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ABSTRACT. Given a digraph G = (V, E), we study a linear programming relaxation of the problem
of finding a minimum-cost edge cover of pairs of sets of vertices (called setpairs). Each setpair has a
nonnegative integer-valued requirement, and the requirement function is crossing bisupermodular.
Our results are as follows: (1) An extreme point of the LP is characterized by a noncrossing family
of tight setpairs, £ (where |£]| < |E]). (2) In any extreme point @, there exists an edge e with z. >
@(1)/\/m7 and there is an example showing that this lower bound is best possible. (3) The iterative
rounding method applies to the LP and gives an integer solution of cost O(y/|£]) = O(y/|E|) times
the LP’s optimal value. The proof of (2) relies on the fact that £ can be represented by a special

type of partially ordered set that we call diamond-free.

1. INTRODUCTION

Many NP-hard problems in network design including the Steiner tree problem and its generaliza-
tions are captured by the following formulation. We are given an (undirected) graph G = (V, E)
where each edge e has a nonnegative cost c., and each subset of vertices S has a nonnegative
integer requirement f(.S). The problem is to find a minimum-cost subgraph H that satisfies all the
requirements, i.e., H should have at least f(S) edges in every cut (S,V'\ S). This can be modelled
as an integer program.

(SIP) minimize Zcexe

e

subject to Z re > f(9), YSCV
e€(S,V\S)

z. € {0,1}, Ve e E.

Let (SLP) be the linear programming relaxation of (SIP). The requirement function f(-) should
be such that (SIP) models some interesting problems in network design, (SLP) has a provably

small integrality ratio, and (SLP) is solvable in polynomial time. Approximation algorithms based
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on (SIP) and (SLP) were designed and analyzed by Agrawal, Klein and Ravi [1], Goemans and
Williamson [7], Williamson et al [12], and Goemans et al [6]. Then Jain [5] gave a 2-approximation
algorithm for the case of weakly supermodular requirement functions via a technique called iterative
rounding. A key discovery in [5] is that every non-zero extreme point @ of (SLP) has reneagc{xe} >
%. Subsequently, Melkonian and Tardos [9] studied the problem on directed graphs, and proved

that if the requirement function is crossing supermodular, then every non-zero extreme point of

their linear programming relaxation has an edge of value at least i.

There are several interesting problems in network design that elude the formulation of (SIP), such as
the problem of finding a minimum-cost k-vertex connected spanning subgraph. Frank and Jordan
[4] gave a more general formulation where pairs of vertex sets have requirements (also, see Schrijver
[10] for earlier related results). In this formulation, we are given a digraph G = (V, E) and each
edge e has a nonnegative cost ¢.. A setpair is an ordered pair of vertex sets W = (W;, W},), where
W, C V is called the tail, and W), C V is called the head (either W; or W}, may be the empty set).
Let S be the set of all setpairs. For a setpair W, §(W) denotes the set of edges covering W, i.e.,
(W) ={uv € Elu € Wy, v € Wy}. Each setpair W has a nonnegative, integer requirement f(W).
The problem is to find a minimum-cost subgraph that satisfies all the requirements. (Note that the
requirement function f(-) of (SIP) is the special case where every setpair with positive requirement

is a partition of V' and has the form (S,V '\ §) where S C V)

(IP) minimize Zcexe

e

subject to Z re > f(W), YWesS
e€d(W)

z. € {0,1}, Ve e E.

Throughout, we assume that the requirement function f of (IP) is crossing bisupermodular (this
is defined in Section 2). Frank and Jordan [4] used this formulation to derive min-max results
for special cost functions, and moreover, they showed that the linear programming relaxation is
solvable in polynomial time. Fleiner [3] has related results. The problem of finding a minimum-
cost k-vertex connected spanning subgraph of a digraph may be modeled by (IP) by taking the
requirement function to be f(Wy, Wp,) = k — (V| — |[Wy U Wy|), where Wy, W}, are nonempty vertex

subsets; this function is crossing bisupermodular.

We study the linear programming relaxation (LP) for arbitrary nonnegative cost functions. In
Section 2 we show that for any extreme point of (LP), the space of incidence vectors of tight

setpairs (setpairs whose requirement is satisfied exactly) is spanned by the incidence vectors of a
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noncrossing family of tight setpairs. A noncrossing family of setpairs is the analogue of a laminar
family of sets. (Recall that two sets are laminar if they are either disjoint or one is contained in the
other.) In Section 3, we study noncrossing families of setpairs by representing them as partially
ordered sets (posets). It turns out that the Hasse diagram of such a poset has a special property
— any two chains (dipaths) of the poset have at most one subchain in common. We refer to such
posets as diamond-free posets. Based on this, we prove the following result. (Note the contrast

with (SLP), see [5, 9].)

