
On Rooted Node-Connetivity ProblemsJoseph Cheriyan � Tibor Jord�an y Zeev Nutov zMarh 10, 2000, Revised versionAbstratLet G be a graph whih is k-outonneted from a spei�ed root node r, that is, G hask openly disjoint paths between r and v for every node v. We give neessary and suÆientonditions for the existene of a pair rv; rw of edges for whih replaing these edges by a newedge vw gives a graph that is k-outonneted from r. This generalizes a theorem of Bienstok,Brikell and Monma on splitting o� edges while preserving k-node-onnetivity.We also prove that if C is a yle in G suh that eah edge in C is ritial with respet tok-outonnetivity from r, then C has a node v, distint from r, whih has degree k. This resultis the rooted ounterpart of a theorem due to Mader.We apply the above results to design approximation algorithms for the following problem:given a graph with nonnegative edge weights and node requirements u for eah node u, �nd aminimum-weight subgraph that ontains maxfu; vg openly disjoint paths between every pairof nodes u; v. For metri weights, our approximation guarantee is 3. For uniform weights, ourapproximation guarantee is minf2; k+2q�1k g. Here k is the maximum node requirement, and qis the number of positive node requirements.1 IntrodutionA graph is said to be k-outonneted from node r if there exist k openly disjoint paths from r toevery node v, v 6= r. Node r is alled the root.Splitting o� two edges ru; rv means deleting ru and rv and adding a new edge uv. Splittingo� is a basi operation in graph onnetivity with a broad range of appliations. There are anumber of results asserting the existene of pairs of edges that an be split o� preserving ertainedge-onnetivity onditions or direted node-onnetivity onditions, see the survey by Frank [5℄.For the node-onnetivity of undireted graphs, only one general splitting-o� result has beenproved so far. This result is due to Bienstok, Brikell and Monma [1℄, see Theorem 4. (Relatedresults are in [8℄ and [4℄.) We generalize this result from k-node-onneted graphs to k-outonnetedgraphs by giving neessary and suÆient onditions for the existene of a pair of edges inident tothe root r that an be split o� while preserving k-outonnetivity from r, see Theorem 3.Mader's theorem (Theorem 19 below) on \yles of ritial edges" in k-node-onneted graphshas appliations in extremal graph theory, onnetivity augmentation, and approximation algo-rithms, see [2℄, [3℄, [8℄, [11℄. We prove a related but independent result for k-outonneted graphsin Theorem 21.�jheriyan�math.uwaterloo.a Department of Combinatoris and Optimization, University of Waterloo, Water-loo, Ontario, Canada N2L 3G1. Supported in part by NSERC researh grant no. OGP0138432.yjordan�s.elte.hu Department of Operations Researh, E}otv}os University, 1088 Budapest, Hungary.znutov�oumail.openu.a.il Open University, Israel. Supported in part by NSERC researh grantno. OGP0138432. 1



We use the above strutural results to design and analyze approximation algorithms for networkdesign problems, see Setions 5.2,5.3.In the rest of the Introdution, we disuss some network design problems of interest to us, listsome related results, and state our new approximation results. A basi problem in network designis to �nd a minimum-weight spanning subgraph of a given graph satisfying ertain onnetivityonditions. For the following general problem no algorithm is known that ahieves a non-trivialapproximation guarantee in polynomial time.Problem A: Given a graph G with a nonnegative weight funtion w on the edges, and node onne-tivity requirements (u; v) for eah pair of nodes u; v, �nd a minimum-weight spanning subgraphH suh that for every node pair u; v there exist at least (u; v) openly disjoint paths between u andv in H .The ase when (u; v) � k � 2 for eah pair u; v is alled the minimum-weight k-node-onnetedsubgraph problem. This problem is already NP-hard, even for metri weights (that is, when theweight funtion satis�es the triangle inequality) and uniform weights (that is, when the weight ofevery edge is the same), and there has been extensive reent researh on approximation algorithmsfor this and related problems with uniform weights and with metri weights, see [1, 3, 7, 9, 10℄. Formetri weights, Khuller and Raghavahari [10℄ developed a (2+2(k�1)=n)-approximation algorithmfor the minimum-weight k-node-onneted subgraph problem. For uniform weights, Cheriyan andThurimella [3℄ gave a (1 + 1k )-approximation algorithm.We design approximation algorithms for the following problem that is sandwihed between theminimum weight k-node-onneted subgraph problem and Problem A.Problem B: Given a graph G with a nonnegative weight funtion w on the edges, and a noderequirement u for eah node u, �nd a minimum-weight spanning subgraph H suh that for everynode pair u; v there exist at least maxfu; vg openly disjoint paths between u and v in H .Some speial ases of Problem B have been investigated previously by Nutov et al [13℄. Moti-vated by an appliation in so-alled mobile robot ow networks, they gave approximation algorithmsfor ases where u � 3 for eah node u. Stoer [14℄ disusses another speial ase of Problem Awhere the loal requirements are of the form (u; v) = minfu; vg, for given node requirementsu. Problem B may �nd appliations elsewhere, say, in network design problems where some dis-tinguished nodes are required to have a large number of onnetions to all the other nodes of thenetwork.It is easy to see that a graph H is a feasible solution for Problem B if and only if H is u-outonneted from eah node u. We all Problem B the minimum-weight multi-root outonnetedsubgraph problem, or the multi-root problem. Given an instane of the multi-root problem, q isde�ned to be the number of nodes u with positive node requirement u. Notie that Problem Bis a speial ase of Problem A, and the minimum-weight k-node-onneted subgraph problem isa speial ase of Problem B. Thus Problem B is NP-hard, even for metri weights and uniformweights. To the best of our knowledge, the previous best approximation guarantee known for the(general) q-root problem is 2q, even for uniform weights and for metri weights; see Setion 5.1 fora disussion of the 2q-approximation algorithm.For the metri weight multi-root problem (with q roots) we improve the approximation guar-antee from 2q to 3, see Theorem 27. Our approximation algorithm is based on Theorem 17 whihis a weaker version of Theorem 3 (our splitting-o� result for k-outonnetivity). For the uniformweight multi-root problem we improve the approximation guarantee from 2q to minf2; k+2q�1k g,where k is the largest node requirement, see Theorem 29. This implies a (1 + 1k ) approximationalgorithm for the uniform weight single-root problem. This approximation algorithm is based on2



