
EDGE COVERS OF SETPAIRS AND THE ITERATIVE ROUNDINGMETHODSEPTEMBER 3, 2001JOSEPH CHERIYAN AND SANTOSH VEMPALAAbstra
t. Given a digraph G = (V;E), we study a linear programming relaxation of the problemof �nding a minimum-
ost edge 
over of pairs of sets of verti
es (
alled setpairs). Ea
h setpair has anonnegative integer-valued requirement, and the requirement fun
tion is 
rossing bisupermodular.Our results are as follows: (1) An extreme point of the LP is 
hara
terized by a non
rossing familyof tight setpairs, L (where jLj � jEj). (2) In any extreme point x, there exists an edge e with xe ��(1)=pjLj, and there is an example showing that this lower bound is best possible. (3) The iterativerounding method applies to the LP and gives an integer solution of 
ost O(pjLj) = O(pjEj) timesthe LP's optimal value. The proof of (2) relies on the fa
t that L 
an be represented by a spe
ialtype of partially ordered set that we 
all diamond-free.1. Introdu
tionMany NP-hard problems in network design in
luding the Steiner tree problem and its generaliza-tions are 
aptured by the following formulation. We are given an (undire
ted) graph G = (V;E)where ea
h edge e has a nonnegative 
ost 
e, and ea
h subset of verti
es S has a nonnegativeinteger requirement f(S). The problem is to �nd a minimum-
ost subgraph H that satis�es all therequirements, i.e., H should have at least f(S) edges in every 
ut (S; V nS). This 
an be modelledas an integer program. (SIP ) minimize Xe 
exesubje
t to Xe2(S;V nS)xe � f(S); 8S � Vxe 2 f0; 1g; 8e 2 E:Let (SLP) be the linear programming relaxation of (SIP). The requirement fun
tion f(�) shouldbe su
h that (SIP) models some interesting problems in network design, (SLP) has a provablysmall integrality ratio, and (SLP) is solvable in polynomial time. Approximation algorithms basedMathemati
s Subje
t Classi�
ation (2000): Primary: 68W25, 90C35. Se
ondary: 05C40, 68R10, 90C27, 90B10.Key words and phrases. network design, vertex 
onne
tivity, setpair formulation, bisubmodular fun
tions, linearprogramming relaxation, iterative rounding, approximation algorithms.1



2 CHERIYAN AND VEMPALAon (SIP) and (SLP) were designed and analyzed by Agrawal, Klein and Ravi [1℄, Goemans andWilliamson [7℄, Williamson et al [12℄, and Goemans et al [6℄. Then Jain [5℄ gave a 2-approximationalgorithm for the 
ase of weakly supermodular requirement fun
tions via a te
hnique 
alled iterativerounding. A key dis
overy in [5℄ is that every non-zero extreme point x of (SLP) has maxe2E fxeg �12 . Subsequently, Melkonian and Tardos [9℄ studied the problem on dire
ted graphs, and provedthat if the requirement fun
tion is 
rossing supermodular, then every non-zero extreme point oftheir linear programming relaxation has an edge of value at least 14 .There are several interesting problems in network design that elude the formulation of (SIP), su
h asthe problem of �nding a minimum-
ost k-vertex 
onne
ted spanning subgraph. Frank and Jordan[4℄ gave a more general formulation where pairs of vertex sets have requirements (also, see S
hrijver[10℄ for earlier related results). In this formulation, we are given a digraph G = (V;E) and ea
hedge e has a nonnegative 
ost 
e. A setpair is an ordered pair of vertex sets W = (Wt;Wh), whereWt � V is 
alled the tail, and Wh � V is 
alled the head (either Wt or Wh may be the empty set).Let S be the set of all setpairs. For a setpair W , Æ(W ) denotes the set of edges 
overing W , i.e.,Æ(W ) = fuv 2 Eju 2 Wt; v 2 Whg. Ea
h setpair W has a nonnegative, integer requirement f(W ).The problem is to �nd a minimum-
ost subgraph that satis�es all the requirements. (Note that therequirement fun
tion f(�) of (SIP) is the spe
ial 
ase where every setpair with positive requirementis a partition of V and has the form (S; V n S) where S � V .)(IP ) minimize Xe 
exesubje
t to Xe2Æ(W )xe � f(W ); 8W 2 Sxe 2 f0; 1g; 8e 2 E:Throughout, we assume that the requirement fun
tion f of (IP) is 
rossing bisupermodular (thisis de�ned in Se
tion 2). Frank and Jordan [4℄ used this formulation to derive min-max resultsfor spe
ial 
ost fun
tions, and moreover, they showed that the linear programming relaxation issolvable in polynomial time. Fleiner [3℄ has related results. The problem of �nding a minimum-
ost k-vertex 
onne
ted spanning subgraph of a digraph may be modeled by (IP) by taking therequirement fun
tion to be f(Wt;Wh) = k � (jV j � jWt [Whj), whereWt;Wh are nonempty vertexsubsets; this fun
tion is 
rossing bisupermodular.We study the linear programming relaxation (LP) for arbitrary nonnegative 
ost fun
tions. InSe
tion 2 we show that for any extreme point of (LP), the spa
e of in
iden
e ve
tors of tightsetpairs (setpairs whose requirement is satis�ed exa
tly) is spanned by the in
iden
e ve
tors of a



