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Khuller & Vishkin [10] were the �rst to improve on the approximation guarantee of 2. They gave asimple and elegant algorithm based on depth-�rst search that achieves an approximation guaranteeof 1.5. We improve Khuller & Vishkin's 1812-approximation guarantee to 1712 . If the well known 43conjecture for the metric TSP holds, then the optimal value (minimum number of edges) is at most43 times the optimal value of a linear programming relaxation, see Theorem 5.1. Thus our mainresult gets half-way to this target.Let G = (V;E) be the given simple undirected graph, and let n and m denote jV j and jEj.Assume that G is 2-edge connected.Our method is based on a matching-theory result of Andr�as Frank, namely, there is a goodcharacterization for the minimumnumber of even-length ears over all possible ear decompositions ofa graph, and moreover, an ear decomposition achieving this minimum can be computed e�ciently,[4]. Recall that the 2-approximation heuristic starts with an arbitrary ear decomposition of G.Instead, if we start with an ear decomposition that maximizes the number of 1-ears, and if wediscard all the 1-ears, then we will obtain the optimal solution. In fact, we start with an eardecomposition that maximizes the number of odd-length ears. Now, discarding all the 1-ears givesan approximation guarantee of 1.5 (see Proposition 3.4 below). To do better, we repeatedly apply\ear splicing" steps to the starting ear decomposition to obtain a �nal ear decomposition such thatthe number of odd-length ears is the same, and moreover, the internal nodes of distinct 3-ears arenonadjacent. We employ two lower bounds to show that discarding all the 1-ears from the �nal eardecomposition gives an approximation guarantee of 1712 . The �rst lower bound is the \componentlower bound" due to Garg et al [7, Lemma 4.1], see Proposition 2.4 below. The second lowerbound comes from the minimum number of even-length ears in an ear decomposition of G, seeProposition 3.3 below.After developing some preliminaries in Sections 2 and 3, we present our heuristic in Section 4.Section 5.1 shows the relation of the well known 43 conjecture for the metric TSP to the problemof �nding a 43-approximation algorithm for a minimum-size 2-ECSS, see Theorem 5.1. Section 5.2has two examples showing that our analysis of the heuristic is tight. Section 5.2 also compares thetwo lower bounds with the optimal value.A Useful Assumption.For our heuristic to work, it is essential that the given graph be 2-node connected. Hence, inSection 4 of the paper where our heuristic is presented, we will assume that the given graph Gis 2-node connected. Otherwise, if G is not 2-node connected, we compute the blocks (i.e., themaximal 2-node connected subgraphs) of G, and apply the algorithm separately to each block. Wecompute a 2-ECSS for each block, and output the union of the edge sets as the edge set of a 2-ECSSof G. The resulting graph has no cut edges since the subgraph found for each block has no cut edge,and moreover, the approximation guarantee for G is at most the maximum of the approximationguarantees for the blocks.2 PreliminariesExcept in Section 5.1, all graphs are simple, that is, there are no loops nor multiedges. A closedpath means a cycle, and an open path means that all the nodes are distinct.2



