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Given a simple undirected graph, consider the problem of finding a 2-edge connected spanning
subgraph that has the minimum number of edges. The problem is NP-hard, via a reduction from
the Hamiltonian cycle problem. A number of recent papers have focused on approximation algo-
rithms for this and other related problems, [2]. An a-approzimation algorithm for a combinatorial
optimization problem runs in polynomial time and delivers a solution whose value is always within
the factor a of the optimum value. The quantity « is called the approzimation guarantee of the
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Abstract

We give a }—;—approximation algorithm for the following NP-hard problem:

Given a simple undirected graph, find a 2-edge connected spanning subgraph that
has the minimum number of edges.

The best previous approximation guarantee was % If the well known % conjecture for the metric
4

TSP holds, then the optimal value (minimum number of edges) is at most 3 times the optimal
value of a linear programming relaxation. Thus our main result gets half-way to this target.

Introduction

algorithm. We use the abbreviation 2-ECSS for 2-edge connected spanning subgraph.

Here is an easy 2-approximation algorithm for the problem:

Take an ear decomposition of the given graph (see Section 2 for definitions), and discard
all 1-ears (ears that consist of one edge). Then the resulting graph is 2-edge connected
and has at most 2n — 3 edges, while the optimal subgraph has > n edges, where n is
the number of nodes.
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Khuller & Vishkin [10] were the first to improve on the approximation guarantee of 2. They gave a
simple and elegant algorithm based on depth-first search that achieves an approximation guarantee
of 1.5. We improve Khuller & Vishkin’s %—approximation guarantee to % If the well known %
conjecture for the metric TSP holds, then the optimal value (minimum number of edges) is at most
% times the optimal value of a linear programming relaxation, see Theorem 5.1. Thus our main
result gets half-way to this target.

Let G = (V, E) be the given simple undirected graph, and let n and m denote |V| and |E|.
Assume that G is 2-edge connected.

Our method is based on a matching-theory result of Andras Frank, namely, there is a good
characterization for the minimum number of even-length ears over all possible ear decompositions of
a graph, and moreover, an ear decomposition achieving this minimum can be computed efficiently,
[4]. Recall that the 2-approximation heuristic starts with an arbitrary ear decomposition of G.
Instead, if we start with an ear decomposition that maximizes the number of l-ears, and if we
discard all the 1-ears, then we will obtain the optimal solution. In fact, we start with an ear
decomposition that maximizes the number of odd-length ears. Now, discarding all the 1-ears gives
an approximation guarantee of 1.5 (see Proposition 3.4 below). To do better, we repeatedly apply
“ear splicing” steps to the starting ear decomposition to obtain a final ear decomposition such that
the number of odd-length ears is the same, and moreover, the internal nodes of distinct 3-ears are
nonadjacent. We employ two lower bounds to show that discarding all the 1-ears from the final ear
decomposition gives an approximation guarantee of % The first lower bound is the “component
lower bound” due to Garg et al [7, Lemma 4.1], see Proposition 2.4 below. The second lower
bound comes from the minimum number of even-length ears in an ear decomposition of G, see
Proposition 3.3 below.

After developing some preliminaries in Sections 2 and 3, we present our heuristic in Section 4.
Section 5.1 shows the relation of the well known % conjecture for the metric TSP to the problem
of finding a %—approximation algorithm for a minimum-size 2-ECSS, see Theorem 5.1. Section 5.2
has two examples showing that our analysis of the heuristic is tight. Section 5.2 also compares the

two lower bounds with the optimal value.

A Useful Assumption.

For our heuristic to work, it is essential that the given graph be 2-node connected. Hence, in
Section 4 of the paper where our heuristic is presented, we will assume that the given graph G
is 2-node connected. Otherwise, if G is not 2-node connected, we compute the blocks (i.e., the
maximal 2-node connected subgraphs) of G, and apply the algorithm separately to each block. We
compute a 2-ECSS for each block, and output the union of the edge sets as the edge set of a 2-ECSS
of G. The resulting graph has no cut edges since the subgraph found for each block has no cut edge,
and moreover, the approximation guarantee for GG is at most the maximum of the approximation
guarantees for the blocks.

