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aAbstra
t. Given an undire
ted graph G(V; E) with terminal set T � Vthe problem of pa
king element-disjoint Steiner trees is to �nd the maxi-mum number of Steiner trees that are disjoint on the nonterminal nodesand on the edges. The problem is known to be NP-hard to approximatewithin a fa
tor of 
(log n), where n denotes jV j. We present a random-ized O(log n)-approximation algorithm for this problem, thus mat
hingthe hardness lower bound. Moreover, we show a tight upper bound ofO(log n) on the integrality ratio of a natural linear programming relax-ation.1 Introdu
tionThroughout we assume that G = (V;E), with n = jV j, is a simple graph andT � V is a spe
i�ed set of nodes (although we do not allow multi-edges, these
an be handled by inserting new nodes into the edges). The nodes in T are
alled terminal nodes or bla
k nodes, and the nodes in V � T are 
alled Steinernodes or white nodes. Following the (now standard) notation on approximationalgorithms for graph 
onne
tivity problems (e.g. see [16℄), by an element we meaneither an edge or a Steiner node. A Steiner tree is a 
onne
ted, a
y
li
 subgraphthat 
ontains all the terminal nodes (Steiner nodes are optional). The problemof pa
king element-disjoint Steiner trees is to �nd a maximum-
ardinality set ofelement-disjoint Steiner trees. In other words, the goal is to �nd the maximumnumber of Steiner trees su
h that ea
h edge and ea
h white node is in at mostone of these trees. We denote this problem by IUV. Here, I denotes identi
alterminal sets for di�erent trees in the pa
king, U denotes an undire
ted graph,and V denotes disjointness for white nodes and edges.By bipartite IUV we mean the spe
ial 
ase where G is a bipartite graph withnode partition V = T [ (V �T ), that is, one of the sets of the vertex bipartition
onsists of all of the terminal nodes. We will also 
onsider the problem of pa
king? Supported by NSERC grant No. OGP0138432.?? Supported by an NSERC postdo
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Steiner trees fra
tionally (or fra
tional IUV for short), with 
onstraints on thenodes whi
h 
orresponds to a natural linear programming relaxation of IUV(explained later in this se
tion).IUV 
aptures some of the fundamental problems of 
ombinatorial optimiza-tion and graph theory. First, suppose that T 
onsists of just two nodes s and t.Then the problem is to �nd a maximum-
ardinality set of element-disjoint s; t-paths. This problem is addressed by one of the 
ornerstone theorems in graphtheory, namely Menger's theorem [4, Theorem 3.3.1℄, whi
h states that the max-imum number of openly-disjoint s; t-paths equals the minimumnumber of whitenodes whose deletion leaves no s; t-path. The algorithmi
 problem of �nding anoptimal set of s; t-paths 
an be solved eÆ
iently via any eÆ
ient maximum s; t-
ow algorithm. Another key spe
ial 
ase of IUV o

urs for T = V , that is, allthe nodes are terminals. Then the problem is to �nd a maximum-
ardinality setof edge-disjoint spanning trees. This problem is addressed by another 
lassi
almin-max theorem, namely the Tutte/Nash-Williams theorem [4, Theorem 3.5.1℄.The algorithmi
 problem of �nding an optimal set of edge-disjoint spanning trees
an be solved eÆ
iently via the matroid interse
tion algorithm. In 
ontrast, theproblem IUV is known to be NP-hard [7, 3℄, and the optimal value 
annotbe approximated within a fa
tor of 
(logn) modulo the P6=NP 
onje
ture [3℄.Moreover, this hardness result applies also to bipartite IUV and even to theproblem of pa
king Steiner trees fra
tionally for the bipartite 
ase (see (1) belowfor more details) via [15, Theorem 4.1℄. That is, the optimal value of this linearprogramming relaxation of bipartite IUV 
annot be approximated within a fa
-tor of 
(logn) modulo the P6=NP 
onje
ture. This is dis
ussed in more detaillater. For related results, see [2℄.One variant of IUV has attra
ted in
reasing resear
h interest over the lastfew years, namely, the problem of pa
king edge-disjoint Steiner trees (�nd amaximum-
ardinality set of edge-disjoint Steiner trees); we denote this problemby IUE. This problem in its full generality has appli