An ear decomposition of the graph G is a partition of the edge set into open or closed paths,P0+P1+ : : :+Pk , such that P0 is the trivial path with one node, and each Pi (1 � i � k) is a paththat has both end nodes in Vi�1 = V (P0)[V (P1)[ : : :[V (Pi�1) but has no internal nodes in Vi�1.A (closed or open) ear means one of the (closed or open) paths P1; : : : ; Pk in the ear decomposition;note that P0 is not regarded as an ear. For a nonnegative integer `, an `-ear means an ear that has` edges. An `-ear is called even if ` is an even number, otherwise, the `-ear is called odd. An openear decomposition P0+P1+ : : :+Pk is one such that all the ears P2; : : : ; Pk are open. (The ear P1is always closed.)Proposition 2.1 (Whitney [14]) (i) A graph is 2-edge connected i� it has an ear decomposi-tion.(ii) A graph is 2-node connected i� it has an open ear decomposition.An odd ear decomposition is one such that every ear has an odd number of edges. The graph Gis called factor-critical if for every node v 2 V (G), there is a perfect matching in G� v. The nextresult gives another characterization of factor-critical graphs.Theorem 2.2 (Lov�asz [11], Theorem 5.5.1 in [12]) A graph is factor-critical i� it has an oddear decomposition.It follows that a factor-critical graph is necessarily 2-edge connected. An open odd ear de-composition P0 + P1 + : : :+ Pk is an odd ear decomposition such that all the ears P2; : : : ; Pk areopen.Theorem 2.3 (Lov�asz & Plummer, Theorem 5.5.2 in [12]) A 2-node connected factor-criticalgraph has an open odd ear decomposition. Given such a graph G = (V;E), an open odd ear decom-position can be constructed in time O(jV j � jEj).Let "(G) denote the minimum number of edges in a 2-ECSS of G. For a graph H , let c(H)denote the number of (connected) components of H . Garg et al [7, Lemma 4.1] use the followinglower bound on "(G).Proposition 2.4 Let G = (V;E) be a 2-edge connected graph, and let S be a nonempty set ofnodes such that the deletion of S results in a graph with c = c(G� S) components. Then "(G) �jV j+ c� jSj.Proof: Focus on an arbitrary component D of G� S and note that it contributes � jV (D)j+ 1edges to an optimal 2-ECSS, because every node in D contributes � 2 edges, and at least two ofthese edges have exactly one end node in D. Summing over all components of G � S gives theresult. 2For the graph G = (V;E), let L?c(G) denote maxfjV j + c(G � S) � jSj : ; 6= S � V g; byProposition 2.4, "(G) � L?c(G).For a set of nodes S � V of a graph G = (V;E), �(S) denotes the set of edges that have oneend node in S and one end node in V � S. For the singleton node set fvg, we use the notation�(v). For a vector x : E!R and an edge set F � E, x(F ) denotes Pe2F xe.3



3 Frank's Theorem and a New Lower Bound for "For a 2-edge connected graph G = (V;E), let '(G) (or ') denote the minimum number of evenears over all possible ear decompositions. For example: '(G) = 0 if G is a factor-critical graph(e.g., G is an odd clique K2`+1 or an odd cycle C2`+1), '(G) = 1 if G is an even clique K2` or aneven cycle C2`, and '(G) = ` � 1 if G is the complete bipartite graph K2;` (` � 2). Let L'(G)denote jV j+ '(G)� 1.A join of a graph G is an edge set J � E(G) such that for (the edge set of) every cycle Q � E(G)we have jJ \Qj � jQj=2. For example, any matching is a join. Let �(G) denote the maximum sizeof a join of the graph G.The proof of the next result appears in [4], see Theorem 4.5 and Section 2 of [4].Theorem 3.1 (A. Frank [4]) Let G = (V;E) be a 2-edge connected graph. An ear decompositionP0 + P1 + : : :+ Pk of G having '(G) even ears can be computed in time O(jV j � jEj). Moreover,L'(G) = 2�(G).Proposition 3.2 For every 2-node connected graph G, there exists an open ear decompositionP0 + P1 + : : :+ Pk that has '(G) even ears. Such an ear decomposition can be computed in timeO(jV j � jEj).Proof: Apply Theorem 3.1 to construct an ear decomposition having '(G) even ears (the earsmay be open or closed). Subdivide one edge in each even ear by adding one new node and one newedge. The resulting ear decomposition is odd. Hence, the resulting graph G0 is factor critical, andalso, G0 is 2-node connected since G is 2-node connected. Apply Theorem 2.3 to construct an openodd ear decomposition of G0. Finally, in the resulting ear decomposition, \undo" the '(G) edgesubdivisions to obtain the desired ear decomposition P0 + P1 + : : :+ Pk of G.The running time for constructing P0 + P1 + : : : + Pk is O(jV j � jEj). Note that there areconstructive proofs for both Theorems 3.1 and 2.3, and each construction can be implemented intime O(jV j � jEj). 