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h 10, 2000, Revised versionAbstra
tLet G be a graph whi
h is k-out
onne
ted from a spe
i�ed root node r, that is, G hask openly disjoint paths between r and v for every node v. We give ne
essary and suÆ
ient
onditions for the existen
e of a pair rv; rw of edges for whi
h repla
ing these edges by a newedge vw gives a graph that is k-out
onne
ted from r. This generalizes a theorem of Biensto
k,Bri
kell and Monma on splitting o� edges while preserving k-node-
onne
tivity.We also prove that if C is a 
y
le in G su
h that ea
h edge in C is 
riti
al with respe
t tok-out
onne
tivity from r, then C has a node v, distin
t from r, whi
h has degree k. This resultis the rooted 
ounterpart of a theorem due to Mader.We apply the above results to design approximation algorithms for the following problem:given a graph with nonnegative edge weights and node requirements 
u for ea
h node u, �nd aminimum-weight subgraph that 
ontains maxf
u; 
vg openly disjoint paths between every pairof nodes u; v. For metri
 weights, our approximation guarantee is 3. For uniform weights, ourapproximation guarantee is minf2; k+2q�1k g. Here k is the maximum node requirement, and qis the number of positive node requirements.1 Introdu
tionA graph is said to be k-out
onne
ted from node r if there exist k openly disjoint paths from r toevery node v, v 6= r. Node r is 
alled the root.Splitting o� two edges ru; rv means deleting ru and rv and adding a new edge uv. Splittingo� is a basi
 operation in graph 
onne
tivity with a broad range of appli
ations. There are anumber of results asserting the existen
e of pairs of edges that 
an be split o� preserving 
ertainedge-
onne
tivity 
onditions or dire
ted node-
onne
tivity 
onditions, see the survey by Frank [5℄.For the node-
onne
tivity of undire
ted graphs, only one general splitting-o� result has beenproved so far. This result is due to Biensto
k, Bri
kell and Monma [1℄, see Theorem 4. (Relatedresults are in [8℄ and [4℄.) We generalize this result from k-node-
onne
ted graphs to k-out
onne
tedgraphs by giving ne
essary and suÆ
ient 
onditions for the existen
e of a pair of edges in
ident tothe root r that 
an be split o� while preserving k-out
onne
tivity from r, see Theorem 3.Mader's theorem (Theorem 19 below) on \
y
les of 
riti
al edges" in k-node-
onne
ted graphshas appli
ations in extremal graph theory, 
onne
tivity augmentation, and approximation algo-rithms, see [2℄, [3℄, [8℄, [11℄. We prove a related but independent result for k-out
onne
ted graphsin Theorem 21.�j
heriyan�math.uwaterloo.
a Department of Combinatori
s and Optimization, University of Waterloo, Water-loo, Ontario, Canada N2L 3G1. Supported in part by NSERC resear
h grant no. OGP0138432.yjordan�
s.elte.hu Department of Operations Resear
h, E}otv}os University, 1088 Budapest, Hungary.znutov�oumail.openu.a
.il Open University, Israel. Supported in part by NSERC resear
h grantno. OGP0138432. 1



We use the above stru
tural results to design and analyze approximation algorithms for networkdesign problems, see Se
tions 5.2,5.3.In the rest of the Introdu
tion, we dis
uss some network design problems of interest to us, listsome related results, and state our new approximation results. A basi
 problem in network designis to �nd a minimum-weight spanning subgraph of a given graph satisfying 
ertain 
onne
tivity
onditions. For the following general problem no algorithm is known that a
hieves a non-trivialapproximation guarantee in polynomial time.Problem A: Given a graph G with a nonnegative weight fun
tion w on the edges, and node 
onne
-tivity requirements 
(u; v) for ea
h pair of nodes u; v, �nd a minimum-weight spanning subgraphH su
h that for every node pair u; v there exist at least 
(u; v) openly disjoint paths between u andv in H .The 
ase when 
(u; v) � k � 2 for ea
h pair u; v is 
alled the minimum-weight k-node-
onne
tedsubgraph problem. This problem is already NP-hard, even for metri
 weights (that is, when theweight fun
tion satis�es the triangle inequality) and uniform weights (that is, when the weight ofevery edge is the same), and there has been extensive re
ent resear
h on approximation algorithmsfor this and related problems with uniform weights and with metri
 weights, see [1, 3, 7, 9, 10℄. Formetri
 weights, Khuller and Raghava
hari [10℄ developed a (2+2(k�1)=n)-approximation algorithmfor the minimum-weight k-node-
onne
ted subgraph problem. For uniform weights, Cheriyan andThurimella [3℄ gave a (1 + 1k )-approximation algorithm.We design approximation algorithms for the following problem that is sandwi
hed between theminimum weight k-node-
onne
ted subgraph problem and Problem A.Problem B: Given a graph G with a nonnegative weight fun
tion w on the edges, and a noderequirement 
u for ea
h node u, �nd a minimum-weight spanning subgraph H su
h that for everynode pair u; v there exist at least maxf
u; 
vg openly disjoint paths between u and v in H .Some spe
ial 
ases of Problem B have been investigated previously by Nutov et al [13℄. Moti-vated by an appli
ation in so-
alled mobile robot 
ow networks, they gave approximation algorithmsfor 
ases where 
u � 3 for ea
h node u. Stoer [14℄ dis
usses another spe
ial 
ase of Problem Awhere the lo
al requirements are of the form 
(u; v) = minf
u; 
vg, for given node requirements
u. Problem B may �nd appli
ations elsewhere, say, in network design problems where some dis-tinguished nodes are required to have a large number of 
onne
tions to all the other nodes of thenetwork.It is easy to see that a graph H is a feasible solution for Problem B if and only if H is 
u-out
onne
ted from ea
h node u. We 
all Problem B the minimum-weight multi-root out
onne
tedsubgraph problem, or the multi-root problem. Given an instan
e of the multi-root problem, q isde�ned to be the number of nodes u with positive node requirement 
u. Noti
e that Problem Bis a spe
ial 
ase of Problem A, and the minimum-weight k-node-
onne
ted subgraph problem isa spe
ial 
ase of Problem B. Thus Problem B is NP-hard, even for metri
 weights and uniformweights. To the best of our knowledge, the previous best approximation guarantee known for the(general) q-root problem is 2q, even for uniform weights and for metri
 weights; see Se
tion 5.1 fora dis
ussion of the 2q-approximation algorithm.For the metri
 weight multi-root problem (with q roots) we improve the approximation guar-antee from 2q to 3, see Theorem 27. Our approximation algorithm is based on Theorem 17 whi
his a weaker version of Theorem 3 (our splitting-o� result for k-out
onne
tivity). For the uniformweight multi-root problem we improve the approximation guarantee from 2q to minf2; k+2q�1k g,where k is the largest node requirement, see Theorem 29. This implies a (1 + 1k ) approximationalgorithm for the uniform weight single-root problem. This approximation algorithm is based on2



Theorem 21, our rooted 
ounterpart of Mader's theorem.More de�nitions and preliminaries are given in Se
tion 2. The splitting-o� theorem for k-out
onne
tivity is given in Se
tion 3, and the rooted version of Mader's theorem is given in Se
tion 4.The approximation algorithms are in Se
tion 5.2 De�nitions and preliminary resultsGraphs in this paper are undire
ted and have no multiple edges and no loops. A pair of sets A;B is
alled properly interse
ting if ea
h of the three sets A�B, B�A, A\B is nonempty. A separatorof a 
onne
ted graph is a set of nodes whose deletion results in a dis
onne
ted graph. Given a
onne
ted graph G, we say that a node set S separates a pair u; v of nodes, or simply that S is an(u; v)-separator if the two nodes are in di�erent 
omponents of G�S. Two distin
t paths are 
alledopenly disjoint if every node 
ommon to both paths is an end node of both paths. For a graph Gand a pair of nodes u; v, �G(u; v) denotes the maximum number of pairwise openly disjoint pathsbetween u and v. A 
onne
ted graph is said to be k-node-
onne
ted if it has at least k + 1 nodesand it has no separator of 
ardinality k� 1. From now on, k-
onne
ted refers to k-node-
onne
ted.By Menger's theorem, �G(u; v) � k for every pair of nodes u; v in a k-
onne
ted graph G. Let G bea graph that is k-out
onne
ted from a node r (that is, �G(v; r)� k for every node v, v 6= r); a pairof edges in
ident to r is 
alled admissible if splitting o� the pair preserves k-out
onne
tivity fromr, otherwise the edge pair is 
alled illegal. An edge uv of a k-
onne
ted graph H is 
alled 
riti
al(with respe
t to k-
onne
tivity) if H � uv is not k-
onne
ted. Similarly, an edge uv of a graph H 0that is k-out
onne
ted from a node r is 
alled 
riti
al (with respe
t to k-out
onne
tivity) if H 0�uvis not k-out
onne
ted from r. We say that a graph is (
1; :::; 
q)-out
onne
ted from roots (r1; : : : ; rq)if it is simultaneously 
i-out
onne
ted from ea
h ri, i = 1; :::; q. Given an instan
e of Problem B,the ve
tor ~
 = (
1; :::; 
q) of positive node requirements is 
alled the 
onne
tivity requirement ve
torand the 
orresponding ve
tor ~R = (r1; : : : ; rq) is 
alled the root ve
tor. We shall always assume,without loss of generality, that 
1 � 
2 � ::: � 
q holds for the 
onne
tivity requirement ve
tor.For a graph G = (V;E) and a nonempty set X � V of nodes, �G(X) or �(X) denotes the setfy 2 V �X : xy 2 E for some x 2 Xg of neighbours of X . The following proposition is well-known(see [8, Lemma 1.2℄) and is easy to verify by 
ounting the 
ontribution of ea
h node to the twosides of the inequality.Proposition 1 In a graph H = (V;E) every pair X; Y � V satis�es�(X) + �(Y ) � �(X \ Y ) + �(X [ Y ): (1)Moreover, if equality holds, then there are no edges from X � Y to Y �X � �(X \ Y ). 2A �-approximation algorithm for a minimization problem runs in polynomial time and deliversa solution whose value is always within the fa
tor � of the optimum value. The quantity � is 
alledthe approximation guarantee of the algorithm.2.1 Irredu
ible node requirementsSome entries in a 
onne
tivity requirement ve
tor may be redundant: no matter what is the under-lying graph, we 
an reset them to zero (and get a shorter ve
tor) without 
hanging the problem. Inthis se
tion we 
hara
terize when su
h a redu
tion is possible. This will enable us later to assumethat the number q of roots is at most the value of the largest node requirement.3



