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Abstract

Let G be a graph which is k-outconnected from a specified root node r, that is, G has
k openly disjoint paths between r and v for every node v. We give necessary and sufficient
conditions for the existence of a pair rv, rw of edges for which replacing these edges by a new
edge vw gives a graph that is k-outconnected from r. This generalizes a theorem of Bienstock,
Brickell and Monma on splitting off edges while preserving k-node-connectivity.

We also prove that if (' is a cycle in G such that each edge in C' is critical with respect to
k-outconnectivity from r, then C' has a node v, distinct from r, which has degree k. This result
is the rooted counterpart of a theorem due to Mader.

We apply the above results to design approximation algorithms for the following problem:
given a graph with nonnegative edge weights and node requirements ¢, for each node u, find a
minimum-weight subgraph that contains max{c,, ¢, } openly disjoint paths between every pair
of nodes u,v. For metric weights, our approximation guarantee is 3. For uniform weights, our

approximation guarantee is min{2, M'Zkil} Here k is the maximum node requirement, and ¢

is the number of positive node requirements.

1 Introduction

A graph is said to be k-outconnected from node r if there exist k openly disjoint paths from r to
every node v, v # r. Node r is called the root.

Splitting off two edges ru,rv means deleting ru and rv and adding a new edge uwv. Splitting
off is a basic operation in graph connectivity with a broad range of applications. There are a
number of results asserting the existence of pairs of edges that can be split off preserving certain
edge-connectivity conditions or directed node-connectivity conditions, see the survey by Frank [5].

For the node-connectivity of undirected graphs, only one general splitting-off result has been
proved so far. This result is due to Bienstock, Brickell and Monma [1], see Theorem 4. (Related
results are in [8] and [4].) We generalize this result from k-node-connected graphs to k-outconnected
graphs by giving necessary and sufficient conditions for the existence of a pair of edges incident to
the root r that can be split off while preserving k-outconnectivity from r, see Theorem 3.

Mader’s theorem (Theorem 19 below) on “cycles of critical edges” in k-node-connected graphs
has applications in extremal graph theory, connectivity augmentation, and approximation algo-
rithms, see [2], [3], [8], [L1]. We prove a related but independent result for k-outconnected graphs
in Theorem 21.
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We use the above structural results to design and analyze approximation algorithms for network
design problems, see Sections 5.2,5.3.

In the rest of the Introduction, we discuss some network design problems of interest to us, list
some related results, and state our new approximation results. A basic problem in network design
is to find a minimum-weight spanning subgraph of a given graph satisfying certain connectivity
conditions. For the following general problem no algorithm is known that achieves a non-trivial
approximation guarantee in polynomial time.

Problem A: Given a graph G with a nonnegative weight function w on the edges, and node connec-
tivity requirements c¢(u,v) for each pair of nodes u, v, find a minimum-weight spanning subgraph
H such that for every node pair u, v there exist at least ¢(u, v) openly disjoint paths between u and
vin H.

The case when ¢(u, v) = k > 2 for each pair u, v is called the minimum-weight k-node-connected
subgraph problem. This problem is already NP-hard, even for metric weights (that is, when the
weight function satisfies the triangle inequality) and uniform weights (that is, when the weight of
every edge is the same), and there has been extensive recent research on approximation algorithms
for this and related problems with uniform weights and with metric weights, see [1, 3, 7, 9, 10]. For
metric weights, Khuller and Raghavachari [10] developed a (24-2(k—1)/n)-approximation algorithm
for the minimum-weight k-node-connected subgraph problem. For uniform weights, Cheriyan and
Thurimella [3] gave a (1 + §)-approximation algorithm.

We design approximation algorithms for the following problem that is sandwiched between the
minimum weight k-node-connected subgraph problem and Problem A.

Problem B: Given a graph G with a nonnegative weight function w on the edges, and a node
requirement ¢, for each node u, find a minimum-weight spanning subgraph H such that for every
node pair u, v there exist at least max{c,, ¢,} openly disjoint paths between u and v in H.

Some special cases of Problem B have been investigated previously by Nutov et al [13]. Moti-
vated by an application in so-called mobile robot flow networks, they gave approximation algorithms
for cases where ¢, < 3 for each node u. Stoer [14] discusses another special case of Problem A
where the local requirements are of the form ¢(u,v) = min{e,, ¢}, for given node requirements
¢y. Problem B may find applications elsewhere, say, in network design problems where some dis-
tinguished nodes are required to have a large number of connections to all the other nodes of the
network.

It is easy to see that a graph H is a feasible solution for Problem B if and only if H is c,-
outconnected from each node u. We call Problem B the minimum-weight multi-root outconnected
subgraph problem, or the multi-root problem. Given an instance of the multi-root problem, ¢ is
defined to be the number of nodes u with positive node requirement ¢,. Notice that Problem B
is a special case of Problem A, and the minimum-weight k-node-connected subgraph problem is
a special case of Problem B. Thus Problem B is NP-hard, even for metric weights and uniform
weights. To the best of our knowledge, the previous best approximation guarantee known for the
(general) ¢g-root problem is 2¢, even for uniform weights and for metric weights; see Section 5.1 for
a discussion of the 2¢-approximation algorithm.

For the metric weight multi-root problem (with ¢ roots) we improve the approximation guar-
antee from 2q to 3, see Theorem 27. OQur approximation algorithm is based on Theorem 17 which
is a weaker version of Theorem 3 (our splitting-off result for k-outconnectivity). For the uniform
weight multi-root problem we improve the approximation guarantee from 2¢ to min{2, MTq_l},
where k is the largest node requirement, see Theorem 29. This implies a (1 4 %) approximation
algorithm for the uniform weight single-root problem. This approximation algorithm is based on



Theorem 21, our rooted counterpart of Mader’s theorem.

More definitions and preliminaries are given in Section 2. The splitting-off theorem for k-
outconnectivity is given in Section 3, and the rooted version of Mader’s theorem is given in Section 4.
The approximation algorithms are in Section 5.

2 Definitions and preliminary results

Graphs in this paper are undirected and have no multiple edges and no loops. A pair of sets 4, B is
called properly intersecting if each of the three sets A — B, B— A, AN B is nonempty. A separator
of a connected graph is a set of nodes whose deletion results in a disconnected graph. Given a
connected graph G, we say that a node set S separates a pair u, v of nodes, or simply that S is an
(u, v)-separatorif the two nodes are in different components of G —S. Two distinct paths are called
openly disjoint if every node common to both paths is an end node of both paths. For a graph G
and a pair of nodes u, v, Kg(u, v) denotes the maximum number of pairwise openly disjoint paths
between u and v. A connected graph is said to be k-node-connected if it has at least k + 1 nodes
and it has no separator of cardinality k¥ — 1. From now on, k-connected refers to k-node-connected.
By Menger’s theorem, rg(u, v) > k for every pair of nodes u, vin a k-connected graph G. Let G be
a graph that is k-outconnected from a node r (that is, kg (v, r) > k for every node v, v # r); a pair
of edges incident to r is called admissible if splitting off the pair preserves k-outconnectivity from
r, otherwise the edge pair is called illegal. An edge uv of a k-connected graph H is called eritical
(with respect to k-connectivity) if H — uv is not k-connected. Similarly, an edge uv of a graph H'
that is k-outconnected from a node r is called critical (with respect to k-outconnectivity) if H' —uv
is not k-outconnected from r. We say that a graph is (¢q, ..., ¢4)-outconnected from roots (rq,...,r,)
if it is simultaneously ¢;-outconnected from each r;, ¢ = 1, ..., ¢. Given an instance of Problem B,
the vector & = (c1, ..., ¢q) of positive node requirements is called the connectivity requirement vector
and the corresponding vector R = (r1,...,1q) is called the root vector. We shall always assume,
without loss of generality, that ¢; > ¢ > ... > ¢4 holds for the connectivity requirement vector.

