Approximating Directed Multicuts

Joseph Cheriyan Howard Karloff
Department of Combinatorics and Optimization = AT&T Labs—Research
University of Waterloo 180 Park Ave.
Waterloo, Ontario Florham Park, NJ 07932
Canada N2L 3G1 howard@research.att.com

jcheriyan@math.uwaterloo.ca

Yuval Rabanf
Computer Science Department, Technion—IIT
Haifa 32000
Israel
rabani@cs.technion.ac.il

Abstract

The seminal paper of Leighton and Rao (1988) and subseqgapertp presented approximate min-
max theorems relating multicommodity flow values and cugc#jes in undirected networks, developed
the divide-and-conquer method for designing approximmasilgorithms, and generated novel tools for
utilizing linear programming relaxations. Yet, despitagigent research efforts, these achievements
could not be extended to directed networks, excluding a feves that are “symmetric” and therefore
similar to undirected networks. This paper is an attempetoady the situation. We consider the prob-
lem of finding a minimum multicut in a directed multicommadilow network, and give the first non-
trivial upper bounds on the max flow-to-min multicut ratiouQresults are algorithmic, demonstrating
nontrivial approximation guarantees.

1 Introduction

A networkis a graphG = (V, E), directed or undirected, with positive edge capacitie¥ — R, together
with a list of source-sink pairs of verticesy,t1), (s2,t2), ..., (s, tx), Sometimes calledommaodities
Usually we usék to denote the number of commodities. ndulticutis a setM of edges whose removal
disconnects all commodities (that G,— M = (V, E — M) has nos; — t; path for any: in{1,2, ..., k}),
and its capacity is the sum of the capacities of the edge® inThe problem of finding a multicut of
minimum capacity may be formulated as a simple and elegéedén program, and dropping the integrality
constraints gives a linear programming (LP) relaxatione dptimal value of this LP relaxation (which is
a lower bound on the minimum capacity of a multicut) equaésiaximum value of a multicommodity
flow (see Section 2 for details). In the single-commodity=£ 1) case, the celebrated max flow-min cut
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theorem of Ford and Fulkerson [7] states that the minimunaci#yp of a multicut equals the maximum
value of a flow. This is one of the key results in combinatasigimization, and it has numerous important
applications, both in theory and in practice. Unfortungtétis theorem does not generalize to multiple
commodities, and moreover, the general problem of findindrannum-capacity multicut is NP-hard (for
k > 3 commodities for undirected networks, and foe> 2 commodities for directed networks). See [14]
for more discussion on multicommaodity flows.

Based on ground-breaking work by Leighton and Rao [15], amgr@ving on earlier results due to
Klein et al. [11], Garg, Vazirani, and Yannakakis [8] prowatapproximate minmax theorem for undirected
networks: the minimum capacity of a multicutiqlog k) times the maximum value of a multicommaodity
flow; moreover, their proof is constructive and gives@flog k)-approximation algorithm (the algorithm
runs in polynomial time and returns a multicut whose capaisitat mostO (log k) times the maximum
value of a multicommodity flow). Despite persistent reskafforts, these results could not be extended to
directed networks, excluding a few cases that are “symuoietrid therefore similar to undirected networks.

In this paper, we consider the problem of finding a minimumpagdty multicut in networks (without
any symmetry assumptions), “network” without “undirectedeaning “directed network” from now on,
and provide the first nontrivial upper bounds relating nouiticapacities to multiflow values. For a net-
work G, we denote byC'(G) the minimum capacity of a multicut, and, (@), the maximum value of
a multicommodity flow. (For undirected network®, we denote the corresponding quantitiesdyG’)
andF'(G").) We prove four related theorems. Each of these theorenes givound o’ (G) in terms of
F(G) and other parameters of the netw@tkMoreover, each proof gives an efficient algorithm for firglin
a multicut whose capacity is at most the bound’(it7). The bounds given by the first three theorems are
mutually incomparable in the sense that for each of the thoemds, there exist networks in which that
bound is better than the other bounds.

Theorem 1 There is a polynomial-time algorithm that takes a netw@rkatisfyinge(e) > 1 for all arcs e
and finds a multicud/ satisfyinge(3) < 108 F(G)3.

We prove that without thec{e) > 1 for all €” condition, no result of the formC'(G) < ¢(F(G)) for
all G” is possible. (For undirected networks, Yannakakis [24)ves, via a variant of the region-growing
procedure of [8], tha€'(G) = O(F(G) log F(G)), if all capacities are at least 1.)

Theorem 2 There is a polynomial-time algorithm that take-a@ommodity networks satisfyinge(e) > 1
for all arcs e and finds a multicud/ satisfyinge(M) < 391n(k + 1) F(G)%

Again, the ¢(e) > 1 for all €” condition is necessary.

