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Abstract

Let #H be a laminar family of subsets of a groundset V. A k-cover of # is a multiset of edges,
C, such that for every subset S in #, C has at least k edges (counting multiplicities) that have
exactly one end in S. A k-packing of H is a multiset of edges, P, such that for every subset S in
H, P has at most k- u(S) edges (counting multiplicities) that have exactly one end in S. Here,
u assigns an integer capacity to each subset in H.

Our main results are:

1. Given a k-cover C of H, there is an eflicient algorithm to find a l-cover contained in C' of
size < k|C|/(2k — 1). For 2-covers, the factor of 2/3 is best possible.

2. Given a 2-packing P of H, there is an efficient algorithm to find a 1-packing contained in
P of size > |P|/3. The factor of 1/3 for 2-packings is best possible.

All of these results extend to the case where the edges have nonnegative weights. These
results are based on efficient algorithms for finding appropriate colorings of the edges in a
k-cover or a 2-packing, respectively.

These results imply approximation algorithms for some NP-hard problems in connectivity
augmentation and related topics. In particular, we have a 4/3-approximation algorithm for the
following problem: (TPC) Given a tree T and a set of nontree edges E that forms a cycle on
the leaves of T, find a minimum-size subset E’ of E such that T + E’ is 2-edge connected.

Also, we show that the following two problems are NP-hard: (1) TPC. (2) Given a 2-
packing P of a capacitated laminar family H, u, find a maximum-size 1-packing that is contained
in P.
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1 Introduction

Coverings and packings of laminar families by edges

Let ‘H be a laminar family of subsets of a groundset V. In detail, let V' be a groundset, and let
H = {A1, Az, ..., Ay} be a set of distinct subsets of V' such that for every 1 < 4,5 < ¢, A;N A4, is
exactly one of 0, A; or A;. A k-cover of A is a multiset of edges, C, such that for every subset S
in H, C has at least k edges (counting multiplicities) that have exactly one end in S. A k-packing
of H is a multiset of edges, P, such that for every subset S in #, P has at most k - u(S) edges
(counting multiplicities) that have exactly one end in S. Here, u assigns an integer capacity to each
subset in H.
Our main results are:

1. Given a k-cover C of H, there is an efficient algorithm to find a 1-cover contained in C' of size
< k|C|/(2k — 1). For 2-covers, the factor of 2/3 is best possible.

2. Given a 2-packing P of H, there is an efficient algorithm to find a 1-packing contained in P
of size > |P|/3. The factor of 1/3 is best possible.

All of these results extend to the weighted case, where the edges have nonnegative weights.

Also, we show that the following two problems are NP-hard: (1) Given a 2-cover C of H,
find a minimum-size 1-cover that is contained in C. (2) Given a 2-packing P of H, u, find a
maximum-size 1-packing that is contained in P.

The upper bound of 2/3 on the ratio of the minimum size of a 1-cover versus the size of a
(containing) 2-cover is tight. To see this, consider the complete graph K3, and the laminar family
H consisting of three singleton sets. Let the 2-cover be F(K3). A minimum 1l-cover has 2 edges
from Kj3. The same example, with unit capacities for the three singleton sets in H, shows that the
ratio of the maximum size of a 1-packing versus the size of a (containing) 2-packing may equal 1/3.
There is an infinite family of similar examples, where the 1-cover/2-cover ratio is > 2/3 and the
1-packing /2-packing ratio is < 1/3, see Section 4.1.

An edge is said to cover a subset S of V if the edge has exactly one end in S. Our algorithm
for finding a small-size 1-cover from a given 2-cover constructs a “good” 3-coloring of (the edges
of) the 2-cover. In detail, the 3-coloring is such that for every subset S in the laminar family, at
least two different colors appear among the edges covering S. The desired 1-cover is obtained by
picking the two smallest (least weight) color classes. Similarly, our algorithm for finding a large-size
1-packing from a given 2-packing constructs a 3-coloring of (the edges of) the 2-packing such that
for every subset S in the laminar family, at most «(.S) of the edges covering S have the same color.
The desired 1-packing is obtained by picking the largest (most weight) color class.

A linear programming relaxation

Consider the natural integer programming formulation (IP) of our minimum 1-cover problem. Let

the given k-cover be denoted by E. There is a (nonnegative) integer variable z. for each edge

e € E. For each subset S € H, there is a constraint Z z. > 1, where 6(S) denotes the set of
e€8(S)



edges covering S. The objective function is to minimize Zweaze, where w, is the weight of edge

e. Let (LP) be the following linear program obtained by relaxing all of the integrality constraints
on the variables.

(LP) zrp = minimize Zweme subject to { Z ze>1,VSeH;, 2. >0, VecFE}.
e e€d(S)

Clearly, (LP) is solvable in polynomial time. The k-cover gives a feasible solution to (LP) by fixing
2. = 1/k for each edge e in the k-cover.

For the minimum 1-cover problem, Theorem 3 below shows that the optimal value of the integer
program (IP) is < 4/3 times the optimal value of a half-integral solution to the LP relaxation (LP).
(A feasible solution z to (LP) is called half-integral if z. € {0, %, 1}, for all edges e.) There are
examples where the LP relaxation has a unique optimal solution that is not half-integral. See
Figure 1 for such examples. For the maximum 1-packing problem, Theorem 6 shows that the
optimal value of the integer program is > 1/3 times the optimal value of a half-integral solution to
the LP relaxation.