Theorem 21, our rooted ounterpart of Mader's theorem.More de�nitions and preliminaries are given in Setion 2. The splitting-o� theorem for k-outonnetivity is given in Setion 3, and the rooted version of Mader's theorem is given in Setion 4.The approximation algorithms are in Setion 5.2 De�nitions and preliminary resultsGraphs in this paper are undireted and have no multiple edges and no loops. A pair of sets A;B isalled properly interseting if eah of the three sets A�B, B�A, A\B is nonempty. A separatorof a onneted graph is a set of nodes whose deletion results in a disonneted graph. Given aonneted graph G, we say that a node set S separates a pair u; v of nodes, or simply that S is an(u; v)-separator if the two nodes are in di�erent omponents of G�S. Two distint paths are alledopenly disjoint if every node ommon to both paths is an end node of both paths. For a graph Gand a pair of nodes u; v, �G(u; v) denotes the maximum number of pairwise openly disjoint pathsbetween u and v. A onneted graph is said to be k-node-onneted if it has at least k + 1 nodesand it has no separator of ardinality k� 1. From now on, k-onneted refers to k-node-onneted.By Menger's theorem, �G(u; v) � k for every pair of nodes u; v in a k-onneted graph G. Let G bea graph that is k-outonneted from a node r (that is, �G(v; r)� k for every node v, v 6= r); a pairof edges inident to r is alled admissible if splitting o� the pair preserves k-outonnetivity fromr, otherwise the edge pair is alled illegal. An edge uv of a k-onneted graph H is alled ritial(with respet to k-onnetivity) if H � uv is not k-onneted. Similarly, an edge uv of a graph H 0that is k-outonneted from a node r is alled ritial (with respet to k-outonnetivity) if H 0�uvis not k-outonneted from r. We say that a graph is (1; :::; q)-outonneted from roots (r1; : : : ; rq)if it is simultaneously i-outonneted from eah ri, i = 1; :::; q. Given an instane of Problem B,the vetor ~ = (1; :::; q) of positive node requirements is alled the onnetivity requirement vetorand the orresponding vetor ~R = (r1; : : : ; rq) is alled the root vetor. We shall always assume,without loss of generality, that 1 � 2 � ::: � q holds for the onnetivity requirement vetor.For a graph G = (V;E) and a nonempty set X � V of nodes, �G(X) or �(X) denotes the setfy 2 V �X : xy 2 E for some x 2 Xg of neighbours of X . The following proposition is well-known(see [8, Lemma 1.2℄) and is easy to verify by ounting the ontribution of eah node to the twosides of the inequality.Proposition 1 In a graph H = (V;E) every pair X; Y � V satis�es�(X) + �(Y ) � �(X \ Y ) + �(X [ Y ): (1)Moreover, if equality holds, then there are no edges from X � Y to Y �X � �(X \ Y ). 2A �-approximation algorithm for a minimization problem runs in polynomial time and deliversa solution whose value is always within the fator � of the optimum value. The quantity � is alledthe approximation guarantee of the algorithm.2.1 Irreduible node requirementsSome entries in a onnetivity requirement vetor may be redundant: no matter what is the under-lying graph, we an reset them to zero (and get a shorter vetor) without hanging the problem. Inthis setion we haraterize when suh a redution is possible. This will enable us later to assumethat the number q of roots is at most the value of the largest node requirement.3



A onnetivity requirement vetor ~ = (1; : : : ; q) is alled n-reduible if it has a proper sub-vetor ~� that implies the onnetivity requirements of ~. That is, for every graph G on n nodesand with an arbitrary hoie of q roots we have that G is ~-outonneted from the roots if and onlyif it is ~�-outonneted from the (redued vetor of) roots. Otherwise, ~ is alled n-irreduible. Forexample, ~ = (2; 1) is n-reduible for every n sine a 2-outonneted graph is 1-outonneted fromevery node. The next result haraterizes reduible requirement vetors.Proposition 2 Let ~ = (1; : : : ; q) be a onnetivity requirement vetor with 1 � : : : � q. Then~ is n-irreduible if and only if(1) j � j for 1 � j � q, and(2) 1 � n+ q � 32 .Proof: First observe that a graph G that is (1; : : : ; q)-outonneted from a vetor of q root nodesmust be `-onneted, where ` = minfq; 1; : : : ; qg.Let G be a graph on n nodes whih is (1; : : : ; q)-outonneted from (r1; : : : ; rq). Suppose thatondition (1) fails. Let ` be the lowest index suh that for j = `+ 1 we have j < j. Clearly, ` � 1,sine 1 � 1. Note that ` � `. Let ~� = (1; : : : ; `) and let ~R� = (r1; : : : ; r`). Suppose that H isa graph that is ~�-outonneted from ~R�. Eah of the roots in ~R� has onnetivity requirement atleast `, and also the number of roots in ~R� is `. By our �rst observation H is `-onneted, and so�H(v; ri) � `, for eah node v 2 V (H)� frig and eah root ri, i = `+ 1; : : : ; q (i.e., eah root in ~Rnot in ~R�). Then H is ~-outonneted from ~R. Hene, if ondition (1) fails, then ~ is reduible.Suppose that ondition (2) fails. Clearly, we may assume q � 2. We laim that every sub-graph satisfying the requirements ~� = (1; : : : ; q�1) is q-outonneted from rq. Suppose H is aounterexample to this laim. Then there exists a node w in H with �H(rq; w) � q � 1. Thusthere exists a separator S in H (or, if wrq 2 E(H), then in H � wrq) suh that jSj � q � 1 andrq =2 S. Now r1 2 S holds, sine H is 1-outonneted from r1. Let D be a omponent of H�S withjV (D)j � (n�q+1)2 . Clearly, suh aD exists. Fous on a node v in D. Sine (V (D)�fvg)[(S�fr1g)separates r1 and v in H (provided we delete the edge r1v, if it exists), we have1 � �H(r1; v) � jV (D)j � 1 + jSj � 1 + 1 � (n� q + 1)2 � 1 + q � 1 � n + q � 32 ;and this ontradits our assumption on ondition (2). This proves that an n-irreduible requirementvetor must satisfy both onditions (1) and (2).Conversely, we an show that a requirement vetor ~ is n-irreduible if onditions (1) and (2)hold. To see this, we take the proper subsequene (1; : : : ; q�1), and show that it does not al-ways imply the onnetivity requirements of ~; a similar argument applies for any other propersubsequene. Let G be a graph on n nodes that ontains a separator S suh that jSj = q � 1,fr1; : : : ; rq�1g � S, and rq 62 S, and let S indue a omplete subgraph in G. Furthermore, let G�Sonsist of two omplete graphs C1; C2 with the same number of nodes, and let G ontain all possibleedges between S and V (C1)[ V (C2). Then G satis�es the requirement vetor (1; : : : ; q�1) (sineondition (2) holds), but it is not q-outonneted from rq. 2Note that ondition (1) does not depend on n. This implies that an irreduible requirementvetor must satisfy 1; : : : ; q � q in a graph of arbitrary order. For our multi-root outonnetedsubgraph problem it implies that as long as q < q holds we an reset the smallest positive noderequirement q to zero without hanging the problem. Thus we an assume q � q and, in partiular,that the number q of roots is not more than the maximum node requirement.4



