Approximation Algorithms for Network Design with Metric Costs

JosEPH CHERIYAN® AND ADRIAN VETTAT

Abstract. We study undirected networks with edge costs that satisfy the triangle inequality.
Let n denote the number of nodes. We present an O(1)-approximation algorithm for a gener-
alization of the metric-cost subset k-node-connectivity problem. Our approximation guarantee
is proved via lower bounds that apply to the simple edge-connectivity version of the problem,
where the requirements are for edge-disjoint paths rather than for openly node-disjoint paths. A
corollary is that, for metric costs and foreach &k = 1,2,..., n—1, there exists a k-node connected
graph whose cost is within a factor of 24 of the cost of any simple k-edge connected graph. This
resolves an open question in the area. Based on our O(1)-approximation algorithm, we present
an O(log rmax)-approximation algorithm for the metric-cost node-connectivity survivable net-
work design problem where r,,x denotes the maximum requirement over all pairs of nodes. Our
results contrast with the case of edge costs of zero or one, where Kortsarz et al. (SICOMP 33,
pp.704-720) recently proved, assuming NP quasi-P, a hardness-of-approximation lower bound
of 21°8' 7" for the subset k-node-connectivity problem, where € denotes a small positive number.

1 Introduction

A basic problem in network design is to find a minimum-cost sub-network H of a given network G such
that H satisfies some prespecified connectivity requirements. Fundamental examples include the minimum
spanning tree (MST) problem and the traveling salesman problem (TSP). By a network we mean an
undirected graph together with non-negative costs for the edges, and we use n to denote the number
of nodes. Our focus is on networks where the edge costs are metric; that is, the edge costs satisfy the
triangle inequalities. This special case is significant from both theoretical and practical viewpoints; metric
costs arise in many applications of network design, and perhaps in most of the obvious ones, such as the
design of telecommunication networks. Our goal is to design and analyse approximation algorithms for
some key problems in network design. Moreover, we resolve a long-standing conjecture on metric graphs,
where by a metric graph we mean a complete graph K, together with edge-costs that satisfy the triangle
inequalities.

We attack the metric-cost node-connectivity survivable network design problem (NC-SNDP). In this
problem, we are given a metric graph, as well as a connectivity requirement r; ; between every pair of
nodes 7 and j. Let ryay denote max; jev r; ;. The goal is to find a minimum-cost subgraph H that satisfies
these requirements, that is, H should have r; ; openly node-disjoint paths between every pair of nodes ¢
and j. There are two well-known special cases of NC-SNDP. The first is the subset k-node-connectivity
problem, where we are given a set of terminal nodes T'C V' and r; ; = k precisely if both 7 and j are in T,
otherwise r; ; = 0. The second is the classical k-node connected spanning subgraph problem (k-NCSS) where
r;; = k for every pair of nodes; this is the special case of the subset k-node-connectivity problem with
T =V. We also study a new special case of NC-SNDP that we call the subset [k, 1.5k]-node-connectivity
problem: given a set of terminal nodes T'C V and an (integer) requirement r; for each node 7 € T, where
1 <k < r; < 1.5k, the goal is to find a minimum-cost subgraph that has min(r;, ;) openly node-disjoint

(28 April 2005)
*Dept. of Comb. & Opt., University of Waterloo, Waterloo, ON, Canada. jcheriyan@uwaterloo.ca

"Department of Mathematics and Statistics, and School of Computer Science, McGill University. vetta@math.mcgill.ca

i, j-paths for every pair of nodes ¢, j € T. (Thus the subset k-node-connectivity problem is the special case
where r; = k, Vi € T.) See Section 4 for more discussion.

Most network design problems stay NP-hard and APX-hard even assuming metric costs. This remains
true even for small connectivity requirements; for example, Bern & Plassmann [3] showed that the Steiner
tree problem (the classical special case of the subset k-node-connectivity problem with k¥ = 1) is APX-
hard even with edge costs of 1 and 2. Over the past decade, there has been significant research on
approximation algorithms for network design, and there have been some notable successes in the design
of networks that satisfy various types of “edge connectivity” requirements, e.g., Goemans & Williamson
[17], and Jain [18], but from the perspective of approximation algorithms, the design of networks subject
to “node connectivity” requirements is a murky area. For example, Kortsarz, Krauthgamer & Lee [21]
recently proved a hardness-of-approximation lower bound of 2108' 1 fo1 the subset k-node connectivity
problem in graphs with zero-one edge costs, provided that NP¢ DTIME(n]”lylog(”))7 where, € denotes a
small positive real number. (We give a detailed discussion on previous work in the area after stating our
results.)

We present a 24-approximation algorithm for the metric-cost subset k-node-connectivity problem, and
then we generalize this to get an O(1)-approximation algorithm for the metric-cost subset [k, 1.5k]-node-
connectivity problem. Modulo P#NP and up to constant factors, these are the best possible results. These
algorithms are deterministic and combinatorial; they do not use linear programming relaxations. Based
on this, we present an O(log ryax)-approximation algorithm for the metric-cost NC-SNDP. The algorithm
for NC-SNDP is based on a linear programming relaxation. Also, it uses a 2-approximation algorithm of
Goemans & Williamson [17] (see also Agrawal et al. [1]) for the generalized Steiner tree problem. Moreover,
we resolve the following long-standing conjecture: In a metric graph and for each £k = 1,2,...,n — 1, the
minimum cost of a k-node connected spanning subgraph is within a constant factor of the minimum
cost of a simple k-edge connected spanning subgraph. Thus, for metric graphs, the requirements of k-
node-connectivity and simple k-edge-connectivity are equivalent for the objective function, up to constant
factors. A similar result holds for requirements of subset [k, 1.5k]-node-connectivity versus subset simple
[k, 1.5k]-edge-connectivity.

We apply two lower bounds on the optimal value of the subset [k, 1.5k]-connectivity problem. We may
assume (without loss of generality) that there exist at least two terminals with the maximum requirement.
Hence, every solution subgraph has at least r; edges incident to each terminal i, because there is another
terminal j with r; > r;, so the solution subgraph must have r; openly node-disjoint 7, j-paths. Our first
lower bound comes from the the minimum cost of a subgraph that has degree > r; for every terminal 2.
Our second lower bound comes from the cost of a minimum spanning tree of the subgraph induced by
the terminals. For any node ¢, we use o; or o(7) to denote the sum of the costs of the r; cheapest edges
incident to ¢ in the complete graph, and for any set of nodes S, we use o(S) to denote > . 5 ;. We use
the abbreviations MST for minimum-cost spanning tree, and TSP for the traveling salesman problem. Let
mst(T) denote the cost of an MST of the subgraph induced by T. Our lower bounds are:

(i) 30o(T), and

(ii) £ mst(T).