ations in VLSI 
ir
uitdesign (e.g., see [12, 21℄). Other appli
ations in
lude multi
asting in wirelessnetworks (see [6℄) and broad
asting large data streams, su
h as videos, overthe Internet (see [15℄). Almost a de
ade ago, Gr�ots
hel et al., motivated by theimportan
e of IUE in appli
ations and in theory, studied the problem usingmethods from mathemati
al programming, in parti
ular polyhedral theory and
utting-plane algorithms, see [8{12℄. Moreover, there is signi�
ant motivationfrom the areas of graph theory and 
ombinatorial optimization, partly basedon the relation to the 
lassi
al results mentioned above, and partly fueled byan ex
iting 
onje
ture of Kriesell [18℄ (the 
onje
ture states that the maximumnumber of edge-disjoint Steiner trees is at least half of an obvious upper bound,namely, the minimum number of edges in a 
ut that separates some pair ofterminals). If this 
onje
ture is settled by a 
onstru
tive proof, then it maygive a 2-approximation algorithm for IUE. Re
ently, Lau [19℄ made a majoradvan
e on this 
onje
ture by presenting a 26-approximation algorithm for IUEusing new 
ombinatorial ideas. Lau's 
onstru
tion is based on an earlier resultof Frank, Kiraly, and Kriesell [7℄ that gives a 3-approximation for a spe
ial 
ase



of bipartite IUV. (To the best of our knowledge, no other method for IUE givesan O(1)-approximation guarantee, or even a o(jT j)-approximation guarantee).Here is a summary of the previous results in the area. Frank et al. [7℄ studiedbipartite IUV, and fo
using on the restri
ted 
ase where the degree of everywhite node is � � they presented a�-approximation algorithm (via the matroidinterse
tion theorem and algorithm). Re
ently, we [3℄ showed that (i) IUV ishard to approximate within a fa
tor of 
(logn), even for bipartite IUV and evenfor the fra
tional version of bipartite IUV, (ii) IUV is APX-hard even if jT jis a small 
onstant, and (iii) we gave an O(pn logn)-approximation algorithmfor a generalization of IUV. For IUE, Jain et al. [15℄ proved that the problemis APX-hard, and (as mentioned above) Lau [19℄ presented a 26-approximationalgorithm, based on the results of Frank et al. for bipartite IUV. 1 Anotherrelated topi
 pertains to the domati
 number of a graph and 
omputing near-optimal domati
 partitions. Feige et al. [5℄ presented approximation algorithmsand hardness results for these problems. One of our key results is inspired bythis work.Although IUE seems to be more natural 
ompared to IUV, and althoughthere are many more papers (applied, 
omputational, and theoreti
al) on IUE,the only known O(1)-approximation guarantee for IUE is based on solving bi-partite IUV. This shows that IUV is a fundamental problem in this area. Ourmain 
ontribution is to settle (up to 
onstant fa
tors) IUV and bipartite IUVfrom the perspe
tive of approximation algorithms. Moreover, our result extendsto the 
apa
itated version of IUV, where ea
h white (Steiner) node v has anonnegative integer 
apa
ity 
v, and the goal is to �nd a maximum 
olle
tion ofSteiner trees (allowing multiple 
opies of any Steiner tree) su
h that ea
h whitenode v appears in at most 
v Steiner trees; there is no 
apa
ity 
onstraint onthe edges, i.e., ea
h edge has in�nite 
apa
ity. The 
apa
itated version of IUV(whi
h 
ontains IUV as a spe
ial 
ase) may be formulated as an integer program(IP) that has an exponential number of variables. Let F denote the 
olle
tion ofall Steiner trees in G. We have a binary variable xF for ea
h Steiner tree F 2 F .maximize PF2F xFsubje
t to 8v 2 V � T :PF :v2F xF � 
v8F 2 F : xF 2 f0; 1g (1)Note that in un
apa
itated IUV we have 
v = 1; 8v 2 V � T . The fra
tionalIUV (mentioned earlier) 
orresponds to the linear programming relaxation ofthis IP whi
h is obtained by relaxing the integrality 
ondition on xF 's to 0 �xF � 1.Our main result is the following:1 Although not relevant to this paper, we mention that the dire
ted version of IUVhas been studied [3℄, and the known approximation guarantees and hardness lowerbounds are within the same \ballpark" a

ording to the 
lassi�
ation of Arora andLund [1℄.