Theorem 1.1. For any digraph G = (V, E), any nonzero extreme point @ of (LP) satisfies
o)

max{x.} > ——=

cck V] |'

In Section 4, we show that the bound in Theorem 1.1 is the best possible, up to a constant factor.

Theorem 1.2. Gwen any sufficiently large integer |E|, there exists a digraph G = (V, E) such
that (LP) has an extreme point & satisfying

o)
max{ze} < N
The rest of the introduction discusses the iterative rounding method, and addresses some algo-
rithmic questions that arise when this method is applied to (LP). To apply the iterative rounding
method, we formulate the problem as an integer program, and then solve the linear programming
relaxation to find a basic (extreme point) optimum solution @. Pick an edge e* of highest weight
(i.e., zex > @, Ve € E) and add it to the solution subgraph H (initially, E(H) is empty). Then
update the linear program and the integer program, since we implicitly fixed the variable z.» at
value 1. In detail, we decrease by 1 the r.h.s. of every constraint where the variable z.+ occurs,
and then we remove this variable from the linear program. The resulting linear program is the
same as the linear program for the “reduced” problem where the edge e* is pre-selected for H.
Under appropriate conditions on the requirement function f, the problem turns out to be “self re-
ducible,” i.e., the essential properties of the original problem are preserved in the reduced problem.
We iteratively solve the reduced problem. Jain [5] applied this method to (SIP), and proved that
it achieves an approximation guarantee of 2 provided that the requirement function f is weakly
supermodular. (Such requirement functions capture several interesting problems, e.g., the Steiner
network problem.) His analysis is based on a key property of (SLP): every non-zero extreme point
has an edge of weight at least % This result is based on an extension of a classic result that, under
appropriate conditions on the requirement function f, every extreme point of (SLP) is characterized

by a laminar family of “tight sets.” Jain’s analysis [5, Theorem 3.2] applies in a general setting:
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if the linear program has the self reducibility property, and for every nonzero basic solution & we

have a lower bound of ¢ on max.cg 2., then the approximation guarantee is %

The iterative rounding method applies to the setpairs formulation (IP), and gives an approxima-
tion algorithm that achieves a guarantee of O(y/|E]). This follows from Theorem 1.1, and the fact
that (LP) has the desired self reducibility property (since the crossing bisupermodular property
of the requirement function is preserved on subtracting a bisubmodular function, see Section 2).
Theorem 1.2 shows that the O(,/|E[) approximation guarantee is tight. (LP) is solvable in poly-
nomial time via the ellipsoid method, since a polynomial time separation subroutine is available
(see [4, Lemma 7.2]). Although the approximation guarantee of the iterative rounding method
hinges on a key property of basic solutions of the linear program, the method can be implemented
efficiently via a polynomial time algorithm for finding an optimal solution (not necessarily basic).
For this, we take each edge e in turn, and append to (LP) the constraint 2. > ¢, where ¢ is the
lower bound in Theorem 1.1. One of these variants of (LP) has the same optimal value as (LP)
(by Theorem 1.1), hence any optimal solution to that variant suffices for the iterative rounding
method. There is another algorithmic issue worth noting. For many of the specific problems in
network design that are captured by (IP), the relaxation (LP) can be written as a compact linear

program via a “flow formulation,”

and an appropriate optimal solution (not necessarily basic) can
be found in strongly polynomial time via Tardos’ algorithm [11]. This is similar to the method
used by Jain in [5, Section 9]. (For example, consider the problem of finding a minimum-cost
k-vertex connected spanning subgraph of a digraph. For each vertex v, we split v into a pair of
vertices v’, v”, replace incoming edges to v by incoming edges to v’, replace outgoing edges from v
by outgoing edges from v”, and add the directed edge v'v”. The goal is to assign a non-negative
real-valued capacity z. < 1 to each edge e such that ) _ccze is minimized, and such that the

max-flow for every ordered pair of vertices v”, w’ is at least k, where each “new edge” v'v” gets a

capacity of 1.)

In the rest of the paper, an edge means a directed edge of the input digraph G.

2. CHARACTERIZING EXTREME POINTS viIA NONCROSSING FAMILIES

Two setpairs W,Y are comparable if either Wy D Y,, W), C Y}, (denoted as W < Y), or W, C
Y, Wi D Yy, (denoted as W = Y). Setpairs W, Y are noncrossing if either they are comparable,
or their heads are disjoint (Wx NYy = 0), or their tails are disjoint (W3 N'Y; = 0); otherwise W)Y
cross. A family of setpairs £ C § is called noncrossing if every two setpairs in £ are noncrossing.