Note that these lower bounds apply also to the simple edge-connectivity version of the subset [k, 1.5k]-
connectivity problem, where the requirements are for min(r;, r;) edge-disjoint paths between every pair of
nodes %, j € T'; note that multi-edges are not allowed in the solution subgraph. See Section 2 for more
details. Throughout, we use OPT to denote the cost of an optimal solution. Next, we state our main results

formally.

Theorem 1 There is a polynomial-time algorithm for computing a solution to the metric-cost subset k-
node connectivity problem of cost < 100(T) + 4(%) mst(T) < 240pr.

Consider k-NCSS, the special case of the subset k-node connectivity problem in which the terminal set T
is V. Let k-ECSS be the problem of finding a minimum-cost simple k-edge connected spanning subgraph.
Then our two lower bounds apply for both k-NCSS and k-ECSS. This gives the next result.

Corollary 2 In a network with metric costs, there is a k-node connected spanning subgraph whose cost is

at most 24 times the minimum cost of a simple k-edge connected spanning subgraph.

Remarks: For metric graphs, it is well known that there exists a 2-node connected graph of cost < the
cost of any 2-edge connected graph (see Appendix 1), but this does not hold for £ > 3 (see [4, Fig.1] and
Appendix 1 for examples). Also, note that the %O‘(V) lower bound for k-ECSS does not apply for the
version where multi-edges are allowed. In more detail, if multi-edges are allowed, then there exist k-edge
connected graphs H such that any k-node connected graph has cost > O(k)c(H). See Appendix 1 for
more details.

Theorem 3 There is a polynomial-time algorithm for computing a solution to the metric-cost subset
[k, 1.5k]-node-connectivity problem of cost < O(1) - (o(T) + & mst(T)) < O(1) - opT.

Remark: A loose analysis gives a constant factor between 800 and 1000 in the above theorem. Possibly,
an approximation guarantee of < 100 can be obtained by some changes to the algorithm. We have not

attempted to optimise the constants in the approximation guarantees.

Theorem 4 There is a polynomial-time algorithm for computing a solution to the metric-cost NC-SNDP
of cost < O(Inryq,) - OPT.

Previous work

Over the past few decades, there has been significant research on approximation algorithms for network
design. For early work in network design, see for example Dantzig, Ford & Fulkerson [12]. A celebrated and
still unsurpassed result was Christofides’ %—approximation algorithm for the metric-cost TSP [8]. Partly
motivated by Christofides’ result, there followed a stream of research on related problems in the design
of metric-cost networks. Most of this research focused on small connectivity requirements, such as 2-edge
connectivity and 2-node connectivity; see Frederickson & Ja’Ja’ [14], Monma & Shallcross [26], Monma,
Munson & Pulleyblank [25], and Bienstock, Brickell & Monma [4]. For constant &, this last paper gives
a constant-factor approximation algorithm for k-NCSS. Moreover, the proof also shows that for metric
graphs and any constant k, there exists a k-node connected spanning subgraph of K,, whose cost is within
a constant factor of the cost of any k-edge connected spanning subgraph, see [4, Sec.4]. They left open
the question of extending these results to all k. This was followed by another burst of research, partly
initiated by the work of Goemans & Bertsimas [15] who presented a logarithmic approximation algorithm
for a general model called the edge-connectivity survivable network design problem (EC-SNDP) assuming
metric costs. Soon after this, the research focus changed from metric costs to the more general setting of
non-negative costs. Agrawal, Klein & Ravi [1], and Goemans & Williamson [17] built on the primal-dual
method to obtain O(1)-approximation algorithms for some special cases of EC-SNDP with small (i.e., zero
and one) connectivity requirements. Later, these methods were generalized to EC-SNDP, albeit with a
logarithmic approximation guarantee, by Goemans et al. [16] based on work by Williamson et al. [31]. This
line of research culminated with a 2-approximation algorithm for EC-SNDP by Jain [18].

Although there was considerable interest in extending these methods to the setting of node connectivity,
there was limited success even for rather special cases of NC-SNDP. We mention a few results and refer
the interested reader to [6] for more references. For the case of non-negative edge costs, Kortsarz & Nutov
[22] and [7] have logarithmic (or worse) approximation guarantees for the k-NCSS problem. For metric
costs, there is an O(1)-approximation algorithm due to Khuller & Raghavachari [20], and there are other
related results in [5, 23]. Some explanation for this lack of good approximation algorithms for NC-SNDP
comes from the recent hardness-of-approximation results of Kortsarz, Krauthgamer & Lee [21]. Also, see
the surveys by Frank [13], Khuller [19], and Stoer [28], and the book by Vazirani [30].

We briefly mention the relationship between our work and the stream of exciting recent results on
PTAS’s (polynomial-time approximation schemes) for related problems. Beginning with the results of
Arora [2] on the Euclidean TSP, many PTAS’s have been obtained for problems in “geometric network
design” where the edge costs come from special metrics such as the Euclidean metric, see [9, 10, 11, 27]
and the references in those papers. But, modulo P#NP, such PTAS’s do not exist in the setting of interest
to us, namely, (general) metric costs; this follows from APX-hardness results in [3, 21, 29].

The rest of the paper is structured as follows. In Section 2, we discuss some preliminaries, and give an
overview of our method for the metric-cost subset k-node connectivity problem. We present a constant-
factor approximation algorithm for the problem in Section 3. Section 4 gives a constant-factor approx-
imation algorithm for a generalisation. This leads to an O(logrmax)-approximation algorithm for the
metric-cost NC-SNDP in Section 5.

2 Preliminaries and an overview of the algorithm for subset k-connectivity

Apart from Section 1, we omit the word ‘node’ from terms such as ‘node-connectivity’ when there is no
danger of ambiguity.

Let the input graph be G = (V, E'). We denote the nodes by numbers ¢ = 1,2, ..., n, and for nodes ¢, j
the edge between them is denoted ij. The cost of an edge ¢j € E is denoted ¢;; or ¢(7,j). The costs are
said to be metric if the triangle inequality holds: ¢(v, w) < ¢(v,u) + ¢(u, w), Yu,v,w € V. Whenever we
assume metric costs, we also assume that G is the complete graph. Let k be an integer such that n > &k > 1
(k may be a function of n). For a pair of nodes ¢, j, let x(¢,j) denote the maximum number of openly
node-disjoint 7, j-paths. Recall that T' denotes the set of terminal nodes. We use n’ to denote |T'|, and we
assume T = {1,...,n'}.