2Frank's theorem gives the following lower bound on the minimum number of edges in a 2-ECSS.Proposition 3.3 Let G = (V;E) be a 2-edge connected graph. Then "(G) � L'(G) = 2�(G).Proof: Consider an arbitrary 2-ECSS G0 = (V;E 0) of G. Note that G0 contains all nodes ofG, but there may be several edges in E � E 0. If G0 has an ear decomposition with fewer than'(G) even ears, then we can obtain an ear decomposition of G with fewer than '(G) even ears asfollows: we start with the ear decomposition of G0, and for each edge vw 2 E � E 0, we add the1-ear v; w. This contradiction to the de�nition of '(G) shows that every ear decomposition of G0has � '(G) even ears. Let P0 + P1 + : : :+ Pk be an ear decomposition of the 2-ECSS G0, wherek � '(G). By induction on the number of ears k, it is easily seen that the number of edges in G0is k + jV j � 1 � '(G) + jV j � 1. The result follows. 2The next result is not useful for our main result, but we include it for completeness.4



Proposition 3.4 Let G = (V;E) be a 2-edge connected graph. Let P0 + P1 + : : :+ Pk be an eardecomposition of G that has '(G) even ears, and let G0 = (V;E 0) be obtained by discarding all the1-ears from P0 + P1 + : : :+ Pk. Then jE 0j="(G) � 1:5.Proof: Let t be the number of internal nodes in the odd ears of P0 + P1 + : : :+ Pk. (Note thatthe node in P0 is not counted by t.) Then, the number of edges contributed to E 0 by the odd earsis � 3t=2, and the number of edges contributed to E 0 by the even ears is � ' + jV j � t � 1. Byapplying Proposition 3.3 (and the fact that "(G) � jV j) we get,jE0j="(G) � (t=2+'+ jV j�1)=max(jV j; '+ jV j�1) � (t=2jV j)+('+ jV j�1)=('+ jV j�1) � 1:5:24 Approximating " via Frank's TheoremFor a graph H and an ear decomposition P0 + P1 + : : :+ Pk of H , we call an ear Pi of length � 2pendant if none of the internal nodes of Pi is an end node of another ear Pj of length � 2. In otherwords, if we discard all the 1-ears from the ear decomposition, then one of the remaining ears iscalled pendant if all its internal nodes have degree 2 in the resulting graph.Let G = (V;E) be the given graph, and let ' = '(G). Recall the assumption from Section 1 thatG is 2-node connected. By an evenmin ear decomposition of G, we mean an ear decomposition thathas '(G) even ears. Our method starts with an open evenmin ear decomposition P0+P1+ : : :+Pkof G, see Proposition 3.2, i.e., for 2 � i � k, every ear Pi has distinct end nodes, and the numberof even ears is minimum possible. The method performs a sequence of \ear splicings" to obtainanother (evenmin) ear decomposition Q0+Q1+ : : :+Qk (the ears Qi may be either open or closed)such that the following holds:Property (�)(0) the number of even ears is the same in P0 + P1 + : : :+ Pk and in Q0 + Q1 + : : :+ Qk,(1) every 3-ear Qi is a pendant ear,(2) for every pair of 3-ears Qi and Qj , there is no edge between an internal node of Qi and aninternal node of Qj , and(3) every 3-ear Qi is open, where Qi 6= Q1.See Figure 1 for an illustration of several cases in an \ear splicing" step.Proposition 4.1 Let G = (V;E) be a 2-node connected graph. Let P0 + P1 + : : :+ Pk be an openevenmin ear decomposition of G. There is a linear-time algorithm that given P0 + P1 + : : :+ Pk,�nds an ear decomposition Q0 + Q1 + : : :+ Qk satisfying property (�).5