Theorem 3 There is a polynomial-time algorithm that takesmawertex,k-commodity network and finds
a multicutM satisfying

c(M) < (45y/nln(k+ 1)) F(G) < (45vV2nlnn)F(G).
We give a better approximation guarantee for some instanqe#anar digraphs.

Theorem 4 For every A, there is a constany such that there is a polynomial-time algorithm that takes
an n-vertex,k-commodity ¥ > 2) networkG with uniform capacities, whose underlying undirected drap
is planar, and in which the total degree of every vertex is astn\, and finds a multicufi satisfying

(M) < (yVIgk)n' " F(G).



Tardos and Vazirani [23] use the methods of Klein, Plotkirg &ao [12] to prove a constant ratio for
undirected planar networks.

Theorem 1 is our basic result. The other three theorems aedlan it, and derived using techniques
such as region growing (Theorem 2), a trade-off via LP rongdTheorem 3), and a trade-off via the planar
separator theorem (Theorem 4).

In recent work, Saks, Samorodnitsky, and Zosin [20] comsimfamily of k.-commodity networks, for
all k ande > 0, where the minimum multicut-to-maximuicommodity flow ratio is no less than— ¢, in
contrast with the) (log &) upper bound in the undirected case. (An upper bourid®# trivial consequence
of the Ford and Fulkerson theorem.) We note that in theirtiggdp’| is exponential irk, so an upper bound
of O(log |V|), for example, is still possible. In fact, the networks in]2@ve special structure. Each is
obtained by addin@k distinct new vertices, t1, ..., sg, tx t0 anundirectedgraph H, together with arcs
from thes;’s to some vertices il and from some vertices iH to thet,’s, replacing each undirected edge
by a pair of antiparallel arcs, and assigning positive ciigacto thevertices Each terminal gets infinite
capacity. We show in Section 4 that any netwdtlof such special structure with(G) > (k/2)F(G)
must, like the example of [20], have a number of vertices Widgexponential irk. Indeed, the same result
holds if capacities are instead assigned to arcs, provigedhe arcs incident from the sources have infinite
capacity, and so do the arcs incident to the sinks.

The best inapproximability result known for directed meti is that the problem is MAX SNP-hard.
This is also the strongest hardness result known for thereicteéid case [3].

The rest of this introduction gives our perspective on tlewimus work in this area, and is not essential
for studying the new results in this paper.

In a seminal paper, Leighton and Rao [15] proved that forarmf multicommodity flow instances
the sparsest cut-to-maximum concurrent flow ratio in urudée networks is at most logarithmic in the
number of verticed. They exhibited several applications of this result, mostlhe design and analysis of
approximation algorithms for NP-hard optimization prohke Their paper inspired a significant research
effort in the past decade. The results of this effort incltideemergence of the divide-and-conquer method
in approximation algorithms (see [22]), applications dditlregion-growing technique to other problems [2,
8, 11, 21], and the development of alternative proofs foirth&sic result and its generalizations [1, 5, 16].
In particular, Garg, Vazirani, and Yannakakis [8] gave ageht analysis of the region-growing technique,
and used it to derive asymptotically tigh{log k) bounds on the minimum multicut-to-maximum flow ratio
in k-commodity undirected networks.

Most of the previous research on approximation algorithmngfoblems related to multicuts in directed
networks exploits some sort of “symmetry” property thatders the problems similar to the undirected
case; for example, the commodities occur in symmetric faits;), (¢:,s;) [4, 5, 6, 13, 15, 18, 21]. In
particular, for such symmetric instances, Even, Naor, & and Sudan [6], improving upon a result of
Klein, Plotkin, Rao, and Tardos [13], gave @r(log k) loglog k) bound, and they gave efficient algorithms
to find a “symmetric multicut” whose capacity is within themsa factor of the optimum. (A symmetric
multicut means a set of arcs whose removal disconnectg eitfrom ¢; or ¢; from s;, for every symmetric
pair of commodities.) These papers use region-growingiecies, though the bounds that are proved are
usually weaker than those that can be proved in the undidecise.

Unfortunately, the literature cited in the previous pasagdr has almost no relevance for (asymmetric)
directed multicuts because therenisrelation between a (directed) multicut and a symmetric routt For
example, consider a directed graph on two vertigeswith two arcs(p, ¢) and (¢, p) having capacities
1 and 1000, respectively. There are two commodities, ;) = (p, ¢) and(sz,t2) = (¢, p). The unique
multicut has capacity 1001, whereas there is a symmetriticatibf capacity one. Another way to see the

The sparsity of a cut is the ratio between the cut capacitythachumber of source-sink pairs that are disconnected. A
concurrent flow delivers the same amount of flow of each conityod



contrast is to compare the integrality ratios of the lingagpamming relaxations: it i© ((log k) log log k)
for symmetric multicuts [6] but the construction due to Sekal. shows that it i& for directed multicuts
[20].