For a graph G = (V, E) and a nonempty set X C V of nodes, I'¢(X) or I'(X) denotes the set
{y e V—X :2y € FE for some € X} of neighbours of X. The following proposition is well-known
(see [8, Lemma 1.2]) and is easy to verify by counting the contribution of each node to the two
sides of the inequality.

Proposition 1 In a graph H = (V, E) every pair X, Y CV satisfies
IMX)4IY)>T(XnY)+ (X UY). (1)
Moreover, if equality holds, then there are no edges from X —Y toY — X —T'(X NY). O
A p-approzimation algorithm for a minimization problem runs in polynomial time and delivers
a solution whose value is always within the factor p of the optimum value. The quantity p is called
the approximation guarantee of the algorithm.

2.1 Irreducible node requirements

Some entries in a connectivity requirement vector may be redundant: no matter what is the under-
lying graph, we can reset them to zero (and get a shorter vector) without changing the problem. In
this section we characterize when such a reduction is possible. This will enable us later to assume
that the number ¢ of roots is at most the value of the largest node requirement.



A connectivity requirement vector ¢ = (cq,...,¢,) is called n-reducible if it has a proper sub-
vector ¢* that implies the connectivity requirements of & That is, for every graph G on n nodes
and with an arbitrary choice of ¢ roots we have that G is c-outconnected from the roots if and only
if it is c*-outconnected from the (reduced vector of) roots. Otherwise, &is called n-irreducible. For
example, ¢ = (2,1) is n-reducible for every n since a 2-outconnected graph is l-outconnected from
every node. The next result characterizes reducible requirement vectors.

Proposition 2 Let ¢ = (c1,...,¢4) be a connectivity requirement vector with ¢y > ... > ¢,. Then
¢ is n-irreducible if and only if

(1) ¢;>j for 1 <j<yq, and
n+cy—3
(2) ¢ < ‘I'i‘l,
2
Proof: First observe that a graph G thatis (¢q,. .., ¢4)-outconnected from a vector of ¢ root nodes
must be (-connected, where { = min{q, ¢y, ..., ¢,}.
Let G be a graph on n nodes which is (¢, ..., ¢;)-outconnected from (rq,...,r,). Suppose that

condition (1) fails. Let ¢ be the lowest index such that for j = {4 1 we have ¢; < j. Clearly, { > 1,
since ¢; > 1. Note that ¢, > . Let ¢ = (c1,...,¢) and let R = (ri,...,7¢). Suppose that H is
a graph that is ¢*-outconnected from R*. Each of the roots in R* has connectivity requirement at
least £, and also the number of roots in R is (. By our first observation H is f-connected, and so
Kk (v,r;) > £, for each node v € V(H) — {r;} and each root r;, i =(+1,...,¢q (i.e., each root in R
not in R*). Then H is outconnected from R. Hence, if condition (1) fails, then & is reducible.

Suppose that condition (2) fails. Clearly, we may assume ¢ > 2. We claim that every sub-
graph satisfying the requirements ¢* = (€1,...,¢q-1) is ¢q-outconnected from r,. Suppose H is a
counterexample to this claim. Then there exists a node w in H with xy(rqy, w) < ¢4 — 1. Thus
there exists a separator S in H (or, if wr, € E(H), then in H — wry) such that [S| < ¢, — 1 and
rq ¢ S. Now rq € S holds, since H is ¢q-outconnected from ry. Let D be a component of H— S with
V(D) < w Clearly, such a D exists. Focus on anode vin D. Since (V(D)—{v})U(S—{r})
separates r; and v in H (provided we delete the edge rqv, if it exists), we have

(n—cq+1) n+cg—3
2

cr < kp(r,o) < V(D) =145 -1+1< 5

—1+4+¢—-1<
and this contradicts our assumption on condition (2). This proves that an n-irreducible requirement
vector must satisfy both conditions (1) and (2).

Conversely, we can show that a requirement vector ¢ is n-irreducible if conditions (1) and (2)
hold. To see this, we take the proper subsequence (ci,...,¢,—1), and show that it does not al-
ways imply the connectivity requirements of €, a similar argument applies for any other proper
subsequence. Let G be a graph on n nodes that contains a separator S such that |S| = ¢, — 1,
{ri,...,rq-1} € S,and ry € S, and let S induce a complete subgraph in G. Furthermore, let G — S
consist of two complete graphs C'y, Cy with the same number of nodes, and let G contain all possible
edges between S and V(C;) UV (Cy). Then G satisfies the requirement vector (cq, ..., c4—1) (since
condition (2) holds), but it is not ¢,-outconnected from r,. ]

Note that condition (1) does not depend on n. This implies that an irreducible requirement
vector must satisfy ci,...,¢, > ¢ in a graph of arbitrary order. For our multi-root outconnected
subgraph problem it implies that as long as ¢; < ¢ holds we can reset the smallest positive node
requirement ¢, to zero without changing the problem. Thus we can assume ¢, > ¢ and, in particular,
that the number ¢ of roots is not more than the maximum node requirement.



3 Splitting off edges from the root in a k-outconnected graph

This section contains our splitting-off theorem. Given an integer k > 1, a graph H, and a specified
node r of H, Property (T) is said to hold if

H is k-connected, and there exists a node set T such that |T| = k, r € T, and the
number of components of H — T equals degy(r).

For example, Property (T) holds for a complete bipartite graph Ky ,, p > k > 1, with r a node
of degree p. If we take a graph H that satisfies property (T) and split off any pair of edges incident
to r, then the resulting graph is not k-outconnected from r. (To see this, consider any edge pair
rv,rw and let D,, D, be the node sets of the components containing v, w respectively in H — T.
If we split off rv, rw, then r can be separated from D, U D,, (in the new graph ) by deleting the
E—1nodesin T — {r}.)

Theorem 3 Let G = (V, E) be a graph with |V| > 2k which is k-outconnected from a root node
r € V and suppose that deg(r) > k + 2 and every edge incident to r is critical with respect to
k-outconnectivity from r. Then either

(a) G satisfies Property (T), or

(b) there exists a pair of edges incident to r that can be split off preserving k-outconnectivity.

Note that the condition |V| > 2k in the theorem is necessary. (To see this take the complete
bipartite graph Kj_1 x—1 and an additional root node r which is adjacent to all the other nodes.)
Our theorem generalizes the following theorem of Bienstock et al [1].

Theorem 4 ([1]) Let G = (V, E) be a k-connected graph with |V| > 2k and let r € V' be a node
such that deg(r) > k42 and every edge incident to r is critical with respect to k-connectivity. Then
either

(a) G satisfies Property (T), or

(b) there exists a pair of edges incident to r that can be split off preserving k-connectivity. O

We remark that Theorem 4 here differs from the statement of [1, Theorem 3]. In [1] part (a)
is replaced by part (a'): “for any edge pair ru,rv, there exists another edge pair sw, sz such that
splitting off both edge pairs preserves k-connectivity.” Part (a) implies part (a’) by a short proof,
but part (a’) does not imply part (a). However, part (a) is implicitly proved in [8].

To see that Theorem 3 implies Theorem 4 we need two observations: (i) if we split off a pair of
edges from a node r in a k-connected graph, and this preserves k-outconnectivity from r, then we
preserve k-connectivity as well (otherwise, if the resulting graph has a separator S with |S| < k,
then r € S by k-outconnectivity, but then S is a separator of the original graph); (ii) in a k-
connected graph, an edge incident to r is critical with respect to k-connectivity if and only if the
edge is critical with respect to k-outconnectivity from r.

A proof of Theorem 4 can be extracted from our proof of Theorem 3 by omitting Lemmas 9,
11, and Claims 12-15.

Proof: (of Theorem 3) Let G = (V, E), the root r, and k > 1 be given and assume that G satisfies
all the conditions in Theorem 3. Let R denote the set of neighbours of r.



For nonempty subsets X of V. —r let N(X) := TI'q_,(X) and let g(X) := |[N(X)|+ | X N R|.
We fix ¢g(0)) = 0. Proposition 1 implies that ¢(X) + ¢(Y) > ¢(X NY) + g(X UY) holds for
every X,Y C V — r. Moreover, if equality holds, then there is no edge between X — Y and
Y - X — N(XNY). We shall refer to these properties as the submodularity of g.

