
EDGE COVERS OF SETPAIRS AND THE ITERATIVE ROUNDINGMETHODSEPTEMBER 3, 2001JOSEPH CHERIYAN AND SANTOSH VEMPALAAbstrat. Given a digraph G = (V;E), we study a linear programming relaxation of the problemof �nding a minimum-ost edge over of pairs of sets of verties (alled setpairs). Eah setpair has anonnegative integer-valued requirement, and the requirement funtion is rossing bisupermodular.Our results are as follows: (1) An extreme point of the LP is haraterized by a nonrossing familyof tight setpairs, L (where jLj � jEj). (2) In any extreme point x, there exists an edge e with xe ��(1)=pjLj, and there is an example showing that this lower bound is best possible. (3) The iterativerounding method applies to the LP and gives an integer solution of ost O(pjLj) = O(pjEj) timesthe LP's optimal value. The proof of (2) relies on the fat that L an be represented by a speialtype of partially ordered set that we all diamond-free.1. IntrodutionMany NP-hard problems in network design inluding the Steiner tree problem and its generaliza-tions are aptured by the following formulation. We are given an (undireted) graph G = (V;E)where eah edge e has a nonnegative ost e, and eah subset of verties S has a nonnegativeinteger requirement f(S). The problem is to �nd a minimum-ost subgraph H that satis�es all therequirements, i.e., H should have at least f(S) edges in every ut (S; V nS). This an be modelledas an integer program. (SIP ) minimize Xe exesubjet to Xe2(S;V nS)xe � f(S); 8S � Vxe 2 f0; 1g; 8e 2 E:Let (SLP) be the linear programming relaxation of (SIP). The requirement funtion f(�) shouldbe suh that (SIP) models some interesting problems in network design, (SLP) has a provablysmall integrality ratio, and (SLP) is solvable in polynomial time. Approximation algorithms basedMathematis Subjet Classi�ation (2000): Primary: 68W25, 90C35. Seondary: 05C40, 68R10, 90C27, 90B10.Key words and phrases. network design, vertex onnetivity, setpair formulation, bisubmodular funtions, linearprogramming relaxation, iterative rounding, approximation algorithms.1



2 CHERIYAN AND VEMPALAon (SIP) and (SLP) were designed and analyzed by Agrawal, Klein and Ravi [1℄, Goemans andWilliamson [7℄, Williamson et al [12℄, and Goemans et al [6℄. Then Jain [5℄ gave a 2-approximationalgorithm for the ase of weakly supermodular requirement funtions via a tehnique alled iterativerounding. A key disovery in [5℄ is that every non-zero extreme point x of (SLP) has maxe2E fxeg �12 . Subsequently, Melkonian and Tardos [9℄ studied the problem on direted graphs, and provedthat if the requirement funtion is rossing supermodular, then every non-zero extreme point oftheir linear programming relaxation has an edge of value at least 14 .There are several interesting problems in network design that elude the formulation of (SIP), suh asthe problem of �nding a minimum-ost k-vertex onneted spanning subgraph. Frank and Jordan[4℄ gave a more general formulation where pairs of vertex sets have requirements (also, see Shrijver[10℄ for earlier related results). In this formulation, we are given a digraph G = (V;E) and eahedge e has a nonnegative ost e. A setpair is an ordered pair of vertex sets W = (Wt;Wh), whereWt � V is alled the tail, and Wh � V is alled the head (either Wt or Wh may be the empty set).Let S be the set of all setpairs. For a setpair W , Æ(W ) denotes the set of edges overing W , i.e.,Æ(W ) = fuv 2 Eju 2 Wt; v 2 Whg. Eah setpair W has a nonnegative, integer requirement f(W ).The problem is to �nd a minimum-ost subgraph that satis�es all the requirements. (Note that therequirement funtion f(�) of (SIP) is the speial ase where every setpair with positive requirementis a partition of V and has the form (S; V n S) where S � V .)(IP ) minimize Xe exesubjet to Xe2Æ(W )xe � f(W ); 8W 2 Sxe 2 f0; 1g; 8e 2 E:Throughout, we assume that the requirement funtion f of (IP) is rossing bisupermodular (thisis de�ned in Setion 2). Frank and Jordan [4℄ used this formulation to derive min-max resultsfor speial ost funtions, and moreover, they showed that the linear programming relaxation issolvable in polynomial time. Fleiner [3℄ has related results. The problem of �nding a minimum-ost k-vertex onneted spanning subgraph of a digraph may be modeled by (IP) by taking therequirement funtion to be f(Wt;Wh) = k � (jV j � jWt [Whj), whereWt;Wh are nonempty vertexsubsets; this funtion is rossing bisupermodular.We study the linear programming relaxation (LP) for arbitrary nonnegative ost funtions. InSetion 2 we show that for any extreme point of (LP), the spae of inidene vetors of tightsetpairs (setpairs whose requirement is satis�ed exatly) is spanned by the inidene vetors of a