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TFigure 1: Illustration of the proof of Proposition 4.1. (a), (b) The �rst and second cases. EarsPj and Q0i are indicated by solid lines, and ear Qj�1 is indicated by dashed lines. (c) The thirdcase. Ears Pj , Q0i, Q0h are indicated by solid lines, and ear Qj�2 is indicated by dashed lines.Proof: The proof is by induction on the number of ears. The result clearly holds for k = 1.Suppose that the result holds for (j � 1) ears P0 + P1 + : : :+ Pj�1. Let Q00 + Q01 + : : :+ Q0j�1 bethe corresponding ear decomposition that satis�es property (�). Consider the open ear Pj , j � 2.Let Pj be an `-ear, v1; v2; : : : ; v`; v`+1. Possibly, ` = 1. (So v1 and v`+1 are the end nodes of Pj ,and v1 6= v`+1.)Let T denote the set of internal nodes of the 3-ears of Q00 +Q01 + : : :+Q0j�1. Suppose Pj is anear of length ` � 2 with exactly one end node, say, v1 in T . Let Q0i = w1; v1; w3; w4 be the 3-earhaving v1 as an internal node. We take Q0 = Q00; : : : ; Qi�1 = Q0i�1; Qi = Q0i+1; : : : ; Qj�2 = Q0j�1.Moreover, we take Qj�1 to be the (` + 2)-ear obtained by adding the last two edges of Q0i to Pj ,i.e., Qj�1 = w4; w3; v1; v2; : : : ; v`; v`+1, and we take Qj to be the 1-ear consisting of the �rst edgew1v1 of Q0i. Note that the parities of the lengths of the two spliced ears are preserved, that is, Qj�1is even (odd) i� Pj is even (odd), and both Qj and Q0i are odd. Hence, the number of even ears isthe same in P0 + P1 + : : :+ Pj and in Q0 +Q1 + : : :+Qj . See Figure 1(a).Now, suppose Pj has both end nodes v1 and v`+1 in T . If there is one 3-ear Q0i that has both v1and v`+1 as internal nodes (so ` � 2), then we take Qj�1 to be the (`+ 2)-ear obtained by addingthe �rst edge and the last edge of Q0i to Pj , and we take Qj to be the 1-ear consisting of the middleedge v1v`+1 of Q0i. Also, we take Q0 = Q00; : : : ; Qi�1 = Q0i�1; Qi = Q0i+1; : : : ; Qj�2 = Q0j�1. Observethat the number of even ears is the same in P0 + P1 + : : :+ Pj and in Q0 + Q1 + : : :+ Qj . SeeFigure 1(b).If there are two 3-ears Q0i and Q0h that contain the end nodes of Pj , then we take Qj�2 tobe the (` + 4)-ear obtained by adding the last two edges of both Q0i and Q0h to Pj , and we takeQj�1 (similarly, Qj) to be the 1-ear consisting of the �rst edge of Q0i (similarly, Q0h). (For ease ofdescription, assume that if a 3-ear has exactly one end node v of Pj as an internal node, then v6



is the second node of the 3-ear.) Also, assuming i < h, we take Q0 = Q00; : : : ; Qi�1 = Q0i�1; Qi =Q0i+1; : : : ; Qh�2 = Q0h�1; Qh�1 = Q0h+1; : : : ; Qj�3 = Q0j�1. Again, observe that the number of evenears is the same in P0 + P1 + : : :+ Pj and in Q0 + Q1 + : : :+ Qj . See Figure 1(c).If the end nodes of Pj are disjoint from T , then the construction is easy (take Qj = Pj). Also,if Pj is a 1-ear with exactly one end node in T , then the construction is easy (take Qj = Pj).The construction ensures that in the �nal ear decomposition Q0+Q1+ : : :+Qk, every 3-ear ispendant and open, and moreover, the internal nodes of distinct 3-ears are nonadjacent. We leavethe detailed veri�cation to the reader. Therefore, the ear decomposition Q0+Q1+ : : :+Qk satis�esproperty (�). 2Remark: In the induction step, which applies for j � 2 (but not for j = 1), it is essential thatthe ear Pj is open, though Q0i (and Q0h) may be either open or closed. Note that Q1 is not a 3-earprovided jV j 6= 3. Our main result (Theorem 4.3) does not use part (3) of property (�).Our approximation algorithm for a minimum-size 2-ECSS computes the ear decompositionQ0 + Q1 + : : : + Qk satisfying property (�), starting from an open evenmin ear decompositionP0+P1+ : : :+Pk . Then, the algorithm discards all the edges in 1-ears. Let the resulting graph beG0 = (V;E 0). G0 is 2-edge connected by Proposition 2.1.Let T denote the set of internal nodes of the 3-ears of Q0+Q1+ : : :+Qk , and let t = jT j. (Notethat the node in Q0 is not counted by t.) Property (�) implies that in the subgraph of G inducedby T , G[T ], every (connected) component has exactly two nodes. Consider the approximationguarantee for G0, i.e., the quantity jE 0j="(G).Lemma 4.2 "(G) � 3t=2.Proof: Apply Proposition 2.4 with S = V � T (so jSj = n � t) and c = c(G � S) = t=2 to get"(G) � n � (n� t) + (t=2). 