Let us formalize the lower bounds (i) and (ii) for the subset [k, 1.5k]-connectivity problem stated in
Section 1. For each terminal node i, let I'; denote the set of r; nearest neighbours of i; by convention,
¢t ¢ I';. (Thus |I;| = r; and Vo € T,y € T, U{i}, ¢y > cip.) Then note that o; denotes erFi Ciz. Also,
for each terminal node i, let u; denote o;/r;, namely, the average cost of an edge from i to one of its r;
nearest neighbours. Note that each terminal node ¢ has at least r; neighbours in an optimal subgraph,
thus OPT > 2o(T). This gives the first lower bound. Next, we claim that oPT > £mst(T). In more detail,
we have oPT > lmcopr(T,2k) > Emst(T), where ECOPT(T, \) denotes the minimum cost of a A-edge
connected subgraph of G[T] (allowing multi-edges). To see this, start with a graph corresponding to OpT,
and take two copies per edge to get an Eulerian multi-graph H’ that is 2k-edge connected on T, then
apply the Lovasz-Mader splitting-off theorem [24, Ex.6.51], [13], to eliminate all nodes of V' — T from H’
to get a 2k-edge connected multi-graph on the node set T' that has cost > EcopT(T,2k); then we apply
the well-known fact that ECOPT(T,\) > 3mst(T). For metric costs, splitting off edges does not increase

the cost. This gives the second lower bound: oPT > Emst(T).

Figure 1: A key special case of the algorithm. Here, £ =6, T = {1,2, 3,4}, and the sets {i} UT'; (indicated
by dotted blobs) for ¢ € T are pairwise disjoint. The tracks Q1,Q2, Q3 are indicated by circles.

We first give an overview of our method for subset k-connectivity by describing a key special case
where k is even, say & = 2(, and the sets {i} UT; of the terminals ¢ are pairwise disjoint (that is,
{JuT)Nn{yjrur;) =0, Vi # j € T). Arbitrarily name the nodes in I'; as 4y,4q,...,4, Vi € T.
Construct a cheap cycle) on the terminals using the well-known MST-doubling heuristic for the TSP.
(Start with an MST of the subgraph induced by T, replace each edge by two copies, and shortcut the
resulting connected Eulerian graph to get a cycle @ with V(Q) = T and ¢(Q) < 2mst(T).) Let the

sequence of terminals on @ be 1,2, ..., n/, 1 (renumber the nodes if needed). For each 7 = 1,...,(, construct
a cycle Qr “parallel” to @ where Qr = 17, Lepr, 27, 2047, 37, o, (W' = V)ggry 07y 0/ eqry 17 (See Figure 1;
informally, start with the cycle 17,27, ..., 7', 17, then for each ¢ = 1, ..., n’ insert the node i1+ between

nodes ir and (¢ + 1)r.) Let us refer to these cycles as tracks. It can be seen that a track @+ has cost
c(Qr) < Q)+, 2(c(i,ir)4cli, igyr)) (see the second subroutine below), and the total cost of the tracks
is Zg_zl c(Qr) < L-¢(Q)+20(T). Finally, for each terminal 7 € T, we add the k edges ii1,%ig, ..., ik The
resulting subgraph is our solution graph H; it has cost ¢(H) < 20-mst(T') +30(T) < 20PT+60PT = 8OPT.
Note that each terminal has precisely two neighbours in each track. Thus H satisfies the connectivity
requirements, because for every pair of terminals 7, j(i # j), each of the k/2 tracks contributes 2 openly
disjoint ¢, j paths.

The algorithm uses the following two subroutines. Note that the solution graph H is simple, so when
we add edges to H we do so without creating multi-edges.

e The first subroutine copies a specified set of neighbours of a terminal 7 to another terminal v (possibly,
v is adjacent to ¢). More precisely, given a terminal ¢ and a specified set of neighbours of ¢, call it
N;, and another terminal v, the subroutine adds an edge vz to H for each node 2 € N; (without
creating multi-edges or loops in H). After this step, x(¢,v) > |N;| in H. The cost of the new
edges is < |N;| ¢(i,v) + >, en, ¢(4,7); moreover, if there is a positive real number v such that
> een; €(t,) < oy, then the cost of the new edges is < [N ¢(i, v) + vo;.

e The other subroutine starts with a cycle containing a terminal ¢ and inserts new node(s) into the
cycle. Given a cycle @', a terminal i in @', and a node & ¢ V(Q'), we first add two copies of the
edge iz to Q' to get a connected Eulerian graph. Then we shortcut this Eulerian graph (as in the

MST-doubling heuristic for the TSP) to obtain a new cycle with node set V(Q')U{z}. The increase
in cost is < 2¢(¢, z).

It is important for our analysis to get good upper bounds on the costs of the tracks. Note that the
tracks are pairwise node disjoint; thus each terminal is in at most one track. But, for upper-bounding
the track costs, we use the following accounting trick: Consider any track ¢Q+. We assume that the track
initially consists of all the terminals, thus V(Qr) = T, and using the MST-doubling heuristic we have
c(Qr) < 2mst(T). Subsequently, the algorithm may insert new nodes into the track — such insertions occur
while we are processing some terminal — thus for inserting node z while processing terminal ¢ the cost
c(Qr) increases by < 2¢(i,z). Possibly, # may be another terminal — in that case, we implicitly remove
x from @+ and then insert z via the double-edge 2z. At the end of the execution, we keep only those
terminals that were explicitly inserted into ()7 and remove all the other terminals from Qr; clearly, this
does not increase the cost ¢(Qr). Note that this “historical view” of @+ is only needed for upper-bounding
the cost. Other than this, it may be easier to view the tracks as being pairwise node disjoint all through
the execution, and this is the viewpoint we use in presenting the detailed algorithm.

3 The algorithm for subset k-connectivity

This section is devoted to an algorithm and proof for Theorem 1. The detailed algorithm follows. An
analysis of the cost of the edges added to H (the solution graph) is given after the algorithm. A terminal
may be in two states active or inactive. Initially, all the terminals are active. Let ¢ denote [k/2]. Initially,
H is the graph consisting of all the terminal nodes and no edges, thus H = (T, 0).