THE ITERATIVE ROUNDING METHOD FOR SETPAIRS 3nonrossing family of tight setpairs. A nonrossing family of setpairs is the analogue of a laminarfamily of sets. (Reall that two sets are laminar if they are either disjoint or one is ontained in theother.) In Setion 3, we study nonrossing families of setpairs by representing them as partiallyordered sets (posets). It turns out that the Hasse diagram of suh a poset has a speial property| any two hains (dipaths) of the poset have at most one subhain in ommon. We refer to suhposets as diamond-free posets. Based on this, we prove the following result. (Note the ontrastwith (SLP), see [5, 9℄.)Theorem 1.1. For any digraph G = (V;E), any nonzero extreme point x of (LP) satis�esmaxe2E fxeg � �(1)pjEj :In Setion 4, we show that the bound in Theorem 1.1 is the best possible, up to a onstant fator.Theorem 1.2. Given any suÆiently large integer jEj, there exists a digraph G = (V;E) suhthat (LP) has an extreme point x satisfyingmaxe2E fxeg � �(1)pjEj :The rest of the introdution disusses the iterative rounding method, and addresses some algo-rithmi questions that arise when this method is applied to (LP). To apply the iterative roundingmethod, we formulate the problem as an integer program, and then solve the linear programmingrelaxation to �nd a basi (extreme point) optimum solution x. Pik an edge e� of highest weight(i.e., xe� � xe; 8e 2 E) and add it to the solution subgraph H (initially, E(H) is empty). Thenupdate the linear program and the integer program, sine we impliitly �xed the variable xe� atvalue 1. In detail, we derease by 1 the r.h.s. of every onstraint where the variable xe� ours,and then we remove this variable from the linear program. The resulting linear program is thesame as the linear program for the \redued" problem where the edge e� is pre-seleted for H .Under appropriate onditions on the requirement funtion f , the problem turns out to be \self re-duible," i.e., the essential properties of the original problem are preserved in the redued problem.We iteratively solve the redued problem. Jain [5℄ applied this method to (SIP), and proved thatit ahieves an approximation guarantee of 2 provided that the requirement funtion f is weaklysupermodular. (Suh requirement funtions apture several interesting problems, e.g., the Steinernetwork problem.) His analysis is based on a key property of (SLP): every non-zero extreme pointhas an edge of weight at least 12 . This result is based on an extension of a lassi result that, underappropriate onditions on the requirement funtion f , every extreme point of (SLP) is haraterizedby a laminar family of \tight sets." Jain's analysis [5, Theorem 3.2℄ applies in a general setting:



4 CHERIYAN AND VEMPALAif the linear program has the self reduibility property, and for every nonzero basi solution x wehave a lower bound of � on maxe2E xe, then the approximation guarantee is 1� .The iterative rounding method applies to the setpairs formulation (IP), and gives an approxima-tion algorithm that ahieves a guarantee of O(pjEj). This follows from Theorem 1.1, and the fatthat (LP) has the desired self reduibility property (sine the rossing bisupermodular propertyof the requirement funtion is preserved on subtrating a bisubmodular funtion, see Setion 2).Theorem 1.2 shows that the O(pjEj) approximation guarantee is tight. (LP) is solvable in poly-nomial time via the ellipsoid method, sine a polynomial time separation subroutine is available(see [4, Lemma 7.2℄). Although the approximation guarantee of the iterative rounding methodhinges on a key property of basi solutions of the linear program, the method an be implementedeÆiently via a polynomial time algorithm for �nding an optimal solution (not neessarily basi).For this, we take eah edge e in turn, and append to (LP) the onstraint xe � �, where � is thelower bound in Theorem 1.1. One of these variants of (LP) has the same optimal value as (LP)(by Theorem 1.1), hene any optimal solution to that variant suÆes for the iterative roundingmethod. There is another algorithmi issue worth noting. For many of the spei� problems innetwork design that are aptured by (IP), the relaxation (LP) an be written as a ompat linearprogram via a \ow formulation," and an appropriate optimal solution (not neessarily basi) anbe found in strongly polynomial time via Tardos' algorithm [11℄. This is similar to the methodused by Jain in [5, Setion 9℄. (For example, onsider the problem of �nding a minimum-ostk-vertex onneted spanning subgraph of a digraph. For eah vertex v, we split v into a pair ofverties v0; v00, replae inoming edges to v by inoming edges to v0, replae outgoing edges from vby outgoing edges from v00, and add the direted edge v0v00. The goal is to assign a non-negativereal-valued apaity xe � 1 to eah edge e suh that Pe exe is minimized, and suh that themax-ow for every ordered pair of verties v00; w0 is at least k, where eah \new edge" v0v00 gets aapaity of 1.)In the rest of the paper, an edge means a direted edge of the input digraph G.2. Charaterizing Extreme Points via Nonrossing FamiliesTwo setpairs W;Y are omparable if either Wt � Yt; Wh � Yh, (denoted as W � Y ), or Wt �Yt; Wh � Yh, (denoted as W � Y ). Setpairs W;Y are nonrossing if either they are omparable,or their heads are disjoint (Wh \ Yh = ;), or their tails are disjoint (Wt \ Yt = ;); otherwise W;Yross. A family of setpairs L � S is alled nonrossing if every two setpairs in L are nonrossing.For two rossing setpairsW;Y let W
Y denote the setpair (Wt[Yt;Wh\Yh) and let W�Y denote