THE ITERATIVE ROUNDING METHOD FOR SETPAIRS 3non
rossing family of tight setpairs. A non
rossing family of setpairs is the analogue of a laminarfamily of sets. (Re
all that two sets are laminar if they are either disjoint or one is 
ontained in theother.) In Se
tion 3, we study non
rossing families of setpairs by representing them as partiallyordered sets (posets). It turns out that the Hasse diagram of su
h a poset has a spe
ial property| any two 
hains (dipaths) of the poset have at most one sub
hain in 
ommon. We refer to su
hposets as diamond-free posets. Based on this, we prove the following result. (Note the 
ontrastwith (SLP), see [5, 9℄.)Theorem 1.1. For any digraph G = (V;E), any nonzero extreme point x of (LP) satis�esmaxe2E fxeg � �(1)pjEj :In Se
tion 4, we show that the bound in Theorem 1.1 is the best possible, up to a 
onstant fa
tor.Theorem 1.2. Given any suÆ
iently large integer jEj, there exists a digraph G = (V;E) su
hthat (LP) has an extreme point x satisfyingmaxe2E fxeg � �(1)pjEj :The rest of the introdu
tion dis
usses the iterative rounding method, and addresses some algo-rithmi
 questions that arise when this method is applied to (LP). To apply the iterative roundingmethod, we formulate the problem as an integer program, and then solve the linear programmingrelaxation to �nd a basi
 (extreme point) optimum solution x. Pi
k an edge e� of highest weight(i.e., xe� � xe; 8e 2 E) and add it to the solution subgraph H (initially, E(H) is empty). Thenupdate the linear program and the integer program, sin
e we impli
itly �xed the variable xe� atvalue 1. In detail, we de
rease by 1 the r.h.s. of every 
onstraint where the variable xe� o

urs,and then we remove this variable from the linear program. The resulting linear program is thesame as the linear program for the \redu
ed" problem where the edge e� is pre-sele
ted for H .Under appropriate 
onditions on the requirement fun
tion f , the problem turns out to be \self re-du
ible," i.e., the essential properties of the original problem are preserved in the redu
ed problem.We iteratively solve the redu
ed problem. Jain [5℄ applied this method to (SIP), and proved thatit a
hieves an approximation guarantee of 2 provided that the requirement fun
tion f is weaklysupermodular. (Su
h requirement fun
tions 
apture several interesting problems, e.g., the Steinernetwork problem.) His analysis is based on a key property of (SLP): every non-zero extreme pointhas an edge of weight at least 12 . This result is based on an extension of a 
lassi
 result that, underappropriate 
onditions on the requirement fun
tion f , every extreme point of (SLP) is 
hara
terizedby a laminar family of \tight sets." Jain's analysis [5, Theorem 3.2℄ applies in a general setting:



4 CHERIYAN AND VEMPALAif the linear program has the self redu
ibility property, and for every nonzero basi
 solution x wehave a lower bound of � on maxe2E xe, then the approximation guarantee is 1� .The iterative rounding method applies to the setpairs formulation (IP), and gives an approxima-tion algorithm that a
hieves a guarantee of O(pjEj). This follows from Theorem 1.1, and the fa
tthat (LP) has the desired self redu
ibility property (sin
e the 
rossing bisupermodular propertyof the requirement fun
tion is preserved on subtra
ting a bisubmodular fun
tion, see Se
tion 2).Theorem 1.2 shows that the O(pjEj) approximation guarantee is tight. (LP) is solvable in poly-nomial time via the ellipsoid method, sin
e a polynomial time separation subroutine is available(see [4, Lemma 7.2℄). Although the approximation guarantee of the iterative rounding methodhinges on a key property of basi
 solutions of the linear program, the method 
an be implementedeÆ
iently via a polynomial time algorithm for �nding an optimal solution (not ne
essarily basi
).For this, we take ea
h edge e in turn, and append to (LP) the 
onstraint xe � �, where � is thelower bound in Theorem 1.1. One of these variants of (LP) has the same optimal value as (LP)(by Theorem 1.1), hen
e any optimal solution to that variant suÆ
es for the iterative roundingmethod. There is another algorithmi
 issue worth noting. For many of the spe
i�
 problems innetwork design that are 
aptured by (IP), the relaxation (LP) 
an be written as a 
ompa
t linearprogram via a \
ow formulation," and an appropriate optimal solution (not ne
essarily basi
) 
anbe found in strongly polynomial time via Tardos' algorithm [11℄. This is similar to the methodused by Jain in [5, Se
tion 9℄. (For example, 
onsider the problem of �nding a minimum-
ostk-vertex 
onne
ted spanning subgraph of a digraph. For ea
h vertex v, we split v into a pair ofverti
es v0; v00, repla
e in
oming edges to v by in
oming edges to v0, repla
e outgoing edges from vby outgoing edges from v00, and add the dire
ted edge v0v00. The goal is to assign a non-negativereal-valued 
apa
ity xe � 1 to ea
h edge e su
h that Pe 
exe is minimized, and su
h that themax-
ow for every ordered pair of verti
es v00; w0 is at least k, where ea
h \new edge" v0v00 gets a
apa
ity of 1.)In the rest of the paper, an edge means a dire
ted edge of the input digraph G.2. Chara
terizing Extreme Points via Non
rossing FamiliesTwo setpairs W;Y are 
omparable if either Wt � Yt; Wh � Yh, (denoted as W � Y ), or Wt �Yt; Wh � Yh, (denoted as W � Y ). Setpairs W;Y are non
rossing if either they are 
omparable,or their heads are disjoint (Wh \ Yh = ;), or their tails are disjoint (Wt \ Yt = ;); otherwise W;Y
ross. A family of setpairs L � S is 
alled non
rossing if every two setpairs in L are non
rossing.For two 
rossing setpairsW;Y let W
Y denote the setpair (Wt[Yt;Wh\Yh) and let W�Y denote