(1) [DE—ACTIVATE TERMINALS & CONSTRUCT DISJOINT BALLS FOR ACTIVE TERMINALS]
Renumber the terminals as 1,2,...,n’ by increasing value of p; thus gy < py < -+ < 0.
Note: puj, < p; iff o < 0.
Scan the terminals in the order 1,2,...,n', and skip the current terminal if it is inactive. For an
active terminal 7, construct the set B; = {j | ¢(4,j) < au;}, where we choose oo = 2. For each active
terminal v > 7, if ¢;, < (ap; + Bau,), where we fix 5 = 2, then make v inactive, and record ¢ as the
parent of v by assigning p(v) = ¢. (The aim is to ensure that the sets B; of active terminals 7 are
pairwise disjoint.)
Note that 7 € B; and |B;| > 1+ (1- L)k =1+ % (Otherwise, we have > k/a = k/2 nodes z in T,
with c(é,2) > ap; = ao;/k, so these nodes contribute > o, to »_ . c(i,2).) Hence, |B; — {i}| > (.
Also note that y,,) < p, for each inactive terminal v.

Choose the ¢ nodes in B; nearest to ¢ and name them as 4y, tg,..., % such that ¢(7,4;) < ¢(7,42) <
< eliyil)

(2) [CONSTRUCT { TRACKS ON THE DISJOINT BALLS]
After step (1), let T denote the set of active terminals and let n* = |T*|. If n* < 3, then apply
step (2') and stop. Otherwise, construct a cheap cycle @ on the active terminals by applying the
MST-doubling heuristic for the TSP to the subgraph induced by T*. Renumber the terminals such
that Q@ = 1,2,...,n% 1, that is, the active terminals get the numbers in {1,...,n*} according to their
ordering in Q. Construct { tracks Q1,Q2, ..., Q¢, where track Qr = 17,2+,...,05, 17(r=1,...,().
Add all the tracks (but not the cycle) to H. The cost of the tracks constructed in this step is

analysed in Proposition 6 below.

(2)

[SPECIAL HANDLING FOR 1 OR 2 ACTIVE TERMINALS]

Skip this step if n* > 3. Suppose n* = 1. Let the active terminal be 7. Add all the edges v, v € T,
and then for each inactive terminal j, copy the set I'; of neighbours of ¢ to j. The resulting graph H
satisfies the connectivity requirements.

Suppose n* = 2. Let the active terminals be h,:, with o5 < ;. Add all the edges hq,q € 'y, and
iv,v € I';. Then add a matching M of maximum size between the nodes in I'; — (I', U {h}) and in
Iy, — (T U {i}); now, each matching edge qv (say ¢ € I'y, — {i} and v € I'; — {h}) gives an h, path,
namely, h, ¢, v,7. Finally, for each inactive terminal j, copy the set I',(;) of neighbours of p(j) to j.
The resulting graph H satisfies the connectivity requirements.

[AUGMENT DISJOINT BALLS AND ASSIGN TOKEN ARCS]

In summary, this step scans the active terminals ¢ and augments each “ball” B; to get an “augmented
ball” B! (that ideally has |B:| > r;4+1 = k+1) such that these augmented balls are pairwise disjoint.
The obvious construction for B’ is to start with B; and then add some nodes from T'; — B;, but
then the augmented balls may intersect. We “de-intersect” two intersecting sets Bj, and B}, while
preserving the balls By and B;, by assigning so-called token arcs to the active terminals such that for
each active terminal ¢, | B}| plus the number of token arcs assigned to i is > r; +1 = k + 1. Consider
one special case: suppose that i and 7 are active terminals and node ¢ is in B}, N B’ but ¢ ¢ By U B,.
Then we compare the costs of the edges hq and 1q and “replace” the costlier edge, say iq, by a token
arc whose cost we fix to be 3¢;,; that is, we remove ¢ from B and instead assign to ¢ a token arc
with cost 3¢;,. The details follow.

Renumber the terminals so that the active terminals ¢ in order of increasing yu; values are 1,2, ... n*,

and scan the active terminals in this order. Start the scan of ¢ € T* by defining B’ := B; if I'; C B;,
and B} :=T; otherwise. If B} is disjoint from Bj for all active terminals h < ¢, then continue with
the next active terminal, otherwise, for each active terminal h < ¢ with B} N B} # 0, examine the
nodes ¢ in By, N B} in any order. Note that s < p;.

Figure 2: An illustration of step (3)(a) in Section 3: the “dashed edge” iq is replaced by a token arc ih

that is later (in step (4)) replaced by an edge iz, z € By,.

(a) Suppose ¢ € By,. Then note that ¢ ¢ B; and ¢;; > ap; > auy,. Remove ¢ from B and give to
i a token arc (7, h) with cost 3¢;,. (Later, this token arc will be replaced by an edge iz where

x € By; note that the cost of iz is < ¢4 + chg + cha < Cig + 2ap, < 3¢4.) See Figure 2 for an
illustration.

(b) Otherwise, ¢ € B}, —Bp. Suppose ¢ € B;. Then note that cpg+ciq > cni > (op+Bap;) (the last
inequality holds because both h, ¢ are active), and ¢;q < ap,, hence, cpg > a(py, +p;) (recall that
S = 2). Remove ¢ from B}, and give to h a token arc (h, i) with cost 3¢p,. (Later, this token arc

will be replaced by an edge ha, x € B;, of cost < cpg+Cig+Cin < Chg+20pt; < chg+2¢hg < 3cpg.)
(¢) Suppose ¢ € B}, — By, and ¢ € B — B;. Then we compare ¢;q and cpg.

If ¢iy > cpg, then remove ¢ from B and give to i a token arc (i, h) with cost 3¢;,. (Later, this
token arc will be replaced by an edge iz, € By, of cost < ¢;q + cpg + Che < 2¢iq + iy, < 3¢4q,
where the last inequality holds because ¢;q > ap; > apuy,.)

Otherwise, we have ¢;; < cpq. Then we remove ¢ from Bj, and give to h a token arc (h,) with
cost 3cpq. (Later, this token arc will be replaced by an edge ha, @ € B;, of cost < cpg+¢ig+cin <
2¢hg + apt; < 3cpq, where the last inequality holds because cpg + ¢ig > cpi > (opy, + Sag;) (asin
(b) above), hence, cpy > 5 (py, + Bu;) > ap; (recall that 8 = 2).)

After step (3), note that the cost of a token arc (¢, j) depends on the cost of the associated edge iq

and is 3c¢jq.

(4) [ATTACH ACTIVE TERMINALS TO TRACKS]
In summary, this step scans each active terminal ¢ and adds edges from ¢ to the tracks such that each
track Q, 7 =1,...,|k/2], gets two neighbours of ¢, and the last track (¢ gets > 1 neighbour of i.

First add edges from ¢ to each of 41,15, ..., ¢ also, mark the nodes 41,13, ..., ¢ as used.