Lemma 5 G = (V| E) is k-outconnected from r if and only if
g(X) >k forevery D £X CV —r. (2)

Proof: We prove one direction; the other one is easy. Suppose that G satisfies (2), but is not
k-outconnected from r. Then there is a node v # r with kg (v, r) < k. By Menger’s theorem, either
G or G — vr has a (v, r)-separator C' with |C| < k — 1 or |C] < k — 2, respectively. Let X be the
node set of the component containing v in G —C orin G —vr—C. Then ¢(X) < k, a contradiction
to (2). O

Recall that a pair of edges incident to r is called admissible if splitting off the pair preserves
the k-outconnectivity, otherwise the edge pair is called illegal. By Lemma 5, a pair of edges ru, rv
is admissible if and only if removing ru and rv and adding the new edge wv preserves (2). For a
pair of edges rz, ry let G’ be the graph obtained from G by splitting off raz, ry. If ra, ry is illegal,
there must be a node set X C V — r with ¢/(X) < k (here ¢’ denotes g on G’). But in G we have
g(X) >k, hence it can be seen that a pair rz, ry is illegal if and only if there exists aset X CV —r
with one of the following properties:

1) wyeX, g(X)<k+1,
i) z2€X,ye NX),g(X)=k, or
i) yeX,zeNX), g(X)=k

We call a nonempty set X CV — r dangerous if g(X) < k+ 1. If g(X) = k holds then we call
X critical. Observe that for every neighbour x of the root, the edge raz is critical with respect to
k-outconnectivity (thus, by Lemma 5, (2) fails if rz is removed from G), and hence there exists a
critical set X C V —r with z € X. The next lemma establishes some properties of dangerous and
critical sets.

Lemma 6 (1) The intersection and union of two intersecting critical sets are both critical;
(2) for every node x € R, there exists a unique mazimal critical set containing x, denoted Sy;
for x,y € R and the two sets S,, Sy, either S, = S, or S, NS, =0 holds;

(8) for two properly intersecting mazimal dangerous sets X,Y, we have g(X NY) =k and g(X U
Y)=Fk+2;

(4) if X is a mazimal dangerous set and 'Y is a critical set, then either X NY =0 orY C X;

(5) if D1, Dy are distinct mazimal dangerous sets containing a node x € R, then D1 N Dy = S,.

Proof: (1) Let X and Y be two critical sets with X N'Y # (. By criticality we have ¢g(X) =
g(Y) =k and (2) (in Lemma 5) implies ¢(X NY),¢g(X UY) > k. Applying the submodularity of ¢
this gives

E+k=¢gX)+9Y)>g9(XNY)+g(XUY)>k+k.



Figure 1: An example illustrating the notation in the proof of Theorem 3. Here £k = 2. For a
neighbour v of r, S, is a maximal set containing v with ¢(S,) = k. For a pair of neighbours u, v of
r, My, (if it exists) is a maximal set containing u,v with ¢(My,) < k4 1. In the example, S, = {v}
for each neighbour v of r except h, £.

Hence equality holds everywhere and ¢(X NY) =k and ¢(X UY) = £k follow.
(2) Since the edge rz is critical, there is a critical set containing the node 2 € R. The maximal
critical set containing z is unique by part (1).

The second statement follows from part (1) and the first statement, since S, N Sy, # 0 implies
that S, U S, is a critical set.
(3) Wehave g(X) <k+1,¢(Y)<k+4+1,XNY #0,and g(XNY) > k by (2) (in Lemma 5).
Moreover, since X =Y # 0 #Y — X and X, Y are maximal dangerous sets we get g(XUY) > k+2.
Applying the submodularity of ¢ gives

E+14k4+1>9X)+9(Y)>9(XNY)+g(XUY)>k+k+2.

Hence equality holds everywhere and ¢(X NY) =k and ¢(X UY) =k + 2 follow.

(4) Wehaveg(X)<k+land¢g(Y)=k IFXNY #0 and Y — X # () then the maximality of X
implies that X and Y properly intersect and ¢(X UY) > k + 2. Applying the submodularity of ¢
this leads to a contradiction:

E+k+12>9(X)+9)>9(XNY)+g(XUY)>Ek+Ek+2.

(5) By part (4) we have S, C D, for ¢ = 1,2. Suppose D1N Dy # S,. Then, since Dy, Dy properly
intersect, part (3) implies Dy N Dy is a critical set that properly contains S, and this contradicts
the maximality of .S,. This proves the lemma. O

Focus on a fixed node pair 7, j € R (and note that S; = S; may hold for different nodes 7, j € R).
If there exists a dangerous set X containing both ¢ and j, then let M;; be defined as an (arbitrarily
chosen) maximal dangerous set with 7,j € M;;. In this case, we have S; C M;;, S; C M;;, by
Lemma 6(4). To illustrate our notation, note that if Property (T) holds for some graph H, then
the sets S; are the connected components of H—T, S;NR = {i} foralli € R,and forall i £ j € R
N(S;) is disjoint from S; and M;; = S; U S, (so M,;; always exists). Also see Figure 1.

Two disjoint sets A, B C V — r are said to be adjacent if there is an edge with one end in A
and the other end in B, otherwise A and B are said to be nonadjacent. Note that A and B are
adjacent if and only if N(A4)N B # 0.

The next lemma is the key for demonstrating Property (T).

Lemma 7 Lets,j,{ be nodes in R such that the sets S;, S;, S¢ are distinct, and the sets M;;, M;e, My
exist and are distinct. If S;, S; are nonadjacent, then

N(S;) = N(S;) and |N(S)| =k — 1.



Proof: First observe that M;;NS, = 0, otherwise M;; O S¢ (by Lemma 6(4)), but then AM;;NM;¢ D
S;USy, a contradiction to Lemma 6(5). Similarly, M;iNS; = 0 = M;NS;. That is, every pair among
the three sets M;;, M;¢, M is properly intersecting. Now we apply the submodular inequality of
g to A = M;; and B = M;¢ U M, noting that AN B = S; U S, (by Lemma 6(5)), g(4) < k+1
(since A is a dangerous set), g(B) =k + 2 (by Lemma 6(3)), (AU B) > k 4 2 (by maximality of
the dangerous set A), g(AN B) > (k+ 1) (by maximality of the critical set S;).

E+14+k+2>¢(A)+9(B)>g(ANB)+g(AUB) =¢(S;US;)+9(AUB) > k+1+k+2.

This means equality holds everywhere, and so ¢(S; US;) = k+ 1. Moreover, S; and S; are disjoint
nonadjacent sets with |N(S;)|, |[N(S;)| < k — 1, hence,

9(5:U 5;) = g(Si) +9(5;) — [N(Si)) N N(Sj)| = 2k — (k = 1).

Thus ¢(S; U S;) = k + 1 implies |[N(S;) N N(S;)| = k — 1. Since both N(S;) and N(S;) have
cardinality at most k — 1, we have N(S;) = N(S;) and |[N(S;)| = k — 1, as required. O

Lemma 8 Suppose that |S; N R| = 1, for all i € R, and suppose that every pair of edges incident
to the root is illegal. Let i,j € R be such that S;,S; are nonadjacent. Then

N(S;) = N(S;) and |N(S)| =k — 1.

Proof: We will show that the conditions of Lemma 7 hold for ¢, j and some £ € R. Note that for
every node pair u, v € R, the sets S, S, are distinct by the assumption of the lemma.