THE ITERATIVE ROUNDING METHOD FOR SETPAIRS 5the setpair (Wt \ Yt;Wh [ Yh). Note that W (similarly, Y ) is � W�Y and is � W
Y . (If bothW and Y are partitions of V , so W = (V nWh;Wh); Y = (V n Yh; Yh), then note that W
Y isthe partition of V with head Wh \ Yh, and W�Y is the partition of V with head Wh [ Yh.) Areal-valued fun
tion f on S, f : S!R, is 
alled bisubmodular if for any two setpairs W and Y wehave f(W ) + f(Y ) � f(W 
 Y ) + f(W � Y ):A non-negative, integer-valued fun
tion f on S, f : S!Z+, is 
alled 
rossing bisupermodular if forany two 
rossing setpairs W and Y with f(W ) > 0 and f(Y ) > 0, we havef(W ) + f(Y ) � f(W 
 Y ) + f(W � Y ):Let �W denote the zero-one in
iden
e ve
tor of Æ(W ). For any two setpairs W and Y , note that ifan edge is present in Æ(W � Y ) or Æ(W 
 Y ), then it is present in Æ(W ) or Æ(Y ), and if an edgeis present in both Æ(W � Y ) and Æ(W 
 Y ), then it is present in both Æ(W ) and Æ(Y ). Hen
e, wehave �W
Y + �W�Y � �W + �Y . Consequently, for any non-negative ve
tor x : E ! R+ on theedges, the 
orresponding fun
tion on setpairs, x(Æ(W )) = Pe2Æ(W ) xe, is bisubmodular. (For anyve
tor x on a groundset U and a subset Q of U , x(Q) denotes Pi2Q xi.) Also, see Figure 1.Given a feasible solution x of (LP), a setpair W is 
alled tight (w.r.t. x) if x(Æ(W )) = f(W ).Theorem 2.1. Let the requirement fun
tion f of (LP) be 
rossing bisupermodular, and let x bean extreme point solution of (LP) su
h that 0 < xe < 1 for ea
h edge e 2 E. Then there exists anon
rossing family of tight setpairs L su
h that(i) every setpair W 2 L has f(W ) � 1,(ii) jLj = jEj,(iii) the ve
tors �W ; W 2 L are linearly independent, and(iv) x is the unique solution to fx(Æ(W )) = f(W ); 8W 2 Lg.The proof is based on the next two lemmas. The �rst of these lemmas \un
rosses" two tightsetpairs that 
ross.Lemma 2.2. Let x : E!R be a feasible solution of (LP). If two setpairs W;Y with f(W ) >0; f(Y ) > 0 are tight and 
rossing, then the setpairs W
Y;W�Y are tight. Moreover, if xe > 0for ea
h edge e 2 E, then �W + �Y = �W
Y + �W�Y :



6 CHERIYAN AND VEMPALA
h(W)

h(Y)t (Y)

t (W)Figure 1. Illustration of 
rossing setpairs. The dashed edges 
ontribute tox(Æ(W )) + x(Æ(Y )) but not to x(Æ(W
Y )) + x(Æ(W�Y )).Proof. The requirement fun
tion f(�) is 
rossing bisupermodular, and the \edge supply" fun
tionx(Æ(�)) satis�es the bisubmodular inequality x(Æ(W )) + x(Æ(Y )) � x(Æ(W
Y )) + x(Æ(W�Y )).Therefore, we have f(W
Y ) + f(W�Y ) � x(Æ(W
Y )) + x(Æ(W�Y )) �x(Æ(W )) + x(Æ(Y )) = f(W ) + f(Y ) � f(W
Y ) + f(W�Y ):Hen
e, all the inequalities hold as equations, and so W
Y;W�Y are tight.The se
ond statement in the lemma follows sin
e we have x(Æ(W
Y ))+x(Æ(W�Y )) = x(Æ(W ))+x(Æ(Y )), and xe > 0 for ea
h edge e 2 E. Hen
e, the inequality �W +�Y � �W
Y +�W�Y holdsas an equation.Lemma 2.3. Let L and S be two 
rossing setpairs. Let N = S
L (or, let N = S�L). If anothersetpair J 
rosses N , then either J 
rosses S or J 
rosses L.Proof. We prove the lemma for the 
ase N = S
L; the other 
ase is similar. The proof is by
ontradi
tion. Suppose the lemma fails. Then there is a setpair J 2 L su
h that J;N 
ross (soJt \Nt 6= ; and Jh \Nh 6= ;), but both J; L and J; S are non
rossing.We have four main 
ases, depending on whether J; L are head disjoint, tail disjoint, J � L orJ � L.(i) J; L are head disjoint: Then J;N are head disjoint (by Nh = Sh \ Lh) so J;N do not 
ross.(ii) J; L are tail disjoint: We have three sub
ases, depending on the tails of J; S.{ Jt properly interse
ts St:Then J; S are head disjoint (sin
e J; S are non
rossing) so J;N are also head disjoint,and do not 
ross.{ Jt � St:



