite capacity; the fan refers to
a flow of value |U | with a single source zout and a sink at each node uout,∀u ∈ U ; the flow on an arc need
not be integral, but note that the value of the flow transiting via any node, namely, the flow on any arc
(vin, vout), is ≤ 1; the existence of such a fan certifies that there exists no node cut of cardinality < |U | whose
deletion separates z from U (i.e., results in two different connected components such that one contains z and
the other contains some node of U).

We take the initial set of k+1 nodes to be a set of k+1 nodes from C∗ that includes r∗; we may use r(k+1)

to denote r∗ and we denote the initial set of nodes by r1, . . . , r(k+1). Since C∗ has order ≥ 2L + 2 = k + 2,
it clearly contains ≥ k + 1 openly disjoint paths between any two of its nodes. Thus the initial set of k + 1
nodes has the required property.

We scan the remaining nodes in the following order:

1. Central clique: Let u be a node of C∗, where u 6∈
{
r1, . . . , r(k+1)

}
. Clearly, the central clique contains

a (k + 1)-fan from u to
{
r1, . . . , r(k+1)

}
.

13

C1,j

C2,j

CL,j

vj

w1

w2

wL

wL−1

w3

CL−1,j

C3,j
w4

C∗

(a) Augmenting path in the undi-
rected graph.

C1,j

C2,j

vj

w1

w2

w3

wL−1

C3,j

CL,j

CL−1,j

wL

C∗

(b) Augmenting path in the asso-
ciated directed graph.

Figure A.7: Illustration of the last augmenting path from vj to r∗.

2. w-nodes: Consider any i = 1, . . . , L and the node wi. We start with the k-fan from wi to {r1, . . . , rk}
constructed in the proof of Claim 2.1. Then we add p paths from wi to r∗ = r(k+1) such that each of
these paths has a flow of value 1/p. We call these the fractional paths. Moreover, the fractional paths
are openly disjoint (only the end nodes wi and r∗ are common), and each integral path (from wi to an
r`, ` = 1, . . . , k) has only the node wi in common with any other path. Each of the fractional paths
has length 3 + L − i, starts with a short edge from wi to a node of C(i−1),j , and uses one node from
each of the cliques C(i−1),j , Ci,j , C(i+1),j , . . . , CL,j . Thus each column contains two disjoint subpaths
of the fractional (k + 1)-fan, an integral path and a fractional path.

3. v-nodes: For any j = 1, . . . , p and the node vj , we construct a fractional (k + 1)-fan from vj . We
start by constructing an (integral) k-fan from vj to {w1, . . . , wL}

⋃
{r1, . . . , rL} in the base graph

G0 = (V,E0). This k-fan is similar to the k-fan constructed for the interior nodes in the proof of
Claim 2.1. We construct two L-fans that have no nodes in common except vj ; the first L-fan is from
vj to {r1, . . . , rL}; each path in this L-fan has length 1 + L and uses exactly one node of Ci,j for
i = 1, 2, . . . , L; the second L-fan is from vj to the nodes w1, w2, . . . , wL; each of these L paths uses one
node from each of the cliques “lying between” vj and the w-node.
Then we add p paths from vj to r∗ = r(k+1) such that each of these paths has a flow of value 1/p.
Moreover, the fractional paths are openly disjoint (only the end nodes vj and r∗ are common). More
formally, we focus on the associated directed graph and construct a flow of value k + 1 between vj

and {w1, . . . , wL}
⋃
{r1, . . . , rL, r∗} such that the value of the flow transiting via any node is ≤ 1. We

construct the flow of value k + 1 by starting with the integral flow of value k (given by the k-fan),
and then sending a flow of value 1/p on p augmenting paths. We take p− 1 of the augmenting paths
to be the paths of length one given by the long edges between vj and r∗. The last augmenting path
P ∗ has length 2L + 1 and is incident to all of the w-nodes and all of the cliques C1,j , C2,j , . . . , CL,j .
In the undirected graph G′, the path P ∗ has the form vj , w1, u1, w2, u2, . . . , wL−1, uL−1, wL, uL, r∗,
where u1, . . . , uL denote the designated nodes of C1,j , . . . , CL,j , respectively (for ease of notation, we
use ui rather than ui,j for the designated node of Ci,j). For the sake of notational convenience, we
denote augmenting paths by their node sequence in the undirected graph, rather than in the associated
directed graph.
See Figure A.7 for an illustration of the last augmenting path in the graph, as well as in the associated
directed graph.