Then for each 7 = 1,2,...,|k/2], do the following. If an unused token arc (7, h) is available, then
choose it, mark it as used, and add the edge th,; note that h, is in B}, and is the “first neighbour”
of h in track Q; also, note that ¢(7, h.) is < the cost of the token arc (¢, k). If no unused token arcs
are available, then choose an unused node ¢ € B, mark it as used, insert ¢ into track @Q,, and add
the edge ig. (Note that the number of token arcs given to ¢ plus |Bj| is > k + 1, hence, this step will
find |k/2] token arcs or unused nodes, excluding the nodes iy, ig, ..., .)

For each active terminal 7, let N; denote the set of neighbours of ¢ in the tracks, just after step (4)

is applied to .

(5) [ATTACH INACTIVE TERMINALS TO TRACKS]
Finally, “attach” the inactive terminals to the tracks. Note that an inactive terminal may be already
in one of the tracks. For each inactive terminal j, copy the set of neighbours N, ;) of the parent p(j)

to j.
Proposition 5 The cost of the graph constructed in step (2') is < 160PT.

Proof: Suppose n* = 1, and let ¢ be the (unique) active terminal. Then ¢(H) < o+ cp_px(kcij+0i) <
o+ ser_re(klapitBap;)+0:) <o) ier pe(a(l4+B8)o;40;) < To(T) < 140pT (we have a = 2, 8 = 2,
and we used o; < o; for an inactive terminal j).

Suppose n* = 2, and let ¢, h be the two active terminals. Then recall that M denotes a matching of
maximum size between the nodes in I'; — (I', U {h}) and in T'p — (I'; U {¢}); note that an edge qv € M
(say, ¢ € Th,v € T;) has cost < ¢pq + Chi + €y, hence, ¢(M) < oy + 0; + k - mst(T'); the other edges
in H contribute a cost of < op + 07 + 3 cp_pu(a(l + B)o; + o) (as in the analysis for n* = 1) hence,
c(H) <70(T) + k- mst(T) < 160PT. |

Proposition 6 (i) The total cost of the edges added by step (4) and incident to an active terminal i is
< 4o;. (i) At the end of step (4), the total cost of the { tracks is < 2(- mst(T) 4 4o(T™).

Proof: For an active terminal 7, the total cost of the token arcs (i, h) given to 7 is < 30;. The cost of the
edges added that are incident to i, but excluding the cost due to the token arcs, is < ao; if |B;| > k+1
(in this case, B} = B, and no token arcs are given to 7), and is < erFi ¢ix < 0; otherwise. Thus the total
cost of the added edges incident to 7 is < max(ao;, o; + 30;) < 40;.

The total cost of the ¢ tracks (that were constructed in step (2) and modified in step (4)) is < 2(-
mst(T) 4+ 40(T*). To see this, first consider the term 2(- mst(T'). Recall (from Section 2) the accounting
trick we use for upper-bounding the cost of a track; due to this, we take the upper bound on the cost of Q)
(the cheap cycle on T™ in step (2)) to be 2mst(T) rather than 2mst(T*). Summed over { tracks, this gives
20 - mst(T'). For the second term, note that ¢ € T* contributes < quBg 2¢(7, q), and this is < 2k(ap,) if
['; C B; (then B! = B;), and < 20, otherwise (then B, =T}).]

Proposition 7 The total cost of the edges added by step (5) and incident to the inactive terminals is
< 100(T —T7).

Proof: Suppose the cost of the added edges incident to an active terminal 7 is < yo;. (From Proposition 6,
we have ¥ = 4.) Then the cost of the edges added for an inactive terminal j with parent i is < k-¢;;4+7v0; <
k(ap; + Bop;) +v0i < (a(8+ 1) + 7)oy, using the fact that o,y < 0. Thus the total cost of the edges
added in this step is < 100(T — T™), using a = 2,5 =2,y = 4. [

Proof of Theorem 1: By the above propositions, the total cost of H is < 2¢-mst(T) +40(T™) +~vo(T*) +
100(T —T*) < (k+ 1)ymst(T) + 80 (T*) + 100 (T — T*) < (k+ 1)mst(T) + 100(T) < (2+)0oPT +200pPT <
240PT.

We claim that the graph H has the required connectivity property, namely, x(¢,7) > k,Vi # j € T.
To see this, consider any pair of terminals 7, j and consider any one track). Suppose that either ¢ is in
Q-, or 7 is not in @, but has two neighbours in . Suppose the same statement holds for j (that is, j
is in @, or j is not in @, but has two neighbours in ;). Then, @, (together with the edges from 7 and
J to Q) contributes two openly disjoint ¢, j paths. Similarly, @, contributes one 4, j path if both ¢ and
j either are in), or have a neighbour in (.. By construction, each active terminal has two neighbours
in each of the tracks @, for 7 =1,...,|k/2], and has a neighbour in Q; similarly, each inactive terminal
is either in @), or has two neighbours in @, for 7 = 1,...,|k/2], and is in @ or has a neighbour in Q.
Then, for any two terminals ¢ and j, H has &k openly disjoint 7, 7 paths, since each of the tracks @, for
T =1,...,|k/2], contributes two openly disjoint 7, j paths, Q¢ contributes an 7, j path, and these k paths
together are openly disjoint. [|

4 The algorithm for subset [k, 1.5k]-connectivity

In this section, we extend the methods of the previous section to obtain an O(1)-approximation algorithm
for the the subset [k, 1.5k]-connectivity problem. It seems likely that these methods will give similar results
for the subset [k, p k]-connectivity problem, for any constant p, 1 < p < 2, but they do not extend to p = 2
for the following reason: as in Section 3, we choose some terminals to be active and we construct pairwise-
disjoint sets B; of radius O(1)y, for the active terminals ¢, where B; has at least a fraction ¢ of the nodes
inT; (¢p= % in Section 3); our method assumes ¢ > £, i.e., the size of every set B; — {i} is at least half the
maximum requirement; then, for p = 2 and an active terminal ¢ with r; = k we need |B; — {i}| > k = |T|

and this is not possible for sets of radius O(1)y,;. Our main application is to the NC-SNDP, and for this,
any constant p > 1 suffices; we chose p = 1.5 for convenience.