THE ITERATIVE ROUNDING METHOD FOR SETPAIRS 5the setpair (Wt \ Yt;Wh [ Yh). Note that W (similarly, Y ) is � W�Y and is � W
Y . (If bothW and Y are partitions of V , so W = (V nWh;Wh); Y = (V n Yh; Yh), then note that W
Y isthe partition of V with head Wh \ Yh, and W�Y is the partition of V with head Wh [ Yh.) Areal-valued funtion f on S, f : S!R, is alled bisubmodular if for any two setpairs W and Y wehave f(W ) + f(Y ) � f(W 
 Y ) + f(W � Y ):A non-negative, integer-valued funtion f on S, f : S!Z+, is alled rossing bisupermodular if forany two rossing setpairs W and Y with f(W ) > 0 and f(Y ) > 0, we havef(W ) + f(Y ) � f(W 
 Y ) + f(W � Y ):Let �W denote the zero-one inidene vetor of Æ(W ). For any two setpairs W and Y , note that ifan edge is present in Æ(W � Y ) or Æ(W 
 Y ), then it is present in Æ(W ) or Æ(Y ), and if an edgeis present in both Æ(W � Y ) and Æ(W 
 Y ), then it is present in both Æ(W ) and Æ(Y ). Hene, wehave �W
Y + �W�Y � �W + �Y . Consequently, for any non-negative vetor x : E ! R+ on theedges, the orresponding funtion on setpairs, x(Æ(W )) = Pe2Æ(W ) xe, is bisubmodular. (For anyvetor x on a groundset U and a subset Q of U , x(Q) denotes Pi2Q xi.) Also, see Figure 1.Given a feasible solution x of (LP), a setpair W is alled tight (w.r.t. x) if x(Æ(W )) = f(W ).Theorem 2.1. Let the requirement funtion f of (LP) be rossing bisupermodular, and let x bean extreme point solution of (LP) suh that 0 < xe < 1 for eah edge e 2 E. Then there exists anonrossing family of tight setpairs L suh that(i) every setpair W 2 L has f(W ) � 1,(ii) jLj = jEj,(iii) the vetors �W ; W 2 L are linearly independent, and(iv) x is the unique solution to fx(Æ(W )) = f(W ); 8W 2 Lg.The proof is based on the next two lemmas. The �rst of these lemmas \unrosses" two tightsetpairs that ross.Lemma 2.2. Let x : E!R be a feasible solution of (LP). If two setpairs W;Y with f(W ) >0; f(Y ) > 0 are tight and rossing, then the setpairs W
Y;W�Y are tight. Moreover, if xe > 0for eah edge e 2 E, then �W + �Y = �W
Y + �W�Y :



6 CHERIYAN AND VEMPALA
h(W)

h(Y)t (Y)

t (W)Figure 1. Illustration of rossing setpairs. The dashed edges ontribute tox(Æ(W )) + x(Æ(Y )) but not to x(Æ(W
Y )) + x(Æ(W�Y )).Proof. The requirement funtion f(�) is rossing bisupermodular, and the \edge supply" funtionx(Æ(�)) satis�es the bisubmodular inequality x(Æ(W )) + x(Æ(Y )) � x(Æ(W
Y )) + x(Æ(W�Y )).Therefore, we have f(W
Y ) + f(W�Y ) � x(Æ(W
Y )) + x(Æ(W�Y )) �x(Æ(W )) + x(Æ(Y )) = f(W ) + f(Y ) � f(W
Y ) + f(W�Y ):Hene, all the inequalities hold as equations, and so W
Y;W�Y are tight.The seond statement in the lemma follows sine we have x(Æ(W
Y ))+x(Æ(W�Y )) = x(Æ(W ))+x(Æ(Y )), and xe > 0 for eah edge e 2 E. Hene, the inequality �W +�Y � �W
Y +�W�Y holdsas an equation.Lemma 2.3. Let L and S be two rossing setpairs. Let N = S
L (or, let N = S�L). If anothersetpair J rosses N , then either J rosses S or J rosses L.Proof. We prove the lemma for the ase N = S
L; the other ase is similar. The proof is byontradition. Suppose the lemma fails. Then there is a setpair J 2 L suh that J;N ross (soJt \Nt 6= ; and Jh \Nh 6= ;), but both J; L and J; S are nonrossing.We have four main ases, depending on whether J; L are head disjoint, tail disjoint, J � L orJ � L.(i) J; L are head disjoint: Then J;N are head disjoint (by Nh = Sh \ Lh) so J;N do not ross.(ii) J; L are tail disjoint: We have three subases, depending on the tails of J; S.{ Jt properly intersets St:Then J; S are head disjoint (sine J; S are nonrossing) so J;N are also head disjoint,and do not ross.{ Jt � St:



THE ITERATIVE ROUNDING METHOD FOR SETPAIRS 7Sine J; S are nonrossing, either J; S are head disjoint, in whih ase J;N are headdisjoint and do not ross, or Jh � Sh, in whih ase Jh � Nh, so J � N and J;N do notross.{ Jt � St:This is not possible, sine J; L are tail disjoint, and St intersets Lt (sine L; S ross).(iii) J � L: Then J � N sine Jh � Lh � Nh and Jt � Lt � Nt.(iv) J � L: As in ase(ii), we have three subases, depending on the tails of J; S.{ Jt properly intersets St:Similar to ase(ii) above, �rst subase.{ Jt � St:Similar to ase(ii) above, seond subase.{ Jt � St:Sine J; S do not ross, either J; S are head disjoint, in whih ase J;N are head disjointand do not ross, or Jh � Sh, in whih ase J � N sine Jh � Sh \ Lh = Nh andJt � St [ Lt = Nt (note that Jh � Lh and Jt � Lt).This onludes the proof of the lemma.Proof. (of Theorem 2.1) Our proof is inspired by Jain's proof of [5, Lemma 4.2℄. Sine x is anextreme point solution (basi solution) with 0 < x < 1, there exists a set of jEj tight setpairs suhthat the vetors �W orresponding to these setpairs W are linearly independent.Let L be an (inlusionwise) maximal nonrossing family of tight setpairs. Let span(L) denote thevetor spae spanned by the vetors �W ; W 2 L. We will show that span(L) equals the vetorspae spanned by the vetors �Y where Y is any tight setpair. The theorem then follows by takinga basis for span(L) from the set f�W jW 2 Lg.Suppose there is a tight setpair S suh that �S 62 span(L). Choose suh an S that rosses theminimum number of setpairs in L (this is a key point). Next, hoose any setpair L 2 L suh thatS rosses L. By Lemma 2.2, �S = �S
L + �S�L � �L:Hene, either �S
L 62 span(L) or �S�L 62 span(L). Suppose the �rst ase holds. (The argument issimilar for the other ase, and is omitted.) Let N = S
L = (St [ Lt; Sh \ Lh). The next laimfollows from Lemma 2.3.



8 CHERIYAN AND VEMPALAClaim. Any setpair J 2 L that rosses N also rosses S (note that J; L do not ross sine bothare in L).Clearly, L does not ross N (sine L � N), but L rosses S. This ontradits our hoie of S (sineN is a tight setpair that rosses fewer setpairs in L and �N 62 span(L)).3. An Edge of High Value in an Extreme PointThis setion has the proof of Theorem 1.1. The theorem is proved by representing the nonrossingfamily L as a poset and examining the Hasse diagram.Let L be a nonrossing family of setpairs. We de�ne the poset P representing L as follows.The elements of P are the setpairs in L and the relation between elements is the same as therelation between setpairs (for two setpairs W and Y , if Wt � Yt; Wh � Yh, then W � Y ; ifWt � Yt; Wh � Yh then Y � W ; otherwise they are inomparable). The Hasse diagram of theposet, also denoted by P , is a direted ayli graph that has a node for eah element in theposet, and for elements W;Z there is an ar (W;Z) if W � Z and there is no element Y suhthat W � Y � Z (the Hasse diagram has no ars that are implied by transitivity). In the Hassediagram, an ar (W;Y ) indiates that Wh � Yh and Wt � Yt. Throughout, the term node refersto the poset P , and the term vertex refers to the input digraph G. An ar means an ar of P ,whereas an edge means a direted edge of G. A node Z is alled a predeessor (or suessor) ofa node W if the ar (Z;W ) (or (W;Z)) is present. A direted path in P is alled a hain. Anantihain of P is a set of nodes that are pairwise inomparable. If C is a hain or an antihain ofP , then jCj denotes the number of nodes in C; the number of nodes in P is denoted by jPj. For anarbitrary poset, de�ne a diamond to be a set of four (distint) elements a; b; ; d suh that b;  areinomparable, a � b � d and a �  � d. A poset is alled diamond-free if it ontains no diamond.In other words, any two hains of suh a poset have at most one subhain in ommon.Lemma 3.1. Let L be a nonrossing family of setpairs suh that eah setpair W 2 L has bothhead and tail nonempty. Then the poset P representing L is diamond-free.Proof. Suppose that L has four setpairs W;X; Y; Z suh that X; Y are inomparable, W � X � Zand W � Y � Z. Sine X; Y are inomparable, either they are head disjoint, or tail disjoint.Moreover, Xh � Zh sine X � Z, and Yh � Zh sine Y � Z. Then X; Y are not head disjoint,sine both heads ontain the head of Z, whih is nonempty. Similarly, it an be seen that X; Yare not tail disjoint, sine both tails ontain the tail of W , whih is nonempty. This ontraditionproves that P ontains no diamond.