A 
onne
tivity requirement ve
tor ~
 = (
1; : : : ; 
q) is 
alled n-redu
ible if it has a proper sub-ve
tor ~
� that implies the 
onne
tivity requirements of ~
. That is, for every graph G on n nodesand with an arbitrary 
hoi
e of q roots we have that G is ~
-out
onne
ted from the roots if and onlyif it is ~
�-out
onne
ted from the (redu
ed ve
tor of) roots. Otherwise, ~
 is 
alled n-irredu
ible. Forexample, ~
 = (2; 1) is n-redu
ible for every n sin
e a 2-out
onne
ted graph is 1-out
onne
ted fromevery node. The next result 
hara
terizes redu
ible requirement ve
tors.Proposition 2 Let ~
 = (
1; : : : ; 
q) be a 
onne
tivity requirement ve
tor with 
1 � : : : � 
q. Then~
 is n-irredu
ible if and only if(1) 
j � j for 1 � j � q, and(2) 
1 � n+ 
q � 32 .Proof: First observe that a graph G that is (
1; : : : ; 
q)-out
onne
ted from a ve
tor of q root nodesmust be `-
onne
ted, where ` = minfq; 
1; : : : ; 
qg.Let G be a graph on n nodes whi
h is (
1; : : : ; 
q)-out
onne
ted from (r1; : : : ; rq). Suppose that
ondition (1) fails. Let ` be the lowest index su
h that for j = `+ 1 we have 
j < j. Clearly, ` � 1,sin
e 
1 � 1. Note that 
` � `. Let ~
� = (
1; : : : ; 
`) and let ~R� = (r1; : : : ; r`). Suppose that H isa graph that is ~
�-out
onne
ted from ~R�. Ea
h of the roots in ~R� has 
onne
tivity requirement atleast `, and also the number of roots in ~R� is `. By our �rst observation H is `-
onne
ted, and so�H(v; ri) � `, for ea
h node v 2 V (H)� frig and ea
h root ri, i = `+ 1; : : : ; q (i.e., ea
h root in ~Rnot in ~R�). Then H is ~
-out
onne
ted from ~R. Hen
e, if 
ondition (1) fails, then ~
 is redu
ible.Suppose that 
ondition (2) fails. Clearly, we may assume q � 2. We 
laim that every sub-graph satisfying the requirements ~
� = (
1; : : : ; 
q�1) is 
q-out
onne
ted from rq. Suppose H is a
ounterexample to this 
laim. Then there exists a node w in H with �H(rq; w) � 
q � 1. Thusthere exists a separator S in H (or, if wrq 2 E(H), then in H � wrq) su
h that jSj � 
q � 1 andrq =2 S. Now r1 2 S holds, sin
e H is 
1-out
onne
ted from r1. Let D be a 
omponent of H�S withjV (D)j � (n�
q+1)2 . Clearly, su
h aD exists. Fo
us on a node v in D. Sin
e (V (D)�fvg)[(S�fr1g)separates r1 and v in H (provided we delete the edge r1v, if it exists), we have
1 � �H(r1; v) � jV (D)j � 1 + jSj � 1 + 1 � (n� 
q + 1)2 � 1 + 
q � 1 � n + 
q � 32 ;and this 
ontradi
ts our assumption on 
ondition (2). This proves that an n-irredu
ible requirementve
tor must satisfy both 
onditions (1) and (2).Conversely, we 
an show that a requirement ve
tor ~
 is n-irredu
ible if 
onditions (1) and (2)hold. To see this, we take the proper subsequen
e (
1; : : : ; 
q�1), and show that it does not al-ways imply the 
onne
tivity requirements of ~
; a similar argument applies for any other propersubsequen
e. Let G be a graph on n nodes that 
ontains a separator S su
h that jSj = 
q � 1,fr1; : : : ; rq�1g � S, and rq 62 S, and let S indu
e a 
omplete subgraph in G. Furthermore, let G�S
onsist of two 
omplete graphs C1; C2 with the same number of nodes, and let G 
ontain all possibleedges between S and V (C1)[ V (C2). Then G satis�es the requirement ve
tor (
1; : : : ; 
q�1) (sin
e
ondition (2) holds), but it is not 
q-out
onne
ted from rq. 2Note that 
ondition (1) does not depend on n. This implies that an irredu
ible requirementve
tor must satisfy 
1; : : : ; 
q � q in a graph of arbitrary order. For our multi-root out
onne
tedsubgraph problem it implies that as long as 
q < q holds we 
an reset the smallest positive noderequirement 
q to zero without 
hanging the problem. Thus we 
an assume 
q � q and, in parti
ular,that the number q of roots is not more than the maximum node requirement.4



3 Splitting o� edges from the root in a k-out
onne
ted graphThis se
tion 
ontains our splitting-o� theorem. Given an integer k � 1, a graph H , and a spe
i�ednode r of H , Property (T) is said to hold ifH is k-
onne
ted, and there exists a node set T su
h that jT j = k, r 2 T , and thenumber of 
omponents of H � T equals degH(r).For example, Property (T) holds for a 
omplete bipartite graph Kk;p, p � k � 1, with r a nodeof degree p. If we take a graph H that satis�es property (T) and split o� any pair of edges in
identto r, then the resulting graph is not k-out
onne
ted from r. (To see this, 
onsider any edge pairrv; rw and let Dv; Dw be the node sets of the 
omponents 
ontaining v; w respe
tively in H � T .If we split o� rv; rw, then r 
an be separated from Dv [ Dw (in the new graph ) by deleting thek � 1 nodes in T � frg.)Theorem 3 Let G = (V;E) be a graph with jV j � 2k whi
h is k-out
onne
ted from a root noder 2 V and suppose that deg(r) � k + 2 and every edge in
ident to r is 
riti
al with respe
t tok-out
onne
tivity from r. Then either(a) G satis�es Property (T), or(b) there exists a pair of edges in
ident to r that 
an be split o� preserving k-out
onne
tivity.Note that the 
ondition jV j � 2k in the theorem is ne
essary. (To see this take the 
ompletebipartite graph Kk�1;k�1 and an additional root node r whi
h is adja
ent to all the other nodes.)Our theorem generalizes the following theorem of Biensto
k et al [1℄.Theorem 4 ([1℄) Let G = (V;E) be a k-
onne
ted graph with jV j � 2k and let r 2 V be a nodesu
h that deg(r) � k+2 and every edge in
ident to r is 
riti
al with respe
t to k-
onne
tivity. Theneither(a) G satis�es Property (T), or(b) there exists a pair of edges in
ident to r that 
an be split o� preserving k-
onne
tivity. 2We remark that Theorem 4 here di�ers from the statement of [1, Theorem 3℄. In [1℄ part (a)is repla
ed by part (a0): \for any edge pair ru; rv, there exists another edge pair sw; sz su
h thatsplitting o� both edge pairs preserves k-
onne
tivity." Part (a) implies part (a0) by a short proof,but part (a0) does not imply part (a). However, part (a) is impli
itly proved in [8℄.To see that Theorem 3 implies Theorem 4 we need two observations: (i) if we split o� a pair ofedges from a node r in a k-
onne
ted graph, and this preserves k-out
onne
tivity from r, then wepreserve k-
onne
tivity as well (otherwise, if the resulting graph has a separator S with jSj < k,then r 2 S by k-out
onne
tivity, but then S is a separator of the original graph); (ii) in a k-
onne
ted graph, an edge in
ident to r is 
riti
al with respe
t to k-
onne
tivity if and only if theedge is 
riti
al with respe
t to k-out
onne
tivity from r.A proof of Theorem 4 
an be extra
ted from our proof of Theorem 3 by omitting Lemmas 9,11, and Claims 12{15.Proof: (of Theorem 3) Let G = (V;E), the root r, and k � 1 be given and assume that G satis�esall the 
onditions in Theorem 3. Let R denote the set of neighbours of r.5