For two crossing setpairs W, Y let WY denote the setpair (W, UY;, WNY},) and let WY denote
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the setpair (W; NY;, W, UY},). Note that W (similarly, V) is < WaY and is = W®Y. (If both
W and Y are partitions of V, so W = (V\ Wy, W), Y = (V \ Y, Y4), then note that WY is
the partition of V' with head Wj NYy, and WaY is the partition of V' with head W, UY;.) A
real-valued function f on &, f: S§—R, is called bisubmodular if for any two setpairs W and Y we

have
M+ fY) > fWeY)+ fWaY).

A non-negative, integer-valued function f on S, f: S—Z., is called crossing bisupermodular if for

any two crossing setpairs W and Y with f(W) > 0 and f(Y) > 0, we have
fM +fY) < fWaY)+ f(WaY).

Let Xy denote the zero-one incidence vector of §(WW). For any two setpairs W and Y, note that if
an edge is present in 6(W &Y) or (W @ Y), then it is present in (W) or 6(Y), and if an edge
is present in both §(W @& Y) and §(WW @Y), then it is present in both (W) and 6(Y"). Hence, we
have Xwey + Xwey < Xw + Xy . Consequently, for any non-negative vector # : E — R4 on the
edges, the corresponding function on setpairs, x(6(W)) = 3_.cs(w) e, is bisubmodular. (For any

vector @ on a groundset U and a subset Q) of U, z(Q) denotes ) ;. #;.) Also, see Figure 1.

Given a feasible solution @ of (LP), a setpair W is called tight (w.r.t. @) if z(6(W)) = f(W).

Theorem 2.1. Let the requirement function f of (LP) be crossing bisupermodular, and let @ be
an extreme point solution of (LP) such that 0 < x. < 1 for each edge e € E. Then there exists a

noncrossing family of tight setpairs L such that

(i) every setpair W € L has f(W) > 1,
(i) [£]=[E|,

(iii) the vectors Xyw, W € L are linearly independent, and

)
)
)
(iv) @ is the unique solution to {x(§(W)) = f(W), VIV € L}.

The proof is based on the next two lemmas. The first of these lemmas “uncrosses” two tight

setpairs that cross.

Lemma 2.2. Let # : E—R be a feasible solution of (LP). If two setpairs W, Y with f(W) >
0, f(Y) > 0 are tight and crossing, then the setpairs WQY, WaY are tight. Moreover, if z. > 0
for each edge e € E, then

Xw + Xy = Xwey + Xway.
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tw) h(w)

Ficure 1. Ilustration of crossing setpairs. The dashed edges contribute to

z(6(W)) 4+ 2(6(Y)) but not to z(6(WRY)) + z(§(WaY)).

Proof. The requirement function f(-) is crossing bisupermodular, and the “edge supply” function
2(6(-)) satisfies the bisubmodular inequality z(§(W)) 4+ 2(6(Y)) > z(6(W®Y)) 4+ 2(§(WaY)).

Therefore, we have

FOVEY) + F(WaY) < 2(6(VeY)) +2(3(WaY)) <

2(BW))+2(8(Y)) = fFW)+ f(Y) < F(WQY) + f(WaY).
Hence, all the inequalities hold as equations, and so WY, W@Y are tight.

The second statement in the lemma follows since we have 2 (§(W@Y))+z(§(WaY)) = z(6(W))+
z(6(Y)), and z. > 0 for each edge e € E. Hence, the inequality X +Xy > Xwgy + Xwgy holds

as an equation. ]

Lemma 2.3. Let L and S be two crossing setpairs. Let N = SQL (or, let N = SHL). If another

setpair J crosses N, then either J crosses S or J crosses L.

Proof. We prove the lemma for the case N = S®L; the other case is similar. The proof is by
contradiction. Suppose the lemma fails. Then there is a setpair J € £ such that J, N cross (so

Je NNy # 0 and J, N Ny, # (), but both J, L and J, S are noncrossing.

We have four main cases, depending on whether .J, L are head disjoint, tail disjoint, J > L or

J=<L.

(i) J,L are head disjoint: Then J, N are head disjoint (by N = S, N Ly) so J, N do not cross.
(ii) J, L are tail disjoint: We have three subcases, depending on the tails of J, S.
— J; properly intersects .S;:
Then J, S are head disjoint (since .J, S are noncrossing) so J, N are also head disjoint,

and do not cross.