Recall that a laminar family H may be represented as a tree ' = T (). (T has a node for V' as
well as for each set A; € H, and T has an edge A;A; if A; € {V} U®H is the smallest set containing
A; € 7‘[)

Two special cases of the minimum 1-cover problem are worth mentioning. (i) If the laminar
family H is such that the tree T(H) is a path, then the LP relaxation has an integral optimal
solution. This follows because the constraints matrix of the LP relaxation is essentially a network
matrix, see [CCPS 98, Theorem 6.28], and hence the matrix is totally unimodular; consequently,
every extreme point solution (basic feasible solution) of the LP relaxation is integral. (ii) If the
laminar family # is such that the tree T(H) is a star (i.e., the tree has one nonleaf node, and
that is adjacent to all the leaf nodes) then the LP relaxation has a half-integral optimal solution.
This follows because in this case the LP relaxation is essentially the same as the linear program of
the fractional matching polytope, which has half-integral extreme point solutions, see [CCPS 98,
Theorem 6.13].

Equivalent problems

Let ‘H be a laminar family on a groundset V, and let £ be a k-cover or a k-packing of H. Let
T = T(H) be the tree representing 7. We can define an edge set on V(T') that corresponds to
E. Consider an edge e € F and note that among the sets of H covered by e, there are either two
inclusionwise minimal sets, say Se, S., or one, say S., or none (in this case e is redundant). Then
the edge (on V(T')) corresponding to e is either S.S. or S.V. Let us continue to use E to denote
the “image” of E on V(T'). Note that E is disjoint from E(T).

The problem of finding a minimum 1-cover of a laminar family # from among the multiedges
of a k-cover F may be reformulated as a connectivity augmentation problem. The problem is to
find a minimum weight subset of edges E’ contained in F such that T+ E' = (V(T), E(T)UE') is
2-edge connected; we may assume that E’ has no multiedges. Instead of taking T to be a tree, we
may take T to be a connected graph. This gives the problem CBRA which was initially studied
by Eswaran & Tarjan [ET 76|, and by Frederickson & Ja’ja’ [FJ 81]; see Section 4.1.



Similarly, the problem of finding a maximum 1-packing of a capacitated laminar family #, u
from among the multiedges of a k-packing E may be reformulated as follows. Let T' = T'(H) be
the tree representing H, and let the tree edges have (nonnegative) integer capacities u : E(T')—Z;
the capacity of a set A; € ‘H corresponds to the capacity of the tree edge a; representing A;. The
k-packing F corresponds to a set of demand edges. The problem is to find a maximum integral
multicommodity flow # : E—Z where the source-sink pairs (of the commodities) are as specified
by E. In more detail, the objective is to maximize the total flow ) 5 z., subject to the capacity
constraints, namely, for each tree edge a; the sum of the z-values over the demand edges in the cut
given by T — a; is < u(a;), and the constraints that z is integral and > 0. This problem has been
studied by Garg, Vazirani and Yannakakis [GVY 97].

2p leaf nodes

4p |leaf nodes
,,,,, X, = 1/(2p+1)
—X%,=1-1(2p+1)

ROA vy O 2p leaf nodes

Figure 1: Two examples of the minimum 1-cover problem (CBRA) where the LP-relaxation has
an extreme-point solution that is not half-integral. The laminar family is represented by the tree
indicated by the thick edges. The numbers on the nontree edges e (shown dashed or thin) give the

values z. for such extreme-point solutions.

Approximation algorithms for NP-hard problems in connectivity augmentation

Our results on 2-covers and 2-packings imply improved approximation algorithms for some NP-hard
problems in connectivity augmentation and related topics. Frederickson and Ja’ja’ [FJ 81] showed
that problem CBRA is NP-hard and gave a 2-approximation algorithm. Later, Khuller and Vishkin
[KV 94] gave another 2-approximation algorithm for a generalization, namely, find a minimum-
weight k-edge connected spanning subgraph of a given weighted graph. Subsequently, Garg et al
[GVY 97, Theorem 4.2] showed that problem CBRA is max SNP-hard, implying that there is no
polynomial-time approximation scheme for CBRA modulo the P#£NP conjecture. Currently, the



best approximation guarantee known for CBRA is 2.

Our work is partly motivated by the question of whether or not the approximation guarantee
for problem CBRA can be improved to be strictly less than 2 (i.e., to 2 — € for a constant € > 0).
We give a 4/3-approximation algorithm for an NP-hard problem that is a special case of CBRA,
namely, the tree plus cycle (TPC) problem. See Section 4.1.

Garg, Vazirani and Yannakakis [GVY 97] show that the above maximum 1-packing problem
(equivalently, the above multicommodity flow problem) is NP-hard and they give a 2-approximation
algorithm. In fact, they show that the optimal value of an integral 1-packing z;p is > 1/2 times
the optimal value of a fractional 1-packing zrp. We do not know whether the factor 1/2 here is
tight.

It should be noted that the maximum 1-packing problem for the special case of unit capacities
(i.e., u(A;) =1, YA; € H) is polynomial-time solvable. If the capacities are either one or two, and
the tree T'(H) representing the laminar family H has height two (i.e., every tree path has length
< 3), then the problem may be NP-hard, see [GVY 97, Lemma 4.3].

Further discussion on related topics may be found in the survey papers by Frank [F 94], Goemans
& Williamson [GW 96], Hochbaum [Hoc 96], and Khuller [Kh 96]. Jain [J 98] has interesting recent
results, including a 2-approximation algorithm for an important generalization of problem CBRA.