2  Preliminaries

Except in Section 5.1, all graphs are simple, that is, there are no loops nor multiedges. A closed
path means a cycle, and an open path means that all the nodes are distinct.



An ear decomposition of the graph G is a partition of the edge set into open or closed paths,
Py+ Py + ...+ Py, such that Py is the trivial path with one node, and each P; (1 < i < k) is a path
that has both end nodes in V;_; = V(FPy)) UV (P1)U...UV(P;_1) but has no internal nodes in V;_;.
A (closed or open) ear means one of the (closed or open) paths Pi, ..., P in the ear decomposition;
note that P, is not regarded as an ear. For a nonnegative integer £, an £-ear means an ear that has
£ edges. An {-ear is called even if £ is an even number, otherwise, the £-ear is called odd. An open
ear decomposition Py + Py + ...+ Py is one such that all the ears Ps, ..., P, are open. (The ear P
is always closed.)

Proposition 2.1 (Whitney [14]) (1) A graph is 2-edge connected iff it has an ear decomposi-
tion.

(ii) A graph is 2-node connected iff it has an open ear decomposition.

An odd ear decomposition is one such that every ear has an odd number of edges. The graph G
is called factor-critical if for every node v € V(G), there is a perfect matching in G — v. The next
result gives another characterization of factor-critical graphs.

Theorem 2.2 (Lovasz [11], Theorem 5.5.1 in [12]) A graph is factor-critical iff it has an odd
ear decomposition.

It follows that a factor-critical graph is necessarily 2-edge connected. An open odd ear de-
composition Py + Py + ...+ P. is an odd ear decomposition such that all the ears Ps,..., P, are
open.

Theorem 2.3 (Lovasz & Plummer, Theorem 5.5.2 in [12]) A 2-node connected factor-critical
graph has an open odd ear decomposition. Given such a graph G = (V, E), an open odd ear decom-
position can be constructed in time O(|V| - |E|).

Let ¢(G) denote the minimum number of edges in a 2-ECSS of G. For a graph H, let ¢(H)
denote the number of (connected) components of H. Garg et al [7, Lemma 4.1] use the following
lower bound on ¢(G).

Proposition 2.4 Let G = (V, E) be a 2-edge connected graph, and let S be a nonempty set of
nodes such that the deletion of S results in a graph with ¢ = ¢(G — S) components. Then e(G) >
V|+c—|S]

Proof: Focus on an arbitrary component D of G — S and note that it contributes > |V(D)| + 1
edges to an optimal 2-ECSS, because every node in D contributes > 2 edges, and at least two of
these edges have exactly one end node in D. Summing over all components of G — S gives the
result. a

For the graph G = (V, E), let L}(G) denote max{|V|+ ¢(G—S)—|S| : 0 # S C V}; by
Proposition 2.4, e(G) > L%(G).

For a set of nodes S C V of a graph G = (V, E), 6(S) denotes the set of edges that have one
end node in S and one end node in V' — S. For the singleton node set {v}, we use the notation
d(v). For a vector z : E—R and an edge set F' C E, z(F) denotes > . p 2.



3 Frank’s Theorem and a New Lower Bound for ¢

For a 2-edge connected graph G = (V, E), let ¢(G) (or ¢) denote the minimum number of even
ears over all possible ear decompositions. For example: ¢(G) = 0 if G is a factor-critical graph
(e.g., G is an odd clique K411 or an odd cycle Cayt1), ¢(G) = 1 if G is an even clique Ky or an
even cycle Cyy, and ¢(G) = £ — 1 if G is the complete bipartite graph Kj, (¢ > 2). Let L,(G)
denote |V| + ¢(G) — 1.