THE ITERATIVE ROUNDING METHOD FOR SETPAIRS 9We all a node W unary if the Hasse diagram has exatly one ar inoming to W and exatly onear outgoing from W . Consider the maximum ardinality of an antihain in a diamond-free posetP . This may be as small as one, sine P may be a hain. The next result shows that this quantityannot be so small if P has no unary nodes.Proposition 3.2. (1) If a diamond-free poset P has no unary nodes, then it has an antihain ofardinality at least pjPj=2.(2) If P is a diamond-free poset suh that neither the predeessor nor the suessor of a unary nodeis another unary node, then it has an antihain of ardinality at least 12pjPj.Proof. We prove part (1); the proof of part (2) is similar.If P has an antihain of ardinality at least pjPj=2, then we are done. Otherwise, by Dilworth'stheorem (the minimum number of disjoint hains required to over all the nodes of a poset equals themaximum ardinality of an antihain), P has a hain, all it C, with jCj > jPj=pjPj=2 = p2jPj.Let C = W1;W2; : : : ;W`. Eah of the internal nodesW2; : : : ;W`�1 is non-unary, so it has either twopredeessors or two suessors. Clearly, one of the two predeessors (or one of the two suessors)is not in C. Let Cp be the set of nodes in P nC that are predeessors of nodes in C, and similarlylet Cs be the set of nodes in P nC that are suessors of nodes in C. Then either jCpj � (jCj�2)=2or jCsj � (jCj�2)=2. Suppose that the �rst ase holds (the argument is similar for the other ase).Let us add W1 (the �rst node of C) to Cp. Now, we laim that Cp is an antihain. Observe thatpart (1) follows from this laim, beause jCpj � jCj=2 >pjPj=2.To prove that Cp is an antihain, fous on any two (distint) nodes Yi; Yj 2 Cp. Let Wi and Wjbe the nodes in C suh that Yi is the predeessor of Wi and Yj is the predeessor of Wj . First,suppose that Wi 6= Wj , and (w.l.o.g.) assume that Wi � Wj . We annot have Yi � Yj , otherwise,the nodes Wj ;Wj�1; Yj ; Yi will form a diamond, where Wj�1 is the predeessor of Wj in C (notethat the four nodes are distint, and Wj�1; Yj are inomparable, sine both are predeessors ofWj). Also, we annot have Yj � Yi, otherwise, we have Yj � Yi � Wi � Wj and so the ar (Yj ;Wj)is implied by transitivity. Hene, Yi; Yj are inomparable, if Wi 6= Wj . If Wi = Wj , then Yi; Yj areinomparable (by transitivity).We restate Theorem 1.1 for onveniene, and present our proof.Theorem 1.1. For any digraph G = (V;E), any nonzero extreme point x of (LP) satis�esmaxe2E fxeg � �(1)pjEj :



10 CHERIYAN AND VEMPALAThe proof is by ontradition. Let x be an extreme point of (LP), and let F = fe 2 E j xe > 0g.For onveniene, assume that no edges e with xe = 0 are present. Also, assume that eah edge ehas xe < 1, otherwise the proof is done.Let L be a nonrossing family of tight setpairs de�ning x and satisfying the onditions in Theo-rem 2.1, and let P be the poset representing L. Note that P is diamond free (by Lemma 3.1, sineeah setpair W 2 L has f(W ) � 1, so both Wt;Wh are nonempty), and that jPj = jLj = jF j. LetU be the set of unary nodes of P , and all a maximal hain of unary nodes a U -hain. Let P 0 bethe \redued" poset formed by replaing eah U -hain by a single unary node. Note that P 0 isdiamond-free, sine P is diamond-free.Let C be a maximum-ardinality antihain of P . By Proposition 3.2(2), jCj � 12pjP 0j. We mayassume that eah unary node of C (if any) is a bottom node of a U -hain. By an upper U -hainwe mean one that has all nodes � some node in C, and by a lower U -hain we mean one that hasall nodes � some node in C. Let U0 be the set of bottom nodes of all the upper U -hains togetherwith the set of top nodes of all the lower U -hains. Let U� be the set of nodes W 2 U n U0 inupper U -hains suh that the predeessor Y ofW has f(W ) = f(Y ), together with the set of nodesW 2 U n U0 in lower U -hains suh that the suessor Z of W has f(W ) = f(Z). Let U1 be theset of nodes W 2 U n U0 in upper U -hains suh that the predeessor Y of W has f(W ) > f(Y ),together with the set of nodes W 2 U n U0 in lower U -hains suh that the suessor Z of W hasf(W ) < f(Z). Similarly, let U2 be the set of nodes W 2 U n U0 in upper U -hains suh that thepredeessor Y ofW has f(W ) < f(Y ), together with the set of nodes W 2 U nU0 in lower U -hainssuh that the suessor Z of W has f(W ) > f(Z).Clearly, U = U0 [ U1 [ U2 [ U� and jPj � jP 0j = jU1j+ jU2j+ jU�j:Claim. If � is a number suh that xe < 1=�; 8e 2 E, thenjF j > � �maxfjCj; jU1j; jU2jg + jU�j:



THE ITERATIVE ROUNDING METHOD FOR SETPAIRS 11We defer the proof of the laim, and omplete the proof of the theorem. Let � = 4pjPj. Supposethat xe < 1=� for eah edge e 2 F . Then, by the laim,jF j > 4pjPj �maxfjCj; jU1j; jU2jg + jU�j� 4pjPj � (12 jCj+ 14 jU1j+ 14 jU2j) + jU�j� 4pjPj � (14pjP 0j+ 14 jU1j+ 14 jU2j) + jU�j� jP 0j+ jU1j+ jU2j+ jU�j� jPj:This is a ontradition, sine jF j = jPj. Hene, there exists an edge e with xe � 1=� = 1=(4pjPj).This proves the theorem.Proof. (of the Claim) We need to prove the three inequalities separately. Consider the �rst in-equality: jF j > � � jCj + jU�j:Eah setpair W 2 L has f(W ) � 1, so W is overed by > � edges (otherwise, x(Æ(W )) < 1).Hene, eah node W 2 P is overed by > � edges. We assign all of the edges overing a nodeW 2 C to W ; note that no edge overs two distint nodes of C. This assigns a total of > �jCjedges. Now, onsider a node Wi 2 U� that is in an upper U -hain W1; : : : ;W`, where 1 < i � `.Sine f(Wi�1) = f(W ) and �Wi�1 6= �Wi , there is an edge in Æ(Wi) n Æ(Wi�1). We assign this edgeto Wi. Similarly, for a node Wi 2 U� in a lower U -hain W1; : : : ;W`, where 1 � i < `, we assignto Wi an edge in Æ(Wi) n Æ(Wi+1). It an be seen that no edge is assigned to two di�erent nodes.Hene, the �rst inequality follows.Consider the seond inequality: jF j > � � jU1j + jU�j. Let Wi 2 U1 be any node in an upperU -hain W1; : : : ;W`, where 1 < i � `. Sine f(Wi) � f(Wi�1) + 1, there must be > � edges inÆ(Wi) n Æ(Wi�1). We assign all these edges to Wi. Similarly, for a node Wi 2 U1 that is in a lowerU -hain W1; : : : ;W`, where 1 � i < `, we assign > � edges in Æ(Wi+1) n Æ(Wi) to Wi. Finally,for nodes Wi 2 U�, if Wi is in an upper U -hain W1; : : : ;W`, then we assign to Wi an edge inÆ(Wi) n Æ(Wi�1), and if Wi is in a lower U -hain W1; : : : ;W`, then we assign to Wi an edge inÆ(Wi+1) n Æ(Wi). The seond inequality follows, sine no edge is assigned to two di�erent nodes.The proof of the third inequality is similar to the proof of the seond inequality.



12 CHERIYAN AND VEMPALA4. A Tight ExampleIn this setion, we present an example of an extreme point x of (LP) suh that 0 < xe � �(1)=pjEjfor all edges e 2 E. Thus the lower bound in Theorem 1.1 is tight (up to a onstant fator). Anextreme point x of (LP) is de�ned by a system of jEj tight onstraints, where eah is of the formx(Æ(W )) = f(W ), for some setpair W (we assume 0 < x < 1 so the onstraints xe � 0, xe � 1 areredundant). Let L be the nonrossing family of tight setpairs de�ning x (see Theorem 2.1), andlet P be the poset (and the Hasse diagram) representing L. Reall that the term node refers toP , and an ar means an ar of P , whereas an edge means a direted edge of G. Eah edge e 2 Eorresponds to a path p(e) in P , where the nodes of p(e) are the setpairs W 2 L that are overedby e, that is, p(e) = W1; : : : ;W`, where W1 � � � � � W` and e 2 Æ(Wi) (i = 1; : : : ; `). We refer tosuh paths p(e) as e-paths.
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Figure 2. Illustration of the poset P .



THE ITERATIVE ROUNDING METHOD FOR SETPAIRS 13Letm = jE(G)j. Our example is a poset P with m nodes and m e-paths (see Figure 2), so jPj = m.Let 0 and 1 denote olumn vetors with all entries at 0 and 1, respetively, where the dimensionof the vetor will be lear from the ontext. De�ne the inidene matrix A to be an m�m matrixwhose rows orrespond to the nodes, and whose olumns orrespond to the e-paths, suh that theentry for node W and e-path p, AWp, is 1 if W is in p and is 0 otherwise. We will prove that Ahas rank m� 1 and the system Ax = 1 has a solution where eah entry of x is �(1)=pm. (Notethat x assigns a real number to eah of the e-paths, and it orresponds to a solution of the LP.)The poset P onsists of several opies of the following path struture Q. Let t be a parameter (wewill �x t =pm=12), and let there be 3t nodes 1; 2; : : : ; 3t. Then Q onsists of a path [1; : : : ; 3t℄ onthese nodes, together with 2t loal e-paths, all them p1; : : : ; p2t, where eah pj is a subpath of thepath [1; : : : ; 3t℄. For odd j (j = 1; 3; 5; : : : ; 2t�1), pj onsists of the �rst j nodes (so pj = [1; : : : ; j℄),and for even j (j = 2; 4; 6; : : : ; 2t), pj onsists of all the nodes, exept the �rst j � 2 nodes (sopj = [j� 1; j; : : : ; 3t℄). Call the nodes 1; 3; 5; : : : ; 2t� 1 the blak nodes, the nodes 2; 4; 6; : : : ; 2t� 2the white nodes, and the remaining nodes 2t; 2t + 1; : : : ; 3t the red nodes. Note that eah blaknode is inident to t+ 1 loal e-paths, and eah of the other nodes is inident to t loal e-paths.We take 4t opies of Q, and partition them into two sets, the top paths T1; : : : ; T2t, and the bottompaths B1; : : : ; B2t. (In fat, eah Ti or Bi is a path struture onsisting of a path and 2t loale-paths, but we all them paths for onveniene.) Finally, we add another 4t2 nonloal e-paths suhthat the following onditions hold:� eah node is inident to a total of t + 1 e-paths;� eah nonloal e-path is inident to exatly two nodes, one in a top path Ti and one in abottom path Bj ; moreover, for every Ti and every Bj , there is exatly one nonloal e-pathinident to both Ti and Bj ;� eah nonloal e-path is inident to either two red nodes, or one red node and one white node;� eah top/bottom path Ti or Bj is inident to exatly two red-red nonloal e-paths, where(i) there is an e-path inident to the last node of Bi and the last node of Ti (i = 1; : : : ; 2t),and(ii) there is an e-path inident to the 2nd last node of Bi and the 2nd last node of Ti+1(i = 1; : : : ; 2t); the indexing is modulo 2t, so 2t+ 1 means 1; note that there is yli shift by1 in the index of the top versus bottom paths;� the red-white nonloal e-paths are �xed aording to the �rst two onditions, and are asfollows: for ` = 1; 2; : : : ; t � 1, there is an e-path inident to the 2`th node of Bi and the(2t� 1 + `)th node of Ti+1+` (i = 1; : : : ; 2t), indexing modulo 2t; note that there is a yli