Theorem 1. (a) There is a polynomial time probabilisti
 approximation algo-rithm with a guarantee of O(logn) and a failure probability of O(1)logn for (un
a-pa
itated) IUV. The algorithm �nds a solution that is within a fa
tor O(logn)of the optimal solution to fra
tional IUV.(b) The same approximation guarantee holds for 
apa
itated IUV.We 
all an edge white if both its end-nodes are white, otherwise, the edge is
alled bla
k (then at least one end-node is a terminal). For our purposes, anyedge 
an be subdivided by inserting a white node. In parti
ular, any edge withboth end-nodes bla
k 
an be subdivided by inserting a white node. Thus, theproblem of pa
king element-disjoint Steiner trees 
an be transformed into theproblem of pa
king Steiner trees that are disjoint on the set of white nodes. Weprefer the formulation in terms of element-disjoint Steiner trees; for example,this formulation immediately shows that IUV 
aptures the problem of pa
kingedge-disjoint spanning trees; of 
ourse, the two formulations are equivalent.For two nodes s; t, let �(s; t) denote the maximumnumber of element-disjoints; t-paths (an s; t-path means a path with end-nodes s and t); in other words,�(s; t) denotes the maximum number of s; t-paths su
h that ea
h edge and ea
hwhite node is in at most one of these paths. The graph is said to be k-element
onne
ted if �(s; t) � k; 8s; t 2 T; s 6= t, i.e., there are � k element-disjointpaths between every pair of terminals. For a graph G = (V;E) and edge e 2 E,G � e denotes the graph obtained from G by deleting e, and G=e denotes thegraph obtained from G by 
ontra
ting e; see [4, Chapter 1℄ for more details.As mentioned above, bipartite IUV means the spe
ial 
ase of IUV where everyedge is bla
k. We 
all the graph bipartite if every edge is bla
k.Here is a sket
h of our algorithm and proof for Theorem 1(a). Let k be themaximumnumber su
h that the input graph G is k-element 
onne
ted. Clearly,the maximum number of element-disjoint Steiner trees is � k (informally, ea
hSteiner tree in a family of element-disjoint Steiner trees 
ontributes one to theelement 
onne
tivity). Note that this upper bound also holds for the optimalfra
tional solution. We delete or 
ontra
t white edges in G, while preserving theelement 
onne
tivity, to obtain a bipartite graph G�; thus, G� too is k-element
onne
ted (details in Se
tion 2). Then we apply our key result (Theorem 3 inSe
tion 3) to G� to obtain O(k= logn) element-disjoint Steiner trees; this isa
hieved via a simple algorithm that assigns a random 
olour to ea
h Steinernode { it turns out that for ea
h 
olour, the union of T and the set of nodes withthat 
olour indu
es a 
onne
ted subgraph, and hen
e this subgraph 
ontains aSteiner tree. Finally, we un
ontra
t some of the white nodes to obtain the samenumber of element-disjoint Steiner trees of G. Note that un
ontra
ting whitenodes in a set of element-disjoint Steiner trees preserves the Steiner trees (up tothe deletion of redundant edges) and preserves the element-disjointness of theSteiner trees.



2 Redu
ing IUV to bipartite IUVTo prove our main result, we �rst show that the problem 
an be redu
ed tobipartite IUV while preserving the approximation guarantee. The next resultis due to Hind and Oellermann [14, Lemma 4.2℄. We had found the result inde-pendently (before dis
overing the earlier works), and have in
luded a proof forthe sake of 
ompleteness.Theorem 2. Given a graph G = (V;E) with terminal set T that is k-element
onne
ted (and has no edge with both end-nodes bla
k), there is a poly-timealgorithm to obtain a bipartite graph G� from G su
h that G� has the sameterminal set and is k-element 
onne
ted, by repeatedly deleting or 
ontra
tingwhite edges.Proof. Consider any white edge e = pq. We prove that either deleting or 
on-tra
ting e preserves the k-element 
onne
tivity of G.Suppose that G � e is not k-element 
onne
ted. Then by Menger's theoremG�e has a set D of k�1 white nodes whose deletion \separates" two terminals.That is, every terminal is in one of two 