For nonempty subsets X of V � r let N(X) := �G�r(X) and let g(X) := jN(X)j+ jX \ Rj.We �x g(;) = 0. Proposition 1 implies that g(X) + g(Y ) � g(X \ Y ) + g(X [ Y ) holds forevery X; Y � V � r. Moreover, if equality holds, then there is no edge between X � Y andY �X �N(X \ Y ). We shall refer to these properties as the submodularity of g.Lemma 5 G = (V;E) is k-out
onne
ted from r if and only ifg(X) � k for every ; 6= X � V � r: (2)Proof: We prove one dire
tion; the other one is easy. Suppose that G satis�es (2), but is notk-out
onne
ted from r. Then there is a node v 6= r with �G(v; r) < k. By Menger's theorem, eitherG or G� vr has a (v; r)-separator C with jCj � k � 1 or jCj � k � 2, respe
tively. Let X be thenode set of the 
omponent 
ontaining v in G�C or in G�vr�C. Then g(X) < k, a 
ontradi
tionto (2). 2Re
all that a pair of edges in
ident to r is 
alled admissible if splitting o� the pair preservesthe k-out
onne
tivity, otherwise the edge pair is 
alled illegal. By Lemma 5, a pair of edges ru; rvis admissible if and only if removing ru and rv and adding the new edge uv preserves (2). For apair of edges rx; ry let G0 be the graph obtained from G by splitting o� rx; ry. If rx; ry is illegal,there must be a node set X � V � r with g0(X) < k (here g0 denotes g on G0). But in G we haveg(X) � k, hen
e it 
an be seen that a pair rx; ry is illegal if and only if there exists a set X � V �rwith one of the following properties:(i) x; y 2 X , g(X) � k + 1,(ii) x 2 X , y 2 N(X), g(X) = k, or(iii) y 2 X , x 2 N(X), g(X) = k.We 
all a nonempty set X � V � r dangerous if g(X) � k + 1. If g(X) = k holds then we 
allX 
riti
al. Observe that for every neighbour x of the root, the edge rx is 
riti
al with respe
t tok-out
onne
tivity (thus, by Lemma 5, (2) fails if rx is removed from G), and hen
e there exists a
riti
al set X � V � r with x 2 X . The next lemma establishes some properties of dangerous and
riti
al sets.Lemma 6 (1) The interse
tion and union of two interse
ting 
riti
al sets are both 
riti
al;(2) for every node x 2 R, there exists a unique maximal 
riti
al set 
ontaining x, denoted Sx;for x; y 2 R and the two sets Sx; Sy, either Sx = Sy or Sx \ Sy = ; holds;(3) for two properly interse
ting maximal dangerous sets X; Y , we have g(X \Y ) = k and g(X [Y ) = k + 2;(4) if X is a maximal dangerous set and Y is a 
riti
al set, then either X \ Y = ; or Y � X;(5) if D1; D2 are distin
t maximal dangerous sets 
ontaining a node x 2 R, then D1 \D2 = Sx.Proof: (1) Let X and Y be two 
riti
al sets with X \ Y 6= ;. By 
riti
ality we have g(X) =g(Y ) = k and (2) (in Lemma 5) implies g(X \ Y ); g(X [ Y ) � k. Applying the submodularity of gthis gives k + k = g(X) + g(Y ) � g(X \ Y ) + g(X [ Y ) � k + k:6
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lFigure 1: An example illustrating the notation in the proof of Theorem 3. Here k = 2. For aneighbour v of r, Sv is a maximal set 
ontaining v with g(Sv) = k. For a pair of neighbours u; v ofr,Muv (if it exists) is a maximal set 
ontaining u; v with g(Muv) � k+1. In the example, Sv = fvgfor ea
h neighbour v of r ex
ept h; `.Hen
e equality holds everywhere and g(X \ Y ) = k and g(X [ Y ) = k follow.(2) Sin
e the edge rx is 
riti
al, there is a 
riti
al set 
ontaining the node x 2 R. The maximal
riti
al set 
ontaining x is unique by part (1).The se
ond statement follows from part (1) and the �rst statement, sin
e Sx \ Sy 6= ; impliesthat Sx [ Sy is a 
riti
al set.(3) We have g(X) � k + 1, g(Y ) � k + 1, X \ Y 6= ;, and g(X \ Y ) � k by (2) (in Lemma 5).Moreover, sin
e X�Y 6= ; 6= Y �X and X; Y are maximal dangerous sets we get g(X[Y ) � k+2.Applying the submodularity of g givesk + 1 + k + 1 � g(X) + g(Y ) � g(X \ Y ) + g(X [ Y ) � k + k + 2:Hen
e equality holds everywhere and g(X \ Y ) = k and g(X [ Y ) = k + 2 follow.(4) We have g(X) � k+ 1 and g(Y ) = k. If X \ Y 6= ; and Y �X 6= ; then the maximality of Ximplies that X and Y properly interse
t and g(X [ Y ) � k + 2. Applying the submodularity of gthis leads to a 
ontradi
tion:k + k + 1 � g(X) + g(Y ) � g(X \ Y ) + g(X [ Y ) � k + k + 2:(5) By part (4) we have Sx � Di for i = 1; 2. Suppose D1\D2 6= Sx. Then, sin
e D1; D2 properlyinterse
t, part (3) implies D1 \D2 is a 
riti
al set that properly 
ontains Sx, and this 
ontradi
tsthe maximality of Sx. This proves the lemma. 2Fo
us on a �xed node pair i; j 2 R (and note that Si = Sj may hold for di�erent nodes i; j 2 R).If there exists a dangerous set X 
ontaining both i and j, then let Mij be de�ned as an (arbitrarily
hosen) maximal dangerous set with i; j 2 Mij . In this 
ase, we have Si � Mij , Sj � Mij , byLemma 6(4). To illustrate our notation, note that if Property (T) holds for some graph H , thenthe sets Si are the 
onne
ted 
omponents of H�T , Si\R = fig for all i 2 R, and for all i 6= j 2 RN(Si) is disjoint from Sj and Mij = Si [ Sj (so Mij always exists). Also see Figure 1.Two disjoint sets A;B � V � r are said to be adja
ent if there is an edge with one end in Aand the other end in B, otherwise A and B are said to be nonadja
ent. Note that A and B areadja
ent if and only if N(A)\ B 6= ;.The next lemma is the key for demonstrating Property (T).Lemma 7 Let i; j; ` be nodes in R su
h that the sets Si; Sj; S` are distin
t, and the setsMij ;Mi`;Mj`exist and are distin
t. If Si; Sj are nonadja
ent, thenN(Si) = N(Sj) and jN(Si)j = k � 1:7



Proof: First observe thatMij\S` = ;, otherwiseMij � S` (by Lemma 6(4)), but thenMij\Mi` �Si[S`, a 
ontradi
tion to Lemma 6(5). Similarly, Mi`\Sj = ; =Mj`\Si. That is, every pair amongthe three sets Mij ;Mi`;Mj` is properly interse
ting. Now we apply the submodular inequality ofg to A = Mij and B = Mi` [Mj`, noting that A \ B = Si [ Sj (by Lemma 6(5)), g(A) � k + 1(sin
e A is a dangerous set), g(B) = k + 2 (by Lemma 6(3)), g(A [B) � k + 2 (by maximality ofthe dangerous set A), g(A \B) � (k + 1) (by maximality of the 
riti
al set Si).k + 1 + k + 2 � g(A) + g(B) � g(A \B) + g(A [B) = g(Si [ Sj) + g(A [B) � k + 1+ k + 2:This means equality holds everywhere, and so g(Si [ Sj) = k+ 1. Moreover, Si and Sj are disjointnonadja
ent sets with jN(Si)j, jN(Sj)j � k � 1, hen
e,g(Si [ Sj) = g(Si) + g(Sj)� jN(Si)\N(Sj)j � 2k � (k � 1):Thus g(Si [ Sj) = k + 1 implies jN(Si) \ N(Sj)j = k � 1. Sin
e both N(Si) and N(Sj) have
ardinality at most k � 1, we have N(Si) = N(Sj) and jN(Si)j = k � 1, as required. 2Lemma 8 Suppose that jSi \ Rj = 1, for all i 2 R, and suppose that every pair of edges in
identto the root is illegal. Let i; j 2 R be su
h that Si; Sj are nonadja
ent. ThenN(Si) = N(Sj) and jN(Si)j = k � 1:Proof: We will show that the 
onditions of Lemma 7 hold for i; j and some ` 2 R. Note that forevery node pair u; v 2 R, the sets Su; Sv are distin
t by the assumption of the lemma.The illegal pair ri; rj does not satisfy 
ases (ii) or (iii) (stated after Lemma 5), sin
e Si; Sj arenonadja
ent. Hen
e, the maximal dangerous set Mij of 
ase (i) exists. We 
laim that there is anode ` 2 R�Mij su
h that both the maximal dangerous sets Mi`;Mj` exist. Otherwise, for ea
h` 2 R �Mij , either Mi` or Mj` does not exist. Suppose that Mj` does not exist (the argument issimilar if Mi` does not exist). Then the illegality of rj; r` shows that Sj and S` are adja
ent, sojN(Sj)\S`j � 1. Note that S` is disjoint fromMij by Lemma 6(4), hen
e, N(Sj)\S` � N(Mij)\S`,and so jN(Mij) \ S`j � 1 = jS` \ Rj. Thus ea
h distin
t set S` (` 2 R) 
ontributes at least onenode to (Mij \R) [N(Mij), giving the 
ontradi
tiong(Mij) = jMij \Rj+ jN(Mij)j � jRj � k + 2:Hen
e, there is an ` 2 R �Mij su
h that both Mi`;Mj` exist. Clearly, Mi` and Mj` are distin
t,otherwise this set 
ontains Si[Sj (by Lemma 6(4)), and soMi`\Mij 
ontains Si[Sj , whi
h is im-possible by Lemma 6(5) (with D1 =Mi`; D2 =Mij). Sin
e Si; Sj; S` are distin
t and Mij ;Mj`;Mi`exist and are distin
t, Lemma 7 
an be applied and the statement follows. 2Lemma 9 Let i; j; ` be nodes in R su
h that the sets Si; Sj; S` are distin
t, and the setsMij ;Mi`;Mj`exist and are distin
t. Then N(Sj) \ Si = N(S`) \ Si:Proof: First observe that Mij \ S` = Mi` \ Sj = Mj` \ Si = ;, by Lemma 6. That is, everypair among the three sets Mij ;Mi`;Mj` is properly interse
ting. Take Mji and Mj`, and use thesubmodularity of g and (2):k + 1 + k + 1 � g(Mji) + g(Mj`) � g(Mji \Mj`) + g(Mji [Mj`) � k + (k + 2);8



