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Abstract. Given an undirected graph G(V, E') with terminal set 7' C V/
the problem of packing element-disjoint Steiner trees is to find the maxi-
mum number of Steiner trees that are disjoint on the nonterminal nodes
and on the edges. The problem is known to be NP-hard to approximate
within a factor of £2(logn), where n denotes |V|. We present a random-
ized O(log n)-approximation algorithm for this problem, thus matching
the hardness lower bound. Moreover, we show a tight upper bound of
O(log n) on the integrality ratio of a natural linear programming relax-
ation.

1 Introduction

Throughout we assume that G = (V, F), with n = |V], is a simple graph and
T C V is a specified set of nodes (although we do not allow multi-edges, these
can be handled by inserting new nodes into the edges). The nodes in T are
called terminal nodes or black nodes, and the nodes in V' — T are called Steiner
nodes or white nodes. Following the (now standard) notation on approximation
algorithms for graph connectivity problems (e.g. see [16]), by an element we mean
either an edge or a Steiner node. A Steiner tree is a connected, acyclic subgraph
that contains all the terminal nodes (Steiner nodes are optional). The problem
of packing element-disjoint Steiner trees is to find a maximum-cardinality set of
element-disjoint Steiner trees. In other words, the goal is to find the maximum
number of Steiner trees such that each edge and each white node is in at most
one of these trees. We denote this problem by IUV. Here, I denotes identical
terminal sets for different trees in the packing, U denotes an undirected graph,
and V denotes disjointness for white nodes and edges.

By bipartite ITUV we mean the special case where ¢ is a bipartite graph with
node partition V=T U (V —T), that is, one of the sets of the vertex bipartition
consists of all of the terminal nodes. We will also consider the problem of packing
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Steiner trees fractionally (or fractional TUV for short), with constraints on the
nodes which corresponds to a natural linear programming relaxation of IUV
(explained later in this section).

IUV captures some of the fundamental problems of combinatorial optimiza-
tion and graph theory. First, suppose that T consists of just two nodes s and .
Then the problem is to find a maximum-cardinality set of element-disjoint s, -
paths. This problem is addressed by one of the cornerstone theorems in graph
theory, namely Menger’s theorem [4, Theorem 3.3.1], which states that the max-
imum number of openly-disjoint s, f-paths equals the minimum number of white
nodes whose deletion leaves no s,¢-path. The algorithmic problem of finding an
optimal set of s,¢-paths can be solved efficiently via any efficient maximum s, -
flow algorithm. Another key special case of TUV occurs for T' = V, that is, all
the nodes are terminals. Then the problem is to find a maximum-cardinality set
of edge-disjoint spanning trees. This problem is addressed by another classical
min-max theorem, namely the Tutte/Nash-Williams theorem [4, Theorem 3.5.1].
The algorithmic problem of finding an optimal set of edge-disjoint spanning trees
can be solved efficiently via the matroid intersection algorithm. In contrast, the
problem IUV is known to be NP-hard [7,3], and the optimal value cannot
be approximated within a factor of £2(logn) modulo the P#£NP conjecture [3].
Moreover, this hardness result applies also to bipartite IUV and even to the
problem of packing Steiner trees fractionally for the bipartite case (see (1) below
for more details) via [15, Theorem 4.1]. That is, the optimal value of this linear
programming relaxation of bipartite IUV cannot be approximated within a fac-
tor of 2(logn) modulo the P#NP conjecture. This is discussed in more detail
later. For related results, see [2].