omponents of G � D � e and ea
h ofthese 
omponents has at least one terminal; 
all these two 
omponents Cp andCq. Let s be a terminal in Cp and let t be a terminal in Cq. Let P(s; t) denote anyset of k element-disjoint s; t-paths in G, and observe that one of these s; t-paths,say P1, 
ontains e (sin
e the k-set D [ feg \
overs" P(s; t)).By way of 
ontradi
tion, suppose that the graph G00 = G=e, obtained fromG by 
ontra
ting e, is not k-element 
onne
ted. Then fo
us on G and note that,again by Menger's theorem, it has a set R of k white nodes, R � fp; qg, whosedeletion \separates" two terminals. That is, there are two terminals that are indi�erent 
omponents of G� R (R is obtained by taking a \
ut" of k � 1 whitenodes in G00 and un
ontra
ting one node). This gives a 
ontradi
tion be
ause:(1) for s; t as above, the s; t-path P1 in P(s; t) 
ontains both nodes p; q 2 R; sin
ejRj = k and P(s; t) has k element disjoint paths (by the Pigeonhole Prin
iple)another one of the s; t-paths in P(s; t) say Pk is disjoint from R; hen
e, G� Rhas an s; t-path, and (2) for terminals v; w that are both in say Cp (or both inCq), G �R has a v; t path (arguing as in (1)) and also it has a w; t path (as in(1)), thus G� R has a v; w path.It is easy to 
omplete the proof: we repeatedly 
hoose any white edge andeither delete e or 
ontra
t e, while preserving the k-element 
onne
tivity, untilno white edges are left; we take G� to be the resulting k-element 
onne
tedbipartite graph.Clearly, this pro
edure 
an be implemented in polynomial time. In moredetail, we 
hoose any white edge e (if there exists one) and delete it. Then we
ompute whether or not the new graph is k-element 
onne
ted by �nding whether�(s; t) � k in the new graph for every pair of terminals s; t; this 
omputationtakes O(kjT j2jEj) time. If the new graph is k-element 
onne
ted, then we pro
eedto the next white edge, otherwise, we identify the two end nodes of e (this hasthe e�e
t of 
ontra
ting e in the old graph). Thus ea
h iteration de
reases the



number of white edges (whi
h is O(jEj)), hen
e, the overall running time isO(kjT j2jEj2). ut3 Bipartite IUVThis se
tion has the key result of the paper, namely, a randomized O(logn)-approximation algorithm for bipartite IUV.Theorem 3. Given an instan
e of bipartite IUV su
h that the graph is k-element 
onne
ted, there is a randomized poly-time algorithm that with prob-ability 1� 1logn �nds a set of O( klogn) element-disjoint Steiner trees.Proof. Without loss of generality, assume that the graph is 
onne
ted, and thereis no edge between any two terminals (if there exists any, then subdivide ea
hsu
h edge by inserting a Steiner node).For ease of exposition, assume that n is a power of two and k is an integermultiple of R = 6 logn; here, R is a parameter of the algorithm. The algorithmis simple: we 
olor ea
h Steiner node u.r. (uniformly at random) with one of kRsuper-
olors i = 1; : : : ; k=R. For ea
h i = 1; : : : ; k=R, let Di denote the set ofnodes that get the super-
olor i. We 
laim that for ea
h i, the subgraph indu
edby Di [ T is 
onne
ted with high probability, and hen
e this subgraph 
ontainsa Steiner tree. If the 
laim holds, then we are done, sin
e we get a set of k=Relement-disjoint Steiner trees.For the purpose of analysis, it is easier to present the algorithm in an equiv-alent form that has two phases. In phase one, we 
olor every Steiner node u.r.with one of k 
olors i = 1; : : : ; k and we denote the set of nodes that get the
olor i by Ci (i = 1; : : : ; k). In phase two, we partition the 
olor 
lasses into k=Rsuper-
lasses where ea
h super-
lass Dj (j = 1; : : : ; k=R) 
onsists of R 
onse
u-tive 
olor 
lasses C(j�1)R+1; C(j�1)R+2; : : : ; CjR. We do this in R rounds, wherein round 1 � ` � R we have Dj̀ = S(j�1)R+`i=(j�1)R+1 Ci; thus we have Dj = DjR. Con-sider an arbitrary super-
lass, say the �rst one D1. For an arbitrary 1 � ` < R,fo
us on the graph H` indu
ed by D1̀ [ T . Let G1; : : : ; Gd` be the 
onne
ted
omponents of H`; note that d` � 1 denotes the number of 