Notation

For a multigraph G = (V, E) and a node set S C V, let dg(S) denote the multiset of edges in
E that have exactly one end node in S, and let dg(S) denote |65 (S)|; so dg(S) is the number of
multiedges in the cut (S,V —5).

A p-approzimation algorithm for a combinatorial optimization problem runs in polynomial time
and delivers a solution whose value is always within the factor p of the optimum value. The quantity
p is called the approzimation guarantee of the algorithm.

2  Obtaining a 1-cover from a k-cover

This section has our main result on k-covers, namely, there exists a 1-cover whose size (or weight)
is at most k/(2k — 1) times the size (or weight) of a given k-cover. The main step (Proposition 2)
is to show that there exists a “good” (2k — 1)-coloring of any k-cover. We start with a preliminary
lemma.

Lemma 1 Let V be a set of nodes, and let H be a laminar family on V. Let E be a minimal
k-cover of H. Then there exists a set X € H such that dg(X) =k and no proper subsetY of X is
mn H.

Proof: Since E is minimal, there exists at least one set X € H with dg(X) = k. We call a node
set X CV a tight setif dg(X) = k. Consider an inclusionwise minimal tight set X in H. Suppose
there exists a Y C X such that Y € H. If each edge of E that covers Y also covers X, then we
have dg(Y) = k. But this contradicts our choice of X. Thus there exists an edge 2y € E covering
Y with z,y € X. By the minimality of F, zy must cover a tight set Z € H. Since #H is a laminar



family, Z must be a proper subset of X. This contradiction to our choice of X proves the lemma.
O

Proposition 2 Let V be a set of nodes, and let H be a laminar family on V. Let E be a minimal
k-cover of H. Then there is a (2k — 1)-coloring of (the edges in) E such that

(i) each set X € H is covered by edges of at least k different colors, and

(ii) for every node v with dg(v) < k, all of the edges incident to v have distinct colors.

Proof: The proof is by induction on |#|. For |#| = 1 the result holds since there are k edges in
E (since E is minimal) and these can be assigned different colors. (For |[H| = 0, |E| = 0 so the
result holds. However, even if F is nonempty, it is easy to color the edges in an arbitrary order to
achieve property (ii).)

Now, suppose that the result holds for laminar families of cardinality < N. Consider a laminar
family H of cardinality N + 1, and let F be a minimal k-cover of H. By Lemma 1, there exists
a tight set A € H (i.e., dg(A) = k) such that no Y C A is in . We contract the set A to one
node vy, and accordingly update the laminar family . Then we remove the singleton set {v4}
from H. Let the resulting laminar family be H’, and note that it has cardinality N. Clearly, E is
a k-cover of H'. Let E/ C E be a minimal k-cover of H’. By the induction hypothesis, F’ has a
(2k — 1)-coloring that satisfies properties (i) and (ii), i.e., E’ has a good (2k — 1)-coloring.

If the node vy is incident to > k edges of E’, then note that E’ with its (2k — 1)-coloring is
good with respect to H (i.e., properties (i) and (ii) hold for # too). To see this, observe that
k < dg/(va) < dg(va) =k, so dg/(va) = k, hence, the k edges of E’ incident to v4 get distinct
colors by property (ii). Then, for the original node set V, the k edges of E’ covering A get k
different colors.

Now focus on the case when dg:(va4) < k. Clearly, each edge in E — E’ is incident to v4, since
each edge in F not incident to v4 covers some tight set that is in both H and H'. We claim that
the remaining edges of £ — E’ incident to v4 can be colored and added to E’ in such a way that
E with its (2k — 1)-coloring is good with respect to .

It is easy to assign colors to the edge (or edges) of E — E’ such that the k edges of E incident
to vy get different colors. The difficulty is that property (ii) has to be preserved, that is, we must
not “create” nodes of degree < k that are incident to two edges of the same color. It turns out
that this extra condition is easily handled as follows. Let e € E — E’ be an edge incident to vg4,
and let w € V be the other end node of e. If w has degree < k for the current subset of E, then
e is incident to < (2k — 2) other edges; since (2k — 1) colors are available, we can assign e a color
different from the colors of all the edges incident to e. Otherwise (w has degree > k for the current
subset of E), the other edges incident to w impose no coloring constraint on e, and we assign e a
color different from the colors of the other edges incident to v4; this is easy since dg(va) = k. See
Figure 2 for an illustration of the last part of the proof for k = 2. a

Remark: In the above result, note that there may be nodes of V' that are contained in no set
X € H. Property (ii) applies to these nodes too.
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Figure 2: An illustration of the proof of Proposition 2. Solid lines indicate edges in E’, and dashed
lines indicate edges in £ — E'.

Theorem 3 Let V be a node set, and let H be a laminar family on V. Let E be a k-cover of H,
and let each edge e € E have a nonnegative weight w(e). Then there is a 1-cover of H, call it E’,
such that E' C E and w(E') < k w(E)/(2k — 1). Moreover, there is an efficient algorithm that
giwen E finds E'; the running time is O(min(k|V|?, k%|V])).

Proof: We construct a good (2k — 1)-coloring of the k-cover E by applying Proposition 2 to a
minimal k-cover £ C E and then “extending” the good (2k — 1)-coloring of E to E. That is, we
partition E into (2k — 1) subsets such that each set X in A is covered by edges from at least k of
these subsets. We take E’ to be the union of the cheapest k of the (2k — 1) subsets. Clearly, the
weight of E’ is at most k/(2k — 1) of the weight of E, and (by property (i) of Proposition 2) E’ is
a 1-cover of H.