The main difficulty in extending the methods of Section 3 comes from the fact that an active terminal
¢ may have an inactive terminal v with r, > r; as a child. Then we cannot satisfy the connectivity
requirement of v by copying the neighbours of ¢ to v. Roughly speaking, we handle this as follows: we pick
a child v* of ¢ with the maximum requirement, and copy all the neighbours of 7 to v*; then, if needed, we
add new neighbours for v* in the tracks by examining the nodes @ € T'y»; if @ € Bj, for some active terminal
h then we proceed similarly to step (3) of Section 3 (though there are new complications), otherwise, we
either insert z as a new node into a track or we “transform” to the case of @ € B),. For any other inactive
child v of 7, we attempt to copy the “first” r, neighbours of v* to v. This is an informal (and inaccurate)
overview; the details are given below. The main contribution of this section is an algorithm and proof for
the following restricted case of Theorem 3.

Theorem 8 Let k be an integer multiple of 4, thus k = 0 (mod 4). There is polynomial-time algorithm
for computing a solution to the metric-cost subset [k, 1.5k]-connectivity problem of cost < O(1) - OPT.

Remark: A loose analysis gives a constant factor between 800 and 900 in the above theorem.

Theorem 3 follows by combining this theorem with Theorem 1. To see this, suppose that £ # 0 (mod 4)
(otherwise, we are done). Let k > k denote the next integer multiple of 4; clearly, k—k < 3. Then for
each p =k k+1,.. .JAC — 1, we apply the algorithm in Theorem 1 to the following instance II(p) of the
subset p-connectivity problem to obtain a solution subgraph H(p): we take the requirement of a terminal
¢ in II(p) to be ri = 0 if r; < p, and we take r; = p if r; > p; the rest of the instance stays the same.
Finally, we apply the algorithm of this section to the instance of subset [IAC, 1.5]%]—Connectivity where we
take the requirement of a terminal ¢ to be r; = 0 if r; <]%7 and we take ! = r; if r; >]AC; the rest of
the instance stays the same. Let H’ be the solution subgraph. Then, for the original instance (of subset
[k, 1.5k]-connectivity), we output the solution subgraph H* = H(k)UH (k+1)U---UH (k—1)UH’ whose
cost is at most O(1)opT. To see that H* satisfies the connectivity requirements, note that for every pair
of terminals 7, j, one of the subgraphs forming H* (namely, one of H(k), H(k+1),.. 7H(l% — 1), H') has
min(r;, r;) openly disjoint ¢, j-paths.

Assume that & is an integer multiple of 4. Let ¢ denote 3k/4. For any terminal ¢ and any edge iz of
the complete graph, let ¢;, = ¢(¢, #) denote the normalized edge cost max(c;y, f;)-

The detailed algorithm follows. A terminal may be in two states active or inactive. Initially, all the
terminals are active, and H is the graph consisting of all the terminal nodes and no edges, thus H = (T, ().

See Appendix 2 for a summary of the notation.

(1) [DE—ACTIVATE TERMINALS & CONSTRUCT DISJOINT BALLS FOR ACTIVE TERMINALS]

Renumber the terminals as 1,2,...,n’ by increasing value of p; thus gy < gy < -+ < .

Note: uj, < p1; does not imply o, < 0, since the requirements may differ, but we do have o, < 1.50;.
Scan the terminals in the order 1,2,...,n/, and skip the current terminal if it is inactive. For an
active terminal 7, construct the set B; = {j | ¢(4,j) < au;}, where we choose o = 4. For each active
terminal v > 7, if ¢;, < (ap; + Bau,), where we fix 5 = 2, then make v inactive, and record ¢ as the
parent of v by assigning p(v) = ¢. (The aim is to ensure that the sets B; of active terminals 7 are
pairwise disjoint.)

Note that ¢ € B; and |B;| > 14+ (1 - L)k =1+ %. (Otherwise, we have > k/a = k/4 nodes x
in I'; with ¢(i,2) > au, = ao;/k, so these nodes contribute > o; to > r. c(i,x).) Also note that
Ip(v) < Ky for each inactive terminal v.

10

Choose the ¢ nodes in B; nearest to ¢ and name them as 4y, tg,..., % such that ¢(7,4;) < ¢(7,42) <
< eliyil)

[CONSTRUCT { TRACKS ON THE DISJOINT BALLS]

After step (1), let T denote the set of active terminals and let n* = |T*|. If n* < 3, then apply
step (5') and stop. Otherwise, construct a cheap cycle @ on the active terminals by applying the
MST-doubling heuristic for the TSP to the subgraph induced by T*. Renumber the terminals such
that Q@ = 1,2,...,n% 1, that is, the active terminals get the numbers in {1,...,n*} according to their
ordering in Q. Construct { tracks Q1,Q2, ..., Q¢, where track Qr = 17,2+,... .05, 17(r=1,..., ().
Moreover, we have a special track Qg = @; this track is used to satisfy the requirements of inactive
terminals, but not the requirements between active terminals. Add all the tracks to H. (Although
the tracks are similar to each other, our construction distinguishes between the tracks and relies on
the ordering of the tracks given by the track indices 0,1,2,3,....)

[AUGMENT DISJOINT BALLS AND ASSIGN TOKEN ARCS]

This step is the same as step (3) in the algorithm for subset k-connectivity in Section 3, except that
some parameters are different: here, we have « =4, 5 =2, { = %.

After step (3), note that the sets B} of the active terminals ¢ are pairwise disjoint, each such set has
size > 14 (3k/a) = 1+ (3k/4) (since B; D B; and |B;| > 1+ (3k/a)), and for each active terminal i
the number of token arcs given to ¢ plus |Bf| is > r; + 1. Also, note that the cost of a token arc (4, j)

depends on the cost of the associated edge i¢ and is 3¢;q,.

[ATTACH ACTIVE TERMINALS TO TRACKS]

In summary, this step scans each active terminal ¢ and adds edges from 7 to the tracks such that ¢
has a neighbour ir in each of the tracks Qr,7=1,...,{, and moreover, ¢ has a second neighbour in
each of the r; — ¢ tracks Qr,7=1,...,r;— (. (Possibly, ¢ may have more than r; — ¢ tracks that each
have two neighbours of i.) We call ir the inner neighbour of 7 in Qr, and if ¢ has another neighbour
x in QQr then we call z the outer neighbour of 7 in Qr.

Note that the sets B; of the active terminals j are pairwise disjoint. In step (4), every node added
to a track is in B’; for some active terminal j (this can be seen from the description below). We call
anode z freeif x ¢ |J{B,; | j € T*} and z is in none of the tracks of the current graph H. While
processing a terminal v we may find a free node € I', and we may insert & as the outer neighbour of
v in a track. Throughout the execution, & stays in the same track, and stays as the outer neighbour
of v, but other terminals too may add z as their outer neighbour on that track.