2 Preliminaries

A networkG is a directed graplV, E), without parallel arcs or self-loops, with an assignmemasitive
capacities to the aras: £ — R™, together with a positive integérand a set ok distinct ordered pairs
(si,t;) of vertices,s; # t; for all i. LetT = {s1,t1, s2, ta, ..., Sk, tx } De the set oferminals For any set of
arcsE’, we usec(E’) to denote) . c(e). A multicutM in G is a subsed! C E such that the digraph
(V, E— M) has nos; — t; path, for each € {1, 2, ..., k}. (All paths are simple in this paper.) Thapacity
of a multicutM is ¢(M). DIRECTED MULTICUT is the problem of finding a minimum-capacity multicut
in a specified networks. Let us denote the minimum capacity of a multicuGrby C' = C(G). (When
we work with undirected networks, the underlying graghis undirected and the minimum capacity of a
multicut is denoted’ = C’'(G").)

The problem of finding a minimum-capacity multicutéis precisely the following integer program:
Find z(e) for alle € E, x(e) integral,z(e) > 0, so as to minimizé __.  c(e)x(e), such that for every
i = 1,2,3,...,k, and for everys;, — t; pathP in G, > __pz(e) > 1. An optimal solution will have
z(e) < 1lforalle € E.

Droppingthe % (e) integral” condition gives a linear programming relaxat$f IRECTED MULTICUT:
Find a nonnegative real lengifie) for each are: such that for eachh = 1, ..., k, the distance from,; to
t;, relative to these lengths, is at least 1, so as to minirhizee)z(e). Its linear programming dual is
easily seen to be equivalent toldricommoDITY FLow, which is this problem: Given a netwotk, find
a sequenceéfi, fa, ..., fr) such thatf; is a single-source flow (of commodityin G from sources; to sink
ti, such tha( fi, f2, ..., fi) satisfiesy ;... fi(e) < ¢(e) forall e € E, and in which the sum overof the
value of f; is maximized. LetF' = F(G) denote the optimal value of the multicommodity flowGh It is
easy to see th&t'(G) > F(G) for all G. (In an undirected networ&’, the optimal flow value is denoted
F’ = F'(G").) Since MuLTICOMMODITY FLOW can be written as a linear program of polynomial size, it
can be solved in polynomial time.

We are interested in the relation betwe€G) and F'(G) in an arbitrary networkG. CanC'(G) be
bounded as a function & (G) for all G? More formally, is there a functiop: R — R such that for all7,
regardless of the number of vertices and commoditésy) < ¢(F(G))? We will (easily) see below that
if the capacities can be arbitrarily small, then the answero. However, if we insist that(e) > 1 for all
e € E, thenitis a nontrivial fact thaF'(G) < 1 impliesC(G) < 1.

Note that DRECTED MULTICUT is nota generalization of NDIRECTED MULTICUT obtained by re-
placing each undirected edge by a pair of antiparallel ard$a replacing each commodify;, ¢;} by a pair
of “antiparallel” commoditiegs;, ¢;), (¢;, s;). For example, consider a four-vertex undirected tree vaith r
r and leave$,, 5, [5. Let us define three commaodities, one for each pair of learsdmake all capacities
one. LetG’ denote the network. Then, we ha¥§G’) =2 > F'(G’) = 1.5 (any two edgesr, [;}, {r, [;}
form a multicut, and an optimal flow assigns the valye to each of the three undirected— ¢; paths).
However, if we now replace each edge by two antiparallel Ggash of unit capacity) and define six com-
modities, one for each ordered pair of leaves, then thetdidatetworkG hasC'(G) = 3 = F(G) (the three
arcs entering the roetform a multicut, and an optimal flow assigns the valye to each of the six directed
s; — t; paths).



3 Algorithms and bounds for multicut

3.1 Multicutis bounded by a function of flow

In this section we prove Theorem 1, tha{G) < 108F(G)?, provided thatc(e) > 1 for all arcse.
But first we prove that such a result is not possible withoet‘d(e) > 1 for all ¢” assumption. Garg,
Vazirani, and Yannakakis [8] show that there exigts> 0 such that for all sufficiently large, there is
an n-vertex, undirected, unit-capacity netwof¥, (on an expander), having’(G},)/F'(G) > ~vlgn.
Create a (directed) netwok,, from G!, by replacing each edge by a pair of antiparallel, unit-cépac
arcs. We haveF'(G,) < F'(2G)) = 2F'(G),) (because any flow i, is feasible in2G},, which
is G, with its capacities doubled) an€(G,) > C’(G),) (because ifM is a minimum multicut in
G, thenM' = {{u,v}|(u,v) € Mor(v,u) € M} is a multicut inG’, and |M’'| < |M|). Hence
C(G,)/F(G,) > C"(G)/(2F'(G))) > (v/2)lgn. Now suppose thaf'(G) < ¢(F(G)) for all directed
networksG. Choose a large enoughand set\ = F(G,,). Let H, = G,/ (i.e., scale all capacities down
by A). We have (using3 1gn) F(G,) < C(G,))

Tien = (Qlen)F(G) < (C(G) = C(H,) < g(F(HL) = g
which is a contradiction.