Consider the time complexity of the construction in Proposition 2. Let n = |V|; then note that
|H| < 2n and |E| < 2kn. The construction is easy to implement in time O(|H| - |E|) = O(kn?).
Also, for k < n, the time complexity can be improved to O(k? - |H|) = O(k?*n). To see this, note
that for each set A € H we assign colors to at most k of the edges covering A after we contract A
to v4, and for each such edge e we examine at most (2k — 2) edges incident to e. O

3 Obtaining a 1-packing from a 2-packing

This section has our main result on 2-packings, namely, there exists a 1-packing whose size (or
weight) is at least 1/3 times the size (or weight) of a given 2-packing. First, we show that there is
no loss of generality in assuming that the 2-packing forms an Eulerian multigraph. Then we give
a 3-coloring for the edges of the 2-packing such that for each set S in the laminar family at most
u(.S) edges covering S have the same color. We take the desired 1-packing to be the biggest color
class.

Lemma 4 Let V be a set of nodes, let H be a laminar family on V, and let v : H—7 assign
an integral capacity to each set in ‘H. Let E be a 2-packing of H, u, i.e., for all sets A; € H,
dg(4;) <2u(4;). If E is a mazimal 2-packing, then the multigraph G = (V, E') is Eulerian.

Proof: If G is not Eulerian, then it has an even number (> 2) of nodes of odd degree. Let
A € {V}U®H be an inclusionwise minimal set that contains > 2 nodes of odd degree. For every
proper subset S of A that is in H and that contains an odd-degree node, note that dg(S) is odd,
hence, this quantity is strictly less than the capacity 2 u(S). Consequently, we can add an edge (or



another copy of the edge) vw where v, w are odd-degree nodes in A to get EU{vw} and this stays a
2-packing of H, u. This contradicts our choice of F, since F is a maximal 2-packing. Consequently,
G has no nodes of odd degree, i.e., G is Eulerian. a

Remark: For a 2-packing F, if the multigraph (V| E') is not Eulerian, then we can repeatedly add
edges to E as described in the above proof, till we get a 2-packing whose multigraph is Eulerian.
Although we do not use this, we mention that the new edges are added to F such that each set in
‘H is covered by at most one new edge.

Proposition 5 Let G = (V, E) be an Eulerian multigraph, and let P be a pairing of the edges such
that for each node v, P partitions the edges incident to v into pairs. Let H be a laminar family of
node sets on V. Then there is a 3-coloring of E such that

(i) for each cut 6g(A;), A; € H, at most half of the edges have the same color, and

(ii) for each edge-pair e, f in P, the edges e and f have different colors.

Proof: For every edge-pair in P, note that the two edges have a common end node. Let P be a
set of triples [v, e, f], where e and f are paired edges incident to the node v. Note that an edge
e = vw may occur in two triples [v, e, f] and [w, e, g]. Then P partitions F into one or more (edge
disjoint) subgraphs Q1,Qs2, ..., where each subgraph Q; is a connected Eulerian multigraph. To
see this, focus on the Eulerian tour given by fixing the successor of any edge e = vw to be the other
edge in the triple [w, e, f] € P, assuming e is oriented from v to w; each such Eulerian tour gives a
subgraph Q;.

If H = 0, then we color each subgraph @Q; with 3 colors such that no two edges in the same
edge-pair in P get the same color. This is easy: We traverse the Eulerian tour of Q); given by P,
and alternately assign the colors red and blue to the edges in Q;, and if necessary, we assign the
color green to the last edge of Q;.

Otherwise, we proceed by induction on the number of sets in ‘H. We take an inclusionwise
minimal set A € H, shrink it to a single node v4, and update G = (V, E), H and P to G' = (V', E),
H' and P’. Here, H' = H — {A}, i.e., the singleton set {vs} is not kept in H'. Also, we add new
edge pairs to P’ to ensure that all edges incident to vy are paired. For a node v ¢ A, all its triples
[v, e, f] € P are retained in P’. Consider the pairing of all the edges incident to v4 in G’. For each
triple [v, e, f] in P such that v € A and each of e, f has one end node in V — A (so e, f are both
incident to v4 in G’), we replace the triple by [va, e, f]. We arbitrarily pair up the remaining edges
incident to v,4 in G'.

By the induction hypothesis, there exists a good 3-coloring for G’, H’, P’. It remains to 3-color
the edges with both ends in A. For this, we shrink the nodes in V' — A to a single node vg, and
update G = (V,E),P,H, to G" = (V",E"),P",H"; note that H" is the empty family and so
may be ignored. We also keep the 3-coloring of dg/(va) = dg»(vB). Our final goal is to extend
this 3-coloring to a good 3-coloring of E” respecting P”. We must check that this can always be
done. Consider the differently-colored edge pairs incident to vg. Consider any connected Eulerian
subgraph @Q; containing one of these edge pairs ey, e3; the corresponding triple in P” is [vp, e, e3].
Let Qj be a minimal walk of (the Eulerian tour of) @Q); starting with e; and ending with an edge



f incident to vp (possibly, f = e;). The number of internal edges in Qj is=0orl (mod?2),
and the two terminal edges either have the same color or not. If the number of internal edges in
Qj is nonzero, then it is easy to assign one, two, or three colors to these edges such that every pair
of consecutive edges gets two different colors; see Figure 3. The remaining case is when Qj has
no internal edges, say, Qj = vp, ez, w, f,vp, where w is a node in A. Then edges e, f are paired
via the common end-node w, i.e., the triple [w, ey, f] is present in both P” and P. Then, by our
construction of P’ from P, the triple [v4, e2, f] is in P’, and so edges e; and f (which are paired
in P’ and present in dg/(va) = 6gn(vp)) must get different colors. Hence, a good 3-coloring of
G',H', P’ can always be extended to give a good 3-coloring of Qj, and the construction may be
repeated to give a good 3-coloring of Q;.