where g(Mji [Mj`) � k + 2 follows from the maximality of Mji. Thus equality holds everywhereand, again by the submodular property of g, there is no edge between Mj` �Mji and Mji �Mj` �N(Mji\Mj`) =Mji�Mj`�N(Sj). This means there is no edge between S` and Si�N(Sj) (sin
eLemma 6(4),(5) imply S` �Mj` �Mji and Si �Mji �Mj`) and soN(S`) \ Si � N(Sj) \ Si:The above argument applies to any two of the three sets Mij ;Mi`;Mj`. We apply it to M`i andM`j and 
on
lude that there is no edge between M`j �M`i � Sj and M`i �M`j �N(M`i \M`j) �Si �N(S`). Hen
e, N(Sj) \ Si � N(S`) \ Si:This 
ompletes the proof. 2Lemma 10 Let A;B � V � r satisfy A \B = ;, g(B) = k, and B �N(A) 6= ;. ThenjN(A)\Bj � jN(B)\ Aj:Proof: Let W = B �N(A) 6= ;. Note that g(W ) � k by (2), g(B) = k, and W \ R � B \ R.Thus jN(B)j � jN(W )j. The lemma follows from the following inequalities:jN(B)\Aj+ jN(B)�Aj = jN(B)j �jN(W )j = jN(W )\N(B)j+ jN(W )�N(B)j � jN(B)�Aj+ jN(A)\ Bj;where the last inequality holds sin
e N(W )\N(B) � N(B)�A and N(W )�N(B) � N(A)\B.2 In what follows we assume that every pair ru; rv of edges is illegal. From this we shall dedu
ejSx\Rj = 1 for ea
h x 2 R. Using this fa
t, a short argument will �nish the proof by showing thatproperty (T) holds for G.Lemma 11 Suppose that every pair of edges in
ident to the root is illegal. Let i; j be a pair ofnodes in R su
h that there is no set Mij (that is, there exists no dangerous set X with i; j 2 X).Then:(1) Either (Si \R) � N(Sj), or (Sj \ R) � N(Si).(2) If jSi \Rj � jSj \ Rj, then jN(Si) \ Sj j � jSj \Rj:Proof: First, note that Si 6= Sj , otherwise Si is a dangerous set with i; j 2 Si.(1) If part (1) of the lemma fails, then there is a node w 2 (Si \ R) � N(Sj) and a node z 2(Sj \R)�N(Si). The edge pair rw; rz is illegal, so one of the 
ases (i),(ii),(iii) for illegal edge pairs(stated after Lemma 5) must apply. It is easily seen that 
ases (ii),(iii) do not apply to rw; rz,sin
e every 
riti
al set X in
luding w (respe
tively, z) is 
ontained in Si (respe
tively, Sj). Hen
e,
ase (i) must apply to rw; rz, so there is a dangerous set X with w; z 2 X . But then X is adangerous set interse
ting both Si and Sj , so Lemma 6(4) gives Si [ Sj � X . This 
ontradi
ts theassumption of the lemma.(2) Either (Sj \ R) � N(Si), in whi
h 
ase part (2) follows dire
tly, or Sj � N(Si) is nonemptyand by part (1) of the lemma, jN(Sj) \ Sij � jSi \ Rj � jSj \ Rj, in whi
h 
ase part (2) followssin
e jN(Si) \ Sj j � jN(Sj)\ Sij by Lemma 10 (with A = Si, B = Sj). 2Let us �x a node x 2 R su
h that jSx \Rj is maximum.9



Claim 12 There exists a node y 2 R� Sx su
h that Mxy exists.Proof: Suppose that for ea
h y 2 R� Sx there is no set Mxy . Then Lemma 11 implies jN(Sx) \Sy j � jSy \ Rj. Thus ea
h distin
t Sy (y 2 R � Sx) 
ontributes at least jSy \ Rj nodes to N(Sx),giving the 
ontradi
tion g(Sx) = jSx \Rj+ jN(Sx)j � jRj � k + 2: 2Now, �x a y 2 R� Sx su
h that Mxy exists and subje
t to this jSy \ Rj is maximum.Claim 13 There exists a node z 2 R �Mxy su
h that both Mxz and Myz exist and are distin
t,and moreover, jN(Mxy) \ Sz j < jSz \Rj:Proof: Note that R �Mxy 6= ; sin
e jMxy \ Rj � k + 1 < jRj. Suppose that ea
h z 2 R �Mxyviolates the inequality in the 
laim, and so satis�es jN(Mxy)\ Sz j � jSz \Rj: Then ea
h distin
tSz (z 2 R�Mxy) 
ontributes at least jSz\Rj nodes to N(Mxy), giving the 
ontradi
tion g(Mxy) =jMxy \ Rj + jN(Mxy)j � jRj � k + 2: Hen
e, there is a z 2 R �Mxy that satis�es the inequalityin the 
laim; let us �x this z. We 
laim that both Mxz and Myz exist. Suppose that Mxz doesnot exist. Then Lemma 11 implies jN(Sx) \ Sz j � jSz \ Rj. Sin
e Sz is disjoint from Mxy byLemma 6(4) and Sx �Mxy , we have N(Sx) \ Sz � N(Mxy) \ Sz , and this gives the 
ontradi
tionjN(Mxy) \ Sz j � jN(Sx) \ Szj � jSz \ Rj. Hen
e, Mxz exists. Note that jSy \ Rj � jSz \ Rj,by our 
hoi
e of y; z. It 
an be seen that Myz exists, otherwise Lemma 11 gives the 
ontradi
tionjN(Mxy) \ Sz j � jN(Sy)\ Sz j � jSz \Rj. Finally, note that Mxz and Myz are distin
t, otherwise,this set 
ontains Sx [Sy , and soMxz \Mxy 
ontains Sx [Sy, a 
ontradi
tion to Lemma 6(5) (withD1 =Mxy ; D2 =Mxz). 2Let us pi
k a z 2 R�Mxy that satis�es the properties veri�ed in Claim 13.Claim 14 Ea
h of the three pairs of sets Sx; Sy or Sx; Sz or Sy; Sz is nonadja
ent.Proof: Clearly, the sets Sx; Sy; Sz are distin
t, and all three sets Mxy;Mxz;Myz exist and aredistin
t, so these sets satisfy the 
onditions of Lemma 9. Applying Lemma 9 three times we getN(Sy) \ Sx = N(Sz) \ Sx, N(Sx) \ Sy = N(Sz) \ Sy, N(Sx) \ Sz = N(Sy) \ Sz. Let nx; ny ; nzdenote the 
ardinalities of these three sets, respe
tively. Sin
e z satis�es the inequality in Claim 13,Sz�N(Sx) = Sz�N(Sy) � Sz�N(Mxy) is nonempty. Then Lemma 10 (with A = Sx[Sy , B = Sz)impliesnz = jN(Sx)\Sz j = jN(Sx[Sy)\Sz j � jN(Sz)\(Sx[Sy)j = jN(Sz)\Sxj+ jN(Sz)\Sy j = nx+ny :Moreover, Sx �N(Sz) is nonempty, sin
e otherwise we havejN(Mxy) \ Sz j � nz = jN(Sx) \ Sz j � nx = jN(Sz) \ Sxj � jSxj � jSx \Rj � jSz \Rj;whi
h 
ontradi
ts the inequality in Claim 13. Applying Lemma 10 (with A = Sy [ Sz , B = Sx)implies nx = jN(Sz) \ Sxj = jN(Sy [ Sz) \ Sxj � jN(Sx)\ (Sy [ Sz)j = ny + nz :Hen
e, nx � nx + 2ny, and so ny = 0. Therefore, Sx and Sy are nonadja
ent. Then Lemma 9implies that ea
h of the three pairs of sets Sx; Sy or Sx; Sz or Sy; Sz is nonadja
ent. 2Claim 15 N(Sx) = N(Sy) = N(Sz) and this set has 
ardinality k�1. Consequently, jSx\Rj = 1.10