Now we prove Theorem 1, which is restated here for converienc
Theorem 1 There is a polynomial-time algorithm that takes a netw@rkatisfying:(e) > 1 for all arcse
and finds a multicud/ satisfyinge(3) < 108 F(G)3.

Proof. We give a polynomial-time algorithm to construct a multiofitapacity at most08 2 in a network

G ondigraphV, E) satisfyingc(e) > 1for all e, whereF' = F(G). First, find a nonnegative, rational length
functionz satisfying) _ c(e)z(e) = F and}__.p z(e) > 1for all s; — ¢; pathsP, for all .. (Such anv is
given by an optimal solution to the linear programming rakion of DIRECTED MULTICUT in Section 2;
the optimal valug __ ; c(e)z(e) equalsF = F(G) by the duality theorem of linear programming.) Define
f=>.x(e) <Y .cle)x(e) = F. For atechnical reason, we nee@t) < 1/6 for all e. Replace any arc
e with z(e) > 1/6 by a path of 6z (e) | new arcs of length at mosy 6 each, whose lengths add¢e), all

of whose capacities akge).

We need some more definitions. LBt C E. Given any vertex and realp, let By (s, p) = {u € V|
there is ars — w pathin(V, E’) of length at mosp}. Definedz: (s, p) = {(a,b) € E'|a € Bp/(s,p),b ¢
Bgi(s, p)}. Informally speakingBz: (s, p) denotes the ball with radiysand centes in the digrapH(V, E’),
anddg (s, p) denotes the set of arcs @F, E’) that leave this ball.

For our purposeshe prefixof pathP =< wug, uy, us, ..., u, > (Whose length may exceed 1) is the path
P’ =< ug, uy, ug, ..., u; > wherei is minimal such that the length @’ (relative toz) is at leastl /6, and
the suffixof pathP =< ug, uy, ug, ..., u, > is the pathP’ =< u;, u;11, ..., w, > wherei is maximal such
that the length of”’ is at leastl /6.

Here is the algorithm. The embedded comments are needdusfanalysis.

I* Let count(e) = 0foralle € E. */
LetE' = E.
As long as there is a pafs;, t;) such that some; — ¢; path exists irG' = (V, E’), repeat:

1. Choose any such
/* Find a shortest; — t; pathP; in G’ with respect tac. */

2. Find a real numbes; which minimizesc(g/(s;, p)) among those in the interval(1/3,2/3).



/* Let B, = BE/(S,'7 ,0,'). */
* Incrementcount(e) for all arcse in the prefix ofP;. */

3. Remove fronE" all arcs indg: (s;, pi)-

OutputM = E — E'.
End.

Obviously this process terminates and provides a multitigtclaim that the capacity of the multicut is
at most108 f2F < 108F3.
We need the following lemma, which is implicit in [8]. See@[&2, p.204].

Lemma5s LetG = (V, E) be adigraphand let € V. Letz : E — R* be alength function; : E — R
be a positive capacity function, aid C E. Then thereis @ € (1/3,2/3) such thaic(dz: (s, p)) < 3F’,
whereF’ =3~ _picle)z(e) < F.

The lemma implies that in a given iteration we cut arcs of cépat most3 F'.

Call the process of incrementirgunt(e) charginge. In each iteration, we charge a set of arcs of total
length at least /6, all endpoints of which are iBz(s;,1/3) C Bg/(si, pi) = Bi, because each arc has
length at most /6 and becausg; > 1/3. Since the total capacity addedfb— E’ in an iteration is at most
3F,

c¢(E - E') <18F Z z(e)count(e)
ecel
is an invariant. We prove next thatunt(e) never exceedsf, and hence

o(E— E') < (18F)(6f) Y x(e) = 108 f*F.
ecel

Figure 1: An illustration of the proof of Theorem 1. The dastiees indicate the “ballsB, and B;.

Choose any are = (u,v) in the originalG and relabel the commodities so that we charge the
iterations for commodities, 2, ..., b, in that order (and no others); these need not be consedigiggons,
of course. We claim, foir = 1, 2, ..., b, that:



(1) None of the vertices on the suffix & are inB;.
(2) All the vertices in the suffix of;, are inB; N BoNBsN---N B;_5.