We examine the active terminals in any order. Let ¢ be the current active terminal. First, we add
edges from 7 to each of i1, 1z, ..., also, we mark the nodes iy, i3,. .., as used (with respect to 7).
We start with the variable 7 = 1; this variable denotes the number of the track where the next outer
neighbour of 7 is placed.

If any unused nodes remain in B;, then choose an unused node z € B; with minimum ¢(¢, z), mark
as used w.r.t. ¢, insert z into track @, increase T by one, and add the edge iz. We repeat this step
until either B; has no unused nodes or 7 = £ 4+ 1 (meaning that 7 has an outer neighbour in each of
the (tracks). If 7 > (r; —) + 1, then we are finished with step (4) for 7, otherwise, we continue.

If an unused token arc (¢, h) is available, then we choose it, mark it as used, add the edge ¢hr, and
increase T by one; note that L is in By, and is the inner neighbour of h in track ¢r; also, note that
c(i, hr) is < the cost of the token arc (i, h). We repeat this step until there are no unused token arcs
or7=(r;—{0)+1. If 7 < (r;—{)+1, then we continue, otherwise, we are finished with step (4) for 1.

11

We choose an unused node ¢ € B — B; with minimum ¢(4, z), and mark it as used w.r.t. i (note
that is a free node). Then we insert z into track Qr and add the edge iz, provided there exists no
suitable “target terminal” h # ¢ (the details are given below; note that the target terminal is defined
with respect to the edge iz). If a suitable & exists, then we discard z and add the edge ihr, that is,
we take the inner neighbour of & in Q7 to be the outer neighbour of 7 in Q. (The reason for using
an edge thr rather than ¢z is that z is a free node now, but later we may find that z is essential for
attaching some inactive terminal v to the tracks, and at that step, we will be forced to “replace” the
edge 1z by some other edge iy; to avoid such “replacements” we look ahead, and we use the edge iz
only if there are no “future conflicts” for x.)

The details are as follows. We check whether there exists an active terminal h # ¢ such that
hop-rule ¢(i,h) < 2+ (B4 1)a)e(i, z) < 1de(i,2), and pp < c(i,).

If such an h exists, then we add the edge ihr. Note that ¢(i,hr) < c(i, h)+au, < (24+(8+2)a)e(i, z) <
18¢(i,). If no such h exists, then (as mentioned before) we insert z into track @7 and add the edge
1x. In either case, we increase 7 by one.

Note that the number of token arcs given to i plus |B’| is > r; 4+ 1, hence, this step will find r; token
arcs or unused nodes (including the nodes iy, ...,).

After all active terminals have been examined by step (4), it can be seen that H satisfies the con-
nectivity requirements of all active terminals.

Note that an inactive terminal may be in one of the tracks Q1,Qs2,...,Q¢, although none of the
active terminals is in those tracks.

For each active terminal ¢, let N; denote the (ordered) set of neighbours of ¢ in the graph H —V(Qo)
at the end of step (4). (Thus, N; is the set of neighbours attaching ¢ to the other tracks — excluding
the track Qo containing i.) Note that |N;| > r;, Vi € T* (if |B;| > r; + 1 then N; may have > r;
nodes). Moreover, we order the nodes in each set N; such that the inner neighbours of 7 come first
in the order iy, g, ..., 14, followed by the outer neighbours in the order of their track numbers (the
outer neighbour in @1, followed by the outer neighbour in Q3, ...).

Remark: The ordered sets N, for ¢ € T™ are used in step (5), and there it is critical that the total
cost of the edges from ¢ to the nodes in NV; is < vo; for a constant +; in particular, none of these edge
costs should be “charged” to the mst lower bound.

[ATTACH INACTIVE TERMINALS TO TRACKS]
Finally, “attach” each inactive terminal to the tracks.

By a sibling of an inactive terminal v we mean either the parent p(v) or another child of p(v).
In summary, we first copy to v the neighbours of a sibling, and then, if needed, we add additional
neighbours via I', — note that v’s requirement r, may be much greater than that of any of its siblings,
hence, copying the neighbours of a sibling may not suffice. We also use the special track Qo to satisfy
the requirements of inactive terminals; to see the need for Qg consider a child v of an active terminal
i with r, = r;+ 1 and I', = {¢} UT;; we handle the requirement of v by adding the edge vi — thus
attaching v to (o — and then copying the neighbours of 7 to v.

Focus on an active terminal ¢ and its children, and let v™ have the maximum requirement among
these terminals; assume that v* # ¢ (the other case is easy). Step (5) attaches v* to the tracks via a
neighbour in each of the ¢ + 1 tracks Qo, Q1, ..., Q¢ and two neighbours in each of the ry» — (£ + 1)

12

tracks Q1,Q2,...,Qr .—(¢41)- These neighbours of v™ constitute the ordered set N,«; we use our
standard ordering, i.e., the neighbour ¢ = p(v*) in Qg comes first, followed by the inner neighbours in
the tracks @1, ..., Qy¢, followed by the outer neighbours, and further, the neighbours are ordered by
their track number. Similarly, we have an ordered set of neighbours N, for each inactive terminal v,
where N, is the (ordered) set of nodes x such that step (5) — while processing v — adds an edge from
v to . (Possibly, v occurs in a track, but then neither of the two neighbours of v in the track occurs
in N, unless step (5) — while processing v — added the edge from v to that node.) A key property
of our construction is that for each sibling v of v*, N, is a prefix of N,«; in particular, for each
T €41,2,...,r,— ({+1)}, the outer neighbour of v in track @ is the same as the outer neighbour of
v™ in that track. Therefore, if I', contains two or more outer neighbours of siblings of v, then all of
these outer neighbours are in distinct tracks. (Thus, for siblings vy, v, ..., our construction makes

the sets Ny, , Ny,, ... “consistent” even though the sets Iy, ,T'y,, ... may have arbitrary intersections.)

We examine the active terminals ¢ in order of increasing y; values, and we examine the children v (of
i) in order of increasing p, values. By a prior sibling of v we mean either the parent p(v) or another
child of p(v) that precedes v in this ordering. For each child v of ¢, define the source terminal of v,
denoted p(v), to be a prior sibling with the maximum requirement; furthermore, define the ordered
set N to be {p(v)} U N,y if p(v) = p(v) (i.e., the source terminal is the parent), and let Ny = Ny,
otherwise (if the source terminal is not the parent).

If the requirement of v is < |[NY|, then we “copy” the first 7, nodes of N to v, i.e., for each of the
first r, nodes in the ordered set NY

s we add an edge from v to that node. Step (5) for v is finished
after this.