14 CHERIYAN AND VEMPALAshift by ` + 1 in the index of the top versus bottom paths; similarly, for ` = 1; 2; : : : ; t � 1,there is an e-path inident to the 2`th node of Ti and the (2t � 1 + `)th node of Bi+1+`(i = 1; : : : ; 2t), indexing modulo 2t.Proposition 4.1. Let t be a positive integer, and let m = 12t2. Let A be the m � m inidenematrix of the poset P and the e-paths (onstruted above). Then rank(A) � m� 1 and a solutionto the system Ax = 1 is given by x = 1t+1 � 1.Proof. A olumn vetor of dimension ` with all entries at 0 (or, 1) is denoted by 0` (or, 1`). Let eidenote the ith olumn of the s � s identity matrix Is, where s is a positive integer. Let fi denotePij=1 ej ; so fi is a olumn vetor with a 1 in entries 1; : : : ; i and a 0 in entries i+ 1; : : : ; s.Let the rows of A be ordered aording to the nodes 1; : : : ; 3t of T1; : : : ; T2t, followed by the nodes1; : : : ; 3t of B1; : : : ; B2t.First, onsider a bottom path Bi; top paths Ti are handled similarly, and this is skethed later.Let M denote the inidene matrix of Bi versus all the e-paths. Then M is 3t �m matrix, wherethe rows 1; : : : ; 3t orrespond to the nodes 1; : : : ; 3t of Bi, and the olumns of M are ordered asfollows:� the 2t loal e-paths of Bi, p1; p2; : : : ; p2t,� the t� 1 red-white e-paths whose red ends are in Bi (these are the e-paths inident to nodes2t; 2t+ 1; : : : ; 3t� 2 of Bi),� the two red-red e-paths inident to nodes 3t � 1 and 3t of Bi,� the remaining e-paths (among these are t� 1 red-white e-paths whose white ends are in Bi).Let M beg denote the submatrix of M formed by the �rst 2t olumns, so M beg is the inidenematrix of the nodes versus the loal e-paths of Bi. Let M end denote the submatrix of M formedby exluding the �rst 3t+1 olumns (keeping only the olumns of the \remaining e-paths"). ThenM = 26666664M beg ������������ 02t�1 : : :02t�1It�10 : : :00 : : :0 ������������ 02t�1 02t�10t�1 0t�11 00 1 ������������ M end37777775 :Note that the rows and olumns of M end may be reordered suh that the submatrix in the �rstt� 1 rows (make these the rows of the white nodes of Bi) and the �rst t� 1 olumns (make thesethe olumns of the red-white e-paths inident to the white nodes of Bi) is the identity matrix It�1,



THE ITERATIVE ROUNDING METHOD FOR SETPAIRS 15and every other entry of the matrix is zero. ThenM beg = [f1; 1; f3; 1� f2; f5; 1� f4; : : : ; f2t�1; 1� f2t�2℄:Using elementary olumn operations, we an rewrite this matrix as[e1; e2; e3; : : : ; e2t�1; 1� f2t�1℄ = 24 I2t�1 02t�10t+1 : : :0t+1 1t+1 35 :Then it is lear that the matrix [M beg M end℄ may be rewritten using elementary olumn operationsas 24 I2t�1 02t�10t+1 : : :0t+1 1t+1 0 : : :035 :Going bak to M , observe that it may be rewritten using elementary olumn operations as26666664 I2t�1 02t�1 02t�1 : : :02t�10t�1 : : :0t�1 1t�1 It�10 : : :0 1 0 : : :00 : : :0 1 0 : : :0 ������������ 02t�1 02t�10t�1 0t�11 00 1 ������������ 0 : : :037777775 ;or as M� = 26666664 I2t�1 02t�1 : : :02t�10t�1 : : :0t�1 It�10 : : :0 0 : : :00 : : :0 0 : : :0 ������������ 02t�1 02t�1 02t�10t�1 0t�1 1t�11 0 10 1 1 ������������ 0 : : :037777775 :Now, fous on the matrix A (the inidene matrix of the nodes of P versus all the e-paths), andits olumn vetors. Consider the two red-red e-paths inident to Bi and their olumn vetors in A.Let r3t�1 and r3t denote the two red-red e-paths inident to the red nodes 3t � 1 and 3t (of Bi),respetively, and let the olumn vetors in A of these red-red e-paths also be denoted by the samesymbols. Note that r3t has two nonzero entries, namely, a 1 for node 3t of Bi and a 1 for node 3tof Ti. Similarly, r3t�1 has two nonzero entries, namely, a 1 for node 3t� 1 of Bi and a 1 for node3t�1 of Ti+1 (indexing modulo 2t). Keep the olumn r3t�1, but use elementary olumn operationsto replae r3t by r03t = r3t + r3t�1 +M�2t + � � �+M�3t�2 �M�3t+1, where M�j denotes the olumnvetor of dimension m obtained from the jth olumn vetor of M� by padding with zeros (�xingentries of rows not in M� at 0). Clearly, r03t has two nonzero entries, namely a 1 for node 3t of Tiand a 1 for node 3t � 1 of Ti+1 (indexing modulo 2t).