Finally, note that E” is partitioned by P” into several connected Eulerian subgraphs Q1,Qo, . . .,
where some of these subgraphs contain edges of dg~(vg) and others do not. Clearly, the good 3-
coloring of G',H', P’ can always be extended to give a good 3-coloring of each of Q1,Q>,..., and

thus we obtain a good 3-coloring of G, H, P. O
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Figure 3: An illustration of the proof of Proposition 5. The edges e;, es, and f incident to node
vp are indicated, and a good 3-coloring of the edges of Q); is indicated.

Theorem 6 LetV be a node set, let H be a laminar family on V', and let v : H—Z assign an integer
capacity to each set in ‘H. Let E be a 2-packing of H, and let each edge e € E have a nonnegative
weight w(e). Then there is a I-packing of H, call it E', such that E' C E and w(E') > w(E)/3.
Moreover, there is an efficient algorithm that given E finds E’; the running time is O(|V| - |E|).

Proof: If the multigraph (V, F') is not Eulerian, then we use the construction in Lemma 4 to add a
set of edges to make the resulting multigraph Eulerian without violating the 2-packing constraints.
We assign a weight of zero to each of the new edges. Let us continue to use E to denote the edge
set of the resulting multigraph.

We construct a good 3-coloring of the 2-packing E by applying Proposition 5. Let F' be the
most expensive of the three “color classes;” so, the weight of F', w(F), is > w(E)/3. Note that
F is a 1-packing of H, u by property (i) in the proposition since for every set A; € H, we have



dr(4;) < dg(Ai)/2 < u(A;). Finally, we discard any new edges in F' (i.e., the edges added by the
construction in Lemma 4) to get the desired 1-packing.

Consider the time complexity of the whole construction. It is easy to see that the construction
in Proposition 5 for the minimal set A € H takes linear time. This construction may have to be
repeated |H| = O(|V|) times. Hence, the overall running time is O(|V| - |E). 0

4  Applications to connectivity augmentation and related topics

This section applies our covering result (Theorem 3) to the design of approximation algorithms for
some NP-hard problems in connectivity augmentation and related topics. The main application is
to problem CBRA, which is stated below. Problem CBRA is equivalent to some other problems
in this area, and so we immediately get some more applications.

4.1 Problems CBRA and TPC

Recall problem CBRA: given a connected graph T' = (V,F), and a set of “supply” edges E
with nonnegative weights w : E—%,, the goal is to find a minimum-weight subset E’ of F such
that T + E' = (V,F U E') is 2-edge-connected. One application of Theorem 3 is to give a 4/3-
approximation algorithm for the special case of CBRA when the LP relaxation has an optimal
solution that is half-integral.

Theorem 7 Given a half-integral solution to the LP relazation of CBRA of weight z, there is an
O(|V])-time algorithm to find an integral solution (i.e., a feasible solution of CBRA) whose weight
is < 2z

>3

Proof: Problem CBRA may be restated as the problem of finding a minimum-weight 1-cover of
a laminar family #, where the 1-cover must be chosen from the set of supply edges F and each
supply edge has a nonnegative weight. To specify H, fix any node r € V to be the root of T, and
focus on the cut edges of T, call them fi, fo,.... For each of these cut edges fi, f2, ..., let A; be
the (node set of the) component of T' — f; that does not contain r. We take H = {4;, As, .. .}.
Let 2 : E—{0, %, 1} be a half-integral solution to the LP relaxation of CBRA, and let z =
> . Weze. Then z corresponds to a 2-cover C' of H, where C has zero, one or two copies of a supply
edge e iff z, = 0, 1, or 2. By Theorem 3, C' contains a 1-cover C’ whose weight is < 4z/3, and

moreover, C’ can be computed in time O(|V]). o
We have sharper results for the following special case of problem CBRA.

Tree Plus Cycle Problem (TPC):

INSTANCE: A tree T = (W, F') whose set of leaf nodes is V- C W, a “supply” cycle Q = (V, E) on
the leaves of T' (i.e., dg(v) = 2, Vv € V), and a positive integer N.

QUESTION: Is there a set of edges E' C E with |E'| < N such that T + E' = (W,FU E’) is

2-edge-connected?

The proof of the next result is given in the next section.
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Proposition 8 Problem TPC 1is NP-complete.

Corollary 9 There exists a %—approﬂmation algorithm for problem TPC. Moreover, there exists

a feasible solution E' C E(Q) of size < 2|V (Q)|/3.

Proof: Consider the LP relaxation of problem TPC,; it is easy to verify that an optimal solution is
given by z. = 1/2 for all supply edges e € E(Q). Now, the result follows directly from Theorem 7.
O

Remarks:

e Corollary 9 may be restated as follows. Given a laminar family % on a groundset V' (with

0dH,V &H), and a “supply” cycle Q = (V, E), there is a 1-cover of H, E' C E, such that

2
B < 3IV(Q)]-
Let n denote |V (Q)], and let the (sequence of nodes in the) cycle Q be denoted vy, va, . . ., vy, V1.
A Q-interval [v;, v;14] is a set of consecutive nodes, {v;, vi11, Vit2, ..., Vi+¢}, indexing modulo
n.