4. Interior nodes: Consider any clique Ci,j , i = 1, . . . , L, and any node u in it. To scan u, we first construct

14

a k-fan from u to {w1, . . . , wL}
⋃
{r1, . . . , rL}, in a similar way to the proof of Claim 2.1. Alternatively,

we can construct a k-fan from u to k nodes of C∗, see part (3) in the proof of Claim 2.1. Next, we
connect u by a path of length i to vj that is disjoint from the nodes of the above k-fan, except for
the node u; this path is easily constructed, since the cliques C1,j , C2,j , . . . , Ci−1,j have cardinalities of
2L, 2L− 1, . . . , 2L + 2− i and are incident to 1, 2, . . . , i− 1 openly-disjoint paths of the k-fan. Adding
this path to the k-fan gives a (k + 1)-fan to a set of k + 1 already scanned nodes. Observe that this
(k + 1)-fan is contained in the base graph G0 = (V,E0), that is, it does not use any augmenting edge.

�

Appendix A.3. Proof of Claim 2.3
Claim 2.3 Consider the graph G′′ = (V,E0 ∪ F ′′). The vector given by x′′(e) = 1

p , ∀e ∈ F ′′ is a solution
for (Augmenting-LP).
Proof: The proof is similar to the proof of Claim 2.2. Here, we only mention the changes needed to
complete the proof. We start with k + 1 nodes from C∗, including the node r∗, and we denote these nodes
by r1, r2, . . . , rk, r(k+1) = r∗. The base graph G0 = (V,E0) has ≥ k + 1 openly disjoint paths between any
two of these nodes.

We scan the remaining nodes in the same order as in the proof of Claim 2.2. The scanning procedure is
almost the same for all of the nodes except for the v-nodes. The scanning procedure for the v-nodes needs to
be modified, because the construction of the fractional (k +1)-fans is different; in the previous construction,
we used the (p−1) long edges incident to a v-node, but those edges are not present in F ′′. The modifications
are discussed below.

The scanning procedure is the same for the nodes of the central clique, the interior nodes, and all the
w-nodes, except for nodes wi such that i − 1 is a breakpoint of some column j = 1, . . . , p. Let wi be such
an exceptional node. Note that wi has one short edge to r∗, so a flow of value 1

p can be sent directly to r∗

via this short edge. The remaining flow of value p−1
p can be sent to r∗ via the remaining (p− 1) short edges

incident to wi as described in the proof of Claim 2.2.
Consider a node vj , j = 1, . . . , p, and its fractional (k + 1)-fan to {w1, . . . , wL}

⋃
{r1, . . . , rL, r∗}. We

start with an (integral) k-fan from vj to {w1, . . . , wL}
⋃
{r1, . . . , rL} as in the proof of Claim 2.2. This k-fan

contains an L-fan from vj to the L nodes r1, . . . , rL of C∗. We impose the following requirement on this
L-fan:

There is a path P̂ contained in the L-fan from vj to C∗ such that for each pair among the p− 1
pairs of long edges associated with column j, P̂ contains both interior nodes incident to the pair
of long edges. Moreover, P̂ contains all the non-designated nodes of the cliques Ci,j , i = 1, . . . , L
that are incident to short edges. (Recall from Section 2.3 that there is a short edge between a
non-designated node of Ci,j and wi+1 iff i is not a breakpoint and i− 1 is a breakpoint.)

This requirement is easily satisfied since each path from vj to C∗ in the L-fan can use one arbitrary non-
designated node of each of the cliques Ci,j , i = 1, . . . , L. We assume that P̂ is the path of the L-fan from vj

to r1. Moreover, we may view the k-fan from vj to {w1, . . . , wL}
⋃
{r1, . . . , rL} as an integral flow; the path

P̂ carries one unit of this flow.
We augment the integral flow (of value k = 2L) by sending a flow of value 1

p via each of the (p− 1) pairs
of long edges. Consider a pair of long edges, and let u′ and u′′ denote the interior nodes incident to the two
long edges; assume that the row index of u′ is less than that of u′′. We send a flow of value 1

p from vj to

u′′ via the first long edge, next we push back the same amount of flow from u′′ to u′ along the path P̂ , and
finally, we send the same amount of flow from u′ to r∗ via the second long edge. Similarly, we send a flow
of value 1

p from r∗ to vj using each of the (p − 1) pairs of long edges in column j. (An exceptional case is
discussed below.)