One variant of IUV has attracted increasing research interest over the last
few years, namely, the problem of packing edge-disjoint Steiner trees (find a
maximum-cardinality set of edge-disjoint Steiner trees); we denote this problem
by TUE. This problem in its full generality has applications in VLSI circuit
design (e.g., see [12,21]). Other applications include multicasting in wireless
networks (see [6]) and broadcasting large data streams, such as videos, over
the Internet (see [15]). Almost a decade ago, Grotschel et al., motivated by the
importance of IUE in applications and in theory, studied the problem using
methods from mathematical programming, in particular polyhedral theory and
cutting-plane algorithms, see [8—12]. Moreover, there is significant motivation
from the areas of graph theory and combinatorial optimization, partly based
on the relation to the classical results mentioned above, and partly fueled by
an exciting conjecture of Kriesell [18] (the conjecture states that the maximum
number of edge-disjoint Steiner trees is at least half of an obvious upper bound,
namely, the minimum number of edges in a cut that separates some pair of
terminals). If this conjecture is settled by a constructive proof, then it may
give a 2-approximation algorithm for TUE. Recently, Lau [19] made a major
advance on this conjecture by presenting a 26-approximation algorithm for IUE
using new combinatorial ideas. Lau’s construction is based on an earlier result
of Frank, Kiraly, and Kriesell [7] that gives a 3-approximation for a special case



of bipartite TUV. (To the best of our knowledge, no other method for IUE gives
an O(1)-approximation guarantee, or even a o(|7T'|)-approximation guarantee).

Here is a summary of the previous results in the area. Frank et al. [7] studied
bipartite IUV, and focusing on the restricted case where the degree of every
white node is < A they presented a A-approximation algorithm (via the matroid
intersection theorem and algorithm). Recently, we [3] showed that (i) TUV is
hard to approximate within a factor of £2(log n), even for bipartite IUV and even
for the fractional version of bipartite TUV, (ii) ITUV is APX-hard even if |T|
is a small constant, and (iii) we gave an O(/nlogn)-approximation algorithm
for a generalization of IUV. For IUE, Jain et al. [15] proved that the problem
is APX-hard, and (as mentioned above) Lau [19] presented a 26-approximation
algorithm, based on the results of Frank et al. for bipartite IUV. ! Another
related topic pertains to the domatic number of a graph and computing near-
optimal domatic partitions. Feige et al. [5] presented approximation algorithms
and hardness results for these problems. One of our key results is inspired by
this work.

Although ITUE seems to be more natural compared to IUV, and although
there are many more papers (applied, computational, and theoretical) on IUE,
the only known O(1)-approximation guarantee for IUE is based on solving bi-
partite IUV. This shows that IUV is a fundamental problem in this area. Our
main contribution is to settle (up to constant factors) ITUV and bipartite TUV
from the perspective of approximation algorithms. Moreover, our result extends
to the capacitated version of TUV, where each white (Steiner) node v has a
nonnegative integer capacity ¢,, and the goal is to find a maximum collection of
Steiner trees (allowing multiple copies of any Steiner tree) such that each white
node v appears in at most ¢, Steiner trees; there is no capacity constraint on
the edges, i.e., each edge has infinite capacity. The capacitated version of IUV
(which contains TUV as a special case) may be formulated as an integer program
(TP) that has an exponential number of variables. Let F denote the collection of
all Steiner trees in G. We have a binary variable g for each Steiner tree F' € F.

maximize ZFe}' rp
subject to Yo € V =T :> p cprr < ¢, (1)
VFeF: xzpei01}

Note that in uncapacitated IUV we have ¢, = 1,Vv € V —T. The fractional
IUV (mentioned earlier) corresponds to the linear programming relaxation of
this TP which is obtained by relaxing the integrality condition on zp’s to 0 <

Our main result is the following:

! Although not relevant to this paper, we mention that the directed version of ITUV
has been studied [3], and the known approximation guarantees and hardness lower
bounds are within the same “ballpark” according to the classification of Arora and

Lund [1].



Theorem 1. (a) There is a polynomial time probabilistic approxzimation algo-
rithm with a guarantee of O(logn) and a failure probability of % for (unca-
pacitated) TUV . The algorithm finds a solution that is within a factor O(logn)
of the optimal solution to fractional TUV.,

(b) The same approximation guarantee holds for capacitated TUV.