THE ITERATIVE ROUNDING METHOD FOR SETPAIRS 7Sin
e J; S are non
rossing, either J; S are head disjoint, in whi
h 
ase J;N are headdisjoint and do not 
ross, or Jh � Sh, in whi
h 
ase Jh � Nh, so J � N and J;N do not
ross.{ Jt � St:This is not possible, sin
e J; L are tail disjoint, and St interse
ts Lt (sin
e L; S 
ross).(iii) J � L: Then J � N sin
e Jh � Lh � Nh and Jt � Lt � Nt.(iv) J � L: As in 
ase(ii), we have three sub
ases, depending on the tails of J; S.{ Jt properly interse
ts St:Similar to 
ase(ii) above, �rst sub
ase.{ Jt � St:Similar to 
ase(ii) above, se
ond sub
ase.{ Jt � St:Sin
e J; S do not 
ross, either J; S are head disjoint, in whi
h 
ase J;N are head disjointand do not 
ross, or Jh � Sh, in whi
h 
ase J � N sin
e Jh � Sh \ Lh = Nh andJt � St [ Lt = Nt (note that Jh � Lh and Jt � Lt).This 
on
ludes the proof of the lemma.Proof. (of Theorem 2.1) Our proof is inspired by Jain's proof of [5, Lemma 4.2℄. Sin
e x is anextreme point solution (basi
 solution) with 0 < x < 1, there exists a set of jEj tight setpairs su
hthat the ve
tors �W 
orresponding to these setpairs W are linearly independent.Let L be an (in
lusionwise) maximal non
rossing family of tight setpairs. Let span(L) denote theve
tor spa
e spanned by the ve
tors �W ; W 2 L. We will show that span(L) equals the ve
torspa
e spanned by the ve
tors �Y where Y is any tight setpair. The theorem then follows by takinga basis for span(L) from the set f�W jW 2 Lg.Suppose there is a tight setpair S su
h that �S 62 span(L). Choose su
h an S that 
rosses theminimum number of setpairs in L (this is a key point). Next, 
hoose any setpair L 2 L su
h thatS 
rosses L. By Lemma 2.2, �S = �S
L + �S�L � �L:Hen
e, either �S
L 62 span(L) or �S�L 62 span(L). Suppose the �rst 
ase holds. (The argument issimilar for the other 
ase, and is omitted.) Let N = S
L = (St [ Lt; Sh \ Lh). The next 
laimfollows from Lemma 2.3.



8 CHERIYAN AND VEMPALAClaim. Any setpair J 2 L that 
rosses N also 
rosses S (note that J; L do not 
ross sin
e bothare in L).Clearly, L does not 
ross N (sin
e L � N), but L 
rosses S. This 
ontradi
ts our 
hoi
e of S (sin
eN is a tight setpair that 
rosses fewer setpairs in L and �N 62 span(L)).3. An Edge of High Value in an Extreme PointThis se
tion has the proof of Theorem 1.1. The theorem is proved by representing the non
rossingfamily L as a poset and examining the Hasse diagram.Let L be a non
rossing family of setpairs. We de�ne the poset P representing L as follows.The elements of P are the setpairs in L and the relation between elements is the same as therelation between setpairs (for two setpairs W and Y , if Wt � Yt; Wh � Yh, then W � Y ; ifWt � Yt; Wh � Yh then Y � W ; otherwise they are in
omparable). The Hasse diagram of theposet, also denoted by P , is a dire
ted a
y
li
 graph that has a node for ea
h element in theposet, and for elements W;Z there is an ar
 (W;Z) if W � Z and there is no element Y su
hthat W � Y � Z (the Hasse diagram has no ar
s that are implied by transitivity). In the Hassediagram, an ar
 (W;Y ) indi
ates that Wh � Yh and Wt � Yt. Throughout, the term node refersto the poset P , and the term vertex refers to the input digraph G. An ar
 means an ar
 of P ,whereas an edge means a dire
ted edge of G. A node Z is 
alled a prede
essor (or su

essor) ofa node W if the ar
 (Z;W ) (or (W;Z)) is present. A dire
ted path in P is 
alled a 
hain. Ananti
hain of P is a set of nodes that are pairwise in
omparable. If C is a 
hain or an anti
hain ofP , then jCj denotes the number of nodes in C; the number of nodes in P is denoted by jPj. For anarbitrary poset, de�ne a diamond to be a set of four (distin
t) elements a; b; 
; d su
h that b; 
 arein
omparable, a � b � d and a � 
 � d. A poset is 
alled diamond-free if it 
ontains no diamond.In other words, any two 
hains of su
h a poset have at most one sub
hain in 
ommon.Lemma 3.1. Let L be a non
rossing family of setpairs su
h that ea
h setpair W 2 L has bothhead and tail nonempty. Then the poset P representing L is diamond-free.Proof. Suppose that L has four setpairs W;X; Y; Z su
h that X; Y are in
omparable, W � X � Zand W � Y � Z. Sin
e X; Y are in
omparable, either they are head disjoint, or tail disjoint.Moreover, Xh � Zh sin
e X � Z, and Yh � Zh sin
e Y � Z. Then X; Y are not head disjoint,sin
e both heads 
ontain the head of Z, whi
h is nonempty. Similarly, it 
an be seen that X; Yare not tail disjoint, sin
e both tails 
ontain the tail of W , whi
h is nonempty. This 
ontradi
tionproves that P 
ontains no diamond.