The illegal pair r¢, rj does not satisfy cases (ii) or (iii) (stated after Lemma 5), since S;, S; are
nonadjacent. Hence, the maximal dangerous set M;; of case (i) exists. We claim that there is a
node ¢ € R — M,; such that both the maximal dangerous sets My, My exist. Otherwise, for each
(€ R — M;;, either M;, or Mjs does not exist. Suppose that M;, does not exist (the argument is
similar if M;¢ does not exist). Then the illegality of rj, rf shows that S; and S, are adjacent, so
|N(S;)NS¢| > 1. Note that Sy is disjoint from M;; by Lemma 6(4), hence, N(S;)NS, C N (M;;)NSy,
and so |N(M;;) NSe] > 1 =|S¢N R|. Thus each distinct set Sy ({ € R) contributes at least one
node to (M;; N R) U N (M;;), giving the contradiction

9(M;;) = |M;; N R| + |N(M;;)| > |R| > k + 2.

Hence, there is an £ € R — M;; such that both M, M exist. Clearly, M;, and Mj, are distinct,
otherwise this set contains S;US; (by Lemma 6(4)), and so M;, N M;; contains S;US;, which is im-
possible by Lemma 6(5) (with Dy = M;¢, Dy = M;;). Since S;, S, Sy are distinet and M;;, M, My

exist and are distinct, Lemma 7 can be applied and the statement follows. O

Lemma 9 Lets, j,{ be nodes in R such that the sets S;, S;, S¢ are distinct, and the sets M;;, M;e, My

exrist and are distinct. Then

N(S]‘) ns; = N(Sg) nsSs;.

Proof: First observe that M;; NS¢ = M;e N S; = Mj;NS; = 0, by Lemma 6. That is, every
pair among the three sets M;;, M;¢, M is properly intersecting. Take Mj; and M, and use the
submodularity of g and (2):

k+1-|-k—|-129( ]z)‘l’g( ]f)>g(M]zmM]()+g(M]zUM]()>k+(k+2)



where g(M;j; U Mj¢) > k + 2 follows from the maximality of Mj;. Thus equality holds everywhere
and, again by the submodular property of g, there is no edge between Mj, — M;; and M;; — M;, —
N(Mj;;NM;¢) = Mj; — My — N(S;). This means there is no edge between Sy and S; — N(S;) (since
Lemma 6(4),(5) imply S¢ C Mj¢ — Mj; and S; C Mj; — M) and so

N(Sg) ns; C N(S]‘) n.s;.

The above argument applies to any two of the three sets M;;, M;¢, M;,. We apply it to My; and
M;y; and conclude that there is no edge between My; — My; O S; and My — Myj — N (Mg 0 My;) D
S; — N(S¢). Hence,

N(S]‘) n.s; C N(Sg) n.s;.

This completes the proof. O

Lemma 10 Let A, BCV —r satisfy ANB =0, g(B) =k, and B— N(A) #0. Then
IN(A)NB| > |N(B)N A|.

Proof: Let W = B — N(A) # (. Note that g(W) > k by (2), ¢(B) = k,and WNR C BNR.
Thus |[N(B)| < |N(W)|. The lemma follows from the following inequalities:

IN(B) NV A[+|N(B) — A| = [N(B)| <
INW)| = [NW) O N(B)|+ [N(W) = N(B)| < [N(B) — A| + [N (4) N BJ,

where the last inequality holds since N(W)NN(B) C N(B) — A and N(W) - N(B) C N(A)N B.
|

In what follows we assume that every pair ru, rv of edges is illegal. From this we shall deduce
|S;NR| =1 for each € R. Using this fact, a short argument will finish the proof by showing that
property (T) holds for G.

Lemma 11 Suppose that every pair of edges incident to the root is illegal. Let t,7 be a pair of
nodes in R such that there is no set M;; (that is, there exists no dangerous set X with i,j € X ).
Then:

(1) Either (S;NR) C N(S;), or (S;NR) CN(S,).
(2) F|S: O R| 2 |5;0 B, then IN(S) 1 S;] > |5, N R|

Proof: First, note that S; # 5, otherwise S; is a dangerous set with 7, j € ;.

(1) If part (1) of the lemma fails, then there is a node w € (S; N R) — N(S;) and a node z €
(S;NR)—N(S;). The edge pair rw, rz is illegal, so one of the cases (i),(ii),(iii) for illegal edge pairs
(stated after Lemma 5) must apply. It is easily seen that cases (ii),(iii) do not apply to rw,rz,
since every critical set X including w (respectively, z) is contained in S; (respectively, S;). Hence,
case (1) must apply to rw,rz, so there is a dangerous set X with w,z € X. But then X is a
dangerous set intersecting both S; and S;, so Lemma 6(4) gives S; US; C X. This contradicts the
assumption of the lemma.

(2) Either (S;NR) C N(S;), in which case part (2) follows directly, or S; — N(S;) is nonempty
and by part (1) of the lemma, |[N(S;) N S;| > |S; N R| > |S; N R|, in which case part (2) follows
since [N(S;) N.S;| > |N(S;) N S;| by Lemma 10 (with A= 5;, B =5;). 0

Let us fix a node 2 € R such that |S, N R| is maximum.



Claim 12 There exists a node y € R — S, such that My, erists.

Proof: Suppose that for each y € R — S, there is no set My,. Then Lemma 11 implies |N(S;) N
Syl > |Sy N R|. Thus each distinct Sy (y € R — S;) contributes at least |S, N R| nodes to N(S,),
giving the contradiction g(S;) = |S: N R|+ |N(Sz)| > |R| > k + 2. 0

Now, fix a y € R — S, such that M,, exists and subject to this |S, N R| is maximum.

Claim 13 There exists a node z € R — My, such that both M,. and M,. exist and are distinct,
and moreover, |[N(My,) N S.| < |S: N R.

Proof: Note that R — M,, # 0 since |M,, N R| < k+ 1 < |R|. Suppose that each z € R — My,
violates the inequality in the claim, and so satisfies |N (M) N S.| > |S. N R|. Then each distinct
S. (z € R— M,,) contributes at least |S. N R| nodes to N (A,,), giving the contradiction g(M,,) =
|Myy N R| + |N(Myy)| > |R| > k + 2. Hence, there is a 2z € R — M, that satisfies the inequality
in the claim; let us fix this z. We claim that both M,. and M,. exist. Suppose that M,. does
not exist. Then Lemma 11 implies |[N(S;) N S.| > |S. N R|. Since S, is disjoint from M,, by
Lemma 6(4) and S, C My, we have N(S;) NS, C N(M,) NS, and this gives the contradiction
|N(Mzy) N S| > |N(Sz) NS.| > |S: N R|. Hence, M, exists. Note that [S, N R| > |S. N R|,
by our choice of y, z. It can be seen that M,. exists, otherwise Lemma 11 gives the contradiction
|N(Mzy) N S.| > [N(Sy)NS:| > |S. N R|. Finally, note that M,. and M, are distinct, otherwise,
this set contains S, U Sy, and so M, N My, contains S, U S,, a contradiction to Lemma 6(5) (with
D, = .Z\fglgy7 Dy = sz) O

Let us pick a 2 € R — M, that satisfies the properties verified in Claim 13.
Claim 14 FEach of the three pairs of sets Sg, S, or Sz, S. or Sy, S. is nonadjacent.

Proof: Clearly, the sets S;,95,,S. are distinct, and all three sets M,,, M., M,. exist and are
distinct, so these sets satisfy the conditions of Lemma 9. Applying Lemma 9 three times we get
N(Sy) NS, = N(S.) NSy, N(Sz) NSy = N(S:) NSy, N(Sz) NS, = N(Sy) N S.. Let ny,ny,n.
denote the cardinalities of these three sets, respectively. Since z satisfies the inequality in Claim 13,
S.—N(S;) =5.—-N(Sy) 2 S.—N(M,,) is nonempty. Then Lemma 10 (with A = S,US,, B =5.)
implies

ny = |N(S)NS.| = [N(SzUSy)NS.| > |N(S:)N(SaUSy)| = |N(S.)NSu|+|N(S.)NSy| = np+ny.
Moreover, S, — N(S.) is nonempty, since otherwise we have

IN(May) 52| > 1o = [N(S2) (S22 mg = [N(S2) 1 Sl > |S.] 2 [S, A R| > |S- R,
which contradicts the inequality in Claim 13. Applying Lemma 10 (with A = S, U S., B = S,)

implies

ny = |N(S:) NS = |N(SyUS.)N S| > |N(Sz) N (SyUS.)| = ny+ n..