- thstl
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Since J, S are noncrossing, either J, S are head disjoint, in which case J, N are head
disjoint and do not cross, or Jy O Sp, in which case Jj O Np,s0J = N and J, N do not
Cross.
— Jy DS
This is not possible, since J, L are tail disjoint, and S; intersects L; (since L, S cross).
(iii) J = L: Then J » N since Jp O Ly O N and J, C L, C N,.
(iv) J < L: As in case(ii), we have three subcases, depending on the tails of J, S.
— J; properly intersects .S;:
Similar to case(ii) above, first subcase.
- J; C 5
Similar to case(ii) above, second subcase.
— Jy DS
Since J, S do not cross, either J, S are head disjoint, in which case J, N are head disjoint
and do not cross, or J, C Sy, in which case J < N since J, C S, N Ly = Np and
Ji D St UL, = N, (note that J, C Ly, and J; O Ly).

This concludes the proof of the lemma. O

Proof. (of Theorem 2.1) Our proof is inspired by Jain’s proof of [5, Lemma 4.2]. Since @ is an
extreme point solution (basic solution) with 0 < @ < 1, there exists a set of |E| tight setpairs such

that the vectors Xy corresponding to these setpairs W are linearly independent.

Let £ be an (inclusionwise) maximal noncrossing family of tight setpairs. Let span(£) denote the
vector space spanned by the vectors Xy, W € £. We will show that span(L) equals the vector
space spanned by the vectors Xy where Y is any tight setpair. The theorem then follows by taking
a basis for span(L) from the set {Xw | W € L}.

Suppose there is a tight setpair S such that Xg ¢ span(£). Choose such an S that crosses the
minimum number of setpairs in £ (this is a key point). Next, choose any setpair L € £ such that

S crosses L. By Lemma 2.2,
Xs = XsgL + Xsar — XL-

Hence, either Xgsgr, & span(L) or Xsqr, & span(L). Suppose the first case holds. (The argument is
similar for the other case, and is omitted.) Let N = S®@L = (S; U Ly, S, N Lp). The next claim

follows from Lemma 2.3.
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Claim. Any setpair J € £ that crosses N also crosses S (note that .J, L do not cross since both

are in L).

Clearly, L does not cross N (since L »= N), but L crosses S. This contradicts our choice of S (since

N is a tight setpair that crosses fewer setpairs in £ and Xy ¢ span(L)). O

3. AN EDGE oF HiGH VALUE IN AN EXTREME POINT

This section has the proof of Theorem 1.1. The theorem is proved by representing the noncrossing

family £ as a poset and examining the Hasse diagram.

Let £ be a noncrossing family of setpairs. We define the poset P representing £ as follows.
The elements of P are the setpairs in £ and the relation between elements is the same as the
relation between setpairs (for two setpairs W and Y, if Wy, D Y, W, C Y}, then W < Y if
Wy C Y, W, DY), then Y < W; otherwise they are incomparable). The Hasse diagram of the
poset, also denoted by P, is a directed acyclic graph that has a node for each element in the
poset, and for elements W, Z there is an arc (W, Z) if W < Z and there is no element Y such
that W <Y < Z (the Hasse diagram has no arcs that are implied by transitivity). In the Hasse
diagram, an arc (W,Y) indicates that W, C Y} and W; D Y;. Throughout, the term node refers
to the poset P, and the term wvertez refers to the input digraph G. An arc means an arc of P,
whereas an edge means a directed edge of G. A node Z is called a predecessor (or successor) of
a node W if the arc (Z,W) (or (W, Z)) is present. A directed path in P is called a chain. An
antichain of P is a set of nodes that are pairwise incomparable. If C' is a chain or an antichain of
P, then |C| denotes the number of nodes in C'; the number of nodes in P is denoted by |P|. For an
arbitrary poset, define a diamond to be a set of four (distinct) elements a, b, ¢, d such that b, ¢ are
incomparable, @ = b > d and a = ¢ = d. A poset is called diamond-free if it contains no diamond.

In other words, any two chains of such a poset have at most one subchain in common.

Lemma 3.1. Let £ be a noncrossing family of setpairs such that each setpair W € L has both

head and tail nonempty. Then the poset P representing L is diamond-free.

Proof. Suppose that £ has four setpairs W, XY, Z such that X,Y are incomparable, W = X > Z
and W > Y > Z. Since X,Y are incomparable, either they are head disjoint, or tail disjoint.
Moreover, X, D Zp since X > Z, and Y, D Zp since Y = Z. Then X,Y are not head disjoint,
since both heads contain the head of Z, which is nonempty. Similarly, it can be seen that X,Y
are not tail disjoint, since both tails contain the tail of W, which is nonempty. This contradiction

proves that P contains no diamond. O
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We call a node W unary if the Hasse diagram has exactly one arc incoming to W and exactly one
arc outgoing from W. Consider the maximum cardinality of an antichain in a diamond-free poset
P. This may be as small as one, since P may be a chain. The next result shows that this quantity

cannot be so small if P has no unary nodes.