THE ITERATIVE ROUNDING METHOD FOR SETPAIRS 9We 
all a node W unary if the Hasse diagram has exa
tly one ar
 in
oming to W and exa
tly onear
 outgoing from W . Consider the maximum 
ardinality of an anti
hain in a diamond-free posetP . This may be as small as one, sin
e P may be a 
hain. The next result shows that this quantity
annot be so small if P has no unary nodes.Proposition 3.2. (1) If a diamond-free poset P has no unary nodes, then it has an anti
hain of
ardinality at least pjPj=2.(2) If P is a diamond-free poset su
h that neither the prede
essor nor the su

essor of a unary nodeis another unary node, then it has an anti
hain of 
ardinality at least 12pjPj.Proof. We prove part (1); the proof of part (2) is similar.If P has an anti
hain of 
ardinality at least pjPj=2, then we are done. Otherwise, by Dilworth'stheorem (the minimum number of disjoint 
hains required to 
over all the nodes of a poset equals themaximum 
ardinality of an anti
hain), P has a 
hain, 
all it C, with jCj > jPj=pjPj=2 = p2jPj.Let C = W1;W2; : : : ;W`. Ea
h of the internal nodesW2; : : : ;W`�1 is non-unary, so it has either twoprede
essors or two su

essors. Clearly, one of the two prede
essors (or one of the two su

essors)is not in C. Let Cp be the set of nodes in P nC that are prede
essors of nodes in C, and similarlylet Cs be the set of nodes in P nC that are su

essors of nodes in C. Then either jCpj � (jCj�2)=2or jCsj � (jCj�2)=2. Suppose that the �rst 
ase holds (the argument is similar for the other 
ase).Let us add W1 (the �rst node of C) to Cp. Now, we 
laim that Cp is an anti
hain. Observe thatpart (1) follows from this 
laim, be
ause jCpj � jCj=2 >pjPj=2.To prove that Cp is an anti
hain, fo
us on any two (distin
t) nodes Yi; Yj 2 Cp. Let Wi and Wjbe the nodes in C su
h that Yi is the prede
essor of Wi and Yj is the prede
essor of Wj . First,suppose that Wi 6= Wj , and (w.l.o.g.) assume that Wi � Wj . We 
annot have Yi � Yj , otherwise,the nodes Wj ;Wj�1; Yj ; Yi will form a diamond, where Wj�1 is the prede
essor of Wj in C (notethat the four nodes are distin
t, and Wj�1; Yj are in
omparable, sin
e both are prede
essors ofWj). Also, we 
annot have Yj � Yi, otherwise, we have Yj � Yi � Wi � Wj and so the ar
 (Yj ;Wj)is implied by transitivity. Hen
e, Yi; Yj are in
omparable, if Wi 6= Wj . If Wi = Wj , then Yi; Yj arein
omparable (by transitivity).We restate Theorem 1.1 for 
onvenien
e, and present our proof.Theorem 1.1. For any digraph G = (V;E), any nonzero extreme point x of (LP) satis�esmaxe2E fxeg � �(1)pjEj :



10 CHERIYAN AND VEMPALAThe proof is by 
ontradi
tion. Let x be an extreme point of (LP), and let F = fe 2 E j xe > 0g.For 
onvenien
e, assume that no edges e with xe = 0 are present. Also, assume that ea
h edge ehas xe < 1, otherwise the proof is done.Let L be a non
rossing family of tight setpairs de�ning x and satisfying the 
onditions in Theo-rem 2.1, and let P be the poset representing L. Note that P is diamond free (by Lemma 3.1, sin
eea
h setpair W 2 L has f(W ) � 1, so both Wt;Wh are nonempty), and that jPj = jLj = jF j. LetU be the set of unary nodes of P , and 
all a maximal 
hain of unary nodes a U -
hain. Let P 0 bethe \redu
ed" poset formed by repla
ing ea
h U -
hain by a single unary node. Note that P 0 isdiamond-free, sin
e P is diamond-free.Let C be a maximum-
ardinality anti
hain of P . By Proposition 3.2(2), jCj � 12pjP 0j. We mayassume that ea
h unary node of C (if any) is a bottom node of a U -
hain. By an upper U -
hainwe mean one that has all nodes � some node in C, and by a lower U -
hain we mean one that hasall nodes � some node in C. Let U0 be the set of bottom nodes of all the upper U -
hains togetherwith the set of top nodes of all the lower U -
hains. Let U� be the set of nodes W 2 U n U0 inupper U -
hains su
h that the prede
essor Y ofW has f(W ) = f(Y ), together with the set of nodesW 2 U n U0 in lower U -
hains su
h that the su

essor Z of W has f(W ) = f(Z). Let U1 be theset of nodes W 2 U n U0 in upper U -
hains su
h that the prede
essor Y of W has f(W ) > f(Y ),together with the set of nodes W 2 U n U0 in lower U -
hains su
h that the su

essor Z of W hasf(W ) < f(Z). Similarly, let U2 be the set of nodes W 2 U n U0 in upper U -
hains su
h that theprede
essor Y ofW has f(W ) < f(Y ), together with the set of nodes W 2 U nU0 in lower U -
hainssu
h that the su

essor Z of W has f(W ) > f(Z).Clearly, U = U0 [ U1 [ U2 [ U� and jPj � jP 0j = jU1j+ jU2j+ jU�j:Claim. If � is a number su
h that xe < 1=�; 8e 2 E, thenjF j > � �maxfjCj; jU1j; jU2jg + jU�j:



THE ITERATIVE ROUNDING METHOD FOR SETPAIRS 11We defer the proof of the 
laim, and 
omplete the proof of the theorem. Let � = 4pjPj. Supposethat xe < 1=� for ea
h edge e 2 F . Then, by the 
laim,jF j > 4pjPj �maxfjCj; jU1j; jU2jg + jU�j� 4pjPj � (12 jCj+ 14 jU1j+ 14 jU2j) + jU�j� 4pjPj � (14pjP 0j+ 14 jU1j+ 14 jU2j) + jU�j� jP 0j+ jU1j+ jU2j+ jU�j� jPj:This is a 
ontradi
tion, sin
e jF j = jPj. Hen
e, there exists an edge e with xe � 1=� = 1=(4pjPj).This proves the theorem.Proof. (of the Claim) We need to prove the three inequalities separately. Consider the �rst in-equality: jF j > � � jCj + jU�j:Ea
h setpair W 2 L has f(W ) � 1, so W is 
overed by > � edges (otherwise, x(Æ(W )) < 1).Hen
e, ea
h node W 2 P is 
overed by > � edges. We assign all of the edges 
overing a nodeW 2 C to W ; note that no edge 
overs two distin
t nodes of C. This assigns a total of > �jCjedges. Now, 
onsider a node Wi 2 U� that is in an upper U -
hain W1; : : : ;W`, where 1 < i � `.Sin
e f(Wi�1) = f(W ) and �Wi�1 6= �Wi , there is an edge in Æ(Wi) n Æ(Wi�1). We assign this edgeto Wi. Similarly, for a node Wi 2 U� in a lower U -
hain W1; : : : ;W`, where 1 � i < `, we assignto Wi an edge in Æ(Wi) n Æ(Wi+1). It 
an be seen that no edge is assigned to two di�erent nodes.Hen
e, the �rst inequality follows.Consider the se
ond inequality: jF j > � � jU1j + jU�j. Let Wi 2 U1 be any node in an upperU -
hain W1; : : : ;W`, where 1 < i � `. Sin
e f(Wi) � f(Wi�1) + 1, there must be > � edges inÆ(Wi) n Æ(Wi�1). We assign all these edges to Wi. Similarly, for a node Wi 2 U1 that is in a lowerU -
hain W1; : : : ;W`, where 1 � i < `, we assign > � edges in Æ(Wi+1) n Æ(Wi) to Wi. Finally,for nodes Wi 2 U�, if Wi is in an upper U -
hain W1; : : : ;W`, then we assign to Wi an edge inÆ(Wi) n Æ(Wi�1), and if Wi is in a lower U -
hain W1; : : : ;W`, then we assign to Wi an edge inÆ(Wi+1) n Æ(Wi). The se
ond inequality follows, sin
e no edge is assigned to two di�erent nodes.The proof of the third inequality is similar to the proof of the se
ond inequality.



12 CHERIYAN AND VEMPALA4. A Tight ExampleIn this se
tion, we present an example of an extreme point x of (LP) su
h that 0 < xe � �(1)=pjEjfor all edges e 2 E. Thus the lower bound in Theorem 1.1 is tight (up to a 
onstant fa
tor). Anextreme point x of (LP) is de�ned by a system of jEj tight 
onstraints, where ea
h is of the formx(Æ(W )) = f(W ), for some setpair W (we assume 0 < x < 1 so the 
onstraints xe � 0, xe � 1 areredundant). Let L be the non
rossing family of tight setpairs de�ning x (see Theorem 2.1), andlet P be the poset (and the Hasse diagram) representing L. Re
all that the term node refers toP , and an ar
 means an ar
 of P , whereas an edge means a dire
ted edge of G. Ea
h edge e 2 E
orresponds to a path p(e) in P , where the nodes of p(e) are the setpairs W 2 L that are 
overedby e, that is, p(e) = W1; : : : ;W`, where W1 � � � � � W` and e 2 Æ(Wi) (i = 1; : : : ; `). We refer tosu
h paths p(e) as e-paths.
1
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3t
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red-red e-paths
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3
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3t

1

last t+1
nodes are red

red-white e-paths

black node
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Figure 2. Illustration of the poset P .