omponents of H`.Suppose that H` is not 
onne
ted, i.e. d` > 1.Lemma 1. Consider any 
onne
ted 
omponent of H`, say G1. There is a setU � V � T � V (G1) (of white nodes) with jU j � k su
h that ea
h node in U isadja
ent to a terminal in G1 and to a terminal in G� V (G1).Proof. Let U � V � V (G1) be a maximum-size set of Steiner nodes su
h thatea
h node in U has a neighbour in ea
h of G1 and G� V (G1); note that noneof the nodes in U is in G1. By way of 
ontradi
tion, assume that jU j < k.Consider G� U . An important observation is that every edge of G between G1and G � V (G1) is between a terminal of G1 and a Steiner node of G � V (G1);this holds be
ause G is bipartite and G1 is a subgraph indu
ed by T and some



set of white nodes. From this, and by de�nition of U , there is no edge betweenG1 and G� U � V (G1), i.e., G� U is dis
onne
ted (note that there is at leastone terminal in G1 and one terminal in G � U � V (G1)). This 
ontradi
ts theassumption that G is k element-
onne
ted. utConsider a set U as in the above lemma. If a vertex s 2 U has the 
olor` + 1, then when we add C`+1 to D1̀, we see that s 
onne
ts G1 and another
onne
ted 
omponent of H`, be
ause s is adja
ent to a terminal in G1 and to aterminal in G� V (G1). For every node s 2 U we have Pr[s 2 C`+1℄ = 1k . Thus,the probability that none of the verti
es in U has been 
olored `+ 1 is at most:�1� 1k�jUj � �1� 1k�k � e�1: (2)This is an upper bound on the probability that when we add C`+1 to D1̀,
omponent G1 does not be
ome 
onne
ted to another 
onne
ted 
omponent Ga,for some 2 � a � d`. If every 
onne
ted 
omponent Gi, 1 � i � d`, be
omes
onne
ted to another 
omponent, then the number of 
onne
ted 
omponents ofH` de
reases to at most d2̀ in round `+1. If in every round and for every super-
lass, the number of 
onne
ted 
omponents de
reases by a 
onstant fa
tor then,after O(logn) rounds, every Di[T forms a 
onne
ted graph. We show that thishappens with suÆ
iently high probability.By (2), in round `, any �xed 
onne
ted 
omponent of H` be
omes 
onne
tedto another 
omponent with probability at least 1�e�1. So the expe
ted numberof 
onne
ted 
omponents of H` that be
ome 
onne
ted to another 
omponent is(1� e�1) � d`. Thus, if d` � 2 then de�ning � = 1+e�12 we have:E[d`+1 j d`℄ � � � d`: (3)De�ne X` = d` � 1. Therefore, X1; X2; : : : ; X`; : : : ; is a sequen
e of integerrandom variables that starts with X1 = d1 � 1. Moreover, for every ` � 1, wehave X` � 0, and if X` = 0 then E[X`+1℄ = 0 and if X` � 1 thenE[X`+1jX`℄ = E[d`+1 � 1jd` � 1 � 1℄= E[d`+1jd` � 2℄� 1� �d` � 1 by (3)= �X` + � � 1� �X`:An easy indu
tion shows that E[X`+1℄ � �`X1. Sin
e X1 � n�1 and � < 34 ,we have E[XR℄ � 1n (re
all that R = 6 logn). Therefore, Markov's inequalityimplies that Pr[XR � 1℄ � 1n . This implies that Pr[dR � 2℄ � 1n , i.e., theprobability that HR = D1 [ T is not 
onne
ted is at most 1n . As there are kRsuper-
lasses, a simple union-bound shows that the probability that there is atleast one Dj (1 � j � kR ) su
h that Dj [ T is not 
onne
ted is at most kRn �



1logn . Thus, with probability at least 1 � 1logn , every super-
lass Dj (togetherwith T ) indu
es a 
onne
ted graph, and hen
e, the randomized algorithm �nds
(k= logn) element-disjoint Steiner trees. ut4 IUV and 
apa
itated IUVNow we 
omplete the proof of Theorem 1 using Theorems 2 and 3.First, we prove part (a). Let k be the maximum number su
h that the in-put graph G is k-element 
onne
ted. Clearly, the maximum number of element-disjoint Steiner trees is at most k. Apply Theorem 2 to obtain a bipartite graphG� that is k-element 
onne
ted. Apply Theorem 3 to �nd 
( klogn ) element-disjoint Steiner trees in G�. Then un
ontra
t white nodes to obtain the samenumber of element-disjoint Steiner trees of G. Moreover, it 
an be seen that theoptimal value of the LP relaxation is at most k (be
ause there exists a set ofk white nodes whose deletion leaves no path between some pair of terminals).Thus our integral solution is within a fa
tor O(logn) of the optimal fra