Now (1) is trivial, because we chosepawhich is less thar2/3, and each arc’s length is at madsf6;
hence the endpoints of the suffix are nofin

Proving (2) is not much harder. See Figure 1. Since the iterdbr commodity: charges, P; must
containe. The head) of e = (u, v) must be inP;, P, ..., P, and moreovery must be inBy, By, ..., By
(in the iteration for commodity, all endpoints of arcs we charge areBp). Consider now the subpath
of P; starting atv and ending at the last vertex &% (clearly,) contains the suffix oF;). For eacl¥ < i,
we claim thatB, contains each vertex @J. The reason is that we removed all arcs leavihdi.e., all arcs
with tails in B, and heads i” — By) at the end of the iteration for commodityHence, in the iteration for
commodityz, any path in the current digraph that starts with a verte® imust have all its vertices iB,
(the path cannot leavB,). Since the start vertexof () is in By, every vertex of) is in B,. This proves (2).

We conclude that if < ¢, then the suffix of?, is disjoint from the suffix ofP;, because each vertex of
the suffix of Py is not in B, and each vertex of the suffix @, is in B,. Therefore, the sum of the lengths
of arcs inG is at least(1/6)b (since there aré disjoint suffixes, each of length at leaist6), and hence
(1/6)b< f,orb<6f. m

3.2 The region-growing technique

Recall that the digraph is denotédl = (V, E'), each arce has a positive capacity(e), and there aré:
commodities, each specified by a source-sink pairt;). Let each are have a nonnegative lengifie).
(The intention is that: is a feasible solution to the linear programming relaxatibBIRECTED MULTICUT
in Section 2.) Letl, (v, w) denote the shortest-path distance from vertés vertexw with respect to arc
lengthsz.

For a vertex sef C V, let(S,V — S) denote the sef(v, w) | v € S,w € V — S} of arcs leavingS,
andforE’ C E,letcg/(S,V —S) denotec(E'N (S,V —S)). Letvolz(S) denote the sum af(e)c(e) over
all arcse € F that have at least one end vertex (either tail or head) in

Recall thatF'(G) denotes the optimal value of the linear program

min{Zc(e)w(e) sdp(si,ty) > 1 (i=1,...,k); x> 0}

and thatvolg (V) = F(G) if the length functione is optimal for the LP.
The next lemma extends Lemma 4.1 (on region growing) of Géagirani and Yannakakis [8] to di-
rected networks, and has been previously applied by Kledh ¢13].

Lemma 6 ([8, 13]) LetG, ¢, x, and thek commodities be as above. Liebe any positive real and letbe
any vertex of7. Then there exists a real number0 < p < In(k + 1)/r, such that

cg(B,V — B) <1 - (volg(B) + volg(V)/k),

where B denotesB¢ (¢, p) (i.e., the set of vertices such thatG has ag — v path of length at most).
Moreover, there is an efficient algorithm to fipdand B¢ (¢q, p).

3.3 An algorithm for and proof of Theorem 2

Before describing the algorithm, we restate Theorem 2,dorenience.

Theorem 2 There is a polynomial-time algorithm that takes-&@ommodity networks satisfying:(e) > 1
for all arcs e and and finds a multicu/ satisfyinge(M) < 391n(k + 1)F(G)2.

Proof of Theorem 2.Here is the algorithm:



LetE' = E,letM = (), and foreach € {1,...,k}, letB;, = 0.

While there is a commodity € {1, ..., k} such thatG' = (V, E’) has ars; — t; pathdo

Choose such an

LetG; = (Vi, E;) be the subgraph @’ obtained by keeping exactly those vertices and arcs that

belong to some; — t; pathinG’.

Apply Lemma 6 (the GVY procedure) G, with start vertex; = s, andr = 3 In(
In(k+1

M~ I
_|_
QO
=)
o

let B; be the vertex set given by the lemma, iB;,= B¢, (si, p), wherep < = =

Add to M all the arcs off; in the cut(B,, V; — B;) in G;.
ReplaceE’ by B/ — M = E — M.

End While

Output the multicuftd and stop.

For the analysis, it is convenient to havé:) < 1/6 for all arcse. As in the proof of Theorem 1, we
replace each arcwith z(e) > 1/6 by a path of 6z (e) | new arcs of length at mo$y6 each, whose lengths
add toz (e), all of whose capacities arge).