THE ITERATIVE ROUNDING METHOD FOR SETPAIRS 13Letm = jE(G)j. Our example is a poset P with m nodes and m e-paths (see Figure 2), so jPj = m.Let 0 and 1 denote 
olumn ve
tors with all entries at 0 and 1, respe
tively, where the dimensionof the ve
tor will be 
lear from the 
ontext. De�ne the in
iden
e matrix A to be an m�m matrixwhose rows 
orrespond to the nodes, and whose 
olumns 
orrespond to the e-paths, su
h that theentry for node W and e-path p, AWp, is 1 if W is in p and is 0 otherwise. We will prove that Ahas rank m� 1 and the system Ax = 1 has a solution where ea
h entry of x is �(1)=pm. (Notethat x assigns a real number to ea
h of the e-paths, and it 
orresponds to a solution of the LP.)The poset P 
onsists of several 
opies of the following path stru
ture Q. Let t be a parameter (wewill �x t =pm=12), and let there be 3t nodes 1; 2; : : : ; 3t. Then Q 
onsists of a path [1; : : : ; 3t℄ onthese nodes, together with 2t lo
al e-paths, 
all them p1; : : : ; p2t, where ea
h pj is a subpath of thepath [1; : : : ; 3t℄. For odd j (j = 1; 3; 5; : : : ; 2t�1), pj 
onsists of the �rst j nodes (so pj = [1; : : : ; j℄),and for even j (j = 2; 4; 6; : : : ; 2t), pj 
onsists of all the nodes, ex
ept the �rst j � 2 nodes (sopj = [j� 1; j; : : : ; 3t℄). Call the nodes 1; 3; 5; : : : ; 2t� 1 the bla
k nodes, the nodes 2; 4; 6; : : : ; 2t� 2the white nodes, and the remaining nodes 2t; 2t + 1; : : : ; 3t the red nodes. Note that ea
h bla
knode is in
ident to t+ 1 lo
al e-paths, and ea
h of the other nodes is in
ident to t lo
al e-paths.We take 4t 
opies of Q, and partition them into two sets, the top paths T1; : : : ; T2t, and the bottompaths B1; : : : ; B2t. (In fa
t, ea
h Ti or Bi is a path stru
ture 
onsisting of a path and 2t lo
ale-paths, but we 
all them paths for 
onvenien
e.) Finally, we add another 4t2 nonlo
al e-paths su
hthat the following 
onditions hold:� ea
h node is in
ident to a total of t + 1 e-paths;� ea
h nonlo
al e-path is in
ident to exa
tly two nodes, one in a top path Ti and one in abottom path Bj ; moreover, for every Ti and every Bj , there is exa
tly one nonlo
al e-pathin
ident to both Ti and Bj ;� ea
h nonlo
al e-path is in
ident to either two red nodes, or one red node and one white node;� ea
h top/bottom path Ti or Bj is in
ident to exa
tly two red-red nonlo
al e-paths, where(i) there is an e-path in
ident to the last node of Bi and the last node of Ti (i = 1; : : : ; 2t),and(ii) there is an e-path in
ident to the 2nd last node of Bi and the 2nd last node of Ti+1(i = 1; : : : ; 2t); the indexing is modulo 2t, so 2t+ 1 means 1; note that there is 
y
li
 shift by1 in the index of the top versus bottom paths;� the red-white nonlo
al e-paths are �xed a

ording to the �rst two 
onditions, and are asfollows: for ` = 1; 2; : : : ; t � 1, there is an e-path in
ident to the 2`th node of Bi and the(2t� 1 + `)th node of Ti+1+` (i = 1; : : : ; 2t), indexing modulo 2t; note that there is a 
y
li




14 CHERIYAN AND VEMPALAshift by ` + 1 in the index of the top versus bottom paths; similarly, for ` = 1; 2; : : : ; t � 1,there is an e-path in
ident to the 2`th node of Ti and the (2t � 1 + `)th node of Bi+1+`(i = 1; : : : ; 2t), indexing modulo 2t.Proposition 4.1. Let t be a positive integer, and let m = 12t2. Let A be the m � m in
iden
ematrix of the poset P and the e-paths (
onstru
ted above). Then rank(A) � m� 1 and a solutionto the system Ax = 1 is given by x = 1t+1 � 1.Proof. A 
olumn ve
tor of dimension ` with all entries at 0 (or, 1) is denoted by 0` (or, 1`). Let eidenote the ith 
olumn of the s � s identity matrix Is, where s is a positive integer. Let fi denotePij=1 ej ; so fi is a 
olumn ve
tor with a 1 in entries 1; : : : ; i and a 0 in entries i+ 1; : : : ; s.Let the rows of A be ordered a

ording to the nodes 1; : : : ; 3t of T1; : : : ; T2t, followed by the nodes1; : : : ; 3t of B1; : : : ; B2t.First, 
onsider a bottom path Bi; top paths Ti are handled similarly, and this is sket
hed later.Let M denote the in
iden
e matrix of Bi versus all the e-paths. Then M is 3t �m matrix, wherethe rows 1; : : : ; 3t 
orrespond to the nodes 1; : : : ; 3t of Bi, and the 
olumns of M are ordered asfollows:� the 2t lo
al e-paths of Bi, p1; p2; : : : ; p2t,� the t� 1 red-white e-paths whose red ends are in Bi (these are the e-paths in
ident to nodes2t; 2t+ 1; : : : ; 3t� 2 of Bi),� the two red-red e-paths in
ident to nodes 3t � 1 and 3t of Bi,� the remaining e-paths (among these are t� 1 red-white e-paths whose white ends are in Bi).Let M beg denote the submatrix of M formed by the �rst 2t 
olumns, so M beg is the in
iden
ematrix of the nodes versus the lo
al e-paths of Bi. Let M end denote the submatrix of M formedby ex
luding the �rst 3t+1 
olumns (keeping only the 
olumns of the \remaining e-paths"). ThenM = 26666664M beg ������������ 02t�1 : : :02t�1It�10 : : :00 : : :0 ������������ 02t�1 02t�10t�1 0t�11 00 1 ������������ M end37777775 :Note that the rows and 
olumns of M end may be reordered su
h that the submatrix in the �rstt� 1 rows (make these the rows of the white nodes of Bi) and the �rst t� 1 
olumns (make thesethe 
olumns of the red-white e-paths in
ident to the white nodes of Bi) is the identity matrix It�1,