Hence, n, > ngy + 2ny, and so n, = 0. Therefore, S, and S, are nonadjacent. Then Lemma 9
implies that each of the three pairs of sets S, S, or S;, 5. or Sy, S. is nonadjacent. O

Claim 15 N(S;) = N(S,) = N(S.) and this set has cardinality k —1. Consequently, |S;NR| = 1.
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Proof: The claim follows by applying Lemma 7 twice, first with ¢ = 2, 7 = y, £ = z and then with
i=ux,j=z/=y. Hence, [IN(S;)| = k — 1. Since S, is a critical set, we must have |S, N R| =1,
because k = ¢(S;) = |Se N R|+ |[N(S,)| = |S: N R| + (k — 1). O

This concludes the first part of the proof of Theorem 3: we must have |S;NR| =1forall i € R,
since 1 < |S;NR| < [S;NR| = 1. In other words, S; # S; for every pair of (distinct) nodes 7, j € R.
(This property is much simpler to deduce when G is k-connected, as in Theorem 4.)

First suppose that for every pair of nodes u,v € R, S, and S, are nonadjacent. Then for every
pair u,v € R, Lemma 8 applies, and this implies that Property (T) holds: we take T'= N(S,)U{r},
and note that T is a separator of G with » € T and |T| = k. Let us show the following: V =
(UiepSi)UT, G is k-connected, and the number of components of G —T equals deg(r). If there is a
node v € V —(U;c pSi) — T, then note that by k-outconnectivity v has a path to r in G — (T —{r}),
and so for the neighbour £ of » in this path we must have v € Sy, which is a contradiction. Clearly,
G — T has |R| = deg(r) components. G is k-connected since it has > |R| > k + 2 openly disjoint
paths between every pair of nodes in T, and for every node v € V — T, GG has k openly disjoint
paths between v and T' (by Menger’s theorem and (2)). Thus the proof of the theorem is complete
when S, .S, are nonadjacent, for each pair u,v € R.

Lemma 16 IfS,, S, are adjacent for some z,y € R then Sy, C N(S,) (and similarly, S, C N(Sy)).

Proof: Let ) denote N(S,) and for a contradiction suppose that S, — @ # 0. Let R, C R — «
be the set of nodes z € R such that S., S, are adjacent, and let @ = |R,|. Let b = |R| — a. Notice
that for any set S; with ¢ € R — R, we have N(S;) = Q by Lemma 8. Also, S;, S, are adjacent.
Applying Lemma 10 with A = U,cp_p. Si and B =5, (so B~ N(A) =S, — Q # 0) gives

IN(A) Bl =[QN S, > INB) N A= IN(S,)n( | S)l>b.
iceR-R,

Thus Sy contributes at least b nodes to ). Clearly, every other set S. which is adjacent to S,
contributes at least one node to ). Since these sets are pairwise disjoint, we get k — 1 > |Q] >
b+a—1=|R|—12>k+1, a contradiction. O

In what follows we show that adjacent pairs S,,S, (u,v € R) do not exist when |V| > 2k.
For a contradiction, suppose that there is a pair u,v € R such that S, and S, are adjacent. Let
Q = N(Sy), P = N(S,). Clearly, P # Q. Lemma 16 implies that () contains every set S;, i € R
which is adjacent to S,. Moreover, every set S;, j € R that is not adjacent to S, has N(S;) = Q
(by Lemma 8). Hence, each such S, is adjacent to S,, and therefore P contains S;. Finally,
observe that V.= P U Q U {r}. Otherwise, if there is a node v € V — (PUQ), v # r, then
note that by k-outconnectivity v has a path to r in G — @; for the neighbour £ of » in this path
note that Sy is nonadjacent to S, and so we have N(Sy) = Q and v € S¢ C P. Consequently,
[V|=|PUQ|+1<2k—1 (since |P|, |Q| <k —1), and this contradicts the assumption |V| > 2k.
This completes the proof of Theorem 3. O

If we drop the condition |V| > 2k in Theorem 3, then we obtain a weaker result (see Theorem 17
below). Our approximation algorithm in Section 5.2 uses the weaker result rather than Theorem 3.
Unfortunately, a direct proof of the weaker result is not significantly shorter or simpler than the
proof of Theorem 3. (A direct proof of the weaker result uses Lemmas 6-11 and Claims 12-15, as
well as some additional steps.)
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Theorem 17 Let G = (V, E) be a graph which is k-outconnected from a root node r € V and
suppose that deg(r) > k+2 and every edge incident to r is critical with respect to k-outconnectivity
from r. Suppose that none of the edge pairs incident to r can be split off preserving k-outconnectivity.
Then G 1s k-connected.

Proof: Let us use the notation in the proof of Theorem 3. Note that the condition |V| > 2k is
used only in the last paragraph of that proof.

Suppose that G is not k-connected and let C' be a separator with |C| < k. Since |R| > k + 2,
and |S; N R| = 1 for every ¢ € R (by Claim 15), there exists an « € R with S, N C = (. Let
() = N(S;) and let A be the set of those neighbours y of r for which S, and S, are nonadjacent.
By Lemma 8 we have N(S,) = Q for each y € A. Let W = Uy Sy U S,. It is easy to see that
V=QuUWur.

For each node v € S;, ¢ = x or ¢ € A, there exist k openly disjoint paths from v to Q U r
in the subgraph of G induced by S; UQ U r (by Menger’s theorem and (2)). Focus on G — C.
Since S, NC = 0 and (Q U r) — C # 0, there exists a component B (of G — C') that contains
S U ((QUr)—C). Moreover, (in G — C') each node v € S; — C, i € A, has at least one path to
(QUr)— C, hence, B contains W — C. Thus V=Q UrUW C C U B, and this contradicts our
assumption that C' is a separator of G. O

To illustrate that the problem in Theorem 3 is more general than the problem in Theorem 4,
consider the following strengthening: if there exists an admissible edge pair incident to r in Theo-
rem 4 and deg(r) > 2k — 1, then any fixed edge rv is part of an admissible edge pair. This fact was
deduced in [8], where a related augmentation problem was considered. Here is an example showing
that such a strengthening of Theorem 3 fails even if we assume deg(r) > k% — 2k + 2: take k — 1
disjoint copies of a k-connected graph and two additional nodes r,z. Connect r to each copy by
k — 1 edges each, and connect z to each copy by one edge. Also, add the edge rz. This graph is
k-outconnected from r, deg(r) = k? — 2k + 2, every edge incident to r is critical, there exists an
admissible edge pair incident to r, but rz is in no admissible edge pair.

In several applications of splitting-off theorems one may assume that the edges to be split off
are critical with respect to the connectivity property to be preserved. This is the case when we
apply Theorem 3 in Section 5 and also in [1]. However, for other applications, it may be useful to
have a more general result when edges incident to the root r are not necessarily critical.

Given an integer k > 1, a graph H, and a specified node r of H, Property (T') is said to hold if

H is k-connected, and there exists a node set T such that |T| = k, r € T, the number
of components of H — T equals degy(r) — 1 and there is an edge rt with ¢ € T'.

Theorem 18 Let G = (V, E) be a graph with |V| > 2k which is k-outconnected from a root node
r € V and suppose that deg(r) > k + 3. Then either

(a) G satisfies Property (T), or G satisfies Property (T'), or

(b) there exists a pair of edges incident to r that can be split off preserving k-outconnectivity.