A join of a graph G is an edge set J C E(G) such that for (the edge set of) every cycle Q C E(G)
we have |[J N Q| < |Q|/2. For example, any matching is a join. Let u(G) denote the maximum size
of a join of the graph G.

The proof of the next result appears in [4], see Theorem 4.5 and Section 2 of [4].

Theorem 3.1 (A. Frank [4]) Let G = (V, E) be a 2-edge connected graph. An ear decomposition
Py + Py + ...+ P, of G having ¢(G) even ears can be computed in time O(|V| - |E|). Moreover,
L,(G) = 2u(G).

Proposition 3.2 For every 2-node connected graph G, there erists an open ear decomposition
Py + Py + ...+ Py that has ¢(G) even ears. Such an ear decomposition can be computed in time
o(vl]-1E]).

Proof: Apply Theorem 3.1 to construct an ear decomposition having ¢(G) even ears (the ears
may be open or closed). Subdivide one edge in each even ear by adding one new node and one new
edge. The resulting ear decomposition is odd. Hence, the resulting graph G’ is factor critical, and
also, G’ is 2-node connected since G is 2-node connected. Apply Theorem 2.3 to construct an open
odd ear decomposition of G'. Finally, in the resulting ear decomposition, “undo” the ¢(G) edge
subdivisions to obtain the desired ear decomposition Py + Py + ...+ P, of G.

The running time for constructing Py + P, + ...+ P is O(|V| - |E|). Note that there are
constructive proofs for both Theorems 3.1 and 2.3, and each construction can be implemented in

time O(|V| - | E). 0

Frank’s theorem gives the following lower bound on the minimum number of edges in a 2-ECSS.

Proposition 3.3 Let G = (V, E) be a 2-edge connected graph. Then e(G) > L,(G) = 2u(G).

Proof: Consider an arbitrary 2-ECSS G’ = (V, E’) of G. Note that G’ contains all nodes of
G, but there may be several edges in F — E’. If G’ has an ear decomposition with fewer than
©¢(G) even ears, then we can obtain an ear decomposition of G with fewer than ¢(G) even ears as
follows: we start with the ear decomposition of G’, and for each edge vw € E — E’, we add the
1-ear v, w. This contradiction to the definition of ¢(G) shows that every ear decomposition of G’
has > ¢(G) even ears. Let Py + P; + ...+ P be an ear decomposition of the 2-ECSS G', where
k > ¢(G). By induction on the number of ears k, it is easily seen that the number of edges in G’
isk+|V|—12> ¢(G)+ |V] —1. The result follows. 0

The next result is not useful for our main result, but we include it for completeness.



Proposition 3.4 Let G = (V, E) be a 2-edge connected graph. Let Py + Py + ...+ Py be an ear
decomposition of G that has ¢(G) even ears, and let G' = (V, E') be obtained by discarding all the
I-ears from Py + Py + ...+ Py. Then |E'|/e(G) < 1.5.

Proof: Let ¢ be the number of internal nodes in the odd ears of Py + P; + ...+ Pg. (Note that
the node in Py is not counted by ¢.) Then, the number of edges contributed to E’ by the odd ears
is < 3t/2, and the number of edges contributed to E’ by the even ears is < ¢ + |V| — ¢t — 1. By
applying Proposition 3.3 (and the fact that e(G) > |V]) we get,

|E'|/e(G) < (/249 +|V|-1)/ max([V], o+ [V|-1) < (t/2[V])+(p+[V[-1)/(¢+|V]-1) < L5.

a

4  Approximating ¢ via Frank’s Theorem

For a graph H and an ear decomposition Py + P; + ...+ P, of H, we call an ear P; of length > 2
pendant if none of the internal nodes of P; is an end node of another ear P; of length > 2. In other
words, if we discard all the 1-ears from the ear decomposition, then one of the remaining ears is
called pendant if all its internal nodes have degree 2 in the resulting graph.