3 Splitting o� edges from the root in a k-outonneted graphThis setion ontains our splitting-o� theorem. Given an integer k � 1, a graph H , and a spei�ednode r of H , Property (T) is said to hold ifH is k-onneted, and there exists a node set T suh that jT j = k, r 2 T , and thenumber of omponents of H � T equals degH(r).For example, Property (T) holds for a omplete bipartite graph Kk;p, p � k � 1, with r a nodeof degree p. If we take a graph H that satis�es property (T) and split o� any pair of edges inidentto r, then the resulting graph is not k-outonneted from r. (To see this, onsider any edge pairrv; rw and let Dv; Dw be the node sets of the omponents ontaining v; w respetively in H � T .If we split o� rv; rw, then r an be separated from Dv [ Dw (in the new graph ) by deleting thek � 1 nodes in T � frg.)Theorem 3 Let G = (V;E) be a graph with jV j � 2k whih is k-outonneted from a root noder 2 V and suppose that deg(r) � k + 2 and every edge inident to r is ritial with respet tok-outonnetivity from r. Then either(a) G satis�es Property (T), or(b) there exists a pair of edges inident to r that an be split o� preserving k-outonnetivity.Note that the ondition jV j � 2k in the theorem is neessary. (To see this take the ompletebipartite graph Kk�1;k�1 and an additional root node r whih is adjaent to all the other nodes.)Our theorem generalizes the following theorem of Bienstok et al [1℄.Theorem 4 ([1℄) Let G = (V;E) be a k-onneted graph with jV j � 2k and let r 2 V be a nodesuh that deg(r) � k+2 and every edge inident to r is ritial with respet to k-onnetivity. Theneither(a) G satis�es Property (T), or(b) there exists a pair of edges inident to r that an be split o� preserving k-onnetivity. 2We remark that Theorem 4 here di�ers from the statement of [1, Theorem 3℄. In [1℄ part (a)is replaed by part (a0): \for any edge pair ru; rv, there exists another edge pair sw; sz suh thatsplitting o� both edge pairs preserves k-onnetivity." Part (a) implies part (a0) by a short proof,but part (a0) does not imply part (a). However, part (a) is impliitly proved in [8℄.To see that Theorem 3 implies Theorem 4 we need two observations: (i) if we split o� a pair ofedges from a node r in a k-onneted graph, and this preserves k-outonnetivity from r, then wepreserve k-onnetivity as well (otherwise, if the resulting graph has a separator S with jSj < k,then r 2 S by k-outonnetivity, but then S is a separator of the original graph); (ii) in a k-onneted graph, an edge inident to r is ritial with respet to k-onnetivity if and only if theedge is ritial with respet to k-outonnetivity from r.A proof of Theorem 4 an be extrated from our proof of Theorem 3 by omitting Lemmas 9,11, and Claims 12{15.Proof: (of Theorem 3) Let G = (V;E), the root r, and k � 1 be given and assume that G satis�esall the onditions in Theorem 3. Let R denote the set of neighbours of r.5



For nonempty subsets X of V � r let N(X) := �G�r(X) and let g(X) := jN(X)j+ jX \ Rj.We �x g(;) = 0. Proposition 1 implies that g(X) + g(Y ) � g(X \ Y ) + g(X [ Y ) holds forevery X; Y � V � r. Moreover, if equality holds, then there is no edge between X � Y andY �X �N(X \ Y ). We shall refer to these properties as the submodularity of g.Lemma 5 G = (V;E) is k-outonneted from r if and only ifg(X) � k for every ; 6= X � V � r: (2)Proof: We prove one diretion; the other one is easy. Suppose that G satis�es (2), but is notk-outonneted from r. Then there is a node v 6= r with �G(v; r) < k. By Menger's theorem, eitherG or G� vr has a (v; r)-separator C with jCj � k � 1 or jCj � k � 2, respetively. Let X be thenode set of the omponent ontaining v in G�C or in G�vr�C. Then g(X) < k, a ontraditionto (2). 2Reall that a pair of edges inident to r is alled admissible if splitting o� the pair preservesthe k-outonnetivity, otherwise the edge pair is alled illegal. By Lemma 5, a pair of edges ru; rvis admissible if and only if removing ru and rv and adding the new edge uv preserves (2). For apair of edges rx; ry let G0 be the graph obtained from G by splitting o� rx; ry. If rx; ry is illegal,there must be a node set X � V � r with g0(X) < k (here g0 denotes g on G0). But in G we haveg(X) � k, hene it an be seen that a pair rx; ry is illegal if and only if there exists a set X � V �rwith one of the following properties:(i) x; y 2 X , g(X) � k + 1,(ii) x 2 X , y 2 N(X), g(X) = k, or(iii) y 2 X , x 2 N(X), g(X) = k.We all a nonempty set X � V � r dangerous if g(X) � k + 1. If g(X) = k holds then we allX ritial. Observe that for every neighbour x of the root, the edge rx is ritial with respet tok-outonnetivity (thus, by Lemma 5, (2) fails if rx is removed from G), and hene there exists aritial set X � V � r with x 2 X . The next lemma establishes some properties of dangerous andritial sets.Lemma 6 (1) The intersetion and union of two interseting ritial sets are both ritial;(2) for every node x 2 R, there exists a unique maximal ritial set ontaining x, denoted Sx;for x; y 2 R and the two sets Sx; Sy, either Sx = Sy or Sx \ Sy = ; holds;(3) for two properly interseting maximal dangerous sets X; Y , we have g(X \Y ) = k and g(X [Y ) = k + 2;(4) if X is a maximal dangerous set and Y is a ritial set, then either X \ Y = ; or Y � X;(5) if D1; D2 are distint maximal dangerous sets ontaining a node x 2 R, then D1 \D2 = Sx.Proof: (1) Let X and Y be two ritial sets with X \ Y 6= ;. By ritiality we have g(X) =g(Y ) = k and (2) (in Lemma 5) implies g(X \ Y ); g(X [ Y ) � k. Applying the submodularity of gthis gives k + k = g(X) + g(Y ) � g(X \ Y ) + g(X [ Y ) � k + k:6
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lFigure 1: An example illustrating the notation in the proof of Theorem 3. Here k = 2. For aneighbour v of r, Sv is a maximal set ontaining v with g(Sv) = k. For a pair of neighbours u; v ofr,Muv (if it exists) is a maximal set ontaining u; v with g(Muv) � k+1. In the example, Sv = fvgfor eah neighbour v of r exept h; `.Hene equality holds everywhere and g(X \ Y ) = k and g(X [ Y ) = k follow.(2) Sine the edge rx is ritial, there is a ritial set ontaining the node x 2 R. The maximalritial set ontaining x is unique by part (1).The seond statement follows from part (1) and the �rst statement, sine Sx \ Sy 6= ; impliesthat Sx [ Sy is a ritial set.(3) We have g(X) � k + 1, g(Y ) � k + 1, X \ Y 6= ;, and g(X \ Y ) � k by (2) (in Lemma 5).Moreover, sine X�Y 6= ; 6= Y �X and X; Y are maximal dangerous sets we get g(X[Y ) � k+2.Applying the submodularity of g givesk + 1 + k + 1 � g(X) + g(Y ) � g(X \ Y ) + g(X [ Y ) � k + k + 2:Hene equality holds everywhere and g(X \ Y ) = k and g(X [ Y ) = k + 2 follow.(4) We have g(X) � k+ 1 and g(Y ) = k. If X \ Y 6= ; and Y �X 6= ; then the maximality of Ximplies that X and Y properly interset and g(X [ Y ) � k + 2. Applying the submodularity of gthis leads to a ontradition:k + k + 1 � g(X) + g(Y ) � g(X \ Y ) + g(X [ Y ) � k + k + 2:(5) By part (4) we have Sx � Di for i = 1; 2. Suppose D1\D2 6= Sx. Then, sine D1; D2 properlyinterset, part (3) implies D1 \D2 is a ritial set that properly ontains Sx, and this ontraditsthe maximality of Sx. This proves the lemma. 2Fous on a �xed node pair i; j 2 R (and note that Si = Sj may hold for di�erent nodes i; j 2 R).If there exists a dangerous set X ontaining both i and j, then let Mij be de�ned as an (arbitrarilyhosen) maximal dangerous set with i; j 2 Mij . In this ase, we have Si � Mij , Sj � Mij , byLemma 6(4). To illustrate our notation, note that if Property (T) holds for some graph H , thenthe sets Si are the onneted omponents of H�T , Si\R = fig for all i 2 R, and for all i 6= j 2 RN(Si) is disjoint from Sj and Mij = Si [ Sj (so Mij always exists). Also see Figure 1.Two disjoint sets A;B � V � r are said to be adjaent if there is an edge with one end in Aand the other end in B, otherwise A and B are said to be nonadjaent. Note that A and B areadjaent if and only if N(A)\ B 6= ;.The next lemma is the key for demonstrating Property (T).Lemma 7 Let i; j; ` be nodes in R suh that the sets Si; Sj; S` are distint, and the setsMij ;Mi`;Mj`exist and are distint. If Si; Sj are nonadjaent, thenN(Si) = N(Sj) and jN(Si)j = k � 1:7