tionalsolution.Now, we prove part (b) of Theorem 1. Our proof uses ideas from [3, 15, 19℄.Consider the IP formulation (1) of 
apa
itated IUV. The fra
tional pa
kingvertex 
apa
itated Steiner tree problem is the linear program (LP) obtained byrelaxing the integrality 
ondition in the IP to xF � 0. As we said earlier, thisLP has exponentially many variables, however, we 
an solve it approximately.Then we show that either rounding the approximate LP solution will result inan O(logn)-approximation or we 
an redu
e the problem to the un
apa
itatedversion of IUV and use Theorem 1,(a).Note that the separation ora
le for the dual of the LP is the problem of �ndinga minimum node-weighted Steiner tree. Using this fa
t, the proof of Theorem4.1 in [15℄ may be adapted to prove the following:Lemma 2. There is an �-approximation algorithm for fra
tional IUV if andonly if there is an �-approximation algorithm for the minimum node-weightedSteiner tree problem.Klein and Ravi [17℄ (see also Guha and Khuller [13℄) give an O(logn)-approximation algorithmfor the problem of 
omputing a minimumnode-weightedSteiner tree. Their result, together with Lemma 2 implies that:Lemma 3. There is a polynomial-time O(logn)-approximation algorithm forfra
tional IUV.De�ne ' and 'f to be the optimal (obje
tive) values for 
apa
itated IUVand for fra
tional 
apa
itated IUV, respe
tively. Consider an approximatelyoptimal solution to fra
tional 
apa
itated IUV obtained by Lemma 3. Let '�denote the approximately optimal (obje
tive) value, and let Y = fx1; : : : ; xdgdenote the set of primal variables that have positive values. One of the featuresof the algorithm of Lemma 3 (whi
h is also a feature of the algorithm of [15℄) is



that d (the number of fra
tional Steiner trees 
omputed) is polynomial in n (eventhough the LP has an exponential number of variables). IfPdi=1bxi
 � 12Pdi=1 xithen Y 0 = fbx1
; : : : ; bxd
g is an integral solution (i.e., a solution for 
apa
itatedIUV) with value at least '�2 , whi
h is at least 
( 'flogn ), and this in turn is atleast 
( 'logn). In this 
ase the algorithm returns the Steiner trees 
orrespondingto the variables in Y 0 and stops. This is within an O(logn) fa
tor of the optimalsolution. Otherwise, ifPdi=1bxi
 < 12Pdi=1 xi then'� = dXi=1 xi = dXi=1bxi
 + dXi=1(xi � bxi
) < '�2 + d:Therefore '� < 2d. This implies that for every Steiner node v, at most a valueof minf
v; O(d logn)g of the 
apa
ity of v is used in any optimal (fra
tional orintegral) solution. So we 
an de
rease the 
apa
ity 
v of every Steiner nodev 2 V � T to minf
v; O(d logn)g. Note that this value is upper bounded by apolynomial in n. Let this new graph be G0. We are going to modify this graphto another graph G00 whi
h will be an instan
e of un
apa
itated IUV. For everySteiner node v 2 G0 with 
apa
ity 
v we repla
e v with 
v 
opies of it 
alledv1; : : : ; v
v ea
h having unit 
apa
ity. The set of terminal nodes stays the samein G0 and G00. Then for every edge uv 2 G0 we 
reate a 
omplete bipartite graphon the 
opies of v (as one part) and the 
opies of u (the other part) in G00.This new graph G00 will be the instan
e of (un
apa
itated) IUV. It follows thatthe size of G00 is polynomial in G. Also, it is straightforward to verify that G00has � element-disjoint Steiner trees if and only if there are � Steiner trees inG satisfying the 
apa
ity 
onstraints of the Steiner nodes. Finally, we apply thealgorithm of Theorem 1,(a) to graph G00.5 Con
luding RemarksWe presented a simple 
ombinatorial algorithm whi
h �nds an integral solu-tion that is within a fa
tor O(logn) of the optimal integral (and in fa
t op-timal fra
tional) solution. Re
ently, Lau [20℄ has given a 
ombinatorial O(1)-approximation algorithm for 
omputing a maximum 
olle
tion of edge-disjointSteiner forests in a given graph. His result again relies on the result of Frank etal. [7℄ for solving (a spe
ial 
ase of) bipartite IUV. It would be interesting tostudy the 
orresponding problem of pa
king element-disjoint Steiner forests.A
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