Proof: If every edge incident to r is critical with respect to k-outconnectivity from r, then we are
done by Theorem 3. Otherwise, there is an edge rv for which G — rv is k-outconnected from r. If
there is an edge rw in G — rv for which G — rv — rw is still k-outconnected from r, then clearly
ru,rw is an admissible pair of edges in G. Otherwise, all the edges incident to r are critical in
G —rv. Then Theorem 3 implies that either G —rv has an admissible pair of edges rz, ry, or G —rv
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satisfies property (T) with some separator T, |T'| = k, r € T. Now there are two possibilities. If
v € T then property (T’) holds in G, and moreover, it can be seen that G has no admissible pair
of edges. If v € V — T'| then v belongs to some component D of V — T. Let rz be an edge in G
with z ¢ D. We claim that splitting off the pair rv,rz preserves k-outconnectivity from r. This
follows from Menger’s theorem, since G — rv satisfies property (T), so the graph obtained from G
by splitting off rv, rz has k openly disjoint paths between every pair of nodes in T and has k openly
disjoint paths from each node y € V. — T to T'. This proves the theorem. O

4 A rooted counterpart of Mader’s theorem

In this section we prove a rooted version of Mader’s theorem on “cycles of critical edges” in k-
connected graphs. First we state Mader’s [11] result and show an application we shall need later.

Theorem 19 ([11]) Let G be a k-connected graph, and let C be a cycle of G such that each edge
in C' is critical with respect to k-connectivity. Then degg(v) = k for some node v € C. O

The next lemma illustrates a typical application of Theorem 19.

Lemma 20 Let G = (V, E) be a graph that is k-outconnected from a root node r, and let R be the
set of neighbours of r. Then G can be made k-connected by adding at most |R| — 1 new edges in
such a way that each new edge has both ends in R.

Proof: We start with two observations. For a connected graph G and an (inclusionwise) minimal
separator S of G, note that any node in S has a neighbour in each component of G — S. Now
consider a graph G that is k-outconnected from a root node r. If G is not k-connected, then every
separator of cardinality less than k& must contain r. Consequently, there are two neighbours v, w of
r such that G has at most & — 1 openly disjoint paths between v and w.

Let G = G+ F' = (V,EU F') where F/ = {vw | v € R,w € R,vw ¢ E}; that is, G’ is
obtained from G by adding new edges to ensure that R induces a complete subgraph. Then G’ is
k-connected, otherwise, by the previous observations, there is a minimal separator S with |S| < k,
r € 5, that separates two neighbours of r, but this is not possible.

Take an inclusionwise minimal subset F' of F' for which G = G—I—ﬁ’ (V, EUF) is k-connected.
Clearly, every new edge f € F is critical for the k- connectivity of G. Thus Theorem 19 implies that
F is a forest. To see this, suppose there is a cycle C' whose edge set is contained in F. Then each
node v incident to C has degree > k42 in G because v is incident to at least k edges of G and to two
edges of C'. This contradicts Theorem 19, and so F is a forest. Therefore |F| < |V (F)|—1 < |R|—

O

Our result, the rooted version of Mader’s theorem, is the following.

Theorem 21 Let G be a graph that is k-outconnected from a node r, and let C' be a cycle of G
such that each edge in C is critical with respect to k-outconnectivity from r. Then degqg(v) =k for
some node v € C, v #r.

The proof of Theorem 21 is based on several lemmas.

Lemma 22 Let G = (V, E) be k-outconnected from r. Let v be a neighbour of r with deg(v) > k+1,
and let vw # vr be an edge. Then there are k openly disjoint paths between v and r in G — vw.
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Proof: For a contradiction suppose G — vw has at most k — 1 openly disjoint paths between v and
r. Then G — vw — vr has a (v, r)-separator S C V with |S| = k — 2. Since deg(v) > k+ 1, v must
have a neighbour b in (G —vw —wvr)—S. Since there is no path between b and r in (G—vw—vr)—S,
there is no path between b and r in (G — ({v} U S)) either. This contradicts the fact that G is
k-outconnected from r. O

If H is a k-connected graph and e = vw is a critical edge of H (with respect to k-connectivity),
then it is clear that H has a separator S of cardinality & — 1 such that H — e — S has exactly two
components, one containing v and the other containing w. This claim extends to a k-outconnected
graph G and an edge e = vw of GG, but some care is needed since every node z with fewer than &
openly disjoint paths between z and r in G — e may be a neighbour of . For example, take k = 2,
G = K3, r to be any node of GG, and e to be the edge of G disjoint from r. Then e is critical for
k-outconnectivity from r, but G — e has no cut node other than r.

Lemma 23 Let G = (V, E) be k-outconnected from r, and let e = vw be a critical edge (with
respect to k-outconnectivity from r) such that either

(i) € is incident to r, or
(i) for both ends v and w of e, if that end is a neighbour of r, then that end has degree > k + 1.

Then in G — e there is a separator Se C'V — {r,v, w} with |S.| = (k — 1) such that G — e — S. has
exactly two components, one containing v and the other containing w.

Proof: Let H = G —e. We claim that either ki (v,r) < k or kg (w,r) < k. To see this, note that
H is not k-outconnected from r (since e is critical), so there exists a set C' C E(H) UV (H) with
|C| < k and r ¢ C such that H — C has > 2 components, but G — C' = (H — C)U{e} is connected,
hence v and w must be in different components of H — C'.

Focus on the end of e, say v, that has at most & — 1 openly disjoint paths to rin H. If e = vr,
then note that v and r are not adjacent in H, so by Menger’s theorem the required separator
Se CV —{r,v} exists. Otherwise, e is not incident to r. Then note that v cannot be a neighbour
of r in G, otherwise by assumption (i) v has degree > k+ 1in G and so by Lemma 22 G —e=H
has k openly disjoint paths between v and r. Again, by Menger’s theorem, H has a v, r separator
S with |S| = k — 1. Moreover, w ¢ S because G — S = (H — S) U {vw} is connected. Thus in this
case we take S, = S. |

The next lemma is similar to the key lemma used by Mader in his proof of Theorem 19, though
Mader does not discuss part (4). We include the proof, but skip some details in parts (1),(2) and
refer the reader interested in the detailed proof to [11, Lemma 1] or to [2, Lemma 4.4].

Let G = (V, E) be k-outconnected from r. For a critical edge e = vw of G satisfying condition (i)
or (ii) in Lemma 23, let S. denote a separator of cardinality k¥ — 1 as in the lemma, and let the
node sets of the two components of G — e — S. be denoted by D, . and D, ., where v € D, . and
wE Dy e.

Lemma 24 Let G = (V, E) be k-outconnected from r. Let v # r be a node with deg(v) > (k+ 1).
Let e = vw and f = vz be two edges that are critical with respect to k-outconnectivity from r, such
that each satisfies condition (i) or (ii) in Lemma 23. Let S¢,Dye, Dy and S¢, Dy ¢, Dy ¢ be as
defined above. Let Z = (Se N Dy ¢) U (SeNSy)U (SfN Dy.). Then the following hold:

(1) 12> k- 1.
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(2) Dw,eme,fZQ-
(3) |Dw7€| < |Dv,f|
(4) Ifre Dw,e; then r € DUJ.

Proof: (1) Suppose that |Z] < k— 2. Since deg(v) > k+ 1, there is a neighbour b of v such that
b# w,b# z,and b ¢ Z. Now, it can be seen that (D, . N D, ) — {v} is nonempty, and hence
Z U {v} is a separator of G with cardinality < k — 1, and also r ¢ Z U {v}. This contradicts the
fact that G is k-outconnected from r. Hence, |Z] > k — 1.

(2) LetY = (SeN Dy s)U(SenNSf)U(StNDy,e). Suppose that Dy, . N D, ¢ is nonempty. Then
note that N(Dy N D, ) CY, and so G —Y has two or more components. This is a contradiction
since r € Y and

Y= (Y[+12)) = 12] = (ISe| +|5/]) = |1Z2] = (2k = 2) = |Z] < 2k = 2) = (k = 1) = (k = 1),
where the inequality follows from part (1).
(3) First, we claim that |Sc N Dy | > [Sf N Dye|. To see this, let Q@ = Z — (Sc N Dy ), ie.,
Q=(S.NS;)U(SfND,e), and note that Q = St — (Sf N Dy ). Then we have
QI+ [Sy N Duwe| = |55l =k =1 <|Z| =|Q[ + |Se N Dy 4l

where the inequality follows from part (1). This proves the claim. Now, consider part (3). We have

|Dw,e| - |Dw,emDv,f|‘|’|Dw,emsf|+|Dw,eme,f|
< |Duw,e N Dy g| + [Dy,g N Se| = [Dyg| = [Dyy N Dy |
S |Dv7f| - 17

where the first inequality follows from part (2) and the previous claim, and the second inequality
follows since the node v isin D, s N D, ..