Proposition 38.2. (1) If a diamond-free poset P has no unary nodes, then it has an antichain of
cardinality at least \/|P|/2.
(2) If P is a diamond-free poset such that neither the predecessor nor the successor of a unary node

is another unary node, then it has an antichain of cardinality at least %\/ |P|.

Proof. We prove part (1); the proof of part (2) is similar.

If P has an antichain of cardinality at least W, then we are done. Otherwise, by Dilworth’s
theorem (the minimum number of disjoint chains required to cover all the nodes of a poset equals the
maximum cardinality of an antichain), P has a chain, call it C, with [C| > |P|/\/[P]/2 = \/2|P].
Let C' = Wy, W, ..., Wy Each of the internal nodes W, ..., Wy_; is non-unary, so it has either two
predecessors or two successors. Clearly, one of the two predecessors (or one of the two successors)
is not in C'. Let C), be the set of nodes in P \ C that are predecessors of nodes in C', and similarly
let Cs be the set of nodes in P\ C' that are successors of nodes in C. Then either |C,| > (|C|—2)/2
or |Cs| > (|C|—2)/2. Suppose that the first case holds (the argument is similar for the other case).
Let us add Wy (the first node of C') to C),. Now, we claim that C), is an antichain. Observe that
part (1) follows from this claim, because |C,| > |C|/2 > \/|P]/2.

To prove that C), is an antichain, focus on any two (distinct) nodes Y;,Y; € C,. Let W; and W;
be the nodes in C' such that Y; is the predecessor of W; and Y; is the predecessor of W;. First,
suppose that W; # W;, and (w.l.o.g.) assume that W; < W;. We cannot have ¥; <Y}, otherwise,
the nodes W;, W;_1,Y;,Y; will form a diamond, where W;_; is the predecessor of W; in C' (note
that the four nodes are distinct, and W;_;,Y; are incomparable, since both are predecessors of
W;). Also, we cannot have Y; < Y;, otherwise, we have Y; < Y; < W; < W; and so the arc (Y}, W)
is implied by transitivity. Hence, Y;,Y; are incomparable, if W; # W;. If W; = W;, then Y;,Y; are
incomparable (by transitivity). O

We restate Theorem 1.1 for convenience, and present our proof.

Theorem 1.1. For any digraph G = (V,E), any nonzero extreme point & of (LP) satisfies
o)

max{x.} > ——=

ek 1/| |'
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The proof is by contradiction. Let @ be an extreme point of (LP), and let F ={e € E | z. > 0}.
For convenience, assume that no edges e with z, = 0 are present. Also, assume that each edge e

has z. < 1, otherwise the proof is done.

Let £ be a noncrossing family of tight setpairs defining @ and satisfying the conditions in Theo-
rem 2.1, and let P be the poset representing £. Note that P is diamond free (by Lemma 3.1, since
each setpair W € £ has f(W) > 1, so both Wy, W}, are nonempty), and that |P| = |L| = |F|. Let
U be the set of unary nodes of P, and call a maximal chain of unary nodes a U-chain. Let P’ be
the “reduced” poset formed by replacing each U-chain by a single unary node. Note that P’ is

diamond-free, since P is diamond-free.

Let C' be a maximum-cardinality antichain of P. By Proposition 3.2(2), |C]| > %\/W We may
assume that each unary node of C' (if any) is a bottom node of a U-chain. By an upper U-chain
we mean one that has all nodes > some node in C; and by a lower U-chain we mean one that has
all nodes < some node in C. Let Uy be the set of bottom nodes of all the upper U-chains together
with the set of top nodes of all the lower U-chains. Let U, be the set of nodes W € U \ Uj in
upper U-chains such that the predecessor Y of W has f(W) = f(Y'), together with the set of nodes
W € U\ Uy in lower U-chains such that the successor Z of W has f(W) = f(Z). Let U; be the
set of nodes W € U \ Uy in upper U-chains such that the predecessor Y of W has f(W) > f(Y),
together with the set of nodes W € U \ Up in lower U-chains such that the successor Z of W has
f(W) < f(Z). Similarly, let Uy be the set of nodes W € U \ Uy in upper U-chains such that the
predecessor Y of W has f(W) < f(Y), together with the set of nodes W € U\ Uy in lower U-chains
such that the successor Z of W has f(W) > f(Z).