Proof: First observe thatMij\S` = ;, otherwiseMij � S` (by Lemma 6(4)), but thenMij\Mi` �Si[S`, a ontradition to Lemma 6(5). Similarly, Mi`\Sj = ; =Mj`\Si. That is, every pair amongthe three sets Mij ;Mi`;Mj` is properly interseting. Now we apply the submodular inequality ofg to A = Mij and B = Mi` [Mj`, noting that A \ B = Si [ Sj (by Lemma 6(5)), g(A) � k + 1(sine A is a dangerous set), g(B) = k + 2 (by Lemma 6(3)), g(A [B) � k + 2 (by maximality ofthe dangerous set A), g(A \B) � (k + 1) (by maximality of the ritial set Si).k + 1 + k + 2 � g(A) + g(B) � g(A \B) + g(A [B) = g(Si [ Sj) + g(A [B) � k + 1+ k + 2:This means equality holds everywhere, and so g(Si [ Sj) = k+ 1. Moreover, Si and Sj are disjointnonadjaent sets with jN(Si)j, jN(Sj)j � k � 1, hene,g(Si [ Sj) = g(Si) + g(Sj)� jN(Si)\N(Sj)j � 2k � (k � 1):Thus g(Si [ Sj) = k + 1 implies jN(Si) \ N(Sj)j = k � 1. Sine both N(Si) and N(Sj) haveardinality at most k � 1, we have N(Si) = N(Sj) and jN(Si)j = k � 1, as required. 2Lemma 8 Suppose that jSi \ Rj = 1, for all i 2 R, and suppose that every pair of edges inidentto the root is illegal. Let i; j 2 R be suh that Si; Sj are nonadjaent. ThenN(Si) = N(Sj) and jN(Si)j = k � 1:Proof: We will show that the onditions of Lemma 7 hold for i; j and some ` 2 R. Note that forevery node pair u; v 2 R, the sets Su; Sv are distint by the assumption of the lemma.The illegal pair ri; rj does not satisfy ases (ii) or (iii) (stated after Lemma 5), sine Si; Sj arenonadjaent. Hene, the maximal dangerous set Mij of ase (i) exists. We laim that there is anode ` 2 R�Mij suh that both the maximal dangerous sets Mi`;Mj` exist. Otherwise, for eah` 2 R �Mij , either Mi` or Mj` does not exist. Suppose that Mj` does not exist (the argument issimilar if Mi` does not exist). Then the illegality of rj; r` shows that Sj and S` are adjaent, sojN(Sj)\S`j � 1. Note that S` is disjoint fromMij by Lemma 6(4), hene, N(Sj)\S` � N(Mij)\S`,and so jN(Mij) \ S`j � 1 = jS` \ Rj. Thus eah distint set S` (` 2 R) ontributes at least onenode to (Mij \R) [N(Mij), giving the ontraditiong(Mij) = jMij \Rj+ jN(Mij)j � jRj � k + 2:Hene, there is an ` 2 R �Mij suh that both Mi`;Mj` exist. Clearly, Mi` and Mj` are distint,otherwise this set ontains Si[Sj (by Lemma 6(4)), and soMi`\Mij ontains Si[Sj , whih is im-possible by Lemma 6(5) (with D1 =Mi`; D2 =Mij). Sine Si; Sj; S` are distint and Mij ;Mj`;Mi`exist and are distint, Lemma 7 an be applied and the statement follows. 2Lemma 9 Let i; j; ` be nodes in R suh that the sets Si; Sj; S` are distint, and the setsMij ;Mi`;Mj`exist and are distint. Then N(Sj) \ Si = N(S`) \ Si:Proof: First observe that Mij \ S` = Mi` \ Sj = Mj` \ Si = ;, by Lemma 6. That is, everypair among the three sets Mij ;Mi`;Mj` is properly interseting. Take Mji and Mj`, and use thesubmodularity of g and (2):k + 1 + k + 1 � g(Mji) + g(Mj`) � g(Mji \Mj`) + g(Mji [Mj`) � k + (k + 2);8



where g(Mji [Mj`) � k + 2 follows from the maximality of Mji. Thus equality holds everywhereand, again by the submodular property of g, there is no edge between Mj` �Mji and Mji �Mj` �N(Mji\Mj`) =Mji�Mj`�N(Sj). This means there is no edge between S` and Si�N(Sj) (sineLemma 6(4),(5) imply S` �Mj` �Mji and Si �Mji �Mj`) and soN(S`) \ Si � N(Sj) \ Si:The above argument applies to any two of the three sets Mij ;Mi`;Mj`. We apply it to M`i andM`j and onlude that there is no edge between M`j �M`i � Sj and M`i �M`j �N(M`i \M`j) �Si �N(S`). Hene, N(Sj) \ Si � N(S`) \ Si:This ompletes the proof. 2Lemma 10 Let A;B � V � r satisfy A \B = ;, g(B) = k, and B �N(A) 6= ;. ThenjN(A)\Bj � jN(B)\ Aj:Proof: Let W = B �N(A) 6= ;. Note that g(W ) � k by (2), g(B) = k, and W \ R � B \ R.Thus jN(B)j � jN(W )j. The lemma follows from the following inequalities:jN(B)\Aj+ jN(B)�Aj = jN(B)j �jN(W )j = jN(W )\N(B)j+ jN(W )�N(B)j � jN(B)�Aj+ jN(A)\ Bj;where the last inequality holds sine N(W )\N(B) � N(B)�A and N(W )�N(B) � N(A)\B.2 In what follows we assume that every pair ru; rv of edges is illegal. From this we shall deduejSx\Rj = 1 for eah x 2 R. Using this fat, a short argument will �nish the proof by showing thatproperty (T) holds for G.Lemma 11 Suppose that every pair of edges inident to the root is illegal. Let i; j be a pair ofnodes in R suh that there is no set Mij (that is, there exists no dangerous set X with i; j 2 X).Then:(1) Either (Si \R) � N(Sj), or (Sj \ R) � N(Si).(2) If jSi \Rj � jSj \ Rj, then jN(Si) \ Sj j � jSj \Rj:Proof: First, note that Si 6= Sj , otherwise Si is a dangerous set with i; j 2 Si.(1) If part (1) of the lemma fails, then there is a node w 2 (Si \ R) � N(Sj) and a node z 2(Sj \R)�N(Si). The edge pair rw; rz is illegal, so one of the ases (i),(ii),(iii) for illegal edge pairs(stated after Lemma 5) must apply. It is easily seen that ases (ii),(iii) do not apply to rw; rz,sine every ritial set X inluding w (respetively, z) is ontained in Si (respetively, Sj). Hene,ase (i) must apply to rw; rz, so there is a dangerous set X with w; z 2 X . But then X is adangerous set interseting both Si and Sj , so Lemma 6(4) gives Si [ Sj � X . This ontradits theassumption of the lemma.(2) Either (Sj \ R) � N(Si), in whih ase part (2) follows diretly, or Sj � N(Si) is nonemptyand by part (1) of the lemma, jN(Sj) \ Sij � jSi \ Rj � jSj \ Rj, in whih ase part (2) followssine jN(Si) \ Sj j � jN(Sj)\ Sij by Lemma 10 (with A = Si, B = Sj). 2Let us �x a node x 2 R suh that jSx \Rj is maximum.9