For eachi € {1,...,k} such thatB; is nonempty and for each vertexin B;, we assign a path af;,
denotedr (¢, v), and called thesuffix ofv with respect to commodity To defines (¢, v), take anys; — ¢;
path P of G, that contains, and leto (i, v) be the suffix ofP of length at least /6 and with the fewest
vertices. Note thaP exists (by our choice off; and the fact that € B,) and has length at least(since
d.(si,t;) > 1). Clearly,o (i, v) has length less thaty 3 (sincez(e) < 1/6, Ve € E). Note that every vertex
win o(¢,v) hasd, (w,t;) < 1/3, and every vertex in B; hasd,(s;,u) < 1/3; hence,o (7, v) is disjoint
from B;.

Figure 2: Anillustration of the proof of Theorem 2. The sdlites indicate the suffixes(:, w) (horizontal)
ando(j, w) (vertical). P; is a subpath of the; — ¢; path indicated by dashed and solid lines.

We need a claim.
Claim. Every vertexw of G isin at mos6F(G) setsB,, i € {1,...,k}.
Proof of Claim. Focus on any vertex and suppose that there are two commoditiaedj such thatw is
in B; andB;. Assume without loss of generality that the algorithm pesegi beforej. See Figure 2.
Suppose that (i, w) ando(j, w) have a vertey in common. TherG; contains av — y path called,
say,P;. Focus onG’ at the start of the iteration for commodityand call this digraplé*. Clearly, G* has
ans; — w path that is contained iB; (sincew € B;), G* contains thes — y pathP; (since: is processed

beforej), andG* has ay — ¢; path that is a subpath ef(i, w). By concatenating these three paths, we see

8



thatG™ has arns; — ¢; walk W (allowing repeated vertices) that contains some ard3;oMoreover, every
arc of W that is in the cu{B;, V; — B;) in G* is an arc of the middle patR;, because the first of the three
paths forming¥” has all its vertices insid8; and the last of the three paths formiig has all its vertices
outsideB,. Shortcut thes; — ¢, walk W to get ans; — ¢, pathP in G*. Then every vertex aP and arc of
P is present inG;. Moreover, inG;, every arc ofP in the cut(B;, V; — B;) is an arc ofP;, and there is at
least one such arc. Hence, at least one afe; § removed fromE’ by the iteration for commodity. This is
a contradiction, sinc®; is supposed to be a path@f;.. Hencep (i, w) ando (j, w) must be vertex-disjoint.
This proves the claim, since the suffixeg, w), wherei is such thatw € B;, are pairwise disjoint, and
the number of suffixes is at most, x(e)/(1/6) < 6. c(e)z(e) < 6F(G), since each suffix has length
atleastl/6 andc(e) > 1foralle € E. m
Clearly, the theorem holds # = 0 or if F/(G) = 0, sinceC(G) = 0 in these cases (the algorithm

returnsM = (). If F(G) # 0, then note thaF'(G) > 1, by the assumption on the capacities. The rest of
the proof follows from Lemma 6 and the claim, since

k
k
> " 3In(k + 1)(volg, (Vi) /k + volg, (B;))

=1

IA

IA

k
3In(k +1)(F(G) + Y volg,(B;))

3In(k + 1)(F(G) + 12F(G)?)
39In(k + 1)F(G)?,

VANVAN

where the inequality"*_, volz, (B;) < 12F(G)? holds because

k k
> wvolg(Bi) = > {c(u,v)z(u,v) 1 (u,v) € E;and(u € B;orv € B)}
=1 =1
< ) clwv)a(uv)(k(u) + K(v))
(u,0)eE
< c(u,v)z(u,v)(12F(G)) < 12F(G)?,
(u,0)eE
wherex(v) denotes the number of commodities {1,..., %} such that vertex is in B;, and we have

k(v) < 6F(G) by the claim above.m

Remark. The assumptiond{e) > 1 Ve € E”is used to get the bounds(v) < 6F(G)Vv € V,” and
it also impliesF(G) < F(G)2. The next result, Theorem 3, uses a variant of this proofakatds this
assumption.

3.4 The proof of Theorem 3

We restate Theorem 3, for convenience.



Theorem 3 There is a polynomial-time algorithm that takesawvertex,t-commaodity network and finds
a multicutM satisfying
c(M) < (45y/nln(k + 1)) F(G).

Proof of Theorem 3. The algorithm for Theorem 3 consists of two stages.d.et 0 be a parameter (later,
we will fix o = 1/y/nln(k + 1)).

In the first stage, we tak&{; to be the set of all arcs € E such that:(e) > «, and we takel’ =
FE — M,. M, is the subset of the multicut found by the first stage, Bhib the arc set of the current digraph
after the first stage. (Informally, we “cut” all the arcsiify by “rounding up” the LP solution, and these
arcs are ignored by the second stage.)

The second stage applies the algorithm of Theorem@ te (V, E’). Let M, be the multicut found by
the second stage. The final multicut obtained by the algorit/ = M; U M,.