2Theorem 4.3 Given a 2-edge connected graph G = (V;E), the above algorithm �nds a 2-ECSSG0 = (V;E 0) such that jE 0j="(G) � 1712. The algorithm runs in time O(jV j � jEj).Proof: By the previous lemma and Proposition 3.3,"(G) � max(n+ '(G)� 1; 3t=2) :We claim that jE 0j � t4 + 5(n+ '(G)� 1)4 :To see this, note that the �nal ear decomposition Q0+Q1+ : : :+Qk satis�es the following: (i) thenumber of edges contributed by the 3-ears is 3t=2; (ii) the number of edges contributed by the oddears of length � 5 is � 5q=4, where q is the number of internal nodes in the odd ears of length � 5;and (iii) the number of edges contributed by the even ears is � '(G) + (n� t� q � 1), since thereare '(G) such ears and they have a total of (n� t� q � 1) internal nodes. (The node in Q0 is notcounted.) 7



The approximation guarantee follows sincejE 0j"(G) � t=4 + 5(n+ '(G)� 1)=4"(G)� t=4 + 5(n+ '(G)� 1)=4max(n+ '(G)� 1; 3t=2)� t4 23t + 5(n+ '(G)� 1)4 1n+ '(G)� 1= 1712 : 2The next result follows from the proof of Theorem 4.3.Corollary 4.4 For a 2-edge connected graph G = (V;E),"(G) � 54 L' + 16L?c � 1712 max(L?c ; L'):5 Conclusions5.1 Lower Bounds for " and the Relation to the TSP 43 ConjectureThis subsection has a comparison of several lower bounds for "(G); throughout, G = (V;E) denotesan arbitrary 2-edge connected graph. The best of these lower bounds is given by a linear program-ming relaxation based on cut constraints, and our approximation guarantee (Corollary 4.4) showsthat "(G) is at most 1712 times this lower bound. Moreover, by Theorem 5.1 below, if the well knownTSP 43 conjecture is true, then we have 43 rather than 1712 in the previous statement.Recall that L'(G) = jV j + '(G) � 1 = 2�(G) is a lower bound on "(G), where �(G) is themaximum size of a join of G, see Proposition 3.3.Garg et al [7, Theorem 4.2] introduced another lower bound on "(G) that we denote by Lc. LetLc(G) = maxfX̀i=1 c(G� Si) : S1; S2; : : : ; S` is a partition of V; where ` is any integer � 1g:(We remark that in the lower bound in [7, Theorem 4.2] S1; S2; : : : ; S` is a subpartition ratherthan a partition, but it can be seen that this lower bound equals Lc.) Clearly, Lc � jV j, bythe partition of V into singleton sets. Notice that the lower bound in Proposition 2.4, L?c(G) =maxfc(G�S)+ jV �Sj : ; 6= S � V g, is � Lc; to see this, apply the de�nition of Lc with S1 = Sand S2; : : : ; S` being singleton sets of V � S.Let Lz(G) denote the optimal value of the following linear programming relaxation of theminimum-size 2-ECSS problem. There is one nonnegative variable xe for each edge e in G, and theother constraints state that every (nontrivial) cut has x-weight at least two. Let 1 be a vector of\1"s with jEj entries. 8



Lz(G) = minimize 1 � xsubject to x(�(S)) � 2; 8S � V; ; 6= S 6= Vx � 0;x 2 R :Clearly, Lz(G) is a lower bound on "(G) since the incidence vector of a minimum-size 2-ECSSsatis�es all the constraints. We may have arbitrary coe�cients c : E!R in the objective functionrather than unit coe�cients, and then we will use Lz(G; c) to denote the optimal value. Notethat the optimal value of the LP (linear program) is computable in polynomial time, e.g., via theEllipsoid method.Now consider the metric TSP (traveling salesman problem). Let G0 = Kn be a complete graphand let c0 : E(G0)!R assign metric costs to the edges (so for every triple of nodes i; j; k we havec0(ij) � c0(ik) + c0(kj)). Let tsp(G0; c0) denote the