Clearly,

U = Uo U U1 U U2 U U* and |P|—|Pl| = |U1|—|—|U2|—|—|U*|

Claim. If « is a number such that z. < 1/a, Ye € E, then

[F| > a-max{|C], U], |U2]} + [Us].
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We defer the proof of the claim, and complete the proof of the theorem. Let o = 41/|P|. Suppose
that . < 1/« for each edge e € F. Then, by the claim,

IF| > 4/|P|-max{|C]|, [U], [Ua]} + [Us|

> 4Pl I+ 31Ul + {1Tal) + [
> 4Pl (VP + 310+ 4I0)) + [
> [P+ Uil + | U] + U

> |7l

This is a contradiction, since |F| = |P|. Hence, there exists an edge e with 2. > 1/a = 1/(4/|P]).

This proves the theorem.

Proof. (of the Claim) We need to prove the three inequalities separately. Consider the first in-
equality:

Each setpair W € £ has f(W) > 1, so W is covered by > « edges (otherwise, z(6(W)) < 1).
Hence, each node W € P is covered by > « edges. We assign all of the edges covering a node
W € C to W; note that no edge covers two distinct nodes of C'. This assigns a total of > «|C|
edges. Now, consider a node W; € U, that is in an upper U-chain Wy, ..., Wy, where 1 < ¢ < L.
Since f(W;_1) = f(W) and Xw,_, # Xw,, there is an edge in §(W;)\ §(W,_1). We assign this edge
to W;. Similarly, for a node W; € U, in a lower U-chain Wy, ..., Wy, where 1 < ¢ < {, we assign
to W; an edge in §(W;) \ 6(W;41). It can be seen that no edge is assigned to two different nodes.

Hence, the first inequality follows.

Consider the second inequality: |F| > o - |Ui| + |U|. Let W; € U; be any node in an upper
U-chain Wy, ..., Wy, where 1 < ¢ < {. Since f(W;) > f(W;_1) + 1, there must be > o edges in
S(W;) \ §(W;—1). We assign all these edges to W;. Similarly, for a node W; € U; that is in a lower
U-chain Wy, ..., W, where 1 < i < {, we assign > o edges in §(W;41) \ 6(W;) to W,. Finally,
for nodes W; € U,, if W, is in an upper U-chain Wy,..., Wy, then we assign to W, an edge in
S(W;) \ 6(W;_1), and if W; is in a lower U-chain Wy,..., W,, then we assign to W, an edge in
§(Wit1) \ 6(W;). The second inequality follows, since no edge is assigned to two different nodes.

The proof of the third inequality is similar to the proof of the second inequality. O
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4. A TiGHT EXAMPLE

In this section, we present an example of an extreme point @ of (LP) such that 0 < 2, < @(1)/@
for all edges e € E. Thus the lower bound in Theorem 1.1 is tight (up to a constant factor). An
extreme point @ of (LP) is defined by a system of | E| tight constraints, where each is of the form
z(6(W)) = f(W), for some setpair W (we assume 0 < @ < 1 so the constraints z. > 0, z. < 1 are
redundant). Let £ be the noncrossing family of tight setpairs defining @ (see Theorem 2.1), and
let P be the poset (and the Hasse diagram) representing £. Recall that the term node refers to
P, and an arc means an arc of P, whereas an edge means a directed edge of G. Each edge e € F
corresponds to a path p(e) in P, where the nodes of p(e) are the setpairs W € £ that are covered
by e, that is, p(e) = Wy, ..., Wy, where Wy < --- < Wy and e € 6(W;) (i = 1,...,(). We refer to
such paths p(e) as e-paths.

— black node
o white node
e red node 2t top paths
1 1 1 1 1
¢3 ¢3 ¢3 P3 D3
b5 5 95 95 495
d2t-1 b ¢ ¢ O
$ $ 888
last t+1 L]
nodes are red

3t g3t 83t 33t $3t

red-white e-paths ya
" red-red e-paths

2t bottom paths

FiGUre 2. Illustration of the poset P.
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Let m = |E(G)|. Our example is a poset P with m nodes and m e-paths (see Figure 2), so |P| = m.
Let 0 and 1 denote column vectors with all entries at 0 and 1, respectively, where the dimension
of the vector will be clear from the context. Define the incidence matrix A to be an m X m matrix
whose rows correspond to the nodes, and whose columns correspond to the e-paths, such that the
entry for node W and e-path p, Aw,, is 1 if W is in p and is 0 otherwise. We will prove that A
has rank m — 1 and the system Az = 1 has a solution where each entry of @ is ©(1)//m. (Note

that @ assigns a real number to each of the e-paths, and it corresponds to a solution of the LP.)