Let G = (V, E) be the given graph, and let ¢ = ¢(G). Recall the assumption from Section 1 that
(G is 2-node connected. By an evenmin ear decomposition of G, we mean an ear decomposition that
has ¢(G) even ears. Our method starts with an open evenmin ear decomposition Py + Py +. ..+ Py
of G, see Proposition 3.2, i.e., for 2 < i < k, every ear P; has distinct end nodes, and the number
of even ears is minimum possible. The method performs a sequence of “ear splicings” to obtain
another (evenmin) ear decomposition Qo+ Q1+ ...+ Qk (the ears Q; may be either open or closed)
such that the following holds:

Property (a)
(0) the number of even ears is the samein Pp+ P+ ...+ P, and in Qo+ Q1+ ...+ Qp,
(1) every 3-ear ); is a pendant ear,

(2) for every pair of 3-ears Q; and @, there is no edge between an internal node of Q; and an
internal node of @), and

(3) every 3-ear Q; is open, where Q; # Q1.
See Figure 1 for an illustration of several cases in an “ear splicing” step.
Proposition 4.1 Let G = (V, E) be a 2-node connected graph. Let Py + P, + ...+ Py be an open

evenmin ear decomposition of G. There is a linear-time algorithm that given Py + P + ...+ Py,
finds an ear decomposition Qo + Q1 + ...+ Qr satisfying property (o).



Figure 1: Illustration of the proof of Proposition 4.1.  (a), (b) The first and second cases. Ears
P; and Q) are indicated by solid lines, and ear Q;_; is indicated by dashed lines. ~ (¢) The third
case. Bars P;, Q, Qj, are indicated by solid lines, and ear Q;_» is indicated by dashed lines.

Proof: The proof is by induction on the number of ears. The result clearly holds for £ = 1.
Suppose that the result holds for (j — 1) ears Pp+ P + ...+ Pj_;. Let Q0+ Q) + ...+ Q;_l be
the corresponding ear decomposition that satisfies property (a). Consider the open ear P;, j > 2.
Let P; be an f-ear, vq,vs,..., v, vg41. Possibly, £ = 1. (So v; and vyi; are the end nodes of P;,
and vy # vgt1.)

Let T denote the set of internal nodes of the 3-ears of Qj + Q7 + ...+ Q}_;. Suppose P; is an
ear of length £ > 2 with exactly one end node, say, v; in T. Let Q; = wq, v1, w3, ws be the 3-ear
having v; as an internal node. We take Qo = Qp,...,Qi—1 = Q{_1,Qi = Q}yy,...,Qj—2 = Q}_;.
Moreover, we take Q;_1 to be the (£ 4 2)-ear obtained by adding the last two edges of Q; to P;,
ie., Qj_1 = w4, ws,v1, Vs, ...,V V41, and we take Q); to be the l-ear consisting of the first edge
wyv; of Q. Note that the parities of the lengths of the two spliced ears are preserved, that is, Q;_1
is even (odd) iff P; is even (odd), and both @Q; and Q; are odd. Hence, the number of even ears is
the samein P+ Py + ...+ P; and in Qo+ Q1 + ...+ Q;. See Figure 1(a).

Now, suppose P; has both end nodes v; and vy1; in T'. If there is one 3-ear @} that has both v;
and vgi; as internal nodes (so £ > 2), then we take Q;_1 to be the (£ + 2)-ear obtained by adding
the first edge and the last edge of Q; to P;, and we take Q; to be the 1-ear consisting of the middle
edge viv11 of Q}. Also, we take Qo = Qp, ..., Qi-1 = Q;_1, Qi = Q4 y,...,Qj—2 = Q;_;. Observe
that the number of even ears is the samein Py + P 4+ ...+ P and in Qo+ Q1 + ... + Q;. See
Figure 1(b).