We call an edge white if both its end-nodes are white, otherwise, the edge is
called black (then at least one end-node is a terminal). For our purposes, any
edge can be subdivided by inserting a white node. In particular, any edge with
both end-nodes black can be subdivided by inserting a white node. Thus, the
problem of packing element-disjoint Steiner trees can be transformed into the
problem of packing Steiner trees that are disjoint on the set of white nodes. We
prefer the formulation in terms of element-disjoint Steiner trees; for example,
this formulation immediately shows that IUV captures the problem of packing
edge-disjoint spanning trees; of course, the two formulations are equivalent.

For two nodes s, 1, let k(s,t) denote the maximum number of element-disjoint
s,t-paths (an s,¢-path means a path with end-nodes s and t); in other words,
k(s,t) denotes the maximum number of s, t-paths such that each edge and each
white node is in at most one of these paths. The graph is said to be k-element
connected if k(s,t) > k, Vs,t € T,s # 1, i.e., there are > k element-disjoint
paths between every pair of terminals. For a graph ¢ = (V, E) and edge € € F,
G — e denotes the graph obtained from G by deleting ¢, and G/e denotes the
graph obtained from G by contracting e; see [4, Chapter 1] for more details.
As mentioned above, bipartite ITUV means the special case of IUV where every
edge is black. We call the graph bipartite if every edge is black.

Here is a sketch of our algorithm and proof for Theorem 1(a). Let k be the
maximum number such that the input graph G is k-element connected. Clearly,
the maximum number of element-disjoint Steiner trees is < k (informally, each
Steiner tree in a family of element-disjoint Steiner trees contributes one to the
element connectivity). Note that this upper bound also holds for the optimal
fractional solution. We delete or contract white edges in (&, while preserving the
element connectivity, to obtain a bipartite graph G*; thus, G* too is k-element
connected (details in Section 2). Then we apply our key result (Theorem 3 in
Section 3) to G to obtain O(k/logn) element-disjoint Steiner trees; this is
achieved via a simple algorithm that assigns a random colour to each Steiner
node — it turns out that for each colour, the union of 7" and the set of nodes with
that colour induces a connected subgraph, and hence this subgraph contains a
Steiner tree. Finally, we uncontract some of the white nodes to obtain the same
number of element-disjoint Steiner trees of . Note that uncontracting white
nodes in a set of element-disjoint Steiner trees preserves the Steiner trees (up to
the deletion of redundant edges) and preserves the element-disjointness of the
Steiner trees.



2 Reducing IUV to bipartite IUV

To prove our main result, we first show that the problem can be reduced to
bipartite IUV while preserving the approximation guarantee. The next result
is due to Hind and Oellermann [14, Lemma 4.2]. We had found the result inde-
pendently (before discovering the earlier works), and have included a proof for
the sake of completeness.

Theorem 2. Given a graph G = (V, E) with terminal set T that is k-element
connected (and has no edge with both end-nodes black), there is a poly-time
algorithm to obtain a bipartite graph G* from G such that G* has the same
terminal set and is k-element connected, by repeatedly deleting or contracting
white edges.

Proof. Consider any white edge e = pg. We prove that either deleting or con-
tracting e preserves the k-element connectivity of G.

Suppose that G — e is not k-element connected. Then by Menger’s theorem
(G —e has aset D of k—1 white nodes whose deletion “separates” two terminals.
That is, every terminal is in one of two components of G — D — e and each of
these components has at least one terminal; call these two components €}, and
Cy. Let s be a terminal in C}, and let ¢ be a terminal in . Let P (s, ) denote any
set of k element-disjoint s, ¢-paths in G, and observe that one of these s, ¢-paths,
say Py, contains e (since the k-set D U {e} “covers” P(s,1)).