If H consists of all the Q-intervals not containing a fixed node v € V(Q), then the minimum
1-cover has size n — 1, showing that the result fails to hold for intersecting families.

If # contains the Q-intervals [vy,v;] for 1 < 7 < n — 1, then the minimum 1-cover not
containing the supply edge v,,v; has size n — 1. This shows that in the result, one cannot take
the supply graph Q = (V, E) to be a path instead of a cycle.

e As stated in the introduction, the constant 2/3 in Corollary 9 is sharp. Moreover, there is an
infinite family of examples such that the 1-cover/2-cover ratio is > 2/3 and the 1-packing/2-
packing ratio is < 1/3.

Here is a construction for such an infinite family of examples. Start with a cycle Q' of length
3N, and let the node set be V', so |V'| = 3N. Now, add edges (diagonals) between nodes of Q’
in such a way that the resulting graph G’ stays outer-planar and the nodes are partitioned into
N node-disjoint triangles (K3’s). (There are several ways to do this, e.g., place N triangles
in a row and add a pair of disjoint edges between every two consecutive triangles.) Note that

the minimum node (vertex) cover of G’ has cardinality 2N, and so the maximum independent
(node) set of G’ has cardinality |V/| — 2N = N.

The tree T for problem TPC is obtained as follows. Let us identify G’ with its outer-planar
drawing. Take the planar dual of G’, and replace the node corresponding to the outer face
of G’ by 3N nodes such that each node is incident to one dual-edge. The resulting graph is
the tree T'. We take the tree edges of T to have unit capacities. Take @ to be a cycle on the
leaves of T' where the ordering of the edges in @) corresponds to the ordering of the nodes in
Q’, and we associate each edge of Q with the corresponding node of Q'. Let E = E(Q), and
note that F is a 2-cover of T', as well as a 2-packing of 7.

Every 1-cover of T corresponds to a node cover of G'. Consequently, the minimum size of
a 1-cover is 2N, while the 2-cover has size 3N. Similarly, every 1-packing of T corresponds
to an independent (node) set of G’, and so the maximum size of a 1-packing is N while the
2-packing has size 3N.
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4.2 Minimum-weight odd-connectivity augmentation

Given a (2k — 1)-edge-connected graph T' = (V| F'), where k > 1 is an integer, and a set of “supply”
edges F with nonnegative weights w : E—®,, the goal is to find a minimum weight subset E’ of £
such that G’ = (V, F + E') is (2k)-edge-connected. Note that the edge connectivity of T, namely,
(2k — 1), is odd.

This problem is equivalent to problem CBRA because all the (2k — 1)-cuts (minimum cuts) of
T can be represented by means of a laminar family. (This follows easily from the uncrossing result
on pairs of node sets that give minimum cuts of T'.)

4.3 Deorienting mixed graphs

A mized graph G = (V, F, A) on node set V has a set of undirected edges F as well as a set of directed
arcs A. For a set A’ of arcs let g(A’) denote the underlying set of edges of A’, that is, the edges
obtained by “deorienting” A’. For a mixed graph G = (V, F, A) we define g(G) = (V, F U g(4)).
The mixed graph is k-edge connected if for every node set S C V, S # 0, there are > k edges or
arcs with tails in S and heads in V — §.

In the mized graph deorientation problem a k-edge-connected mixed graph G = (V, F, A) is
given, and the goal is to find a smallest subset A’ C A of arcs such that G’ = (V,F U g(4’)) is
k-edge-connected.

Observe that the mixed graph deorientation problem is NP-hard, by a reduction from prob-
lem TPC. (The tree T of TPC gives the undirected subgraph of G, and the directed subgraph of
G is obtained by fixing the same orientation for all of the edges in the supply cycle Q.)

The next result follows from Theorem 7.

Corollary 10 Let G = (V, F, A) be a 2-edge-connected mized graph such that (V, F') is connected.
Then there exists a subset A’ of A with |A’| < 2|A|/3 such that (V,F U g(A")) is 2-edge-connected.

5 NP-completeness results

This section has the proofs of two NP-completeness results.
First, we show that problem TPC (tree plus cycle) is NP-complete. It is convenient to refor-
mulate TPC in terms of a laminar family rather than a tree.

Laminar Family Plus Cycle Problem (LPC):

INSTANCE: A laminar family H on a node set V, a cycle @ = (V, E) on V, and a positive integer
N. (Assume 0,V ¢ H.)

QUESTION: Is there a 1-cover E’ of # such that E/ C E and |E’'| < N?

We give a polynomial-time reduction from the 3-dimensional matching problem to problem LPC.

3-Dimensional Matching Problem (3DM):

INSTANCE: Three disjoint sets W, X,Y, of cardinality ¢ each, and a set of 3-edges (triples)
(wizjyr) € W X X XY called M. Let p = |M]|.

QUESTION: Does M contain a (perfect) 3-dimensional matching M’, i.e., is there an M’ C M
with |M’'| = ¢q such that the 3-edges in M’ are pairwise disjoint?

12



Theorem 11 Problem LPC is NP-complete.

Proof: A laminar family on n nodes has at most 2n members, hence it is easy to check whether
a given set of edges of @ covers H or not. Thus LPC is in NP.