THE ITERATIVE ROUNDING METHOD FOR SETPAIRS 15and every other entry of the matrix is zero. ThenM beg = [f1; 1; f3; 1� f2; f5; 1� f4; : : : ; f2t�1; 1� f2t�2℄:Using elementary 
olumn operations, we 
an rewrite this matrix as[e1; e2; e3; : : : ; e2t�1; 1� f2t�1℄ = 24 I2t�1 02t�10t+1 : : :0t+1 1t+1 35 :Then it is 
lear that the matrix [M beg M end℄ may be rewritten using elementary 
olumn operationsas 24 I2t�1 02t�10t+1 : : :0t+1 1t+1 0 : : :035 :Going ba
k to M , observe that it may be rewritten using elementary 
olumn operations as26666664 I2t�1 02t�1 02t�1 : : :02t�10t�1 : : :0t�1 1t�1 It�10 : : :0 1 0 : : :00 : : :0 1 0 : : :0 ������������ 02t�1 02t�10t�1 0t�11 00 1 ������������ 0 : : :037777775 ;or as M� = 26666664 I2t�1 02t�1 : : :02t�10t�1 : : :0t�1 It�10 : : :0 0 : : :00 : : :0 0 : : :0 ������������ 02t�1 02t�1 02t�10t�1 0t�1 1t�11 0 10 1 1 ������������ 0 : : :037777775 :Now, fo
us on the matrix A (the in
iden
e matrix of the nodes of P versus all the e-paths), andits 
olumn ve
tors. Consider the two red-red e-paths in
ident to Bi and their 
olumn ve
tors in A.Let r3t�1 and r3t denote the two red-red e-paths in
ident to the red nodes 3t � 1 and 3t (of Bi),respe
tively, and let the 
olumn ve
tors in A of these red-red e-paths also be denoted by the samesymbols. Note that r3t has two nonzero entries, namely, a 1 for node 3t of Bi and a 1 for node 3tof Ti. Similarly, r3t�1 has two nonzero entries, namely, a 1 for node 3t� 1 of Bi and a 1 for node3t�1 of Ti+1 (indexing modulo 2t). Keep the 
olumn r3t�1, but use elementary 
olumn operationsto repla
e r3t by r03t = r3t + r3t�1 +M�2t + � � �+M�3t�2 �M�3t+1, where M�j denotes the 
olumnve
tor of dimension m obtained from the jth 
olumn ve
tor of M� by padding with zeros (�xingentries of rows not in M� at 0). Clearly, r03t has two nonzero entries, namely a 1 for node 3t of Tiand a 1 for node 3t � 1 of Ti+1 (indexing modulo 2t).



16 CHERIYAN AND VEMPALALet M bot; i be the m �m matrix obtained from M� by repla
ing the (3t � 1)th 
olumn by r3t�1,deleting the 3tth 
olumn, and padding with zeros (�xing at 0 all entries ex
ept those in M� or inthe (3t� 1)th 
olumn).The 
onstru
tion for a top path Ti+1 (i = 1; 2; : : : ; 2t, indexing modulo 2t) is similar, ex
ept forthe handling of 
olumns 3t � 1 and 3t of M�. Let M top; i+1 be the m �m matrix obtained fromM� by repla
ing the 3tth 
olumn by r03t, deleting the (3t� 1)th 
olumn, and padding with zeros.Let A� be the m�m matrix obtained from A by elementary 
olumn operations, whereA� = 2tXi=1M top; i + 2tXi=1M bot; i:Figure 3 illustrates the zero-nonzero pattern of A�.
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Figure 3. Illustration of matri
es M bot; i and M top; i, and the nonzero pattern ofmatrix A�.With the ex
eption of one entry, A� is an upper triangular matrix with every diagonal entry at1; the ex
eptional entry is in row 6t (node 3t of T2t) and 
olumn 3t � 1 (2nd last 
olumn of T1).Then, deleting row 6t and 
olumn 6t of A� we get an upper triangular matrix with determinant 1.This proves that rank(A) � m� 1.
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onstru
tion, ea
h node of P is in
ident to exa
tly t+1 e-paths, hen
e �xing xe = 1=(t+1) forea
h e-path p(e) gives a solution to the system Ax = 1. The proposition follows.Proposition 4.2. Let P be the polytope fx 2 Rm j eAx � eb; 0 � x � 1g and let F be the fa
efx 2 P j Ax = bg, where Ax � b is a subsystem of eAx � eb. If the matrix A has rank m � 1 andthere exists an x 2 F su
h that ea
h entry of x is � �, then P has an extreme point ex su
h thatea
h entry of ex is � 2�.Proof. F is a line-segment and so it has two extreme points, 
all them y and z. Note that y and zmust be extreme points of P also. Hen
e, x = a �y+ (1� a) � z, where 0 � a � 1. Suppose a � 1=2(the other 
ase is similar). Then y � 2(x� (1 � a) � z) � 2x, sin
e z � 0, so ea
h entry of y is� 2�.Theorem 1.2, whi
h is the main result of this se
tion, follows from Propositions 4.1 and 4.2.Theorem 1.2. Given any suÆ
iently large integer jEj, there exists a digraph G = (V;E) su
hthat (LP) has an extreme point x satisfying maxe2E fxeg � �(1)pjEj :5. Con
lusionIn 
on
lusion, we mention that our framework and the results in se
tions 2 and 3 lead to interestingapproximation guarantees for spe
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