Finally, we send a flow of value 1
p from vj to r∗ via the short edges, similarly to the proof of Claim 2.2.

We have to modify the construction in Claim 2.2, because F ′′ has no edge between w(i+1) and Ci,j if i is

15

C1,j

C10,j

vj

w1

w10

w5

w6

w7

w8

w9

C5,j

C6,j

C7,j

C8,j

CL,j

C9,j

wL

C1,p

CL,p

vp

w1

wL

wL−4

wL−3

wL−2

wL−1

CL−4,p

CL−3,p

CL−2,p

CL−1,p

C∗ C∗

Figure A.8: The fractional augmenting paths from vj to r∗ via the long edges (there are p − 1 such paths)
and the short edges (there is 1 such path). In the figure on the left, p = 3 and j = 2, hence this (2nd)
column has 2 breakpoints with indices 5, 7. In the figure on the right, p = 3, L = 2p(p− 1) = 12, and j = 3,
hence this (3rd) column has 2 breakpoints with indices 9, 11; note that L− 1 = 11, L− 3 = 9.

16

a breakpoint. We modify the augmenting path P ∗ = vj , w1, u1, w2, u2, . . . , wL−1, uL−1, wL, uL, r∗ used in
the proof of Claim 2.2 to give another augmenting path P ∗∗. (Note that P ∗ and P ∗∗ denote corresponding
paths of G′ = (V,E0 ∪ F ′) and G′′ = (V,E0 ∪ F ′′); moreover, recall that u1, . . . , uL denote the designated
nodes of C1,j , . . . , CL,j .) For each of the breakpoints ` in column j except the last breakpoint, we replace
the subpath w`, u`, w`+1, u`+1, w`+2 of P ∗ by the subpath w`, u`, q`+1, w`+2, where q`+1 denotes the node of
C`+1,j in the path P̂ . Recall that we send a flow of value 1

p on the pair of long edges associated with the

breakpoint `, and in this process we push back a flow of value 1
p through a node of P̂ that is in C`+1,j ; in

fact, this is the node q`+1; thus, it can be seen that the net flow transiting via q`+1 is ≤ 1. All of the edges
in the subpath are available to send the flow: we push back flow on the edge u`, w` of the base graph; the
edge u`, q`+1 is a (so far) unused edge of the base graph; the edge q`+1, w`+2 is a (so far) unused short edge.

Recall from Section 2.3 that an exceptional case arises for the last column p of the base graph, and the
pair of long edges associated with the last breakpoint of p, namely, L−1. Then we take the first long edge of
the pair to be the edge vp, r

∗, and the second long edge of the pair to be an edge between a non-designated
node of CL−1,p and r∗. The flow of value 1

p for this pair of long edges is sent directly on the first edge;
the second edge is not used here. Instead, the second edge is used for the flow of value 1

p sent via the
short edges from vp to r∗. We take the last part of the fractional augmenting path P ∗∗ in column p to be
wL−1, uL−1, qL, qL−1, r

∗, where uL−1 is the designated node of CL−1,p, and qL, qL−1 are the nodes of P̂ in
CL,p, CL−1,p, respectively. All of the edges in the subpath are available to send the flow: we push back flow
on the edge uL−1, wL−1 of the base graph; the edge uL−1, qL is a (so far) unused edge of the base graph; we
push back flow on the edge qL−1, qL of P̂ , and the edge qL−1, r

∗ is the (so far unused) second edge of the
exceptional pair of long edges.

Figure A.8 illustrates some of the paths in the fractional (k + 1)-fans from vj , j = 1, . . . , p− 1 and from
vp.

�

Appendix A.4. Alternative Proof of Claim 2.3
Claim 2.3 Consider the graph G′′ = (V,E0 ∪ F ′′). The vector given by x′′(e) = 1

p , ∀e ∈ F ′′ is a solution
for (Augmenting-LP).
Proof: We sketch an alternative proof that was suggested by a referee, that exploits the structure of the
base graph. A deficient set means a nonempty set of nodes S with ξ(S) 6= ∅ and |Γ(S)| = k. A k-node-cut
means a set of k nodes Y whose removal from the base graph results in ≥ 2 connected components; thus,
Y = Γ(S) for some deficient set S. First, we give an explicit listing of all the deficient sets of the base graph.
Then we apply Claim 2.4 and Corollary 2.5 to show that each of the deficient sets in our list is covered by
x′′, that is, for each deficient set S, we have x′′((S, ξ(S))) ≥ 1. The second part is immediate, so we focus
on the first part and on the base graph G0 = (V,E0) for the rest of the discussion.