Proof: The 
laim follows by applying Lemma 7 twi
e, �rst with i = x; j = y; ` = z and then withi = x; j = z; ` = y. Hen
e, jN(Sx)j = k � 1. Sin
e Sx is a 
riti
al set, we must have jSx \ Rj = 1,be
ause k = g(Sx) = jSx \Rj+ jN(Sx)j = jSx \Rj+ (k � 1). 2This 
on
ludes the �rst part of the proof of Theorem 3: we must have jSi \Rj = 1 for all i 2 R,sin
e 1 � jSi\Rj � jSx\Rj = 1. In other words, Si 6= Sj for every pair of (distin
t) nodes i; j 2 R.(This property is mu
h simpler to dedu
e when G is k-
onne
ted, as in Theorem 4.)First suppose that for every pair of nodes u; v 2 R, Su and Sv are nonadja
ent. Then for everypair u; v 2 R, Lemma 8 applies, and this implies that Property (T) holds: we take T = N(Su)[frg,and note that T is a separator of G with r 2 T and jT j = k. Let us show the following: V =([i2RSi)[T , G is k-
onne
ted, and the number of 
omponents of G�T equals deg(r). If there is anode v 2 V � ([i2RSi)�T , then note that by k-out
onne
tivity v has a path to r in G� (T �frg),and so for the neighbour ` of r in this path we must have v 2 S`, whi
h is a 
ontradi
tion. Clearly,G � T has jRj = deg(r) 
omponents. G is k-
onne
ted sin
e it has � jRj � k + 2 openly disjointpaths between every pair of nodes in T , and for every node v 2 V � T , G has k openly disjointpaths between v and T (by Menger's theorem and (2)). Thus the proof of the theorem is 
ompletewhen Su; Sv are nonadja
ent, for ea
h pair u; v 2 R.Lemma 16 If Sx; Sy are adja
ent for some x; y 2 R then Sy � N(Sx) (and similarly, Sx � N(Sy)).Proof: Let Q denote N(Sx) and for a 
ontradi
tion suppose that Sy � Q 6= ;. Let Ra � R � xbe the set of nodes z 2 R su
h that Sz ; Sx are adja
ent, and let a = jRaj. Let b = jRj � a. Noti
ethat for any set Si with i 2 R � Ra we have N(Si) = Q by Lemma 8. Also, Si; Sy are adja
ent.Applying Lemma 10 with A = Si2R�Ra Si and B = Sy (so B �N(A) = Sy � Q 6= ;) givesjN(A)\Bj = jQ \ Sy j � jN(B)\Aj = jN(Sy)\ ( [i2R�Ra Si)j � b:Thus Sy 
ontributes at least b nodes to Q. Clearly, every other set Sz whi
h is adja
ent to Sx
ontributes at least one node to Q. Sin
e these sets are pairwise disjoint, we get k � 1 � jQj �b+ a� 1 = jRj � 1 � k + 1, a 
ontradi
tion. 2In what follows we show that adja
ent pairs Su; Sv (u; v 2 R) do not exist when jV j � 2k.For a 
ontradi
tion, suppose that there is a pair u; v 2 R su
h that Su and Sv are adja
ent. LetQ = N(Su), P = N(Sv). Clearly, P 6= Q. Lemma 16 implies that Q 
ontains every set Si; i 2 Rwhi
h is adja
ent to Su. Moreover, every set Sj ; j 2 R that is not adja
ent to Su has N(Sj) = Q(by Lemma 8). Hen
e, ea
h su
h Sj is adja
ent to Sv, and therefore P 
ontains Sj . Finally,observe that V = P [ Q [ frg. Otherwise, if there is a node v 2 V � (P [ Q), v 6= r, thennote that by k-out
onne
tivity v has a path to r in G � Q; for the neighbour ` of r in this pathnote that S` is nonadja
ent to Su and so we have N(S`) = Q and v 2 S` � P . Consequently,jV j = jP [ Qj+ 1 � 2k� 1 (sin
e jP j, jQj � k � 1), and this 
ontradi
ts the assumption jV j � 2k.This 
ompletes the proof of Theorem 3. 2If we drop the 
ondition jV j � 2k in Theorem 3, then we obtain a weaker result (see Theorem 17below). Our approximation algorithm in Se
tion 5.2 uses the weaker result rather than Theorem 3.Unfortunately, a dire
t proof of the weaker result is not signi�
antly shorter or simpler than theproof of Theorem 3. (A dire
t proof of the weaker result uses Lemmas 6{11 and Claims 12{15, aswell as some additional steps.) 11



Theorem 17 Let G = (V;E) be a graph whi
h is k-out
onne
ted from a root node r 2 V andsuppose that deg(r) � k+2 and every edge in
ident to r is 
riti
al with respe
t to k-out
onne
tivityfrom r. Suppose that none of the edge pairs in
ident to r 
an be split o� preserving k-out
onne
tivity.Then G is k-
onne
ted.Proof: Let us use the notation in the proof of Theorem 3. Note that the 
ondition jV j � 2k isused only in the last paragraph of that proof.Suppose that G is not k-
onne
ted and let C be a separator with jCj < k. Sin
e jRj � k + 2,and jSi \ Rj = 1 for every i 2 R (by Claim 15), there exists an x 2 R with Sx \ C = ;. LetQ = N(Sx) and let A be the set of those neighbours y of r for whi
h Sx and Sy are nonadja
ent.By Lemma 8 we have N(Sy) = Q for ea
h y 2 A. Let W = Sy2A Sy [ Sx. It is easy to see thatV = Q [W [ r.For ea
h node v 2 Si, i = x or i 2 A, there exist k openly disjoint paths from v to Q [ rin the subgraph of G indu
ed by Si [ Q [ r (by Menger's theorem and (2)). Fo
us on G � C.Sin
e Sx \ C = ; and (Q [ r) � C 6= ;, there exists a 
omponent B (of G � C) that 
ontainsSx [ ((Q [ r) � C). Moreover, (in G � C) ea
h node v 2 Si � C, i 2 A, has at least one path to(Q [ r)� C, hen
e, B 
ontains W � C. Thus V = Q [ r [W � C [ B, and this 
ontradi
ts ourassumption that C is a separator of G. 2To illustrate that the problem in Theorem 3 is more general than the problem in Theorem 4,
onsider the following strengthening: if there exists an admissible edge pair in
ident to r in Theo-rem 4 and deg(r) � 2k� 1, then any �xed edge rv is part of an admissible edge pair. This fa
t wasdedu
ed in [8℄, where a related augmentation problem was 
onsidered. Here is an example showingthat su
h a strengthening of Theorem 3 fails even if we assume deg(r) � k2 � 2k + 2: take k � 1disjoint 
opies of a k-
onne
ted graph and two additional nodes r; x. Conne
t r to ea
h 
opy byk � 1 edges ea
h, and 
onne
t x to ea
h 
opy by one edge. Also, add the edge rx. This graph isk-out
onne
ted from r, deg(r) = k2 � 2k + 2, every edge in
ident to r is 
riti
al, there exists anadmissible edge pair in
ident to r, but rx is in no admissible edge pair.In several appli
ations of splitting-o� theorems one may assume that the edges to be split o�are 
riti
al with respe
t to the 
onne
tivity property to be preserved. This is the 
ase when weapply Theorem 3 in Se
tion 5 and also in [1℄. However, for other appli
ations, it may be useful tohave a more general result when edges in
ident to the root r are not ne
essarily 
riti
al.Given an integer k � 1, a graph H , and a spe
i�ed node r of H , Property (T 0) is said to hold ifH is k-
onne
ted, and there exists a node set T su
h that jT j = k, r 2 T , the numberof 
omponents of H � T equals degH(r)� 1 and there is an edge rt with t 2 T .Theorem 18 Let G = (V;E) be a graph with jV j � 2k whi
h is k-out
onne
ted from a root noder 2 V and suppose that deg(r) � k + 3. Then either(a) G satis�es Property (T), or G satis�es Property (T 0), or(b) there exists a pair of edges in
ident to r that 
an be split o� preserving k-out
onne
tivity.Proof: If every edge in
ident to r is 
riti
al with respe
t to k-out
onne
tivity from r, then we aredone by Theorem 3. Otherwise, there is an edge rv for whi
h G� rv is k-out
onne
ted from r. Ifthere is an edge rw in G � rv for whi
h G � rv � rw is still k-out
onne
ted from r, then 
learlyrv; rw is an admissible pair of edges in G. Otherwise, all the edges in
ident to r are 
riti
al inG�rv. Then Theorem 3 implies that either G�rv has an admissible pair of edges rx; ry, or G�rv12