(4) For part (4), note that Dy e = (Dye N Dy g) U (DyeNSf) U (DweNDyg). If risin Dy,
then r is in Dy, . N D, 5, because r ¢ Sy (by hypothesis), and r € Dy N Dy s (by part (2)). This
completes the proof of the lemma. |

Proof: (of Theorem 21) The proof is by contradiction. Let C' = vg, v, v2,...,vp, v be a cycle
of critical edges, and let every node in V(C) — {r} have degree > k + 1. Note that each edge in
C satisfies condition (i) or (ii) in Lemma 23. For each edge v;v;41 in C' (taking vp4q1 = vg), let us
revise our notation to S} = Sy, and D; = Dy, y;v;,,, that is, S] C V —{r, v;, viy1} has cardinality
k—1, G—vviy1 — S/ has two components, and D; is the node set of the component containing v;.

First suppose that C' is incident to r. Let r = vo. We claim that for each ¢ = 0,1,2,3,...,p,
the root r = vg is in D;. This follows easily by induction on ¢, applying Lemma 24(4) by taking
v=uwv;,1=12...,p. The induction basis is immediate. (Note that Lemma 24 cannot be used
with v = vg = r.) Thus our claim holds. This gives a contradiction, since the claim states that
in G — v,vo — S, the root r is in the component of v,, rather than in the component of r = wvo.
Therefore if C' is incident to r, then this proves the theorem.

Now, suppose that C is not incident to r. Then note that every node incident to C' has
degree at least k£ + 1. By repeatedly using Lemma 24(3), taking v = v;, ¢ = 1,2,...,p,0 we get
|Do| < |D1| < ...< |Dp=i| < |Dp| < |Dpt1| = |Dgl, a contradiction. This proves the theorem if C
is not incident to r. |
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Figure 2: Examples showing that a multi-root outconnected graph may have a cycle of critical edges
such that each incident node has degree > k41, where k is the maximum connectivity requirement.
(a) The graph is (3, 3)-outconnected from (ry, rz). Each edge is critical, either for 3-outconnectivity
from ry or for 3-outconnectivity from r5. The cycle C' has the property stated above.

(b) The graph is obtained by taking 3 copies of the graph H, and identifying the 3 copies of each
node in S. This graph is (5, 5)-outconnected from (r1,r2), and each edge is critical. The cycle C'is
disjoint from rqy and r9, and has the property stated above.

We remark that the method in the last paragraph of the proof, based on Lemma 24(3), does
not suffice to prove Theorem 21, because the cycle C' may be incident to the root r, but Lemma 24
cannot be applied with v = r, since the proof of part (1) fails (Z U {v} does not separate r from
another node).

Theorem 21 does not seem to have any obvious extension to multi-root outconnected graphs.
Figure 2 has an example graph with two roots ry,ry and k& = 3 that is k-outconnected from each
of r1 and ry such that there is a cycle of critical edges such that each incident node has degree
> 4 > k = 3. Also, Figure 2 has another example graph that is (5, 5)-outconnected from (ry,rz)
such that the cycle of interest is incident to no root.

The following corollary of Theorem 21 gives new structural information for the setup where
another condition is added to the hypothesis of Theorem 19. For an illustration of this corollary,
consider the graph P; + K3 (this is the graph H — S in Figure 2(b)), take k = 4, and take C' to be
a cycle of length 3 that has two nodes of degree £+ 1 = 5.

Corollary 25 Let G be a k-connected graph. Let C be a cycle of G such that each edge is critical
with respect to k-connectivity, and C' is incident to exactly one node r with deg(r) =k (so deg(v) >
kE+1 for all nodes v € V(C) — {r}). Then there exists an edge e in C such that every separator S
of G — e with |S|=(k—1) hasr € S.

Proof: C(learly, G is k-outconnected from r. If each edge in C' is critical with respect to k-
outconnectivity from r, then we have a contradiction to Theorem 21. Hence there is an edge e in C'
for which G — e remains k-outconnected from r. Then for every separator S of G — e with |S| < k
we must have r € S. O
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5 Approximation algorithms

In this section we apply our structural results from the preceding sections to design approximation
algorithms for Problem B. For the special case of Problem B with metric weights, we give an
approximation algorithm that is based on Theorem 17 (which is a weaker version of Theorem 3).
For the special case of Problem B with uniform weights, we give an approximation algorithm that
is based on Theorem 21. Throughout this section, when discussing a problem, we use G = (V, E)
to denote the graph for the instance of Problem B, and opt to denote the optimal value of the
problem. We also assume that the instance has a feasible solution. Let n denote |V].

5.1 A 2¢-approximation algorithm for the multi-root problem with ¢ roots

First, we discuss previous results and algorithmic questions related to Problem B. Consider the
special case of Problem B where ¢ = 1. Here there is only one root node r with positive node
requirement ¢,.. Let k := ¢,. We call this the minimum-weight single-root k-outconnected subgraph
problem, or the single-root problem. This problem is NP-hard, even for £ = 2 and uniform weights
or metric weights. For uniform weights, this follows from the fact that a 2-outconnected subgraph
of a graph G has at most |V(G)| edges if and only if it is a Hamiltonian cycle in G. For metric
weights, a similar reduction works by giving weight 1 to edges of G and weight 2 to edges of the
complement.

Frank and Tardos [6] presented a polynomial-time algorithm for finding an optimal solution for
the following directed version of the single-root problem.

Problem C: Given a directed graph, non-negative weights on the edges, a root node r, and a
connectivity requirement k, find a minimum-weight subdigraph H such that there exist at least k
openly disjoint directed paths from r to each node v # r in H.

The Frank-Tardos algorithm provides a 2-approximation algorithm and a useful lower bound on
opt for the undirected minimum-weight single-root k-outconnected subgraph problem as follows.
We take the input graph G and create a directed graph G by replacing each undirected edge vw by a
pair of antiparallel directed edges (v, w) and (w, v), where both directed edges have the same weight
as vw. Then we apply the Frank-Tardos algorithm to find an optimal subdigraph G* of weight ¢*
for Problem C, taking the root to be the same as in the undirected single-root problem. For the
undirected problem, note that opt > ¢*/2 since the directed version of the optimal subgraph is a
feasible solution for the Frank-Tardos algorithm. Moreover, the undirected graph G* obtained from
G~ by replacing each directed edge by the corresponding undirected edge (and removing parallel
edges) is a feasible solution to the undirected problem of weight < ¢* < 2opt; also see Khuller and
Raghavachari [10].

For the multi-root problem with ¢ roots a 2¢-approximation algorithm follows by sequentially
applying the above 2-approximation algorithm to each of the roots ry,...,r,. Note that the ap-
proximation guarantee 2¢ of this algorithm for the multi-root problem is tight. To see this consider
the following example; see Figure 3. Suppose k > 2 and take ¢ = k — 1 roots rq,...,r, with
node requirement k each. The graph G has a separator R = {rq,...,r,} that induces a complete
subgraph. In G — R, there are two components Dy, Dj, and each is a complete subgraph on at least
k+1 nodes. There is a matching of size ¢ between R and each of Dy, Dy. All the above edges have
zero weight. Each root r; is incident to two edges r;sy, ;52 of weight M, where 51 is in Dy and s,
is in D3. Finally, there is one edge of weight M 4 € between D; and D,. The optimal subgraph has
all the zero-weight edges and the edge of weight M + €, thus the optimal solution has weight M +e.
The first iteration of the Frank-Tardos algorithm adds all the zero-weight edges and the two edges
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Figure 3: An example of Problem B where the 2¢ approximation guarantee is tight.