The poset P consists of several copies of the following path structure Q. Let t be a parameter (we
will fix ¢t = \/m), and let there be 3t nodes 1,2,...,3t. Then () consists of a path [1,...,3t] on
these nodes, together with 2¢ local e-paths, call them py, ..., py, where each p; is a subpath of the
path [1,...,3t]. Forodd j (j =1,3,5,...,2t—1), p; consists of the first j nodes (so p;, = [1,...,J]),
and for even j (j = 2,4,6,...,2t), p; consists of all the nodes, except the first j — 2 nodes (so
pj=10—1,4,...,3t]). Call the nodes 1,3,5,...,2t — 1 the black nodes, the nodes 2,4,6,...,2t —2
the white nodes, and the remaining nodes 2¢,2¢t + 1, ..., 3t the red nodes. Note that each black

node is incident to ¢ + 1 local e-paths, and each of the other nodes is incident to t local e-paths.

We take 4t copies of (), and partition them into two sets, the top paths 11, ..., T, and the bottom
paths Bjy,...,Byg. (In fact, each T; or B; is a path structure consisting of a path and 2¢ local
e-paths, but we call them paths for convenience.) Finally, we add another 4t? nonlocal e-paths such

that the following conditions hold:

e cach node is incident to a total of ¢t + 1 e-paths;

e cach nonlocal e-path is incident to exactly two nodes, one in a top path 7; and one in a
bottom path Bj; moreover, for every T; and every Bj, there is exactly one nonlocal e-path
incident to both T; and Bj;

e cach nonlocal e-path is incident to either two red nodes, or one red node and one white node;

e each top/bottom path T; or B; is incident to exactly two red-red nonlocal e-paths, where
(i) there is an e-path incident to the last node of B; and the last node of T; (i = 1,...,2t),
and
(ii) there is an e-path incident to the 2nd last node of B; and the 2nd last node of Tji4
(¢=1,...,2t); the indexing is modulo 2¢, so 2t + 1 means 1; note that there is cyclic shift by
1 in the index of the top versus bottom paths;

e the red-white nonlocal e-paths are fixed according to the first two conditions, and are as
follows: for £ = 1,2,...,t — 1, there is an e-path incident to the 2/th node of B; and the
(2t — 1+ 0)th node of Tiy14¢ (2 = 1,...,2t), indexing modulo 2¢; note that there is a cyclic
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shift by £+ 1 in the index of the top versus bottom paths; similarly, for £ = 1,2,...,t — 1,
there is an e-path incident to the 2(th node of T; and the (2t — 1 + {)th node of B;i14¢

(¢t=1,...,2t), indexing modulo 2¢.

Proposition 4.1. Let t be a positive integer, and let m = 12t%. Let A be the m X m incidence
matriz of the poset P and the e-paths (constructed above). Then rank(A) > m — 1 and a solution

to the system Ae = 1 is given by ¢ = 1.

A1
1
Proof. A column vector of dimension ¢ with all entries at 0 (or, 1) is denoted by 0¢ (or, 1¢). Let ¢;

denote the ith column of the s X s identity matrix I, where s is a positive integer. Let f; denote

2321 €;; so f; is a column vector with a 1 in entries 1,...,72 and a 0 in entries ¢4 1,...,s.

Let the rows of A be ordered according to the nodes 1,...,3t of T, ..., Ty, followed by the nodes
17...7315 Oth...,th.

First, consider a bottom path B;; top paths T; are handled similarly, and this is sketched later.

Let M denote the incidence matrix of B; versus all the e-paths. Then M is 3t X m matrix, where
the rows 1,..., 3t correspond to the nodes 1,...,3t of B;, and the columns of M are ordered as

follows:

the 2¢ local e-paths of By, p1, pa2, ..., o,

the ¢t — 1 red-white e-paths whose red ends are in B; (these are the e-paths incident to nodes

2,2t +1,...,3t — 2 of B;),

the two red-red e-paths incident to nodes 3t — 1 and 3t of B;,

the remaining e-paths (among these are t — 1 red-white e-paths whose white ends are in B;).

Let M®9 denote the submatrix of M formed by the first 2¢ columns, so M®9 is the incidence
matrix of the nodes versus the local e-paths of B;. Let M¢ denote the submatrix of M formed

by excluding the first 3¢+ 1 columns (keeping only the columns of the “remaining e-paths”). Then

O2¢—1...02¢ 02t—1 0241
Mo | agtes I O0i—1 0i—y Agend
0...0 1 0
0...0 0 1

Note that the rows and columns of M may be reordered such that the submatrix in the first
t — 1 rows (make these the rows of the white nodes of B;) and the first t — 1 columns (make these

the columns of the red-white e-paths incident to the white nodes of B;) is the identity matrix I;_;,
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and every other entry of the matrix is zero. Then

Mbeg — [fh 1, f37 1- f27 f57 1- f47 SEE) f2t—17 1- f2t—2]-
Using elementary column operations, we can rewrite this matrix as