If there are two 3-ears Q) and Q) that contain the end nodes of P;, then we take Q;_5 to
be the (€ 4 4)-ear obtained by adding the last two edges of both Q; and @}, to P;, and we take
Q;_1 (similarly, Q;) to be the l-ear consisting of the first edge of Q) (similarly, Q}). (For ease of
description, assume that if a 3-ear has exactly one end node v of P; as an internal node, then v



is the second node of the 3-ear.) Also, assuming ¢ < h, we take Qo = QJ,...,Qi—1 = Q}_;,Q; =
1y Quo2 = Qp_1,Qn1 = Qyq,---,Qj—3 = Q_;. Again, observe that the number of even
ears is the same in Py + Py + ...+ Pj and in Qo + Q1 + ...+ Q;. See Figure 1(c).
If the end nodes of P; are disjoint from T, then the construction is easy (take Q; = P;). Also,
if P; is a l-ear with exactly one end node in T', then the construction is easy (take Q; = P;).
The construction ensures that in the final ear decomposition Q¢+ Q1+ . ..+ Q, every 3-ear is
pendant and open, and moreover, the internal nodes of distinct 3-ears are nonadjacent. We leave
the detailed verification to the reader. Therefore, the ear decomposition Qg+ Q1 +. . .+ Q. satisfies

property (o). O

Remark: In the induction step, which applies for 7 > 2 (but not for j = 1), it is essential that
the ear P; is open, though Q; (and Q) may be either open or closed. Note that Q; is not a 3-ear
provided |V| # 3. Our main result (Theorem 4.3) does not use part (3) of property (a).

Our approximation algorithm for a minimum-size 2-ECSS computes the ear decomposition
Qo + Q1 + ...+ Qp satisfying property (a), starting from an open evenmin ear decomposition
FPy+ P+ ...4 Pg. Then, the algorithm discards all the edges in 1-ears. Let the resulting graph be
G' = (V,E’). G’ is 2-edge connected by Proposition 2.1.

Let T denote the set of internal nodes of the 3-ears of Qo+ Q1+ ...+ Q&, and let t = |T'|. (Note
that the node in Q) is not counted by ¢.) Property (o) implies that in the subgraph of G induced
by T, G[T], every (connected) component has exactly two nodes. Consider the approximation
guarantee for G, i.e., the quantity |E’|/e(G).

Lemma 4.2 ¢(G) > 3t/2.

Proof: Apply Proposition 2.4 with S =V —T (so |S| =n —t) and ¢ = ¢(G — S) = t/2 to get
e(G)>n—(n—1t)+(t/2). 0

Theorem 4.3 Given a 2-edge connected graph G = (V, E), the above algorithm finds a 2-ECSS
G' = (V, E') such that |E'|/e(G) < 1L. The algorithm runs in time O(|V| - |E|).

Proof: By the previous lemma and Proposition 3.3,
e(G) > max(n + ¢(G) — 1, 3t/2) .

We claim that
5(n + 9(G) — 1)

1 .
To see this, note that the final ear decomposition Qo + Q1 + . . . + Q satisfies the following: (i) the
number of edges contributed by the 3-ears is 3¢/2; (ii) the number of edges contributed by the odd
ears of length > 5 is < 5¢/4, where ¢ is the number of internal nodes in the odd ears of length > 5;
and (iii) the number of edges contributed by the even ears is < ¢(G)+ (n —t — ¢ — 1), since there
are ¢(G) such ears and they have a total of (n —t — ¢ — 1) internal nodes. (The node in Q) is not
counted.)

t
|El| < Z—I_



The approximation guarantee follows since
B _ /a5t e(G) - 1)/4
e(G) ~ e(G)
/44 5(n + p(G) — 1)/4

= max(n + ¢(G) — 1, 3t/2)
P t 2  5(nte(G)-1) 1
- 43t 4 n+p(G) -1
R
= 5
a

The next result follows from the proof of Theorem 4.3.

Corollary 4.4 For a 2-edge connected graph G = (V, E),

5 1 17
e(G) < 1 Ly + EL: < 12 max(L7, L).