16 CHERIYAN AND VEMPALALet M bot; i be the m �m matrix obtained from M� by replaing the (3t � 1)th olumn by r3t�1,deleting the 3tth olumn, and padding with zeros (�xing at 0 all entries exept those in M� or inthe (3t� 1)th olumn).The onstrution for a top path Ti+1 (i = 1; 2; : : : ; 2t, indexing modulo 2t) is similar, exept forthe handling of olumns 3t � 1 and 3t of M�. Let M top; i+1 be the m �m matrix obtained fromM� by replaing the 3tth olumn by r03t, deleting the (3t� 1)th olumn, and padding with zeros.Let A� be the m�m matrix obtained from A by elementary olumn operations, whereA� = 2tXi=1M top; i + 2tXi=1M bot; i:Figure 3 illustrates the zero-nonzero pattern of A�.
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Figure 3. Illustration of matries M bot; i and M top; i, and the nonzero pattern ofmatrix A�.With the exeption of one entry, A� is an upper triangular matrix with every diagonal entry at1; the exeptional entry is in row 6t (node 3t of T2t) and olumn 3t � 1 (2nd last olumn of T1).Then, deleting row 6t and olumn 6t of A� we get an upper triangular matrix with determinant 1.This proves that rank(A) � m� 1.



THE ITERATIVE ROUNDING METHOD FOR SETPAIRS 17By onstrution, eah node of P is inident to exatly t+1 e-paths, hene �xing xe = 1=(t+1) foreah e-path p(e) gives a solution to the system Ax = 1. The proposition follows.Proposition 4.2. Let P be the polytope fx 2 Rm j eAx � eb; 0 � x � 1g and let F be the faefx 2 P j Ax = bg, where Ax � b is a subsystem of eAx � eb. If the matrix A has rank m � 1 andthere exists an x 2 F suh that eah entry of x is � �, then P has an extreme point ex suh thateah entry of ex is � 2�.Proof. F is a line-segment and so it has two extreme points, all them y and z. Note that y and zmust be extreme points of P also. Hene, x = a �y+ (1� a) � z, where 0 � a � 1. Suppose a � 1=2(the other ase is similar). Then y � 2(x� (1 � a) � z) � 2x, sine z � 0, so eah entry of y is� 2�.Theorem 1.2, whih is the main result of this setion, follows from Propositions 4.1 and 4.2.Theorem 1.2. Given any suÆiently large integer jEj, there exists a digraph G = (V;E) suhthat (LP) has an extreme point x satisfying maxe2E fxeg � �(1)pjEj :5. ConlusionIn onlusion, we mention that our framework and the results in setions 2 and 3 lead to interestingapproximation guarantees for spei� problems in network design, see [2℄.Referenes[1℄ A. Agrawal, P. N. Klein and R. Ravi, \When trees ollide: An approximation algorithm for the generalizedSteiner problem on networks," SIAM J. Computing, 24, 1995. Preliminary version in Pro. 23rd ACM STOC,pp. 134{144, 1991.[2℄ J. Cheriyan, S. Vempala, and A. Vetta, \Network design via iterative rounding of setpair relaxations," manu-sript, submitted for journal publiation, Otober 2001.[3℄ T. Fleiner, \Note - Unrossing a family of set-pairs," Combinatoria 21(1), pp. 145{150, 2001.[4℄ A. Frank and T. Jordan, \Minimal edge-overings of pairs of sets," J. Combinatorial Theory, Series B, 65,pp. 73{110, 1995.[5℄ K. Jain, \A fator 2 approximation algorithm for the generalized Steiner network problem", Combinatoria,21(1), pp. 39{60, 2001. Preliminary version in Pro. 39th IEEE Foundations of Computer Siene, 1998.[6℄ M. Goemans, A. Goldberg, S. Plotkin, D. Shmoys, E. Tardos and D. Williamson, \Improved approximationalgorithms for network design problems," in Pro. ACM SIAM Symposium on Disrete Algorithms, 1994, pp. 223{232.
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