minimum cost of a Hamiltonian cycle (or TSPtour) of G0; c0. Clearly, the above linear program, but with objective vector c0 instead of 1, is arelaxation of the TSP, so Lz(G0; c0) � tsp(G0; c0).The 43 conjecture for the TSP is: if c0 is a metric, then tsp(G0; c0) � 43 Lz(G0; c0).Remark: It is known that tsp(G0; c0) � 1:5Lz(G0; c0), see [3, 8, 15]. The conjecture actuallyrefers to the optimal value of the linear programming relaxation that has the additional constraintsx(�(v)) = 2 for each node v; however, if the edge costs are metric, then the addition of the newconstraints does not change the optimal value, see [13, 8].Theorem 5.1 Let G = (V;E) be a 2-edge connected graph. ThenL' = 2� � Lc � Lz � " � 1712Lc � 1712Lz :Moreover, if the 43 conjecture for the metric TSP holds, then" � 43 Lz :Proof: To prove the �rst statement, we will derive the �rst two inequalities.� (2� � Lc) Let J be a join of G with jJ j = �. By [5, Theorem 8'] there exists a partitionV1; : : : ; V` (` � 1) of V such that 2jJ j �Pì=1 c(G� Vi). Therefore,2�(G) � maxfX̀i=1 c(G� Si) : S1; S2; : : : ; S` is a partition of V g � Lc:� (Lc � Lz) Let S1; S2; : : : ; S` denote the optimal partition in the de�nition of Lc, so Lc =Pì=1 c(G�Si). We sum up the following constraints (inequalities) from the linear program de�ningLz : x(�(V (D))) � 2 for each component D of G� Si, for each i = 1; : : : ; `. Let (�) denote theresulting inequality. The right hand side of (�) is 2Pì=1 c(G�Si): In the left hand side of (�), notethat every variable xvw (vw 2 E) has coe�cient � 2. (To see this, we consider two cases: v; w are9



in di�erent sets, say v 2 Si, w 2 Sj (i 6= j), or v; w are in the same set Si. Consider the �rst case indetail; the inequality for the component ofG�Si containing w contributes xvw , and similarly for thecomponent of G�Sj containing v, so the coe�cient of xvw is two. In the second case, the coe�cientof xvw is zero.) Dividing the inequality (�) by 2 we get Lz = x(E) � Pì=1 c(G� Si) = Lc. Thisproves the second inequality in the theorem. Moreover, by Corollary 4.4 and the fact that L?c � Lc,we have "(G) � 1712 max(L?c ; L') � 1712 Lc � 1712 Lz. Hence, the �rst statement in the theorem follows.Focus on the second statement in the theorem. The multiedge (or uncapacitated) version ofour minimum-size 2-ECSS problem is: Given G = (V;E) as above, compute e"(G), the minimumsize (counting multiplicities) of a 2-edge connected spanning submultigraph H = (V; F ), where Fis a multiset such that e 2 F =) e 2 E. (To give an analogy, if we take "(G) to correspond to thef -factor problem, then e"(G) corresponds to the f -matching problem.)Fact 5.2 If G is a 2-edge connected graph, then e"(G) = "(G).Proof: Let H = (V; F ) give the optimal solution for e"(G). If H uses two copies of an edge vw,then we can replace one of the copies by some other edge of G in the cut given by H � fvw; vwg.In other words, if S is the node set of one of the two components of H �fvw; vwg, then we replaceone copy of vw by some edge from �G(S)� fvwg. 2Remark: The above is a lucky fact. It fails to generalize, both for minimum-cost (rather thanminimum-size) 2-ECSS, and for minimum-size k-ECSS, k � 3.Given an n-node graph G = (V;E) together with edge costs c (possibly c assigns unit costs),de�ne its metric completion G0; c0 to be the complete graph Kn = G0 with c0vw (8 v; w 2 V ) equalto the minimum-cost of a v-w path in G; c.Fact 5.3 Let G be a 2-edge connected graph, and let c assign unit costs to the edges. The minimumcost of the TSP on the metric completion of G; c, satis�es tsp(G0; c0) � e"(G) = "(G).Proof: Let T be an optimal solution to the TSP. We replace each edge vw 2 E(T )� E(G) bythe edges of a minimum-cost v-w path in G; c. The resulting multigraph H is obviously 2-edgeconnected, and has tsp(G0; c0) = c(H) � e"(G). 