satis�es property (T) with some separator T , jT j = k, r 2 T . Now there are two possibilities. Ifv 2 T then property (T 0) holds in G, and moreover, it 
an be seen that G has no admissible pairof edges. If v 2 V � T , then v belongs to some 
omponent D of V � T . Let rz be an edge in Gwith z =2 D. We 
laim that splitting o� the pair rv; rz preserves k-out
onne
tivity from r. Thisfollows from Menger's theorem, sin
e G� rv satis�es property (T), so the graph obtained from Gby splitting o� rv; rz has k openly disjoint paths between every pair of nodes in T and has k openlydisjoint paths from ea
h node y 2 V � T to T . This proves the theorem. 24 A rooted 
ounterpart of Mader's theoremIn this se
tion we prove a rooted version of Mader's theorem on \
y
les of 
riti
al edges" in k-
onne
ted graphs. First we state Mader's [11℄ result and show an appli
ation we shall need later.Theorem 19 ([11℄) Let G be a k-
onne
ted graph, and let C be a 
y
le of G su
h that ea
h edgein C is 
riti
al with respe
t to k-
onne
tivity. Then degG(v) = k for some node v 2 C. 2The next lemma illustrates a typi
al appli
ation of Theorem 19.Lemma 20 Let G = (V;E) be a graph that is k-out
onne
ted from a root node r, and let R be theset of neighbours of r. Then G 
an be made k-
onne
ted by adding at most jRj � 1 new edges insu
h a way that ea
h new edge has both ends in R.Proof: We start with two observations. For a 
onne
ted graph G and an (in
lusionwise) minimalseparator S of G, note that any node in S has a neighbour in ea
h 
omponent of G � S. Now
onsider a graph G that is k-out
onne
ted from a root node r. If G is not k-
onne
ted, then everyseparator of 
ardinality less than k must 
ontain r. Consequently, there are two neighbours v; w ofr su
h that G has at most k � 1 openly disjoint paths between v and w.Let G0 = G + F 0 = (V;E [ F 0) where F 0 = fvw j v 2 R;w 2 R; vw 62 Eg; that is, G0 isobtained from G by adding new edges to ensure that R indu
es a 
omplete subgraph. Then G0 isk-
onne
ted, otherwise, by the previous observations, there is a minimal separator S with jSj < k,r 2 S, that separates two neighbours of r, but this is not possible.Take an in
lusionwise minimal subset eF of F 0 for whi
h eG = G+ eF = (V;E[ eF ) is k-
onne
ted.Clearly, every new edge f 2 eF is 
riti
al for the k-
onne
tivity of eG. Thus Theorem 19 implies thateF is a forest. To see this, suppose there is a 
y
le C whose edge set is 
ontained in eF . Then ea
hnode v in
ident to C has degree � k+2 in eG, be
ause v is in
ident to at least k edges of G and to twoedges of C. This 
ontradi
ts Theorem 19, and so eF is a forest. Therefore j eF j � jV ( eF )j�1 � jRj�1.2 Our result, the rooted version of Mader's theorem, is the following.Theorem 21 Let G be a graph that is k-out
onne
ted from a node r, and let C be a 
y
le of Gsu
h that ea
h edge in C is 
riti
al with respe
t to k-out
onne
tivity from r. Then degG(v) = k forsome node v 2 C; v 6= r.The proof of Theorem 21 is based on several lemmas.Lemma 22 Let G = (V;E) be k-out
onne
ted from r. Let v be a neighbour of r with deg(v) � k+1,and let vw 6= vr be an edge. Then there are k openly disjoint paths between v and r in G� vw.13



Proof: For a 
ontradi
tion suppose G�vw has at most k�1 openly disjoint paths between v andr. Then G� vw � vr has a (v; r)-separator S � V with jSj = k � 2. Sin
e deg(v) � k + 1, v musthave a neighbour b in (G�vw�vr)�S. Sin
e there is no path between b and r in (G�vw�vr)�S,there is no path between b and r in (G � (fvg [ S)) either. This 
ontradi
ts the fa
t that G isk-out
onne
ted from r. 2If H is a k-
onne
ted graph and e = vw is a 
riti
al edge of H (with respe
t to k-
onne
tivity),then it is 
lear that H has a separator S of 
ardinality k � 1 su
h that H � e� S has exa
tly two
omponents, one 
ontaining v and the other 
ontaining w. This 
laim extends to a k-out
onne
tedgraph G and an edge e = vw of G, but some 
are is needed sin
e every node x with fewer than kopenly disjoint paths between x and r in G� e may be a neighbour of r. For example, take k = 2,G = K3, r to be any node of G, and e to be the edge of G disjoint from r. Then e is 
riti
al fork-out
onne
tivity from r, but G� e has no 
ut node other than r.Lemma 23 Let G = (V;E) be k-out
onne
ted from r, and let e = vw be a 
riti
al edge (withrespe
t to k-out
onne
tivity from r) su
h that either(i) e is in
ident to r, or(ii) for both ends v and w of e, if that end is a neighbour of r, then that end has degree � k+ 1.Then in G� e there is a separator Se � V � fr; v; wg with jSej = (k� 1) su
h that G� e� Se hasexa
tly two 
omponents, one 
ontaining v and the other 
ontaining w.Proof: Let H = G� e. We 
laim that either �H(v; r) < k or �H(w; r) < k. To see this, note thatH is not k-out
onne
ted from r (sin
e e is 
riti
al), so there exists a set C � E(H)[ V (H) withjCj < k and r 62 C su
h that H �C has � 2 
omponents, but G�C = (H �C)[ feg is 
onne
ted,hen
e v and w must be in di�erent 
omponents of H � C.Fo
us on the end of e, say v, that has at most k� 1 openly disjoint paths to r in H . If e = vr,then note that v and r are not adja
ent in H , so by Menger's theorem the required separatorSe � V � fr; vg exists. Otherwise, e is not in
ident to r. Then note that v 
annot be a neighbourof r in G, otherwise by assumption (ii) v has degree � k+ 1 in G and so by Lemma 22 G� e = Hhas k openly disjoint paths between v and r. Again, by Menger's theorem, H has a v; r separatorS with jSj = k � 1. Moreover, w 62 S be
ause G� S = (H � S)[ fvwg is 
onne
ted. Thus in this
ase we take Se = S. 2The next lemma is similar to the key lemma used by Mader in his proof of Theorem 19, thoughMader does not dis
uss part (4). We in
lude the proof, but skip some details in parts (1),(2) andrefer the reader interested in the detailed proof to [11, Lemma 1℄ or to [2, Lemma 4.4℄.Let G = (V;E) be k-out
onne
ted from r. For a 
riti
al edge e = vw of G satisfying 
ondition (i)or (ii) in Lemma 23, let Se denote a separator of 
ardinality k � 1 as in the lemma, and let thenode sets of the two 
omponents of G� e � Se be denoted by Dv;e and Dw;e, where v 2 Dv;e andw 2 Dw;e.Lemma 24 Let G = (V;E) be k-out
onne
ted from r. Let v 6= r be a node with deg(v) � (k + 1).Let e = vw and f = vx be two edges that are 
riti
al with respe
t to k-out
onne
tivity from r, su
hthat ea
h satis�es 
ondition (i) or (ii) in Lemma 23. Let Se; Dv;e; Dw;e and Sf ; Dv;f ; Dx;f be asde�ned above. Let Z = (Se \Dv;f) [ (Se \ Sf )[ (Sf \Dv;e). Then the following hold:(1) jZj � k � 1. 14