Claim 12 There exists a node y 2 R� Sx suh that Mxy exists.Proof: Suppose that for eah y 2 R� Sx there is no set Mxy . Then Lemma 11 implies jN(Sx) \Sy j � jSy \ Rj. Thus eah distint Sy (y 2 R � Sx) ontributes at least jSy \ Rj nodes to N(Sx),giving the ontradition g(Sx) = jSx \Rj+ jN(Sx)j � jRj � k + 2: 2Now, �x a y 2 R� Sx suh that Mxy exists and subjet to this jSy \ Rj is maximum.Claim 13 There exists a node z 2 R �Mxy suh that both Mxz and Myz exist and are distint,and moreover, jN(Mxy) \ Sz j < jSz \Rj:Proof: Note that R �Mxy 6= ; sine jMxy \ Rj � k + 1 < jRj. Suppose that eah z 2 R �Mxyviolates the inequality in the laim, and so satis�es jN(Mxy)\ Sz j � jSz \Rj: Then eah distintSz (z 2 R�Mxy) ontributes at least jSz\Rj nodes to N(Mxy), giving the ontradition g(Mxy) =jMxy \ Rj + jN(Mxy)j � jRj � k + 2: Hene, there is a z 2 R �Mxy that satis�es the inequalityin the laim; let us �x this z. We laim that both Mxz and Myz exist. Suppose that Mxz doesnot exist. Then Lemma 11 implies jN(Sx) \ Sz j � jSz \ Rj. Sine Sz is disjoint from Mxy byLemma 6(4) and Sx �Mxy , we have N(Sx) \ Sz � N(Mxy) \ Sz , and this gives the ontraditionjN(Mxy) \ Sz j � jN(Sx) \ Szj � jSz \ Rj. Hene, Mxz exists. Note that jSy \ Rj � jSz \ Rj,by our hoie of y; z. It an be seen that Myz exists, otherwise Lemma 11 gives the ontraditionjN(Mxy) \ Sz j � jN(Sy)\ Sz j � jSz \Rj. Finally, note that Mxz and Myz are distint, otherwise,this set ontains Sx [Sy , and soMxz \Mxy ontains Sx [Sy, a ontradition to Lemma 6(5) (withD1 =Mxy ; D2 =Mxz). 2Let us pik a z 2 R�Mxy that satis�es the properties veri�ed in Claim 13.Claim 14 Eah of the three pairs of sets Sx; Sy or Sx; Sz or Sy; Sz is nonadjaent.Proof: Clearly, the sets Sx; Sy; Sz are distint, and all three sets Mxy;Mxz;Myz exist and aredistint, so these sets satisfy the onditions of Lemma 9. Applying Lemma 9 three times we getN(Sy) \ Sx = N(Sz) \ Sx, N(Sx) \ Sy = N(Sz) \ Sy, N(Sx) \ Sz = N(Sy) \ Sz. Let nx; ny ; nzdenote the ardinalities of these three sets, respetively. Sine z satis�es the inequality in Claim 13,Sz�N(Sx) = Sz�N(Sy) � Sz�N(Mxy) is nonempty. Then Lemma 10 (with A = Sx[Sy , B = Sz)impliesnz = jN(Sx)\Sz j = jN(Sx[Sy)\Sz j � jN(Sz)\(Sx[Sy)j = jN(Sz)\Sxj+ jN(Sz)\Sy j = nx+ny :Moreover, Sx �N(Sz) is nonempty, sine otherwise we havejN(Mxy) \ Sz j � nz = jN(Sx) \ Sz j � nx = jN(Sz) \ Sxj � jSxj � jSx \Rj � jSz \Rj;whih ontradits the inequality in Claim 13. Applying Lemma 10 (with A = Sy [ Sz , B = Sx)implies nx = jN(Sz) \ Sxj = jN(Sy [ Sz) \ Sxj � jN(Sx)\ (Sy [ Sz)j = ny + nz :Hene, nx � nx + 2ny, and so ny = 0. Therefore, Sx and Sy are nonadjaent. Then Lemma 9implies that eah of the three pairs of sets Sx; Sy or Sx; Sz or Sy; Sz is nonadjaent. 2Claim 15 N(Sx) = N(Sy) = N(Sz) and this set has ardinality k�1. Consequently, jSx\Rj = 1.10



Proof: The laim follows by applying Lemma 7 twie, �rst with i = x; j = y; ` = z and then withi = x; j = z; ` = y. Hene, jN(Sx)j = k � 1. Sine Sx is a ritial set, we must have jSx \ Rj = 1,beause k = g(Sx) = jSx \Rj+ jN(Sx)j = jSx \Rj+ (k � 1). 2This onludes the �rst part of the proof of Theorem 3: we must have jSi \Rj = 1 for all i 2 R,sine 1 � jSi\Rj � jSx\Rj = 1. In other words, Si 6= Sj for every pair of (distint) nodes i; j 2 R.(This property is muh simpler to dedue when G is k-onneted, as in Theorem 4.)First suppose that for every pair of nodes u; v 2 R, Su and Sv are nonadjaent. Then for everypair u; v 2 R, Lemma 8 applies, and this implies that Property (T) holds: we take T = N(Su)[frg,and note that T is a separator of G with r 2 T and jT j = k. Let us show the following: V =([i2RSi)[T , G is k-onneted, and the number of omponents of G�T equals deg(r). If there is anode v 2 V � ([i2RSi)�T , then note that by k-outonnetivity v has a path to r in G� (T �frg),and so for the neighbour ` of r in this path we must have v 2 S`, whih is a ontradition. Clearly,G � T has jRj = deg(r) omponents. G is k-onneted sine it has � jRj � k + 2 openly disjointpaths between every pair of nodes in T , and for every node v 2 V � T , G has k openly disjointpaths between v and T (by Menger's theorem and (2)). Thus the proof of the theorem is ompletewhen Su; Sv are nonadjaent, for eah pair u; v 2 R.Lemma 16 If Sx; Sy are adjaent for some x; y 2 R then Sy � N(Sx) (and similarly, Sx � N(Sy)).Proof: Let Q denote N(Sx) and for a ontradition suppose that Sy � Q 6= ;. Let Ra � R � xbe the set of nodes z 2 R suh that Sz ; Sx are adjaent, and let a = jRaj. Let b = jRj � a. Notiethat for any set Si with i 2 R � Ra we have N(Si) = Q by Lemma 8. Also, Si; Sy are adjaent.Applying Lemma 10 with A = Si2R�Ra Si and B = Sy (so B �N(A) = Sy � Q 6= ;) givesjN(A)\Bj = jQ \ Sy j � jN(B)\Aj = jN(Sy)\ ( [i2R�Ra Si)j � b:Thus Sy ontributes at least b nodes to Q. Clearly, every other set Sz whih is adjaent to Sxontributes at least one node to Q. Sine these sets are pairwise disjoint, we get k � 1 � jQj �b+ a� 1 = jRj � 1 � k + 1, a ontradition. 2In what follows we show that adjaent pairs Su; Sv (u; v 2 R) do not exist when jV j � 2k.For a ontradition, suppose that there is a pair u; v 2 R suh that Su and Sv are adjaent. LetQ = N(Su), P = N(Sv). Clearly, P 6= Q. Lemma 16 implies that Q ontains every set Si; i 2 Rwhih is adjaent to Su. Moreover, every set Sj ; j 2 R that is not adjaent to Su has N(Sj) = Q(by Lemma 8). Hene, eah suh Sj is adjaent to Sv, and therefore P ontains Sj . Finally,observe that V = P [ Q [ frg. Otherwise, if there is a node v 2 V � (P [ Q), v 6= r, thennote that by k-outonnetivity v has a path to r in G � Q; for the neighbour ` of r in this pathnote that S` is nonadjaent to Su and so we have N(S`) = Q and v 2 S` � P . Consequently,jV j = jP [ Qj+ 1 � 2k� 1 (sine jP j, jQj � k � 1), and this ontradits the assumption jV j � 2k.This ompletes the proof of Theorem 3. 2If we drop the ondition jV j � 2k in Theorem 3, then we obtain a weaker result (see Theorem 17below). Our approximation algorithm in Setion 5.2 uses the weaker result rather than Theorem 3.Unfortunately, a diret proof of the weaker result is not signi�antly shorter or simpler than theproof of Theorem 3. (A diret proof of the weaker result uses Lemmas 6{11 and Claims 12{15, aswell as some additional steps.) 11



Theorem 17 Let G = (V;E) be a graph whih is k-outonneted from a root node r 2 V andsuppose that deg(r) � k+2 and every edge inident to r is ritial with respet to k-outonnetivityfrom r. Suppose that none of the edge pairs inident to r an be split o� preserving k-outonnetivity.Then G is k-onneted.Proof: Let us use the notation in the proof of Theorem 3. Note that the ondition jV j � 2k isused only in the last paragraph of that proof.Suppose that G is not k-onneted and let C be a separator with jCj < k. Sine jRj � k + 2,and jSi \ Rj = 1 for every i 2 R (by Claim 15), there exists an x 2 R with Sx \ C = ;. LetQ = N(Sx) and let A be the set of those neighbours y of r for whih Sx and Sy are nonadjaent.By Lemma 8 we have N(Sy) = Q for eah y 2 A. Let W = Sy2A Sy [ Sx. It is easy to see thatV = Q [W [ r.For eah node v 2 Si, i = x or i 2 A, there exist k openly disjoint paths from v to Q [ rin the subgraph of G indued by Si [ Q [ r (by Menger's theorem and (2)). Fous on G � C.Sine Sx \ C = ; and (Q [ r) � C 6= ;, there exists a omponent B (of G � C) that ontainsSx [ ((Q [ r) � C). Moreover, (in G � C) eah node v 2 Si � C, i 2 A, has at least one path to(Q [ r)� C, hene, B ontains W � C. Thus V = Q [ r [W � C [ B, and this ontradits ourassumption that C is a separator of G. 2To illustrate that the problem in Theorem 3 is more general than the problem in Theorem 4,onsider the following strengthening: if there exists an admissible edge pair inident to r in Theo-rem 4 and deg(r) � 2k� 1, then any �xed edge rv is part of an admissible edge pair. This fat wasdedued in [8℄, where a related augmentation problem was onsidered. Here is an example showingthat suh a strengthening of Theorem 3 fails even if we assume deg(r) � k2 � 2k + 2: take k � 1disjoint opies of a k-onneted graph and two additional nodes r; x. Connet r to eah opy byk � 1 edges eah, and onnet x to eah opy by one edge. Also, add the edge rx. This graph isk-outonneted from r, deg(r) = k2 � 2k + 2, every edge inident to r is ritial, there exists anadmissible edge pair inident to r, but rx is in no admissible edge pair.In several appliations of splitting-o� theorems one may assume that the edges to be split o�are ritial with respet to the onnetivity property to be preserved. This is the ase when weapply Theorem 3 in Setion 5 and also in [1℄. However, for other appliations, it may be useful tohave a more general result when edges inident to the root r are not neessarily ritial.Given an integer k � 1, a graph H , and a spei�ed node r of H , Property (T 0) is said to hold ifH is k-onneted, and there exists a node set T suh that jT j = k, r 2 T , the numberof omponents of H � T equals degH(r)� 1 and there is an edge rt with t 2 T .Theorem 18 Let G = (V;E) be a graph with jV j � 2k whih is k-outonneted from a root noder 2 V and suppose that deg(r) � k + 3. Then either(a) G satis�es Property (T), or G satis�es Property (T 0), or(b) there exists a pair of edges inident to r that an be split o� preserving k-outonnetivity.Proof: If every edge inident to r is ritial with respet to k-outonnetivity from r, then we aredone by Theorem 3. Otherwise, there is an edge rv for whih G� rv is k-outonneted from r. Ifthere is an edge rw in G � rv for whih G � rv � rw is still k-outonneted from r, then learlyrv; rw is an admissible pair of edges in G. Otherwise, all the edges inident to r are ritial inG�rv. Then Theorem 3 implies that either G�rv has an admissible pair of edges rx; ry, or G�rv12



satis�es property (T) with some separator T , jT j = k, r 2 T . Now there are two possibilities. Ifv 2 T then property (T 0) holds in G, and moreover, it an be seen that G has no admissible pairof edges. If v 2 V � T , then v belongs to some omponent D of V � T . Let rz be an edge in Gwith z =2 D. We laim that splitting o� the pair rv; rz preserves k-outonnetivity from r. Thisfollows from Menger's theorem, sine G� rv satis�es property (T), so the graph obtained from Gby splitting o� rv; rz has k openly disjoint paths between every pair of nodes in T and has k openlydisjoint paths from eah node y 2 V � T to T . This proves the theorem. 24 A rooted ounterpart of Mader's theoremIn this setion we prove a rooted version of Mader's theorem on \yles of ritial edges" in k-onneted graphs. First we state Mader's [11℄ result and show an appliation we shall need later.Theorem 19 ([11℄) Let G be a k-onneted graph, and let C be a yle of G suh that eah edgein C is ritial with respet to k-onnetivity. Then degG(v) = k for some node v 2 C. 2The next lemma illustrates a typial appliation of Theorem 19.Lemma 20 Let G = (V;E) be a graph that is k-outonneted from a root node r, and let R be theset of neighbours of r. Then G an be made k-onneted by adding at most jRj � 1 new edges insuh a way that eah new edge has both ends in R.Proof: We start with two observations. For a onneted graph G and an (inlusionwise) minimalseparator S of G, note that any node in S has a neighbour in eah omponent of G � S. Nowonsider a graph G that is k-outonneted from a root node r. If G is not k-onneted, then everyseparator of ardinality less than k must ontain r. Consequently, there are two neighbours v; w ofr suh that G has at most k � 1 openly disjoint paths between v and w.Let G0 = G + F 0 = (V;E [ F 0) where F 0 = fvw j v 2 R;w 2 R; vw 62 Eg; that is, G0 isobtained from G by adding new edges to ensure that R indues a omplete subgraph. Then G0 isk-onneted, otherwise, by the previous observations, there is a minimal separator S with jSj < k,r 2 S, that separates two neighbours of r, but this is not possible.Take an inlusionwise minimal subset eF of F 0 for whih eG = G+ eF = (V;E[ eF ) is k-onneted.Clearly, every new edge f 2 eF is ritial for the k-onnetivity of eG. Thus Theorem 19 implies thateF is a forest. To see this, suppose there is a yle C whose edge set is ontained in eF . Then eahnode v inident to C has degree � k+2 in eG, beause v is inident to at least k edges of G and to twoedges of C. This ontradits Theorem 19, and so eF is a forest. Therefore j eF j � jV ( eF )j�1 � jRj�1.2 Our result, the rooted version of Mader's theorem, is the following.Theorem 21 Let G be a graph that is k-outonneted from a node r, and let C be a yle of Gsuh that eah edge in C is ritial with respet to k-outonnetivity from r. Then degG(v) = k forsome node v 2 C; v 6= r.The proof of Theorem 21 is based on several lemmas.Lemma 22 Let G = (V;E) be k-outonneted from r. Let v be a neighbour of r with deg(v) � k+1,and let vw 6= vr be an edge. Then there are k openly disjoint paths between v and r in G� vw.13



Proof: For a ontradition suppose G�vw has at most k�1 openly disjoint paths between v andr. Then G� vw � vr has a (v; r)-separator S � V with jSj = k � 2. Sine deg(v) � k + 1, v musthave a neighbour b in (G�vw�vr)�S. Sine there is no path between b and r in (G�vw�vr)�S,there is no path between b and r in (G � (fvg [ S)) either. This ontradits the fat that G isk-outonneted from r. 2If H is a k-onneted graph and e = vw is a ritial edge of H (with respet to k-onnetivity),then it is lear that H has a separator S of ardinality k � 1 suh that H � e� S has exatly twoomponents, one ontaining v and the other ontaining w. This laim extends to a k-outonnetedgraph G and an edge e = vw of G, but some are is needed sine every node x with fewer than kopenly disjoint paths between x and r in G� e may be a neighbour of r. For example, take k = 2,G = K3, r to be any node of G, and e to be the edge of G disjoint from r. Then e is ritial fork-outonnetivity from r, but G� e has no ut node other than r.Lemma 23 Let G = (V;E) be k-outonneted from r, and let e = vw be a ritial edge (withrespet to k-outonnetivity from r) suh that either(i) e is inident to r, or(ii) for both ends v and w of e, if that end is a neighbour of r, then that end has degree � k+ 1.Then in G� e there is a separator Se � V � fr; v; wg with jSej = (k� 1) suh that G� e� Se hasexatly two omponents, one ontaining v and the other ontaining w.Proof: Let H = G� e. We laim that either �H(v; r) < k or �H(w; r) < k. To see this, note thatH is not k-outonneted from r (sine e is ritial), so there exists a set C � E(H)[ V (H) withjCj < k and r 62 C suh that H �C has � 2 omponents, but G�C = (H �C)[ feg is onneted,hene v and w must be in di�erent omponents of H � C.Fous on the end of e, say v, that has at most k� 1 openly disjoint paths to r in H . If e = vr,then note that v and r are not adjaent in H , so by Menger's theorem the required separatorSe � V � fr; vg exists. Otherwise, e is not inident to r. Then note that v annot be a neighbourof r in G, otherwise by assumption (ii) v has degree � k+ 1 in G and so by Lemma 22 G� e = Hhas k openly disjoint paths between v and r. Again, by Menger's theorem, H has a v; r separatorS with jSj = k � 1. Moreover, w 62 S beause G� S = (H � S)[ fvwg is onneted. Thus in thisase we take Se = S. 2The next lemma is similar to the key lemma used by Mader in his proof of Theorem 19, thoughMader does not disuss part (4). We inlude the proof, but skip some details in parts (1),(2) andrefer the reader interested in the detailed proof to [11, Lemma 1℄ or to [2, Lemma 4.4℄.Let G = (V;E) be k-outonneted from r. For a ritial edge e = vw of G satisfying ondition (i)or (ii) in Lemma 23, let Se denote a separator of ardinality k � 1 as in the lemma, and let thenode sets of the two omponents of G� e � Se be denoted by Dv;e and Dw;e, where v 2 Dv;e andw 2 Dw;e.Lemma 24 Let G = (V;E) be k-outonneted from r. Let v 6= r be a node with deg(v) � (k + 1).Let e = vw and f = vx be two edges that are ritial with respet to k-outonnetivity from r, suhthat eah satis�es ondition (i) or (ii) in Lemma 23. Let Se; Dv;e; Dw;e and Sf ; Dv;f ; Dx;f be asde�ned above. Let Z = (Se \Dv;f) [ (Se \ Sf )[ (Sf \Dv;e). Then the following hold:(1) jZj � k � 1. 14