By way of contradiction, suppose that the graph G = G/e, obtained from
G by contracting e, is not k-element connected. Then focus on ' and note that,
again by Menger’s theorem, it has a set R of k white nodes, R D {p,q}, whose
deletion “separates” two terminals. That is, there are two terminals that are in
different components of G — R (R is obtained by taking a “cut” of & — 1 white
nodes in G and uncontracting one node). This gives a contradiction because:
(1) for s,t as above, the s, t-path Py in P(s, ) contains both nodes p, ¢ € R; since
|R| = k and P(s,t) has k element disjoint paths (by the Pigeonhole Principle)
another one of the s,¢-paths in P(s,t) say Py is disjoint from R; hence, G — R
has an s,t-path, and (2) for terminals v, w that are both in say C, (or both in
Cyq), G — R has a v,t path (arguing as in (1)) and also it has a w,t path (as in
(1)), thus G — R has a v, w path.

It is easy to complete the proof: we repeatedly choose any white edge and
either delete e or contract e, while preserving the k-element connectivity, until
no white edges are left; we take G* to be the resulting k-element connected
bipartite graph.

Clearly, this procedure can be implemented in polynomial time. In more
detail, we choose any white edge e (if there exists one) and delete it. Then we
compute whether or not the new graph is k-element connected by finding whether
k(s,t) > k in the new graph for every pair of terminals s,¢; this computation
takes O(k|T|?| E|) time. If the new graph is k-element connected, then we proceed
to the next white edge, otherwise, we identify the two end nodes of e (this has
the effect of contracting e in the old graph). Thus each iteration decreases the



number of white edges (which is O(|E])), hence, the overall running time is

O(K|T|E]?). 0

3 Bipartite IUV

This section has the key result of the paper, namely, a randomized O(logn)-
approximation algorithm for bipartite IUV.

Theorem 3. Given an instance of bipartite TUV such that the graph is k-
element connected, there is a randomized poly-time algorithm that with prob-
ability 1 — IL finds a set of O(IL) element-disjoint Steiner trees.

ogn ogn

Proof. Without loss of generality, assume that the graph is connected, and there
is no edge between any two terminals (if there exists any, then subdivide each
such edge by inserting a Steiner node).

For ease of exposition, assume that n is a power of two and k is an integer
multiple of R = 6logn; here, R is a parameter of the algorithm. The algorithm
is simple: we color each Steiner node u.r. (uniformly at randpm) with one of %
super-colors ¢ = 1,...,k/R. For each i = 1,...,k/R, let D" denote the set of
nodes that get the super-color i. We claim that for each ¢, the subgraph induced
by D' U T is connected with high probability, and hence this subgraph contains
a Steiner tree. If the claim holds, then we are done, since we get a set of k/R
element-disjoint Steiner trees.

For the purpose of analysis, it is easier to present the algorithm in an equiv-
alent form that has two phases. In phase one, we color every Steiner node u.r.
with one of & colors ¢ = 1,...,k and we denote the set of nodes that get the
colori by C* (i = 1,..., k). In phase two, we partition the color classes into k/R

super-classes where each super-class D’ (j = 1,...,k/R) consists of R consecu-
tive color classes C'(;_1)r41, C(j—1)R42s - - -, Cjr- We do this in R rounds, where
in round 1 < ¢ < R we have Di = Ug‘i_(jll?;}f_l_l C*; thus we have D7/ = D‘g. Con-

sider an arbitrary super-class, say the first one D!. For an arbitrary 1 < { < R,
focus on the graph H, induced by D} UT. Let G1q,...,Gq4, be the connected
components of Hy; note that d; > 1 denotes the number of components of H,.
Suppose that Hy is not connected, i.e. d; > 1.

Lemma 1. Consider any connected component of Hy, say G1. There is a set
UCV —T—=V(G1) (of white nodes) with |U| > k such that each node in U is

adjacent to a terminal in Gy and to a terminal in G — V(Gy).