(2) Dw;e \Dx;f = ;.(3) jDw;ej < jDv;f j.(4) If r 2 Dw;e, then r 2 Dv;f .Proof: (1) Suppose that jZj � k� 2. Sin
e deg(v) � k+ 1, there is a neighbour b of v su
h thatb 6= w, b 6= x, and b 62 Z. Now, it 
an be seen that (Dv;e \ Dv;f) � fvg is nonempty, and hen
eZ [ fvg is a separator of G with 
ardinality � k � 1, and also r 62 Z [ fvg. This 
ontradi
ts thefa
t that G is k-out
onne
ted from r. Hen
e, jZj � k � 1.(2) Let Y = (Se \Dx;f) [ (Se \ Sf) [ (Sf \Dw;e). Suppose that Dw;e \Dx;f is nonempty. Thennote that N(Dw;e \Dx;f) � Y , and so G� Y has two or more 
omponents. This is a 
ontradi
tionsin
e r 62 Y andjY j = (jY j+ jZj)� jZj = (jSej+ jSf j)� jZj = (2k� 2)� jZj � (2k� 2)� (k � 1) = (k � 1);where the inequality follows from part (1).(3) First, we 
laim that jSe \ Dv;f j � jSf \ Dw;ej. To see this, let Q = Z � (Se \ Dv;f), i.e.,Q = (Se \ Sf )[ (Sf \Dv;e), and note that Q = Sf � (Sf \Dw;e). Then we havejQj+ jSf \Dw;ej = jSf j = k � 1 � jZj = jQj+ jSe \Dv;f j;where the inequality follows from part (1). This proves the 
laim. Now, 
onsider part (3). We havejDw;ej = jDw;e \Dv;f j+ jDw;e \ Sf j+ jDw;e \Dx;f j� jDw;e \Dv;f j+ jDv;f \ Sej = jDv;f j � jDv;f \Dv;ej� jDv;f j � 1;where the �rst inequality follows from part (2) and the previous 
laim, and the se
ond inequalityfollows sin
e the node v is in Dv;f \Dv;e.(4) For part (4), note that Dw;e = (Dw;e \Dv;f ) [ (Dw;e \ Sf ) [ (Dw;e \Dx;f). If r is in Dw;e,then r is in Dw;e \Dv;f , be
ause r 62 Sf (by hypothesis), and r 62 Dw;e \Dx;f (by part (2)). This
ompletes the proof of the lemma. 2Proof: (of Theorem 21) The proof is by 
ontradi
tion. Let C = v0; v1; v2; : : : ; vp; v0 be a 
y
leof 
riti
al edges, and let every node in V (C) � frg have degree � k + 1. Note that ea
h edge inC satis�es 
ondition (i) or (ii) in Lemma 23. For ea
h edge vivi+1 in C (taking vp+1 = v0), let usrevise our notation to S 0i = Svivi+1 and Di = Dvi;vivi+1 , that is, S 0i � V �fr; vi; vi+1g has 
ardinalityk� 1, G� vivi+1 � S 0i has two 
omponents, and Di is the node set of the 
omponent 
ontaining vi.First suppose that C is in
ident to r. Let r = v0. We 
laim that for ea
h i = 0; 1; 2; 3; : : : ; p;the root r = v0 is in Di. This follows easily by indu
tion on i, applying Lemma 24(4) by takingv = vi, i = 1; 2; : : : ; p. The indu
tion basis is immediate. (Note that Lemma 24 
annot be usedwith v = v0 = r.) Thus our 
laim holds. This gives a 
ontradi
tion, sin
e the 
laim states thatin G � vpv0 � S 0p the root r is in the 
omponent of vp, rather than in the 
omponent of r = v0.Therefore if C is in
ident to r, then this proves the theorem.Now, suppose that C is not in
ident to r. Then note that every node in
ident to C hasdegree at least k + 1. By repeatedly using Lemma 24(3), taking v = vi, i = 1; 2; : : : ; p; 0 we getjD0j < jD1j < : : : < jDp�1j < jDpj < jDp+1j = jD0j; a 
ontradi
tion. This proves the theorem if Cis not in
ident to r. 215
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rFigure 2: Examples showing that a multi-root out
onne
ted graph may have a 
y
le of 
riti
al edgessu
h that ea
h in
ident node has degree � k+1, where k is the maximum 
onne
tivity requirement.(a) The graph is (3; 3)-out
onne
ted from (r1; r2). Ea
h edge is 
riti
al, either for 3-out
onne
tivityfrom r1 or for 3-out
onne
tivity from r2. The 
y
le C has the property stated above.(b) The graph is obtained by taking 3 
opies of the graph H , and identifying the 3 
opies of ea
hnode in S. This graph is (5; 5)-out
onne
ted from (r1; r2), and ea
h edge is 
riti
al. The 
y
le C isdisjoint from r1 and r2, and has the property stated above.We remark that the method in the last paragraph of the proof, based on Lemma 24(3), doesnot suÆ
e to prove Theorem 21, be
ause the 
y
le C may be in
ident to the root r, but Lemma 24
annot be applied with v = r, sin
e the proof of part (1) fails (Z [ fvg does not separate r fromanother node).Theorem 21 does not seem to have any obvious extension to multi-root out
onne
ted graphs.Figure 2 has an example graph with two roots r1; r2 and k = 3 that is k-out
onne
ted from ea
hof r1 and r2 su
h that there is a 
y
le of 
riti
al edges su
h that ea
h in
ident node has degree� 4 > k = 3. Also, Figure 2 has another example graph that is (5; 5)-out
onne
ted from (r1; r2)su
h that the 
y
le of interest is in
ident to no root.The following 
orollary of Theorem 21 gives new stru
tural information for the setup whereanother 
ondition is added to the hypothesis of Theorem 19. For an illustration of this 
orollary,
onsider the graph P4 +K3 (this is the graph H � S in Figure 2(b)), take k = 4, and take C to bea 
y
le of length 3 that has two nodes of degree k + 1 = 5.Corollary 25 Let G be a k-
onne
ted graph. Let C be a 
y
le of G su
h that ea
h edge is 
riti
alwith respe
t to k-
onne
tivity, and C is in
ident to exa
tly one node r with deg(r) = k (so deg(v) �k + 1 for all nodes v 2 V (C)� frg). Then there exists an edge e in C su
h that every separator Sof G� e with jSj = (k � 1) has r 2 S.Proof: Clearly, G is k-out
onne
ted from r. If ea
h edge in C is 
riti
al with respe
t to k-out
onne
tivity from r, then we have a 
ontradi
tion to Theorem 21. Hen
e there is an edge e in Cfor whi
h G� e remains k-out
onne
ted from r. Then for every separator S of G� e with jSj < kwe must have r 2 S. 216



5 Approximation algorithmsIn this se
tion we apply our stru
tural results from the pre
eding se
tions to design approximationalgorithms for Problem B. For the spe
ial 
ase of Problem B with metri
 weights, we give anapproximation algorithm that is based on Theorem 17 (whi
h is a weaker version of Theorem 3).For the spe
ial 
ase of Problem B with uniform weights, we give an approximation algorithm thatis based on Theorem 21. Throughout this se
tion, when dis
ussing a problem, we use G = (V;E)to denote the graph for the instan
e of Problem B, and opt to denote the optimal value of theproblem. We also assume that the instan
e has a feasible solution. Let n denote jV j.5.1 A 2q-approximation algorithm for the multi-root problem with q rootsFirst, we dis
uss previous results and algorithmi
 questions related to Problem B. Consider thespe
ial 
ase of Problem B where q = 1. Here there is only one root node r with positive noderequirement 
r. Let k := 
r. We 
all this the minimum-weight single-root k-out
onne
ted subgraphproblem, or the single-root problem. This problem is NP-hard, even for k = 2 and uniform weightsor metri
 weights. For uniform weights, this follows from the fa
t that a 2-out
onne
ted subgraphof a graph G has at most jV (G)j edges if and only if it is a Hamiltonian 
y
le in G. For metri
weights, a similar redu
tion works by giving weight 1 to edges of G and weight 2 to edges of the
omplement.Frank and Tardos [6℄ presented a polynomial-time algorithm for �nding an optimal solution forthe following dire
ted version of the single-root problem.Problem C: Given a dire
ted graph, non-negative weights on the edges, a root node r, and a
onne
tivity requirement k, �nd a minimum-weight subdigraph H su
h that there exist at least kopenly disjoint dire
ted paths from r to ea
h node v 6= r in H .The Frank-Tardos algorithm provides a 2-approximation algorithm and a useful lower bound onopt for the undire
ted minimum-weight single-root k-out
onne
ted subgraph problem as follows.We take the input graph G and 
reate a dire
ted graph ~G by repla
ing ea
h undire
ted edge vw by apair of antiparallel dire
ted edges (v; w) and (w; v), where both dire
ted edges have the same weightas vw. Then we apply the Frank-Tardos algorithm to �nd an optimal subdigraph ~G� of weight 
�for Problem C, taking the root to be the same as in the undire
ted single-root problem. For theundire
ted problem, note that opt � 
�=2 sin
e the dire
ted version of the optimal subgraph is afeasible solution for the Frank-Tardos algorithm. Moreover, the undire
ted graph G� obtained from~G� by repla
ing ea
h dire
ted edge by the 
orresponding undire
ted edge (and removing paralleledges) is a feasible solution to the undire
ted problem of weight � 
� � 2opt ; also see Khuller andRaghava
hari [10℄.For the multi-root problem with q roots a 2q-approximation algorithm follows by sequentiallyapplying the above 2-approximation algorithm to ea
h of the roots r1; : : : ; rq. Note that the ap-proximation guarantee 2q of this algorithm for the multi-root problem is tight. To see this 
onsiderthe following example; see Figure 3. Suppose k � 2 and take q = k � 1 roots r1; : : : ; rq withnode requirement k ea
h. The graph G has a separator R = fr1; : : : ; rqg that indu
es a 
ompletesubgraph. In G�R, there are two 
omponents D1; D2, and ea
h is a 
omplete subgraph on at leastk+1 nodes. There is a mat
hing of size q between R and ea
h of D1; D2. All the above edges havezero weight. Ea
h root ri is in
ident to two edges ris1; ris2 of weight M , where s1 is in D1 and s2is in D2. Finally, there is one edge of weightM + � between D1 and D2. The optimal subgraph hasall the zero-weight edges and the edge of weightM + �, thus the optimal solution has weightM + �.The �rst iteration of the Frank-Tardos algorithm adds all the zero-weight edges and the two edges17



k k

k

Kk-1

KkK

K

KK

k-1

(b)(a)