(a) The graph G. The dashed edge has weight M + ¢, the 2(k — 1) thick edges each have weight
M, and all other edges have zero weight.

(b) Each iteration of the Frank-Tardos algorithm with root r;, i = 2,...,k — 1, adds the two
thick edges incident to r;; the first iteration adds all the zero-weight edges and the two thick edges
incident to ry.

of weight M incident to r;. Each iteration with root r;, i = 2,..., ¢, adds the two edges of weight
M incident to r;. Hence, the subgraph found by the algorithm has weight 2¢M. In this example,
the optimal subgraph turns out to be k-connected, but the example can be modified easily to avoid
this.

5.2 Metric weights

We consider Problem B with the additional assumption that the edge weights satisfy the triangle
inequality and we give a 3-approximation algorithm. Since the triangle inequality holds, G is
assumed to be the complete graph. We start with an auxiliary result related to Lemma 20.

Lemma 26 Let G = (V, E) be a graph that is k-outconnected from a root node r and let R be
the set of neighbours of r. Then G can be made p-connected for any p < k by adding at most
(|R| +p—1)/2 new edges in such a way that each new edge has both ends in R.

Proof: Let us delete edges incident to r from G as long as possible while maintaining p-outconnectivity
from r. In the resulting graph G’ every edge incident to r is critical for p-outconnectivity. Let R’ be
the set of neighbours of r in G’. Applying Theorem 17 to G’ it follows that by splitting off appropri-
ate pairs of edges incident to r we can obtain a graph G* which is p-outconnected from r and which

is either p-connected or has degg«(r) < p+ 1. Let E’ be the set of new edges obtained by these
splitting off operations. Since degq«(r) > p, we have |E'| < (|R'| — p)/2. By Lemma 20 applied to
G*, there exists a set F of edges such that G* + F is p-connected, each F-edge has both ends in
R, and |F| < degg«(r) — 1 < p. Clearly, G+ (E'U F) is p-connected. Since dege (1) — deges () is
even and R’ C R, we get |E' UF| < (|R| —p — 1)/2 + p, as required. O

Theorem 27 Consider instances of Problem B such that the edge weights are metric. There is
a (2.5+ g—z)-appm:vimation algorithm, where k and k; denote the largest and second largest node
requirement, respectively (note: 2.5+ ’;—k <3).

Proof: Let G = (V, E) be the input graph and let &= (¢q,...,¢,) and B = (ri,...,rq) be the
connectivity requirement vector and the vector of roots, respectively. We may assume ¢ > 2 (and
€1 > ...>¢y). Let k = ¢y and k, = ¢, denote the largest and the second largest node requirement,
respectively. Let r = ry (thus r is a root node with the maximum node requirement k).
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The algorithm starts by finding a subgraph H that is k-outconnected from r, with weight
w(H) < 2opt. This can be done in polynomial time via the Frank-Tardos result, as mentioned
earlier. In the graph H, we may assume (by deleting edges if necessary) that each edge incident to
r is critical with respect to k-outconnectivity from r.

If degy;(r) > k + 2, then by Theorem 17 either H is k-connected or there exists a pair of edges
incident to r that can be split off while preserving k-outconnectivity from r. In the former case
the algorithm outputs H. Clearly, H is ¢~outconnected from g, and has weight at most 2opt,
as required. In the latter case, the algorithm splits off admissible edge pairs as long as possible.
Since w is a metric, splitting off an edge pair does not increase the weight of the subgraph. An
admissible edge pair, if one exists, can be found in polynomial time by max-flow computations. If
the resulting graph becomes k-connected after several iteration, we are done as above. When the
algorithm stops splitting-off iterations, we may assume that degy(r) < k4 1 holds in the current
subgraph H.

In the next step, the algorithm finds a set of new edges F for which H + F is ky-connected and
such that |F| < (k+k,)/2. By Lemma 26 (using that degy (r) < k+1) such a set exists and can be
found efficiently. The algorithm outputs H” := H + F and terminates. Since H” is k-outconnected
from r and k,-connected, the choice of k£ and k, implies that H” is ctoutconnected from B.

We claim that every edge in F (in fact, every edge of the complete graph) has weight at most
opt /k. To see this, observe that every feasible solution must be k-edge-connected and hence for any
two nodes u, v, there exist k edge-disjoint paths between u and v; each of these paths has weight
> w(uv) by the triangle inequality. Thus w(H") < 20pt + ((k + k,)/2)(opt/k) = (2.5 + E2yopt <
3opt, as required. O

We remark that Theorem 27 is related to [10, Theorem 4.8], but neither result implies the
other one. Khuller and Raghavachari [10] give an approximation guarantee of (24 2(k — 1)/n) for
the minimum-weight k-connected subgraph problem, assuming metric weights. A by-product of
Theorem 27 is a 3-approximation algorithm for the same problem.

Finally, we remark that our 3-approximation algorithm works for an even larger class of local
node-connectivity requirements (provided w is metric). Namely, when there exists a node u for
which ¢(u,v) = k holds for every v € V — u, where k = max{c(z,y): z,y € V}.

5.3  Uniform weights

Here, we give approximation algorithms for Problem B assuming the edge weights are uniform.
Our proofs are based on Theorem 21 and the following result of Cheriyan and Thurimella [3,
Theorem 3.5].

Theorem 28 ([3]) Let G* = (V, E*) be a k-edge-connected graph (k > 1) on n nodes. Let M* C
E* be a minimum-size edge set such that every node v € V' is incident to at least k — 1 edges of

M*. Then |E*| > |M*| + |n/2].
We shall present two independent approximation algorithms.

Theorem 29 Consider instances of Problem B such that the edge weights are uniform. There is
a min{2, MTq_l}-appm:vimation algorithm, where k denotes the largest node requirement and g
denotes the number of positive node requirements.

Proof: Let G = (V, E) be the input graph and let &= (¢q,...,¢,) and B = (ri,...,rq) be the
connectivity requirement vector and the vector of roots, respectively. We use k = ¢; to denote the
largest node requirement.
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Our first algorithm simply finds a “sparse certificate” for local node connectivity in G. In detail,
it employs the polynomial algorithm of Nagamochi and Ibaraki [12] to find k edge disjoint forests
Fy,..., F of G such that in the graph H = (V, FyU...UF}), we have ry(u,v) > min{k, rg(u,v)}
for every two nodes u,v. This graph H has at most k(n — 1) edges, while the optimal subgraph has
at least nk/2 edges, since it has minimum degree at least k. Furthermore, H has ¢; openly disjoint
paths between v and r; for every r; € B and every v € V —{r;}, by the choice of k and since G has
¢; openly disjoint paths between v and r;. Consequently, H is c-outconnected from g, as required,
and has size at most 2opt. Thus this is a 2-approximation algorithm.

The second algorithm starts by finding a minimum-size subgraph (V, M) of minimum degree
(k — 1) in G. This is essentially a matching problem and can be computed in polynomial time,
see [3]. Then, sequentially for each of the roots r;; i = 1,...,¢, it finds an inclusionwise minimal
edge set F; C E(G) such that H; = (V, MU Fy U...UF;) is ¢;-outconnected from r; and outputs
H=(V,MUF U...UF,). Clearly, H is c-outconnected from B.

Note that every edge f € F; is critical for ¢;-outconnectivity in H;. Thus we can apply The-
orem 21 to H; and F; and conclude that F; is a forest. Therefore each F; (¢ = 1,...,¢) has
size at most (n — 1). Also, we have |M| < opt — [n/2] by Theorem 28. (Note that the optimal
k-outconnected subgraph of G is k-edge connected.) Thus, using opt > nk/2, we get

B(H)| = [MUEU...UF| = M|+ |F| < (opt — [1/2]) +aln— 1) < (k + 2  1)opt/k.

=1
This proves Theorem 29. O

As we remarked, Proposition 2 shows we can assume ¢ < k. Therefore (k+2¢—1)/k < 3. Also
note that in the case of the single-root problem, when ¢ = 1, the approximation guarantee is 1+ %
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