5 Conclusions

5.1 Lower Bounds for ¢ and the Relation to the TSP % Conjecture

This subsection has a comparison of several lower bounds for €(G); throughout, G = (V, E) denotes
an arbitrary 2-edge connected graph. The best of these lower bounds is given by a linear program-
ming relaxation based on cut constraints, and our approximation guarantee (Corollary 4.4) shows
that €(G) is at most % times this lower bound. Moreover, by Theorem 5.1 below, if the well known

TSP % conjecture is true, then we have 2 rather than % in the previous statement.

3
Recall that L,(G) = |V| + ¢(G) — 1 = 2u(G) is a lower bound on &(G), where p(G) is the

maximum size of a join of G, see Proposition 3.3.
Garg et al [7, Theorem 4.2] introduced another lower bound on ¢(G) that we denote by L.. Let

£
L.(G) = max{z c¢(G—S;) : S1,82,...,S¢is a partition of V, where £ is any integer > 1}.
=1

(We remark that in the lower bound in [7, Theorem 4.2] Sy, Ss,...,S; is a subpartition rather
than a partition, but it can be seen that this lower bound equals L..) Clearly, L. > |V|, by
the partition of V into singleton sets. Notice that the lower bound in Proposition 2.4, L}(G) =
max{c(G—S)+ |V -S| : 0 #S CV},is < Lg; to see this, apply the definition of L. with S; = S
and Ss, ..., S being singleton sets of V — S.

Let L,(G) denote the optimal value of the following linear programming relaxation of the
minimum-size 2-ECSS problem. There is one nonnegative variable z. for each edge e in GG, and the
other constraints state that every (nontrivial) cut has z-weight at least two. Let 1 be a vector of
“1”s with |E| entries.



L,(G) = minimize 1-z

subject to z(6(S)) > 2, VSCV,0#S#V
z > 0,
T € R.

Clearly, L,(G) is a lower bound on &(G) since the incidence vector of a minimum-size 2-ECSS
satisfies all the constraints. We may have arbitrary coefficients ¢ : E—R in the objective function
rather than unit coefficients, and then we will use L,(G,c) to denote the optimal value. Note
that the optimal value of the LP (linear program) is computable in polynomial time, e.g., via the
Ellipsoid method.

Now consider the metric TSP (traveling salesman problem). Let G’ = K, be a complete graph
and let ¢/ : E(G')—R assign metric costs to the edges (so for every triple of nodes %, j, k we have
d(i3) < (ik) 4 /(kj)). Let tsp(G’, ) denote the minimum cost of a Hamiltonian cycle (or TSP
tour) of G, ¢’. Clearly, the above linear program, but with objective vector ¢’ instead of 1, is a
relaxation of the TSP, so L,(G’, ) < tsp(G’, ).

The ; conjecture for the TSP is:  if ¢ is a metric, then tsp(G’,¢’) < § L,(G', ).

Remark: It is known that tsp(G’,¢’) < 1.5 L,(G’,¢), see [3, 8, 15]. The conjecture actually
refers to the optimal value of the linear programming relaxation that has the additional constraints
z(6(v)) = 2 for each node v; however, if the edge costs are metric, then the addition of the new
constraints does not change the optimal value, see [13, 8].

Theorem 5.1 Let G = (V, E) be a 2-edge connected graph. Then

17 17
L,=2u<L.<L,<e<-—L.<-—L..
T A S e S L SES ol S Ty

Moreover, if the % conjecture for the metric TSP holds, then

4
<Zr.
>3

Proof: To prove the first statement, we will derive the first two inequalities.
e (2u < L.) Let J be a join of G with |J| = pu. By [5, Theorem 8’] there exists a partition
Viy..o, Vo (£> 1) of V such that 2|J| < Yf_, ¢(G — V;). Therefore,

£
2u(G) < max{z c¢(G—-S;) : S1,82,...,5¢ is a partition of V} < L..