Recall from Section 2.4 that di,j denotes the designated node of the clique Ci,j ,∀i = 0, . . . , L, j = 1, . . . , p,
and D denote the set {di,j | i = 1, . . . , L, j = 1, . . . , p}; note that D does not contain any of the nodes
vj = d0,j , j = 1, . . . , p.
Claim The deficient sets of the base graph are given by the sets Wi = {wi}, i = 1, . . . , L, S0,j = {vj}, j =
1, . . . , p, and Si,j −D′, D′ ⊆ D, i = 1, . . . , L− 1, j = 1, . . . , p.

We sketch a proof of this claim, using several observations used in the proofs of Claims 2.1–2.3.
Let Y be any k-node-cut of the base graph. Clearly, the nodes of (C∗∪CL,1 . . . CL,p)−Y are in the same

connected component of G0−Y because C∗ ∪CL,j forms a clique of G0 with ≥ k +2+(k/2) nodes, for each
j = 1, . . . , p. Let this connected component be denoted by CC∗. Moreover, note that Y contains none of the
nodes of C∗, because for each node r of C∗, G0− r is k-connected (this follows from the proof of Claim 2.1).

Next, observe that none of the nodes vj , j = 1, . . . , p is contained in Y . To see this, fix j = 1, . . . , p and
note that G0 − vj is k-connected; this follows from the proof of Claim 2.1 since the openly disjoint paths
and the k-fans used in the proof do not contain vj , except for the k-fan used for scanning vj .

Thus we have two cases. Either CC∗ contains {v1, . . . , vp} or not.

17

Case 1: v1, . . . , vp are in CC∗. Then we claim that every interior node of G0 − Y is in CC∗. This follows
from the proof of Claim 2.2; in part (4) of that proof we constructed a (k + 1)-fan from any interior node u
of column j to a set of k + 1 nodes consisting of vj and k nodes of C∗; if u 6∈ Y , then at least one path of
this (k + 1)-fan is present in G0 − Y , showing that u is in CC∗.

Thus every other connected component CC′ of G0−Y consists of nodes of {w1, . . . , wL}; moreover, it can
be seen that any such CC′ consists of exactly one node from {w1, . . . , wL}, because |Γ(S)| > k for any set S
of two or more of the nodes w1, . . . , wL.
Case 2: there is a node vj , j = 1, . . . , p that is not in CC∗ (thus we fix j = 1, . . . , p such that vj is not in
CC∗). Let CCj denote the connected component of G0 − Y that contains vj . Then we claim that Y contains
Ci,j for an i ∈ {1, . . . , L}. This follows easily; suppose that Ci,j −Y 6= ∅, ∀i ∈ {1, . . . , L}; then, by induction
on i = L,L− 1, . . . , 1, it can be seen that G0 − Y has a path from each node of Ci,j − Y to C∗; this gives a
contradiction, since we get a path from vj to C∗ in G0 − Y . Note that Y cannot contain more than one of
the cliques Ci,j , since |Y | = k and two of these cliques together contain ≥ 2k + 2 − (i + i′) ≥ k + 2 nodes.
Fix i such that Ci,j ⊆ Y . Clearly, every node of

⋃
`=i+1,L C`,j − Y has a path to C∗ in G0− Y , and hence is

in CC∗; similarly, every node of
⋃

`=1,i−1 C`,j −Y has a path to vj in G0−Y , and hence is in CCj ; moreover,
C`,j − Y has at least two nodes, ∀` ∈ {1, . . . , L} − {i}.

Finally, we claim that Y contains exactly one of the two nodes w` or d`,j , ∀` ∈ {1, . . . , i−1}. To see this,
fix `, and focus on any nondesignated node u in C`,j − Y ; u exists since C`,j − Y has at least two nodes.
Consider the k-fan in G0 from u to k nodes of C∗ constructed in part (3) of the proof of Claim 2.1; observe
that Y does not contain any node of C∗; hence, Y contains exactly one internal node of each of the k paths
of this k-fan; note that the k-fan has a path of the form u, d`,j , w`, r, where r is in C∗; hence, Y contains
exactly one of d`,j and w`.