We reduce the NP-complete 3-dimensional matching (3DM) problem to LPC. Our reduction
is based on the proof of [FJ 81, Theorem 2] due to Frederickson and Ja’ja’. Note that if | M| < ¢,
then there is no 3-dimensional matching. Let dps(2;) and das(yr) denote the number of 3-edges of
M containing z; € X and y;, € Y, respectively. Let p denote |M]|.

Construct a connected graph T as follows. First, as in [FJ 81], build a star with a “root” » and
3¢ leaves {wy, ..., wq, ®1,...,24, Y1, ..., Yq} corresponding to the elements of WU X UY. Then for
each 3-edge (w;z;yr) of M add two nodes a;;t, and @;;; to T' and add the edges w;a; i, w;a;i to
T. Now replace each of the 2¢ nodes corresponding to elements of X and Y by complete graphs
denoted by Xi,...,X,,Y1,...,Y, as follows. Each complete subgraph of this type has das(z;)8¢
nodes (or dps(yr)8¢ nodes), and is partitioned into dps(z;) parts (or das(yx) parts) of cardinality 8¢
each. We call each of these parts a lane. By a leaf (of T') we mean a 2-edge-connected component
of T whose cut has exactly one edge of T'. The leaves are given by X,..., X, Y1,...,Y,, and also
each 3-edge (w;z;yi) of M gives two leaves a;;,, @;jr. Note that the graph T is connected and has
2p + 2q leaves. See Figure 4.

Figure 4: An illustration of the reduction from the 3-dimensional matching (3DM) problem to the
laminar family plus cycle (LPC) problem, Theorem 11. The thick lines indicate (a lane of) the
cycle ), and the dashed lines indicate some of the sets in the laminar subfamily H.

The next step is to define the cycle Q. The nodes of ) are the nodes of the leaves of T'. Hence,
|[V(Q)| = p(16¢+2). First, we define p disjoint paths of @ such that each has 16¢+ 2 nodes (so each

13



of these paths has length 16¢+1). Every 3-edge (w;z;yi) of M defines such a path as follows: take
the 8¢ nodes (and edges connecting the consecutive ones) 1/ . ..lg, of a lane of X; in an arbitrary
order, then take the edges lg,a;;k, @ik, GijxMsq for some node mg, of some lane of Y}, in this
order, and then take the other nodes of this lane mg4_1,...,m; in an arbitrary order. The lanes
are chosen in such a way that these paths are pairwise disjoint. This can be done, since the lanes
are pairwise disjoint and each X; (or Y;) has dps(z;) lanes (or dps(yr) lanes). Now fix a cyclic
ordering ey, ..., e, of the 3-edges of M and construct the cycle ) by adding the missing p edges in
such a way that the end of the path corresponding to e, = (w;z;yx) (that is, a node m; of a lane in
Y},) is connected to the first node of the path corresponding to e, 11 = wyz;yp (that is, to a node
I; of alane of X;/) for 1 < s < p. Note that each of these edges connects a nonsingleton leaf X; to
a nonsingleton leaf Y.

The last part of the reduction consists of defining a laminar family H on V(Q). We define H by
defining two subfamilies #; and Hs. Let H, := {SNV(Q) : dr(S)=1,7»¢ 5,5 CV(T)} contain
intersections of V(Q) and the node sets of those minimum cuts of T' that do not contain the root. It
is easy to see that this family is laminar. H, consists of 2p disjoint collections, each of them defined
on the nodes of a lane of a nonsingleton leaf of the form X; or Y; as follows. Let us fix such a
subgraph, say X;. (The definition is similar for all the 2¢ subgraphs X3, ..., X,,Y1,...,Y,.) Focus
on a lane [y, ...,lg, of X;, where the numbering follows the ordering of these nodes in Q. (Hence
lgq is connected to some leaf a;;;, and [; is connected to some node m; in some Y;.) This lane adds
the following node sets to H,: the singletons /1, ..., ls,, and the node sets of the intervals of () such
that the end node pairs are either (Igg_1,ls,—5) (2 < s < 4q) or (lgg—r,l2) (1 < r < 4q — 3). Each
lane of every nonsingleton leaf X, ¥ (1 < j,k < ¢q) adds a similar collection to #H5. Clearly, every
collection of this type is laminar, and the collections are defined on pairwise disjoint sets of nodes,
where each of these sets is included in an inclusionwise minimal set of #;. Therefore #H is a laminar
family on V(Q), where H := H; U H,. Note that each node of Q belongs to H as a singleton set.

Observe the following important property, that follows from the structure of 4 and the fact
that every node of Q) belongs to H. See Figure 4 for an illustration. Let E' C E(Q) be a 1-cover
of #. Then

(¥)  if the edge lgylgg—1 (or similarly l1l3, mgyms,—_1, mims) for some lane in
a nonsingleton leaf X or Y}, is not in E’, then |E'| > |V(Q)|/2+ 2¢ — 1.

It is easy to see that our reduction is polynomial. We claim that there exists a solution to the
given instance of 3DM (that is, a set of ¢ pairwise disjoint 3-edges of M) if and only if H has a
1-cover of size at most p+ 8pg + ¢ = |V (Q)|/2 + q.

First observe that a set E’ is a 1-cover if and only if T + E’ is 2-edge-connected and E’ covers
each member of H,. Let T™ arise from T by contracting the nonsingleton leaves (that is, the node
sets X1,...,X,,Y1,...,Y,, that are 2-edge-connected) to singletons. Similarly, let Q* arise from Q
by contracting the nonsingleton leaves and deleting the edges connecting these nonsingleton leaves
from Q. As verified in [FJ 81], there is a 3-dimensional matching if and only if there is set E* of
P+ q edges in Q* such that T™ 4+ E* is 2-edge-connected.