(2) Dw;e \Dx;f = ;.(3) jDw;ej < jDv;f j.(4) If r 2 Dw;e, then r 2 Dv;f .Proof: (1) Suppose that jZj � k� 2. Sine deg(v) � k+ 1, there is a neighbour b of v suh thatb 6= w, b 6= x, and b 62 Z. Now, it an be seen that (Dv;e \ Dv;f) � fvg is nonempty, and heneZ [ fvg is a separator of G with ardinality � k � 1, and also r 62 Z [ fvg. This ontradits thefat that G is k-outonneted from r. Hene, jZj � k � 1.(2) Let Y = (Se \Dx;f) [ (Se \ Sf) [ (Sf \Dw;e). Suppose that Dw;e \Dx;f is nonempty. Thennote that N(Dw;e \Dx;f) � Y , and so G� Y has two or more omponents. This is a ontraditionsine r 62 Y andjY j = (jY j+ jZj)� jZj = (jSej+ jSf j)� jZj = (2k� 2)� jZj � (2k� 2)� (k � 1) = (k � 1);where the inequality follows from part (1).(3) First, we laim that jSe \ Dv;f j � jSf \ Dw;ej. To see this, let Q = Z � (Se \ Dv;f), i.e.,Q = (Se \ Sf )[ (Sf \Dv;e), and note that Q = Sf � (Sf \Dw;e). Then we havejQj+ jSf \Dw;ej = jSf j = k � 1 � jZj = jQj+ jSe \Dv;f j;where the inequality follows from part (1). This proves the laim. Now, onsider part (3). We havejDw;ej = jDw;e \Dv;f j+ jDw;e \ Sf j+ jDw;e \Dx;f j� jDw;e \Dv;f j+ jDv;f \ Sej = jDv;f j � jDv;f \Dv;ej� jDv;f j � 1;where the �rst inequality follows from part (2) and the previous laim, and the seond inequalityfollows sine the node v is in Dv;f \Dv;e.(4) For part (4), note that Dw;e = (Dw;e \Dv;f ) [ (Dw;e \ Sf ) [ (Dw;e \Dx;f). If r is in Dw;e,then r is in Dw;e \Dv;f , beause r 62 Sf (by hypothesis), and r 62 Dw;e \Dx;f (by part (2)). Thisompletes the proof of the lemma. 2Proof: (of Theorem 21) The proof is by ontradition. Let C = v0; v1; v2; : : : ; vp; v0 be a yleof ritial edges, and let every node in V (C) � frg have degree � k + 1. Note that eah edge inC satis�es ondition (i) or (ii) in Lemma 23. For eah edge vivi+1 in C (taking vp+1 = v0), let usrevise our notation to S 0i = Svivi+1 and Di = Dvi;vivi+1 , that is, S 0i � V �fr; vi; vi+1g has ardinalityk� 1, G� vivi+1 � S 0i has two omponents, and Di is the node set of the omponent ontaining vi.First suppose that C is inident to r. Let r = v0. We laim that for eah i = 0; 1; 2; 3; : : : ; p;the root r = v0 is in Di. This follows easily by indution on i, applying Lemma 24(4) by takingv = vi, i = 1; 2; : : : ; p. The indution basis is immediate. (Note that Lemma 24 annot be usedwith v = v0 = r.) Thus our laim holds. This gives a ontradition, sine the laim states thatin G � vpv0 � S 0p the root r is in the omponent of vp, rather than in the omponent of r = v0.Therefore if C is inident to r, then this proves the theorem.Now, suppose that C is not inident to r. Then note that every node inident to C hasdegree at least k + 1. By repeatedly using Lemma 24(3), taking v = vi, i = 1; 2; : : : ; p; 0 we getjD0j < jD1j < : : : < jDp�1j < jDpj < jDp+1j = jD0j; a ontradition. This proves the theorem if Cis not inident to r. 215
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5 Approximation algorithmsIn this setion we apply our strutural results from the preeding setions to design approximationalgorithms for Problem B. For the speial ase of Problem B with metri weights, we give anapproximation algorithm that is based on Theorem 17 (whih is a weaker version of Theorem 3).For the speial ase of Problem B with uniform weights, we give an approximation algorithm thatis based on Theorem 21. Throughout this setion, when disussing a problem, we use G = (V;E)to denote the graph for the instane of Problem B, and opt to denote the optimal value of theproblem. We also assume that the instane has a feasible solution. Let n denote jV j.5.1 A 2q-approximation algorithm for the multi-root problem with q rootsFirst, we disuss previous results and algorithmi questions related to Problem B. Consider thespeial ase of Problem B where q = 1. Here there is only one root node r with positive noderequirement r. Let k := r. We all this the minimum-weight single-root k-outonneted subgraphproblem, or the single-root problem. This problem is NP-hard, even for k = 2 and uniform weightsor metri weights. For uniform weights, this follows from the fat that a 2-outonneted subgraphof a graph G has at most jV (G)j edges if and only if it is a Hamiltonian yle in G. For metriweights, a similar redution works by giving weight 1 to edges of G and weight 2 to edges of theomplement.Frank and Tardos [6℄ presented a polynomial-time algorithm for �nding an optimal solution forthe following direted version of the single-root problem.Problem C: Given a direted graph, non-negative weights on the edges, a root node r, and aonnetivity requirement k, �nd a minimum-weight subdigraph H suh that there exist at least kopenly disjoint direted paths from r to eah node v 6= r in H .The Frank-Tardos algorithm provides a 2-approximation algorithm and a useful lower bound onopt for the undireted minimum-weight single-root k-outonneted subgraph problem as follows.We take the input graph G and reate a direted graph ~G by replaing eah undireted edge vw by apair of antiparallel direted edges (v; w) and (w; v), where both direted edges have the same weightas vw. Then we apply the Frank-Tardos algorithm to �nd an optimal subdigraph ~G� of weight �for Problem C, taking the root to be the same as in the undireted single-root problem. For theundireted problem, note that opt � �=2 sine the direted version of the optimal subgraph is afeasible solution for the Frank-Tardos algorithm. Moreover, the undireted graph G� obtained from~G� by replaing eah direted edge by the orresponding undireted edge (and removing paralleledges) is a feasible solution to the undireted problem of weight � � � 2opt ; also see Khuller andRaghavahari [10℄.For the multi-root problem with q roots a 2q-approximation algorithm follows by sequentiallyapplying the above 2-approximation algorithm to eah of the roots r1; : : : ; rq. Note that the ap-proximation guarantee 2q of this algorithm for the multi-root problem is tight. To see this onsiderthe following example; see Figure 3. Suppose k � 2 and take q = k � 1 roots r1; : : : ; rq withnode requirement k eah. The graph G has a separator R = fr1; : : : ; rqg that indues a ompletesubgraph. In G�R, there are two omponents D1; D2, and eah is a omplete subgraph on at leastk+1 nodes. There is a mathing of size q between R and eah of D1; D2. All the above edges havezero weight. Eah root ri is inident to two edges ris1; ris2 of weight M , where s1 is in D1 and s2is in D2. Finally, there is one edge of weightM + � between D1 and D2. The optimal subgraph hasall the zero-weight edges and the edge of weightM + �, thus the optimal solution has weightM + �.The �rst iteration of the Frank-Tardos algorithm adds all the zero-weight edges and the two edges17