Proof. Let U C V — V((1) be a maximum-size set of Steiner nodes such that
each node in U has a neighbour in each of 1 and G — V((G1); note that none
of the nodes in U is in Gq. By way of contradiction, assume that [U] < k.
Consider GG — U. An important observation is that every edge of G between G4
and G — V((1) is between a terminal of (7 and a Steiner node of G — V(G );
this holds because ' is bipartite and (/1 is a subgraph induced by T and some



set of white nodes. From this, and by definition of U, there is no edge between
G1and G —U — V(Gy), i.e., G = U is disconnected (note that there is at least
one terminal in G; and one terminal in ¢ — U — V((G1)). This contradicts the
assumption that GG is k element-connected. a

Consider a set U as in the above lemma. If a vertex s € U has the color
£+ 1, then when we add C*t! to D}, we see that s connects G and another
connected component of H,, because s is adjacent to a terminal in G; and to a
terminal in G — V(G1). For every node s € U we have Pr[s € C**!] = L. Thus,
the probability that none of the vertices in U has been colored ¢+ 1 is at most:

<1 - %)wl < <1 - %)k <e h (2)

This is an upper bound on the probability that when we add C*t! to D},
component (1 does not become connected to another connected component Gy,
for some 2 < a < d;. If every connected component G;, 1 < i < dp, becomes
connected to another component, then the number of connected components of
H,; decreases to at most dZ—‘ in round £+ 1. If in every round and for every super-
class, the number of connected components decreases by a constant factor then,
after O(logn) rounds, every D! UT forms a connected graph. We show that this
happens with sufficiently high probability.

By (2), in round £, any fixed connected component of H; becomes connected
to another component with probability at least 1 —e™!. So the expected number
of connected components of H; that become connected to another component is

(1 —e=1) - d;. Thus, if d¢ > 2 then defining o = 1+§_1 we have:

Eldiyy [ df] <o -dy. (3)

Define Xy = dy — 1. Therefore, X1, Xo,..., Xy, ..., is a sequence of integer
random variables that starts with X3 = dy — 1. Moreover, for every £ > 1, we
have X; > 0, and if X; = 0 then E[X;41] = 0 and if X, > 1 then

E[Xe41]Xe] = E[deyy — 1de — 1 > 1]
= Eldgade > 2 — 1

<od,—1 by (3)
=ocX;+o0-1
SO’X@.

An easy induction shows that E[Xy11] < ¢*X;. Since X1 <n—1and o < 3,
we have E[Xp] < L (recall that B = 6logn). Therefore, Markov’s inequality
implies that Pr[Xp > 1] < L. This implies that Pr[dg > 2] < 1, ie., the
probability that Hr = D' U T is not connected is at most % As there are %
super-classes, a simple union-bound shows that the probability that there is at

least one D7 (1 < j < £) such that D/ UT is not connected is at most £ <



1

. Thus, with probability at least 1 — @, every super-class D/ (together

logn
with T') induces a connected graph, and hence, the randomized algorithm finds
£2(k/logn) element-disjoint Steiner trees. O

4 IUV and capacitated IUV

Now we complete the proof of Theorem 1 using Theorems 2 and 3.

First, we prove part (a). Let k& be the maximum number such that the in-
put graph G is k-element connected. Clearly, the maximum number of element-
disjoint Steiner trees is at most k. Apply Theorem 2 to obtain a bipartite graph
G* that is k-element connected. Apply Theorem 3 to find Q(%) element-
disjoint Steiner trees in G*. Then uncontract white nodes to obtain the same
number of element-disjoint Steiner trees of . Moreover, it can be seen that the
optimal value of the LP relaxation is at most k (because there exists a set of
k white nodes whose deletion leaves no path between some pair of terminals).
Thus our integral solution is within a factor O(logn) of the optimal fractional
solution.