It can be seen that CCj is contained in column j, and its node set is given by Si,j −D′, where D′ ⊆ D.
This completes the proof of the claim on the deficient sets of the base graph. Thus we gave an alternative

proof of Claim 2.3.
�

Appendix A.5. Proof of Claim 2.6
Claim 2.6 The matrix B has full rank.
Proof: We show that using elementary column operations the matrix B can be transformed into a lower
triangular matrix with non-zero diagonal entries. We assume that the parameter p in the construction is an
integer ≥ 2. Although the proof holds for p = 2, some of the formulas given below (e.g., for Λj) apply only
for p ≥ 3. For the sake of notational convenience, we allow some informality in what follows. In particular,
we may use the same symbol (e.g., Qj , Îj , B) to denote a matrix as well as its updated version after applying
elementary column operations.

Initially, before we apply any column operations, recall that

B =


Q1 0 0 Î1 0 0

0
. . . 0 0

. . . 0
0 0 Qp 0 0 Îp

0 . . . 0 IL×L . . . IL×L

 ,

where L = 2(p− 1)p; thus, B has (p + 1)L rows and the same number of columns; the left part of B (to the
left of the vertical double line) has L columns, and the right part of B has pL columns. Moreover, recall
that

Qj = (fh, 1L − fh−1, fh+2, 1L − fh+1, . . . , fh+2(p−2), 1L − fh+2(p−2)−1),

where h = 2(p − 1)(j − 1) + 2. Recall that ei denote the i-th column of the L × L identity matrix, and fi

denote a column vector of size L with a 1 in entries 1, . . . , i and a 0 in entries i + 1, . . . , L. If i > L, then
ei denotes a vector of zeroes of size L, and fi denotes a vector of ones of size L; indices i > L may occur in
formulas pertaining to the last breakpoint of the last column of the base graph.

18

Q2 =



1 1
1 1
1 1
1 1
1 1
1 1 1

1 1
1 1 1
1 1
1 1
1 1
1 1



Q
(1)
2 =



1 0
1 0
1 0
1 0
1 0
1 1 0

1 1
0 1 1
0 1
0 1
0 1
0 1



Q
(2)
2 =



0
0
0
0
0
1 1

0 0
1 1

0
0
0
0



Figure A.9: Elementary column operations applied to Q2 in the first stage.

Let Λ denote the L× L submatrix in the bottom-left corner of B (to the left of the vertical double line
and below the horizontal double line). Initially, all entries in Λ are zero.

We apply elementary column operations in two stage. In the first stage, for each j = 1, . . . , p, we make
all entries of Qj zero and transform Îj into the identity matrix. These operations introduce some nonzero
entries into the submatrix Λ. In the second stage, we use elementary column operations to transform Λ to a
lower triangular matrix with non-zero diagonal entries. The final matrix has the following form; the matrix
in the bottom right corner is not relevant in the analysis.(

0pL×L IpL×pL

ΛL×L

)
By swapping the first column with the second column of this matrix, we get a lower triangular matrix

with non-zero diagonal entries, and this completes the proof.(
0pL×L IpL×pL

ΛL×L

)
−→

(
IpL×pL 0pL×L

ΛL×L

)
• First stage: Note that the indices of the breakpoints in the j-th column are h, h + 2, h + 4, . . . , h +

2(p − 2), where h = 2(p − 1)(j − 1) + 2. First, we apply the following 2(p − 2) elementary column
operations to each matrix Qj . We subtract the (i + 2)-th column from the i-th column, for each
i = 2, 4, . . . , 2(p − 2), in this order. Next, we subtract the i-th column from the (i + 2)-column, for
each i = 2(p− 2)− 1, . . . , 3, 1, in this order. These operations do not change other submatrices of B.
After applying these operations, we get the following matrix; see Figure A.9 for an illustration.

Q
(1)
j = (fh, eh + eh+1, eh+1 + eh+2, eh+2 + eh+3, . . . , eh+2p−5 + eh+2p−4, 1L − fh+2p−5)

= (eh−1 + eh, eh + eh+1|eh+1 + eh+2, eh+2 + eh+3| . . . |eh+2p−5 + eh+2p−4, eh+2p−4 + eh+2p−3)
+ (fh−2, 0, . . . , 0, 1L − fh+2p−3)

Next, by subtracting the columns of the matrix Îj from the columns of the current matrix Qj , we can
make all of the entries in Qj zero except the entries on the rows corresponding to the breakpoints; see
Figure A.9 for an illustration. After applying these operations we get the following matrix.