2The previous two facts show that "(G) � tsp(G0; c0). Moreover, note that for the metric com-pletion G0; c0, Lz(G; 1) equals Lz(G0; c0), since every feasible solution of the LP on G0; c0 gives afeasible solution of the LP on G; 1 of the same objective value and vice versa. Hence, if the TSP43 conjecture holds, then we have "(G) � tsp(G0; c0) � 43 Lz(G0; c0) = 43 Lz . 25.2 Tight ExamplesOur analysis of the heuristic is (asymptotically) tight. We give two example graphs. Each is ann-node Hamiltonian graph G = (V;E), where the heuristic (in the worst case) �nds a 2-ECSSG0 = (V;E 0) with 17n=12��(1) edges.Here is the �rst example graph, G = (V;E) (see Figure 2 (top)). The number of nodes isn = 3 � 5q, and V = f0; 1; 2; :::; 3� 5q � 1g. The \�rst node" 0 will be also denoted 3 � 5q.10
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Figure 2: Tight examples for our 17=12-approximation algorithm for minimum-size 2-ECSS.Top: The �rst example, with q = 2. Some of the node labels 0; 1; 2; : : : ; 3� 5q � 1 are indicated.Bottom: The second example. (a) The graph H ; (b) \covering" the nodes of H by a 5-ear and four 3-ears;(c) \covering" the nodes of H � fu0; u5g by a subpath of a Hamiltonian cycle; (d) the graph G.11



The edge set E consists of (the edge set of) a Hamiltonian cycle together with (the edge sets of)\shortcut cycles" of lengths n=3; n=(3 � 5); n=(3 � 52); : : : ; 5. In detail, E = fi(i + 1) : 80 �i � q � 1g [ f(3 � 5j � i)(3 � 5j � (i + 1)) : 80 � j � q � 1; 0 � i � 5q�j � 1g: Note thatjEj = 3� 5q + 5q + 5q�1 + :::+ 5 = (17� 5q � 5)=4: In the worst case, the heuristic initially �nds5-ears, and �nally �nds 3-ears, and so the 2-ECSS (V;E 0) found by the heuristic has all the edgesof G. Hence, we have jE 0j="(G) = jEj=n = 17=12� 1=(12� 5q�1):The second example graph, G, (see Figure 2 (bottom)) is constructed by \joining" many copiesof the following graph H : H consists of a 5-edge path u0; u1; u2; u3; u4; u5, and 4 disjoint edgesv1w1; v2w2; v3w3; v4w4. We take q copies of H and identify the node u0 in all copies, and identifythe node u5 in all copies. Then we add all possible edges uivj , and all possible edges uiwj , i.e., weadd the edge set of a complete bipartite graph on all the u-nodes and all the v-nodes, and we addthe edge set of another complete bipartite graph on all the u-nodes and all the w-nodes. Finally, weadd 3 more nodes u01; u02; u03 and 5 more edges to obtain a 5-edge cycle u0; u01; u02; u03; u5; u0. Clearly,"(G) = n = 12q + 5. If the heuristic starts with the closed 5-ear u0,u01,u02,u03,u5,u0, and then �ndsthe 5-ears u0,u1,u2,u3,u4,u5 in all the copies of H , and �nally �nds the 3-ears u0vjwju5 (1 � j � 4)in all the copies of H , then we have jE 0j = 17q + 5.
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(c)Figure 3: Comparing the lower bounds L?c and L' with ". The graphs achieve the following ratios.(a) "=L' � 1:5 � �(1)=n. (b) "=L?c � 1:5 � �(1)=n. (c) "=L?c � 4=3 � �(1)=n. To geta graph with "=max(L?c ; L') � 5=4 � �(1)=n, subdivide every \thick edge" (3rd edge in path).The resulting graph G has L?c � n + 1 (G has a Hamiltonian path), L' � n (G is factor-critical)," = jE(G)j = (5n� 7)=4.How do the lower bounds in Proposition 2.4 (namely, L?c) and in Proposition 3.3 (namely, L')compare with "? Let n denote the number of nodes in the graph. There is a 2-node connectedgraph such that "=L' � 1:5 � �(1)=n (see Figure 3(a)). Therefore the upper bound jE 0j �1:5max(L'; n) of Proposition 3.4 is tight. There is another 2-edge connected (but not 2-nodeconnected) graph such that "=L?c � 1:5 � �(1)=n and "=L' � 1:5 � �(1)=n (see Figure 3(b)).Huh [9] uses the proof of Theorem 3.1 of Garg et al [7] to show that " � 1:5L?c . Among 2-node12
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