=1
e (L. < L,) Let S1,852,...,S¢ denote the optimal partition in the definition of L., so L. =
¢ ¢(G—S;). We sum up the following constraints (inequalities) from the linear program defining
L,: «(6(V(D))) > 2 for each component D of G — S;, for each i = 1,...,£. Let (o) denote the
resulting inequality. The right hand side of (o) is 2 3%_; ¢(G — S;). In the left hand side of (o), note
that every variable z,,, (vw € E) has coeflicient < 2. (To see this, we consider two cases: v, w are



in different sets, say v € S;, w € S; (i # j), or v, w are in the same set .S;. Consider the first case in
detail; the inequality for the component of G —5; containing w contributes z,,,, and similarly for the
component of G —S; containing v, so the coefficient of z,,, is two. In the second case, the coefficient
of .y, is zero.) Dividing the inequality (o) by 2 we get L, = 2(E) > Y%, ¢(G — S;) = L.. This
proves the second inequality in the theorem. Moreover, by Corollary 4.4 and the fact that L} < L.,
we have e(G) < % max(L}, L,) < % L.< % L,. Hence, the first statement in the theorem follows.

Focus on the second statement in the theorem. The multiedge (or uncapacitated) version of
our minimum-size 2-ECSS problem is: Given G = (V, E') as above, compute &(G), the minimum
size (counting multiplicities) of a 2-edge connected spanning submultigraph H = (V, F'), where F
is a multiset such that e € F —> e € E. (To give an analogy, if we take £(G) to correspond to the
f-factor problem, then é(G) corresponds to the f-matching problem.)

Fact 5.2 If G is a 2-edge connected graph, then €(G) = (G).

Proof: Let H = (V, F) give the optimal solution for €(G). If H uses two copies of an edge vw,
then we can replace one of the copies by some other edge of G in the cut given by H — {vw, vw}.
In other words, if S is the node set of one of the two components of H — {vw, vw}, then we replace
one copy of vw by some edge from dg(S) — {vw}. O

Remark: The above is a lucky fact. It fails to generalize, both for minimum-cost (rather than
minimum-size) 2-ECSS, and for minimum-size k-ECSS, k£ > 3.

Given an n-node graph G = (V, E) together with edge costs ¢ (possibly ¢ assigns unit costs),
define its metric completion G', ¢’ to be the complete graph K,, = G’ with ¢}, (Vv,w € V) equal
to the minimum-cost of a v-w path in G, c.

Fact 5.3 Let G be a 2-edge connected graph, and let ¢ assign unit costs to the edges. The minimum
cost of the TSP on the metric completion of G, ¢, satisfies tsp(G', ') > €(G) = ¢(G).

Proof: Let T be an optimal solution to the TSP. We replace each edge vw € E(T) — E(G) by
the edges of a minimum-cost v-w path in G, c. The resulting multigraph H is obviously 2-edge
connected, and has tsp(G’, ') = ¢(H) > €(G). o

The previous two facts show that ¢(G) < tsp(G’, ¢’). Moreover, note that for the metric com-
pletion G/, ¢/, L,(G,1) equals L,(G’,c’), since every feasible solution of the LP on G’, ¢’ gives a
feasible solution of the LP on G, 1 of the same objective value and vice versa. Hence, if the TSP

2 conjecture holds, then we have e(G) < tsp(G', ') < $ L.(G',c) =% L. O

5.2 Tight Examples

Our analysis of the heuristic is (asymptotically) tight. We give two example graphs. Each is an
n-node Hamiltonian graph G = (V, E'), where the heuristic (in the worst case) finds a 2-ECSS
G’ = (V, E') with 17n/12 — ©(1) edges.

Here is the first example graph, G = (V, E) (see Figure 2 (top)). The number of nodes is
n =3x5% and V = {0,1,2,...,3 x 52 — 1}. The “first node” 0 will be also denoted 3 x 59.
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@ (b) (c) node vy in anotrh/e/r‘ copy of H (d)
/’/// Lb ‘ G

s 3-ears

s £ & F & &
e o o o o 0

node u, in another copy of H

Figure 2: Tight examples for our 17/12-approximation algorithm for minimum-size 2-ECSS.