Q
(2)
j = (eh, eh|eh+2, eh+2| . . . |eh+2p−4, eh+2p−4)

19

These operations will change the submatrix Λ in the bottom left corner of B. We partition the columns
of Λ into p blocks, denoted Λ1, . . . ,Λp, where each block consists of 2(p−1) consecutive columns. Thus
Λ = (Λ1,Λ2, . . . ,Λp).

After applying the above operations, it can be seen that the matrix Λ(1)
j is changed to Λ(2)

j = Q
(2)
j −Q

(1)
j .

To see this, observe that we change an entry in the i-th row of Qj from α to β by adding (β−α) times
the i-th column of Îj , where i is not a breakpoint index. The column of Îj is identical to the column
of the identity matrix at the bottom (in the last L rows of B). Hence, the corresponding entry of Λj

changes from 0 to β − α. Thus, we have

Λ(2)
j = (−eh−1,−eh+1| − eh+1,−eh+3| . . . | − eh+2p−5,−eh+2p−3)

+ (−fh−2, 0, . . . , 0,−1L + fh+2p−3)

Next, we subtract each even-indexed column of Qj from the column to the left of it. These operations
change Λ(2)

j to

Λ(3)
j = (eh+1 − eh−1,−eh+1|eh+3 − eh+1,−eh+3| . . . |eh+2p−3 − eh+2p−5,−eh+2p−3)

+ (−fh−2, 0, . . . , 0, 1L − fh+2p−3,−1L + fh+2p−3)

Finally, we swap the column indexed by 2` with the column of Îj corresponding to the `-th breakpoint,
for ` = 1, 2, . . . , (p− 1). These operations make all entries of Qj zero, and they transform the matrix
Îj into the identity matrix. The matrix Λ(3)

j is changed to the following matrix; see Figure A.10a for
an illustration.

Λ(4)
j = (eh+1 − eh−1, eh|eh+3 − eh+1, eh+2| . . . |eh+2p−3 − eh+2p−5, eh+2p−4)

+ (−fh−2, 0, . . . , 0, 1L − fh+2p−3, 0)

0BBBBBBBBBBBBBBBBBB@

−1 −1 −1
1 −1 −1

1 −1 −1 −1
1 −1 −1

1 −1 −1
1 1 −1
1 1 −1 −1
1 1 −1
1 1 −1
1 1 1
1 1 1 −1
1 1 1

1CCCCCCCCCCCCCCCCCCA
(a) Λ = (Λ1|Λ2|Λ3) at the start of the second stage.

0BBBBBBBBBBBBBBBBBB@

−1
1 −1

1 −1 −2
1 −1

1 −1
1 1 −1
1 1 −1 −2
1 1 −1
1 1 −1
1 1 1
1 1 1 −1
1 1 1

1CCCCCCCCCCCCCCCCCCA
(b) Λ = (Λ1|Λ2|Λ3) after the first step of the second stage.

Figure A.10: The matrix Λ = (Λ1|Λ2|Λ3) at the beginning of the second stage, and just after the first step
of the second stage, which subtracts the first column of Λj from the first column of Λj+1. The next step
obtains zeros at all the even-indexed entries in the first column of Λj+1 by adding the even-indexed columns
of Λj .

20

• Second stage: While describing this stage, we use the term diagonal to mean the diagonal of the
matrix Λ. Thus for a submatrix Λj or for a column of Λ, the diagonal refers to the entries of the
diagonal of Λ restricted to that submatrix or column.

Note that all nonzero entries in Λj are below or on the diagonal, except for entries in the first column;
the first column has −1 on all rows above and including the diagonal. To make Λ lower triangular, we
apply some elementary column operations on the first column of each Λj . We do this in two steps.

In the first step, we subtract the first column of Λj from the first column of Λj+1, starting from
j = (p− 1) down to j = 1. This removes many consecutive −1 entries, and leaves only 2p− 3 non-zero
entries above the diagonal in the first column of each Λj for j = 2, . . . , p.