Suppose that there exists a 3-dimensional matching M’ C M. Then there exists a set E* of
size p + ¢ which makes T 2-edge-connected and it is easy to see that there exists a set E” of
independent edges in @ which covers H,. Hence |E"| = 16gp/2 = 8pq. Now E’ := E* U E" covers
H and |E’| = 8pq + p + ¢, as required.
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To see the other direction, suppose that H has a 1-cover E’ of size at most |V(Q)|/2+ ¢. Thus
the number of nodes of degree 2 in (V(Q), E’) is at most 2¢q. By (%), each of the “important
edges” (the first and last edges in Q of each lane) belong to E’. Since E’ is a l-cover, by our
previous observation T + E’ is 2-edge-connected. Hence, for each cut edge rw; of T (1 < ¢ < gq),
the corresponding cut is covered by E’. Therefore for some pair j, k at least two of the edges
@ik, @ijkdijk, Gijkyr are in E’. The paths of length three induced by these sets of edges are
pairwise disjoint for the ¢ cut edges rw; (1 < ¢ < ¢). Thus the existence of these edges and
the “important edges” in E’ shows that there are 2¢ nodes of degree 2 in (V(Q), E’) just among
the nodes of these paths of length three. Moreover, since T + E’ is 2-edge-connected, there is at
least one edge in E’ entering each nonsingleton leaf X;, Y. By the existence of the “important
edges”, at least one end node of such an entering edge has degree 2 in (V(Q), E’). Since we have
at most 2¢ nodes of degree 2, these observations show that there are no edges in E’ connecting
nonsingleton leaves and the edges of E’ within some nonsingleton leaf (complete subgraph) are
independent. Therefore the set E* corresponding to E’ in Q* makes T 2-edge-connected and
|E*| = |E'| - (]V(Q)| —2p)/2 < |[V(Q)|/24+¢—|V(Q)|/2+p = p+g¢. This implies that there exists

a 3-dimensional matching in M. a

Proposition 8 Problem TPC is NP-complete.

Corollary 12 The following problem is NP-hard: given a 2-cover C' of a laminar family ‘H, find
a minimum-size 1-cover that is contained in C.

Proposition 13 The following problem is NP-hard: given a 2-packing P of a capacitated laminar
family ‘H, u, find a mazimum-size 1-packing that is contained in P.

Proof: Garget al [GVY 97] gave a polynomial reduction from the 3-dimensional matching (3DM)
problem to the problem of finding a maximum integral multicommodity flow in a capacitated tree.
The latter problem is the same as the following problem (P1): given an edge set F, a laminar
family H, and a capacity u(A4;) for each set A; € H, find a maximum-size subset E’ of E such that
E' is a 1-packing of H, u. Our goal is to modify the proof in [GVY 97] to show that the problem
stays NP-hard even if E is a 2-packing of H, u. We need the result that problem 3DM stays
NP-hard even if each node occurs in at most three triples. Here is a sketch of the reduction from
this restricted version of 3DM to the restricted version of (P1).

We refer the reader to Lemma 4.3 and Figure 2 in [GVY 97], and sketch the modifications
to that proof. The three disjoint node sets in 3DM are denoted X,Y,Z, and n denotes |X| =
Y| = |Z|. Also, we use the notation X = {z1,...,2,}, Y = {vy1,.- -, un}, Z = {z1,.--,2a}
Let » denote the root of the tree (the top node in [GVY 97, Figure 2]); » has 3n children,
T,y Ty Y1y e ooy Yny 21, - - -5 2. We change the capacities of all the tree edges rez; from 2 to 3,
and we change the capacities of all the tree edges ry; and 7z from 1 to 2. For each of the nodes
y; € Y and 2z, € Z, we add another copy y or z, and we add tree edges ry; or rz, of capacity
1. Also, we add a nontree edge yjy; or zpz,. Thus, the set of nontree edges E is the union of the
corresponding set in [GVY 97, Lemma 4.3] and {y1y], ..., Yn¥n, 2121, - . ., 202, }. Each y; and each
zj, is incident to at most 4 nontree edges, and each z; has at most 3 children z; 1, z; 5, 2; 3. Now,
observe that F is a 2-packing of the capacitated tree.
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We claim that the above modifications have essentially no effect on a maximum integral 1-
packing; the detailed verification is left to the reader. Then [GVY 97, Lemma 4.3] applies to our
reduction too, and so the instance of 3DM has ¢ disjoint triples if and only if the instance of (P1)
has a 1-packing of objective value ¢ + |S| + 2n, where |S| is the number of triples. It follows that
the restricted version of problem (P1) is NP-hard. a

6 Conclusions

We suspect that our bounds on the ratios for 1-covers versus 2-covers and for 1-packings versus
2-packings hold in general.

1-Cover CONIJECTURE: Consider the integer program for a minimum weight 1-cover
of a laminar family and its LP relaxation (see Section 1). We conjecture that the ratio
of the optimal values is at most 4/3.

1-PAckING CoNJECTURE: Consider the integer program for a maximum weight 1-
packing of a capacitated laminar family and its LP relaxation (see Section 1). We
conjecture that the ratio of the optimal values is at least 2/3.

Another interesting question is to find sufficient conditions on the laminar family H (or, on the
tree T'(H) representing 7{) such that the LP relaxation has ;-integral extreme point solutions. As
noted in Section 1, the LP relaxation has integral extreme point solutions iff T'(H) is a path.
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