Now, we prove part (b) of Theorem 1. Our proof uses ideas from [3, 15, 19].
Consider the TP formulation (1) of capacitated TUV. The fractional packing
verter capacitated Steiner tree problem is the linear program (LP) obtained by
relaxing the integrality condition in the IP to zp > 0. As we said earlier, this
LP has exponentially many variables, however, we can solve it approximately.
Then we show that either rounding the approximate LP solution will result in
an O(logn)-approximation or we can reduce the problem to the uncapacitated
version of ITUV and use Theorem 1,(a).

Note that the separation oracle for the dual of the LP is the problem of finding
a minimum node-weighted Steiner tree. Using this fact, the proof of Theorem
4.1 in [15] may be adapted to prove the following:

Lemma 2. There is an a-approximation algorithm for fractional TUV if and
only if there is an a-approrimation algorithm for the minimum node-weighted
Steiner tree problem.

Klein and Ravi [17] (see also Guha and Khuller [13]) give an O(logn)-
approximation algorithm for the problem of computing a minimum node-weighted
Steiner tree. Their result, together with Lemma 2 implies that:

Lemma 3. There is a polynomial-time O(logn)-approzimation algorithm for
fractional TUV .,

Define ¢ and ¢ to be the optimal (objective) values for capacitated IUV
and for fractional capacitated IUV, respectively. Consider an approximately
optimal solution to fractional capacitated IUV obtained by Lemma 3. Let ¢*
denote the approximately optimal (objective) value, and let Y = {x1,..., 24}
denote the set of primal variables that have positive values. One of the features
of the algorithm of Lemma 3 (which is also a feature of the algorithm of [15]) is



that d (the number of fractional Steiner trees computed) is polynomialin n (even

though the LP has an exponential number of variables). If Zgzl loi] > % Zgzl x;
then Y' = {|z1],...,|z4]} is an integral solution (i.e., a solution for capacitated

IUV) with value at least Z-, which is at least Q(lfgfn), and this in turn is at

least Q(gﬁ—n) In this case the algorithm returns the Steiner trees corresponding

to the variables in Y’ and stops. This is within an O(logn) factor of the optimal
solution. Otherwise, if ZleinJ < %Zgzl z; then

d d d .

P =Y w= Y ) ) (i o)) < T 4.

Therefore ¢* < 2d. This implies that for every Steiner node v, at most a value
of min{ey, O(dlogn)} of the capacity of v is used in any optimal (fractional or
integral) solution. So we can decrease the capacity ¢, of every Steiner node
v € V=T to min{e,,O(dlogn)}. Note that this value is upper bounded by a
polynomial in n. Let this new graph be G’. We are going to modify this graph
to another graph G which will be an instance of uncapacitated ITUV. For every
Steiner node v € G’ with capacity ¢, we replace v with ¢, copies of it called
V1,...,0, €ach having unit capacity. The set of terminal nodes stays the same
in G’ and G”. Then for every edge uv € G/ we create a complete bipartite graph
on the copies of v (as one part) and the copies of u (the other part) in G”.
This new graph G will be the instance of (uncapacitated) TUV. It follows that
the size of G’ is polynomial in G. Also, it is straightforward to verify that G
has « element-disjoint Steiner trees if and only if there are a Steiner trees in
G satisfying the capacity constraints of the Steiner nodes. Finally, we apply the
algorithm of Theorem 1,(a) to graph G'.

—

5 Concluding Remarks

We presented a simple combinatorial algorithm which finds an integral solu-
tion that is within a factor O(logn) of the optimal integral (and in fact op-
timal fractional) solution. Recently, Lau [20] has given a combinatorial O(1)-
approximation algorithm for computing a maximum collection of edge-disjoint
Steiner forests in a given graph. His result again relies on the result of Frank et
al. [7] for solving (a special case of) bipartite IUV. It would be interesting to
study the corresponding problem of packing element-disjoint Steiner forests.

Acknowledgments: The authors thank David Kempe, whose comments led to
an improved analysis in Theorem 3, and Lap chi Lau who brought reference [14]
to our attention.
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