In the second step, for each j = 1, . . . , p−1, we change the remaining nonzero entries above the diagonal
in Λj+1 to zeros by using the columns of Λj . The same elementary column operations are applied for
all Λj . Sequentially, consider j = 1, . . . , p − 1 and assume that Λj has no non-zero entry above the
diagonal. (Note that Λ1 has no non-zero entry above the diagonal.) First, we take each even-indexed
column of Λj and add it to the first column of Λj+1. After this, there remain p − 2 non-zero entries
above the diagonal in the first column of Λj+1; note that the second entry above the diagonal is −2.
See Figure A.10b for an illustration. Then we apply p−2 elementary column operations to replace the
remaining p − 2 non-zero entries above the diagonal by zeros, and in the process the diagonal entry
becomes −p. In more detail, for each ` = 1, 2, . . . , p−2 in sequence, we multiply the (2`+1)-th column
of Λj by −(` + 1) and add the result to the first column of Λj+1. To verify this, observe that for
` = 1, 2, . . . , p − 3, the (2` + 1)-th column of Λj is given by eh+2`+1 − eh+2`−1, and the (2p − 3)-th
column is given by eh+2p−3 − eh+2p−5 + (1L − fh+2p−3), hence, (by induction) the topmost non-zero
entry in the first column of Λj+1 is −(` + 1) just before we apply the `-th of these p − 2 column
operations.

Thus, the matrix Λ is transformed into a lower triangular matrix with non-zero diagonal entries.

This completes the proof of Claim 2.6, and shows that B has full rank.
�

Acknowledgments: We thank the referees for their careful reading of a previous draft, and for suggesting
an alternative proof of Claim 2.3.

References

[1] J.Cheriyan, S.Vempala and A.Vetta, Network design via iterative rounding of setpair relaxations, Combinatorica,
26(3), pp. 255–275, 2006.
Preliminary version in Proc. 34th Ann. ACM STOC, pp.306–312, May 2002.

[2] S.Even, An algorithm for determining whether the connectivity of a graph is at least k, SIAM J. Comput. 4(3):
393-396, 1975.

[3] S.Even and R.E.Tarjan, Network flow and testing graph connectivity, SIAM J. Comput. 4(4): 507-518, 1975.

[4] J.Fakcharoenphol and B.Laekhanukit, An O(log2 k)-approximation algorithm for the k-vertex connected subgraph
problem, Proc. 40th Ann. ACM STOC, May 2008.

[5] L.Fleischer, A 2-Approximation for Minimum Cost {0, 1, 2} Vertex Connectivity, Proc. IPCO, pp.115–129,
May 2001.

[6] L.Fleischer, K.Jain, and D.P.Williamson, An iterative rounding 2-approximation algorithm for the element con-
nectivity problem, Journal of Computer and System Sciences, 72 (5), pp. 838–867, 2006.
Preliminary version in Proc. 42nd IEEE FOCS, pp.339-347, 2001.

21

[7] A.Frank, Connectivity augmentation problems in network design, in Mathematical Programming: State of the
Art 1994, (Eds.J.R.Birge and K.G.Murty), pp.34–63, The University of Michigan, Ann Arbor, MI, 1994.

[8] A.Frank and T.Jordan, Minimal edge-coverings of pairs of sets, Journal of Combinatorial Theory, Series B, 65,
pp.73-110, 1995.

[9] A.Frank and E.Tardos, An application of submodular flows, Linear Algebra and its Applications, 114/115, 1989,
pp.329-348.

[10] K.Jain, A factor 2 approximation algorithm for the generalized Steiner network problem, Combinatorica, 21,
pp.39-60, 2001. Preliminary version in Proc. 39th IEEE FOCS, 1998.

[11] G.Kortsarz and Z.Nutov, Approximating k-node connected subgraphs via critical graphs, SIAM J. Comput. 35
(1), pp. 247–257, 2005.
Preliminary version in Proc. 36th ACM STOC, pp. 138–145, June 2004.

[12] Z.Nutov, An almost O(log k) approximation for k-connected subgraphs, Proc. ACM-SIAM SODA, 2009.

[13] R.Ravi and D.P.Williamson, An approximation algorithm for minimum-cost vertex-connectivity problems, Algo-
rithmica, 18, pp.21-43, 1997. Preliminary version in Proc. 6th ACM-SIAM SODA, pp.332-341, 1995.
Erratum, Algorithmica, 34, pp.98-107, 2002.

[14] V.V.Vazirani, Approximation Algorithms, Springer-Verlag, Berlin, 2001.

[15] D.P.Williamson and D.B.Shmoys, The Design of Approximation Algorithms, Cambridge University Press, to be
published in 2010.

22