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The algorithm starts by �nding a subgraph H that is k-outonneted from r, with weightw(H) � 2 opt . This an be done in polynomial time via the Frank-Tardos result, as mentionedearlier. In the graph H , we may assume (by deleting edges if neessary) that eah edge inident tor is ritial with respet to k-outonnetivity from r.If degH(r) � k+ 2, then by Theorem 17 either H is k-onneted or there exists a pair of edgesinident to r that an be split o� while preserving k-outonnetivity from r. In the former asethe algorithm outputs H . Clearly, H is ~-outonneted from ~B, and has weight at most 2opt ,as required. In the latter ase, the algorithm splits o� admissible edge pairs as long as possible.Sine w is a metri, splitting o� an edge pair does not inrease the weight of the subgraph. Anadmissible edge pair, if one exists, an be found in polynomial time by max-ow omputations. Ifthe resulting graph beomes k-onneted after several iteration, we are done as above. When thealgorithm stops splitting-o� iterations, we may assume that degH(r) � k + 1 holds in the urrentsubgraph H .In the next step, the algorithm �nds a set of new edges eF for whih H + eF is ks-onneted andsuh that j eF j � (k+ks)=2. By Lemma 26 (using that degH(r) � k+1) suh a set exists and an befound eÆiently. The algorithm outputs H 00 := H+ eF and terminates. Sine H 00 is k-outonnetedfrom r and ks-onneted, the hoie of k and ks implies that H 00 is ~-outonneted from ~B.We laim that every edge in eF (in fat, every edge of the omplete graph) has weight at mostopt=k. To see this, observe that every feasible solution must be k-edge-onneted and hene for anytwo nodes u; v, there exist k edge-disjoint paths between u and v; eah of these paths has weight� w(uv) by the triangle inequality. Thus w(H 00) � 2opt + ((k + ks)=2)(opt=k) = (2:5 + ks2k )opt �3opt , as required. 2We remark that Theorem 27 is related to [10, Theorem 4.8℄, but neither result implies theother one. Khuller and Raghavahari [10℄ give an approximation guarantee of (2 + 2(k � 1)=n) forthe minimum-weight k-onneted subgraph problem, assuming metri weights. A by-produt ofTheorem 27 is a 3-approximation algorithm for the same problem.Finally, we remark that our 3-approximation algorithm works for an even larger lass of loalnode-onnetivity requirements (provided w is metri). Namely, when there exists a node u forwhih (u; v) = k holds for every v 2 V � u, where k = maxf(x; y) : x; y 2 V g.5.3 Uniform weightsHere, we give approximation algorithms for Problem B assuming the edge weights are uniform.Our proofs are based on Theorem 21 and the following result of Cheriyan and Thurimella [3,Theorem 3.5℄.Theorem 28 ([3℄) Let G� = (V;E�) be a k-edge-onneted graph (k � 1) on n nodes. Let M� �E� be a minimum-size edge set suh that every node v 2 V is inident to at least k � 1 edges ofM�. Then jE�j � jM�j+ bn=2.We shall present two independent approximation algorithms.Theorem 29 Consider instanes of Problem B suh that the edge weights are uniform. There isa minf2; k+2q�1k g-approximation algorithm, where k denotes the largest node requirement and qdenotes the number of positive node requirements.Proof: Let G = (V;E) be the input graph and let ~ = (1; : : : ; q) and ~B = (r1; : : : ; rq) be theonnetivity requirement vetor and the vetor of roots, respetively. We use k = 1 to denote thelargest node requirement. 19



Our �rst algorithm simply �nds a \sparse erti�ate" for loal node onnetivity in G. In detail,it employs the polynomial algorithm of Nagamohi and Ibaraki [12℄ to �nd k edge disjoint forestsF1; : : : ; Fk of G suh that in the graph H = (V; F1[ : : :[Fk), we have �H(u; v) � minfk; �G(u; v)gfor every two nodes u; v. This graph H has at most k(n� 1) edges, while the optimal subgraph hasat least nk=2 edges, sine it has minimum degree at least k. Furthermore, H has i openly disjointpaths between v and ri for every ri 2 ~B and every v 2 V �frig, by the hoie of k and sine G hasi openly disjoint paths between v and ri. Consequently, H is ~-outonneted from ~B, as required,and has size at most 2opt . Thus this is a 2-approximation algorithm.The seond algorithm starts by �nding a minimum-size subgraph (V;M) of minimum degree(k � 1) in G. This is essentially a mathing problem and an be omputed in polynomial time,see [3℄. Then, sequentially for eah of the roots ri, i = 1; : : : ; q, it �nds an inlusionwise minimaledge set Fi � E(G) suh that Hi = (V; M [ F1 [ : : :[ Fi) is i-outonneted from ri and outputsH = (V; M [ F1 [ : : :[ Fq). Clearly, H is ~-outonneted from ~B.Note that every edge f 2 Fi is ritial for i-outonnetivity in Hi. Thus we an apply The-orem 21 to Hi and Fi and onlude that Fi is a forest. Therefore eah Fi (i = 1; : : : ; q) hassize at most (n � 1). Also, we have jM j � opt � bn=2 by Theorem 28. (Note that the optimalk-outonneted subgraph of G is k-edge onneted.) Thus, using opt � nk=2, we getjE(H)j= jM [ F1 [ : : :[ Fqj = jM j+ qXi=1 jFij � (opt � bn=2) + q(n� 1) � (k + 2q � 1)opt=k:This proves Theorem 29. 2As we remarked, Proposition 2 shows we an assume q � k. Therefore (k+2q� 1)=k � 3. Alsonote that in the ase of the single-root problem, when q = 1, the approximation guarantee is 1+ 1k .Referenes[1℄ D.Bienstok, E.F.Brikell and C.L.Monma, \On the struture of minimum-weight k-onnetedspanning networks," SIAM J. Disrete Math. 3 (1990), 320{329.[2℄ B.Bollob�as, Extremal Graph Theory, Aademi Press, London, 1978.[3℄ J.Cheriyan and R.Thurimella, \Approximating minimum-size k-onneted spanning subgraphsvia mathing," to appear in SIAM J. Computing. Preliminary version in Pro. 37th IEEEF.O.C.S. (1996), 292{301.[4℄ J.Cheriyan and R.Thurimella, \Fast algorithms for k-shredders and k-node onnetivity aug-mentation," Journal of Algorithms 33 (1999), 15{50.[5℄ A.Frank, \Connetivity augmentation problems in network design," in Mathematial Program-ming: State of the Art 1994, (Eds. J. R. Birge and K. G. Murty), The University of Mihigan,Ann Arbor, MI, 1994, 34{63.[6℄ A.Frank and �E.Tardos, \An appliation of submodular ows," Linear Algebra and its Applia-tions 114/115 (1989), 320{348.[7℄ G.L.Frederikson and J.Ja'Ja', \On the relationship between the bionnetivity augmentationand traveling salesman problems," Theor. Comp. Si. 19 (1982), 189{201.20
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