Consider the capacity:(M) of M. First, ¢(My) = > cpcle) < D eny cle)z(e)/a <
Y ek cle)z(e)/a = F(G)/a, where the first inequality holds since the aeds 1/, have been “rounded
up” fromz(e) > ato 1.

We estimate (M) by modifying the analysis in the proof of Theorem 2 to explioé fact that: (¢) < «
for all arcse in the input. Choose anye {1, ..., k} such thatB; is nonempty, let be any vertex irB;, and
focus on the suffix (i, v). Sinceo (7, v) has length at leadt/6 and each are (in Stage 2) has(¢) < «,
there must be at leaét /6)/« vertices ino (2, v). By the claim in the proof of Theorem 2, any two distinct
suffixese (i, v) ando (j, v), ¢ # j, are vertex-disjoint. Consequently, for any vertexhe number of distinct
suffixeso (z,v), ¢ € {1,...,k}, is at mostn/(1/(6c)) = 6an (note that we did not use any assumption
on the arc capacities). In other words, each vertex is in &t 6won distinct setsB;, ¢ € {1,...,k}. An
argument similar to that of the proof of Theorem 2 (but withibxe assumptiond{e) > 1 Ve € E”) implies
c(Msy) isatmosBln(k + 1)(1 + 12an) F(G).

Thenc(M) = c(My) + ¢(M;) < Fl&) +31In(k+1)(14 12an)F(G). We balance the contribution of
(8%

. 1
the two terms by choosing = ———=to getc(M) < 3F(G)(y/nln(k + 1)+ 14/nln(k + 1))

nln(k + 1)
(45/nln(k+1))F(G). =

Remarks. (1) Theorem 3 imposes no restrictions on the arc capaci{®sTheorem 3 implies that the
integrality ratio of the linear program is at mosi/» In(k + 1), and hence any network with integrality
ratio at least/2 must haver > £2?/(90%1n(k + 1)).

3.5 Bounded-degree planar digraphs

In this section we prove Theorem 4, which is restated herednvenience.

Theorem 4 For everyA, there is a constant such that there is a polynomial-time algorithm that takes
an n-vertex,k-commodity ¥ > 2) networkG with uniform capacities, whose underlying undirected drap
is planar, and in which the total degree of every vertex is astn\, and finds a multicufi/ satisfying

(M) < (1/Igk)n'F(G).

The following planar separator lemma is implicit in LiptamdaTarjan [17]:

Lemma 7 ([17]) For every integerA > 0 there exists a constamt = «(A) > 1 such that for every
(undirected) planar multigraplds = (V, E') with maximum degree at mo4t, there are disjoint subsets
L,R C V of size|[V|/2] each, and a sef of edges of size at most/[V], such that every edge not i
either has both endpoints ih or both in R. Furthermore, there is a polynomial-time algorithm thaifén

such a set of edges.

10



Proof of Theorem 4. By Theorem 2, there is a universal constagnsuch that the multicut size in a
uniform-capacity network is at most(31g k) F(G)?, if k > 2.

Fix A. We prove the assertion in Theorem 4 with the consfanat max{ %7, 8}. The proof can
easily be converted into a polynomial-time algorithm.

Our proof proceeds by induction an The basis of the inductiom(= 1) is trivial. Consider am-vertex
instance, n > 2. If F(G) < n1/4/\/1g—k, then by Theorem 2, the minimum multicut is of size at most
(Blgk)F(G)? < p/Igk - F(G)n'/* < v/lgk - F(G)n'/*. So, we may assume thB{(G) > n'/*/\/Igk.

By Lemma 7, we can find a set of at mesy/n arcs whose removal partitiolis into two subgraphs of
order|n/2] each (with perhaps one isolated vertex left over). Cleashgry commodity with terminals in
two different components is cut by removing the at-megftr arcs. Letf;, f; be the maximum flows for
the remaining commodities in the two components. By the dtide assertion, fof = 1,2 one can find a
multicut of size at mosty/Ig k) fi|n/2] 1/4 in thesth component. (This holds even if either component has
0 or 1 commodity, though this case isn't covered by the inglaessertion.) The union of these multicuts
and the separator is a multicut for the entire instanceidesis at most

2
o +yyigk Y filn/2lVt < v+ /igk - (f+ f)(n/2)?
=1
< (at9/2Yigk - F(G)n'*

asf, + f» < F(G), F(G) > n'/*/\/Igk, andy > o + s ®

4 Some simple constructions must be large

In this section we prove thatcommodity arc-capacitated or vertex-capacitated nétswaith a particular
structure and integrality ratio at ledst2 must have exponentially many vertices. The networks cootd

by Saks et al. [20] have the structure described in Theorerari®so this theorem explains why the number
of vertices in these networks is exponentiakin