Top: The first example, with ¢ = 2. Some of the node labels 0,1,2,...,3 X 5¢ — 1 are indicated.

Bottom: The second example. (a) The graph H; (b) “covering” the nodes of H by a 5-ear and four 3-ears;
(c) “covering” the nodes of H — {ug, us} by a subpath of a Hamiltonian cycle; (d) the graph G.
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The edge set E consists of (the edge set of) a Hamiltonian cycle together with (the edge sets of)
“shortcut cycles” of lengths n/3,n/(3 x 5),n/(3 x 52),...,5. In detail, E = {i(i + 1) : V0 <
i <qg—-1}U{Bx5 x9)(3x5 x(i+1) :V¥0 <j<qg—1,0<3i <577 —1}. Note that
|E| =3 x 574+ 524+5971 4+ 5= (17 x 57 — 5)/4. In the worst case, the heuristic initially finds
5-ears, and finally finds 3-ears, and so the 2-ECSS (V, E’) found by the heuristic has all the edges
of G. Hence, we have |E'|/e(G) = |E|/n=17/12 - 1/(12 x 5971).

The second example graph, G, (see Figure 2 (bottom)) is constructed by “joining” many copies
of the following graph H: H consists of a b-edge path wg,u1, us, us, ug, us, and 4 disjoint edges
VW1, VoWs, V3W3, V4wye. We take g copies of H and identify the node ug in all copies, and identify
the node us in all copies. Then we add all possible edges u;v;, and all possible edges uw;w;, i.e., we
add the edge set of a complete bipartite graph on all the u-nodes and all the v-nodes, and we add
the edge set of another complete bipartite graph on all the u-nodes and all the w-nodes. Finally, we
add 3 more nodes uf, u5, u5 and 5 more edges to obtain a 5-edge cycle ug, u}, u), uj, us, up. Clearly,
e(G) = n = 12¢ + 5. If the heuristic starts with the closed 5-ear ug,u,us,u5,us,u0, and then finds
the 5-ears ug,uq,us,us,us,us in all the copies of H, and finally finds the 3-ears upvjw;us (1 < j < 4)
in all the copies of H, then we have |E’| = 17¢ + 5.

@ (b)

@ N

Figure 3: Comparing the lower bounds L and L, with €. The graphs achieve the following ratios.
(a) e/L, >15-0(1)/n. (b) /L >15-0(1)/n. (c) e/L; > 4/3—0(1)/n. To get
a graph with ¢/ max(L}, L,) > 5/4 — ©(1)/n, subdivide every “thick edge” (3rd edge in path).
The resulting graph G has L} < n+ 1 (G has a Hamiltonian path), L, < n (G is factor-critical),
e=|E(G)| = (bn—T7)/4.

How do the lower bounds in Proposition 2.4 (namely, L) and in Proposition 3.3 (namely, L)
compare with ¢? Let n denote the number of nodes in the graph. There is a 2-node connected
graph such that ¢/L, > 1.5 — ©(1)/n (see Figure 3(a)). Therefore the upper bound |[E’'| <
1.5max(L,, n) of Proposition 3.4 is tight. There is another 2-edge connected (but not 2-node
connected) graph such that ¢/L} > 1.6 — ©(1)/n and ¢/L, > 1.5 — ©(1)/n (see Figure 3(b)).
Huh [9] uses the proof of Theorem 3.1 of Garg et al [7] to show that ¢ < 1.5 L%. Among 2-node
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connected graphs, we have a graph with ¢/L% > 4/3 — ©(1)/n, but we do not know whether there
exist graphs that give higher ratios (see Figure 3(c)). There is a 2-node connected graph such that
e/max(L}, L,) > 5/4 — ©(1)/n, but we do not know whether there exist graphs that give higher
ratios (see Figure 3(c)).
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