M+ε

k-121s

k-121s

rk-1r1 r2 r1 r2

k-121s

k-121s

rk-1Figure 3: An example of Problem B where the 2q approximation guarantee is tight.(a) The graph G. The dashed edge has weight M + �, the 2(k � 1) thi
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h iteration of the Frank-Tardos algorithm with root ri, i = 2; : : : ; k � 1, adds the twothi
k edges in
ident to ri; the �rst iteration adds all the zero-weight edges and the two thi
k edgesin
ident to r1.of weight M in
ident to r1. Ea
h iteration with root ri, i = 2; : : : ; q, adds the two edges of weightM in
ident to ri. Hen
e, the subgraph found by the algorithm has weight 2qM . In this example,the optimal subgraph turns out to be k-
onne
ted, but the example 
an be modi�ed easily to avoidthis.5.2 Metri
 weightsWe 
onsider Problem B with the additional assumption that the edge weights satisfy the triangleinequality and we give a 3-approximation algorithm. Sin
e the triangle inequality holds, G isassumed to be the 
omplete graph. We start with an auxiliary result related to Lemma 20.Lemma 26 Let G = (V;E) be a graph that is k-out
onne
ted from a root node r and let R bethe set of neighbours of r. Then G 
an be made p-
onne
ted for any p � k by adding at most(jRj+ p� 1)=2 new edges in su
h a way that ea
h new edge has both ends in R.Proof: Let us delete edges in
ident to r fromG as long as possible while maintaining p-out
onne
tivityfrom r. In the resulting graph G0 every edge in
ident to r is 
riti
al for p-out
onne
tivity. Let R0 bethe set of neighbours of r in G0. Applying Theorem 17 to G0 it follows that by splitting o� appropri-ate pairs of edges in
ident to r we 
an obtain a graph G� whi
h is p-out
onne
ted from r and whi
his either p-
onne
ted or has degG�(r) � p + 1. Let E 0 be the set of new edges obtained by thesesplitting o� operations. Sin
e degG�(r) � p, we have jE 0j � (jR0j � p)=2. By Lemma 20 applied toG�, there exists a set F of edges su
h that G� + F is p-
onne
ted, ea
h F -edge has both ends inR0, and jF j � degG�(r)� 1 � p. Clearly, G+ (E 0 [ F ) is p-
onne
ted. Sin
e degG0(r)� degG�(r) iseven and R0 � R, we get jE 0 [ F j � (jRj � p� 1)=2 + p, as required. 2Theorem 27 Consider instan
es of Problem B su
h that the edge weights are metri
. There isa (2:5 + ks2k)-approximation algorithm, where k and ks denote the largest and se
ond largest noderequirement, respe
tively (note: 2:5 + ks2k � 3).Proof: Let G = (V;E) be the input graph and let ~
 = (
1; : : : ; 
q) and ~B = (r1; : : : ; rq) be the
onne
tivity requirement ve
tor and the ve
tor of roots, respe
tively. We may assume q � 2 (and
1 � : : : � 
q). Let k = 
1 and ks = 
2 denote the largest and the se
ond largest node requirement,respe
tively. Let r = r1 (thus r is a root node with the maximum node requirement k).18



The algorithm starts by �nding a subgraph H that is k-out
onne
ted from r, with weightw(H) � 2 opt . This 
an be done in polynomial time via the Frank-Tardos result, as mentionedearlier. In the graph H , we may assume (by deleting edges if ne
essary) that ea
h edge in
ident tor is 
riti
al with respe
t to k-out
onne
tivity from r.If degH(r) � k+ 2, then by Theorem 17 either H is k-
onne
ted or there exists a pair of edgesin
ident to r that 
an be split o� while preserving k-out
onne
tivity from r. In the former 
asethe algorithm outputs H . Clearly, H is ~
-out
onne
ted from ~B, and has weight at most 2opt ,as required. In the latter 
ase, the algorithm splits o� admissible edge pairs as long as possible.Sin
e w is a metri
, splitting o� an edge pair does not in
rease the weight of the subgraph. Anadmissible edge pair, if one exists, 
an be found in polynomial time by max-
ow 
omputations. Ifthe resulting graph be
omes k-
onne
ted after several iteration, we are done as above. When thealgorithm stops splitting-o� iterations, we may assume that degH(r) � k + 1 holds in the 
urrentsubgraph H .In the next step, the algorithm �nds a set of new edges eF for whi
h H + eF is ks-
onne
ted andsu
h that j eF j � (k+ks)=2. By Lemma 26 (using that degH(r) � k+1) su
h a set exists and 
an befound eÆ
iently. The algorithm outputs H 00 := H+ eF and terminates. Sin
e H 00 is k-out
onne
tedfrom r and ks-
onne
ted, the 
hoi
e of k and ks implies that H 00 is ~
-out
onne
ted from ~B.We 
laim that every edge in eF (in fa
t, every edge of the 
omplete graph) has weight at mostopt=k. To see this, observe that every feasible solution must be k-edge-
onne
ted and hen
e for anytwo nodes u; v, there exist k edge-disjoint paths between u and v; ea
h of these paths has weight� w(uv) by the triangle inequality. Thus w(H 00) � 2opt + ((k + ks)=2)(opt=k) = (2:5 + ks2k )opt �3opt , as required. 2We remark that Theorem 27 is related to [10, Theorem 4.8℄, but neither result implies theother one. Khuller and Raghava
hari [10℄ give an approximation guarantee of (2 + 2(k � 1)=n) forthe minimum-weight k-
onne
ted subgraph problem, assuming metri
 weights. A by-produ
t ofTheorem 27 is a 3-approximation algorithm for the same problem.Finally, we remark that our 3-approximation algorithm works for an even larger 
lass of lo
alnode-
onne
tivity requirements (provided w is metri
). Namely, when there exists a node u forwhi
h 
(u; v) = k holds for every v 2 V � u, where k = maxf
(x; y) : x; y 2 V g.5.3 Uniform weightsHere, we give approximation algorithms for Problem B assuming the edge weights are uniform.Our proofs are based on Theorem 21 and the following result of Cheriyan and Thurimella [3,Theorem 3.5℄.Theorem 28 ([3℄) Let G� = (V;E�) be a k-edge-
onne
ted graph (k � 1) on n nodes. Let M� �E� be a minimum-size edge set su
h that every node v 2 V is in
ident to at least k � 1 edges ofM�. Then jE�j � jM�j+ bn=2
.We shall present two independent approximation algorithms.Theorem 29 Consider instan
es of Problem B su
h that the edge weights are uniform. There isa minf2; k+2q�1k g-approximation algorithm, where k denotes the largest node requirement and qdenotes the number of positive node requirements.Proof: Let G = (V;E) be the input graph and let ~
 = (
1; : : : ; 
q) and ~B = (r1; : : : ; rq) be the
onne
tivity requirement ve
tor and the ve
tor of roots, respe
tively. We use k = 
1 to denote thelargest node requirement. 19



Our �rst algorithm simply �nds a \sparse 
erti�
ate" for lo
al node 
onne
tivity in G. In detail,it employs the polynomial algorithm of Nagamo
hi and Ibaraki [12℄ to �nd k edge disjoint forestsF1; : : : ; Fk of G su
h that in the graph H = (V; F1[ : : :[Fk), we have �H(u; v) � minfk; �G(u; v)gfor every two nodes u; v. This graph H has at most k(n� 1) edges, while the optimal subgraph hasat least nk=2 edges, sin
e it has minimum degree at least k. Furthermore, H has 
i openly disjointpaths between v and ri for every ri 2 ~B and every v 2 V �frig, by the 
hoi
e of k and sin
e G has
i openly disjoint paths between v and ri. Consequently, H is ~
-out
onne
ted from ~B, as required,and has size at most 2opt . Thus this is a 2-approximation algorithm.The se
ond algorithm starts by �nding a minimum-size subgraph (V;M) of minimum degree(k � 1) in G. This is essentially a mat
hing problem and 
an be 
omputed in polynomial time,see [3℄. Then, sequentially for ea
h of the roots ri, i = 1; : : : ; q, it �nds an in
lusionwise minimaledge set Fi � E(G) su
h that Hi = (V; M [ F1 [ : : :[ Fi) is 
i-out
onne
ted from ri and outputsH = (V; M [ F1 [ : : :[ Fq). Clearly, H is ~
-out
onne
ted from ~B.Note that every edge f 2 Fi is 
riti
al for 
i-out
onne
tivity in Hi. Thus we 
an apply The-orem 21 to Hi and Fi and 
on
lude that Fi is a forest. Therefore ea
h Fi (i = 1; : : : ; q) hassize at most (n � 1). Also, we have jM j � opt � bn=2
 by Theorem 28. (Note that the optimalk-out
onne
ted subgraph of G is k-edge 
onne
ted.) Thus, using opt � nk=2, we getjE(H)j= jM [ F1 [ : : :[ Fqj = jM j+ qXi=1 jFij � (opt � bn=2
) + q(n� 1) � (k + 2q � 1)opt=k:This proves Theorem 29. 2As we remarked, Proposition 2 shows we 
an assume q � k. Therefore (k+2q� 1)=k � 3. Alsonote that in the 
ase of the single-root problem, when q = 1, the approximation guarantee is 1+ 1k .Referen
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