Iy _y 02¢—1
[617 €2,€3,...,€2t—1, 1- f2t—1] =
Opp1-0.0p1 Ly

Then it is clear that the matrix [M®9 M°"] may be rewritten using elementary column operations

as

Ioe Og¢—
21 2-1 4

Opp1.-.0i11 Ly

Going back to M, observe that it may be rewritten using elementary column operations as

Iy _y O2¢—1 O2¢—1...024—4 02t—1 0241
0p_1...04_ 1,_ I 0, 0,
=1 -1 Lli—1 t—1 =1 =1 0...0|.
0...0 1 0...0 1 0
0...0 1 0...0 0 1
or as
Iy _y 0241 ...024—1 02;—1 O2¢—1 024y
0p_1...04_ I 0, 0, 1,_
M — =1 =1 t—1 =1 =1 =1 0. o
0...0 0...0 1 0 1
0...0 0...0 0 1 1

Now, focus on the matrix A (the incidence matrix of the nodes of P versus all the e-paths), and
its column vectors. Consider the two red-red e-paths incident to B; and their column vectors in A.
Let r3;—1 and r3; denote the two red-red e-paths incident to the red nodes 3t — 1 and 3t (of B;),
respectively, and let the column vectors in A of these red-red e-paths also be denoted by the same
symbols. Note that rs; has two nonzero entries, namely, a 1 for node 3t of B; and a 1 for node 3t
of T;. Similarly, rs;_1 has two nonzero entries, namely, a 1 for node 3t — 1 of B; and a 1 for node
3t —1 of T;4; (indexing modulo 2t). Keep the column rz;_1, but use elementary column operations
to replace 73 by 13, = 13+ r3—1 + My + oo+ M35 — Mg, where MY denotes the column
vector of dimension m obtained from the jth column vector of M™* by padding with zeros (fixing
entries of rows not in M* at 0). Clearly, r}, has two nonzero entries, namely a 1 for node 3t of T;

and a 1 for node 3t — 1 of T4 (indexing modulo 2t).
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Let M be the m x m matrix obtained from M* by replacing the (3t — 1)th column by rs—_1,
deleting the 3¢th column, and padding with zeros (fixing at 0 all entries except those in M™ or in
the (3¢t — 1)th column).

The construction for a top path T;y1 (¢ = 1,2,...,2¢, indexing modulo 2t) is similar, except for
the handling of columns 3t — 1 and 3t of M*. Let Mt be the m x m matrix obtained from

M* by replacing the 3tth column by r%,, deleting the (3¢t — 1)th column, and padding with zeros.

Let A* be the m X m matrix obtained from A by elementary column operations, where

2t 2t
A* — E Mtop,i T E Mbot,i

Figure 3 illustrates the zero-nonzero pattern of A*.

1 node3t-1of T, 1 node3tof T,
I2t—l I2tl
———————————————————————————————————— 1 rrl
Itl 1 Itl 1
11 11
1 1

Matrix A*
FIGURE 3. Illustration of matrices M®%* and M?P*, and the nonzero pattern of

matrix A*.

With the exception of one entry, A* is an upper triangular matrix with every diagonal entry at
1; the exceptional entry is in row 6t (node 3t of T5;) and column 3t — 1 (2nd last column of T7).
Then, deleting row 6t and column 67 of A* we get an upper triangular matrix with determinant 1.

This proves that rank(A4) > m — 1.



THE ITERATIVE ROUNDING METHOD FOR SETPAIRS 17

By construction, each node of P is incident to exactly ¢+ 1 e-paths, hence fixing z. = 1/(t + 1) for
each e-path p(e) gives a solution to the system Ae = 1. The proposition follows. O

Proposition 4.2. Let P be the polytope {& € R™ | Az < Z, 0 < @ <1} and let F be the face
{e € P| Az = b}, where Ae < b is a subsystem of Az < b. If the matriz A has rank m — 1 and
there exists an ® € F such that each entry of ® is < «, then P has an extreme point ® such that

each entry of & 1s < 2a.

Proof. F is a line-segment and so it has two extreme points, call them y and z. Note that y and z
must be extreme points of P also. Hence, #=a-y+ (1 —a) - 2z, where 0 < a < 1. Suppose a > 1/2
(the other case is similar). Then y < 2(z— (1 — a) - 2) < 2&, since z > 0, so each entry of y is
< 2q. ]

Theorem 1.2, which is the main result of this section, follows from Propositions 4.1 and 4.2.

Theorem 1.2. Given any sufficiently large integer |E|, there exists a digraph G = (V, E) such

0(1
that (LP) has an extreme point & satisfying m%x{xe} < L
e€

N

5. CONCLUSION

In conclusion, we mention that our framework and the results in sections 2 and 3 lead to interesting

approximation guarantees for specific problems in network design, see [2].
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