Theorem 8 Let H' = (V’, E’) be an undirected graph in which each edge has some capaeity> 0.
Replace each edgeby a pair of antiparallel arcs each of capacitfe) and call the resulting digraph
H = (V'  E). Add2k distinct new vertices,, ty, ..., sx, tx, getting vertex set’ = V' U {sy, t1, ..., Sk, tx }-
Choose subset$ C V', T, C V', S, N T, =B forall i = 1,2, ...,k and add arcgs,, v) for all v € S; and
(u,t;) for all w € T3, all of infinite (or very large) capacity. Whet& is the resulting network,

C(G) < (471gn)F(G),
where~ is a universal constant and = |V’|.
Before giving the proof, we give an application of the theore
Corollary 9 Using the notation of Theorem 8,Gf has integrality ratio at leask/2, thenn > 2+/(37),

Informally, the theorem implies that if there existssawvertex network with integrality ratio at least
(for a fixede > 0), then it must exploit the asymmetry (or, directedness)antban the example of Saks et
al.

Proof of Theorem 8. Starting with digrapt, define a network oV’ by constructing one commaodity for
each pair(u, v) with u € S; andv € T; for somes, having source: and sinkv; call this networkH also.
The key pointis thaf'(H) = F(G) andC(H) = C(G).

11



We now construct an undirected versionifand apply the result of [8] on integrality ratios of undi-
rected networks. Build an undirected network call€dby starting from undirected grafi’ and defining a
commodity for every unordered pdit, v} such that. € S;, v € T; for somei. We haveC'(H) < 2C"(H’)
andF(H) > F'(H'). Apply [8] to infer that there is a universal constanguch that

ety < (e (3) ) P < gy
and then conclude that
C(G) = C(H) < 2C'(H') < (4ylgn)F'(H') < (4vlgn)F(H) = (471gn)F(G).m

Now we state a vertex-capacitated version.vektex multicuin a vertex-capacitated digraph is a
subset of vertices containing at least one vertex on every t; path, for alli. However, to discourage
deletion of terminals, we insist that all terminals haveriité capacity. Similarly, arertex multicutin a
vertex-capacitated undirected gra@his a subset of vertices containing at least one vertex oty eyer ¢,
path, for alli. Again we insist that all terminals have infinite capacitet NVC'(G), NC'(G’) denote the
minimum capacity of a vertex multicut in digraghor undirected graply”’, respectively.

There is an obvious LP relaxation with nonnegative varigble) for all v € V', constrained so that for
all 4, all s; — t; pathsP satisfy ", .p #(v) > 1, whose objective is the minimization df c(v)x(v); for
undirected graphs, we have the same problem, except imgplvidirected; — ¢; paths. The corresponding
duals are flow problems: Find a nonnegative value for each ¢; (or s; — t;) path, for alli, such that the
sum of the values on all paths containing verteis at most:(v), and maximize the sum of all variables.
Let NF(G), N F'(G’) be the maximum flow value in digraph or undirected grapls’, respectively.

Garg, Vazirani, and Yannakakis [9] prove a vertex analogugheir arc result: There is a universal
constanty such thatvVC’(G’) < (ylg k)N F'(G’) for all G’ with & > 2 commodities.

Theorem 10 Let H' = (V”, E’) be an undirected graph in which each verielias some capaciiy(v) > 0
(and edges are uncapacitated). Replace each edmgea pair of antiparallel arcs and call the resulting
digraphH = (V’, E'). Add2Fk distinct new verticesy, t1, ..., sk, tx having infinite capacities, getting vertex
setV = V' U {sy,t1, ..., Sk, tx}. Choose subsess C V!, T; C V', S,NT;, =@ foralli=1,2,....k and
add arcs(s;, v) for all v € S; and(w, ¢;) for all w € T;. WhereG is the result,

NC(G) < (411gn)NF(G),
wherey is a universal constant ane = |V’|.
Corollary 11 Using the notation of Theorem 10Gfhas integrality ratio at leask /2, thenn > 2+/(37),

The proof of Theorem 10 is similar to that of Theorem 8, so wiét @nexcept to note that we make the
terminals ofH and H’ newvertices (of infinite capacity) outside &f', since effectively we cannot delete
any terminal.

5 Further remarks

Anupam Gupta (personal communication, June 2001) hasmautdine following improvements, based on a
preliminary version of our results.

Theorem I There is a constant such that there is a polynomial-time algorithm that takesaworkG
satisfyingc(e) > 1 for all arcs e and finds a multicud/ satisfyinge(M) < v F(G)?.

12



This implies the following improvement of Theorem 3, anddlaplies an improvement of Theorem 4
(the factor ofy/log k can be omitted).

Theorem 3 There is a constant’ such that there is a polynomial-time algorithm that takes:avertex
networkG and finds a multicuds satisfying:(M) < (v'v/n) F(G).
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