If the requirement of v is > |N?|, then we “copy” all the nodes of NY to v, i.e., for each of the nodes
in N2 we add an edge from v to that node. We mark all these new neighbours of v as used w.r.t. v.

Let 7 € {1,...,(} be the next available track for v, i.e., v has two neighbours in each of the tracks
Q1,...,Q,_1, but has only one neighbour in each of the tracks @Q,..., Q.

We repeat the following until step (5) has added a total of r, neighbours of v. We pick an unused
node z € I';, with minimum ¢,,, and mark x as used w.r.t. v. First, suppose that z is free. If the
following version of the hop-rule does not apply to vz (i.e., there exists no h satisfying the rule), then
we insert z into track), and add the edge vz. Also, we increase 7 by one. This causes an increase
of 2¢,, in the cost of the tracks, and an increase of ¢,, in the cost of the edges from v to the tracks.

To apply the modified hop-rule, we check whether there exists an active terminal h # i = p(v) such
that
o(0,h) < 2+ (B+ Da)d(v, 2) < 148(v,2), and gy < (v, 2).

If such an h exists, then we add the edge vhr and we have c¢(v, hr) < c(v,h) + ap, < 2+ (8 +
2)a)c(v,) < 18¢(v,). Also, we increase 7 by one.

Now, suppose that z is not free. Then one of the following mutually exclusive cases applies:

(a) @ € By, for some active terminal h.
(b) z € N, —|J{B; : j € T*} for some active terminal h.

(c) z isin one of the tracks, and neither (a) nor (b) applies.

Consider case (a). Note that i # ¢ = p(v), because we added edges from v to all nodes in N D B! D
B; (and marked all those nodes as used w.r.t. v) before picking x, hence, ¢ B;. First, suppose that

13

Figure 3: An illustration of step (5)(a) in Section 4, showing v, p(v) = 1, the prior sibling p(v) of v, N;
and Np(,); the “dashed edge” va is replaced by the edge vh. since the active terminal i has @ € Bp,.

3¢(v,) > py. Then we discard « as a neighbour of v and we add the edge (v, h;) to H, i.e., the inner
neighbour of & in @, is made the outer neighbour of v in ,. Also, we increase 7 by one. The new
edge has cost c¢(v, hy) < e(v,2) 4 c(h, 2) + apy, < c(v, 2) + 2ap;, < (14 6a)c(v, z) < 25¢(v, z). Now,
suppose that 3¢(v, 2) < pp,. Then we have a contradiction because c(h, i) < ¢(h, z)+c(v,z)+¢(v,1) <
apptc(v, @)+ Bap, +op; < app+(1+8a)c(v, z)+op; = app+9c(v, z)+ap; (by a=4,5=2) <
ap; + (o + 3)py, < ap; + Bapy, and moreover, p; < p, < ¢(v,2) < pp,. To verify the contradiction,
recall from step (1) that for active terminals ¢, h with p; < pp, we have ¢(h,7) > au,; + Bayy. See

Figure 3 for an illustration.

Consider case (b). As in case (a), note that h # ¢ = p(v), because we added edges from v to all
nodes in N D N; (and marked all those nodes as used w.r.t. v) before picking x. First, suppose that
¢(v,z) > ¢(h,z). Then we discard x as a neighbour of v and we add the edge (v, h.) to H. Also, we
increase 7 by one. The new edge has cost ¢(v, h,) < (v, 2)+c(h,)+ opy < (2+a)c(v, z) < 6¢(v, z).
Now, suppose that ¢(v,z) < ¢(h,z). Note that ¢(h,2) = c(h,z) > auy, since @ ¢ Bp. Then
we have a contradiction by the hop-rule of step (4), because ¢(h,7) < ¢(h,z) + c(v,2) + ¢(v,7) <
2¢c(h,z)+ (B+ Dap, < (24 (B + 1)a)c(h,z) < 14e(h,z) and p; < g, < ¢(v,2) < ¢(h,z). Thus the
hop-rule of step (4) applies to h and hz, so the active terminal i cannot use the edge ha. Hence, we

cannot have ¢(v, x) < ¢(h, x).

Now, consider case (¢). Let w be the first inactive terminal whose processing by step (5) results in the
addition of the edge wz (i.e., changes from a free node to a nonfree node when step (5) processes
w). Let p(w) = h. Note that h # ¢ (i.e., p(w) # p(v)), otherwise, w is a prior sibling of v (since the
edge wz was added during the processing of w by step (5)), and for every prior sibling u of v, each
node in N, is already used w.r.t. v (since we added edges from v to all nodes in NJ D Nﬁ(v)). First,
suppose that ¢(v,z) > ¢(w,). Then we discard z as a neighbour of v and we add the edge (v, h;) to
H. Also, we increase 7 by one. The new edge has cost ¢(v, h;) < ¢(v,z) + c(w, z) + c(h, w) + apy <
2¢(v, 2) + (B +2)p, < 2¢(v,2)+ a(B+2)c(v,z) < (24 (S +2))c(v,) < 18¢(v, z). Now, suppose
that ¢(v,2) < ¢(w,). Then we have a contradiction by the modified hop-rule of step (5), because
c(w,1) < c(w,z) + e(v,x) + ¢(v,7) < 2¢(w,2) + (B+ Dap, < 2+ (B+ 1)a)é(w, z) < 14¢(w, x) and
i < py < €(v,x) < é(w,x). Thus the modified hop-rule of step (5) applies to w and wz, so the

14

inactive terminal w cannot use the edge wz. Hence, we cannot have ¢(v, z) < ¢(w, z).

This completes the description of step (5).

(5') [SPECIAL HANDLING FOR 1 OR 2 ACTIVE TERMINALS]
Suppose that n* = 1, and T* = {i}. Then we ignore the tracks altogether, but we compute the
ordered set N; via step (4) applied to ¢, and the ordered set N, for each inactive terminal v by
applying step (5) to v. We add the edges from each terminal v (where v = ¢ or v is a child of 7) to
all the nodes in V,.

Now, suppose that n* = 2, and T* = {h,i}. We proceed as in steps (2)-(5), except that we
temporarily allow tracks that consist of exactly two nodes and two copies of the edge between them.
In particular, the special track Qg consists of nodes h, i and two copies of the edge hi. At the end,
for each track consisting of exactly two nodes, we keep only one copy of the edge between them; thus

the solution graph H is simple.

Proposition 9 (i) The total cost of the edges added by step (4) and incident to an active terminal i is
< 180;. (i) At the end of step (4), the total cost of the { + 1 tracks is < (204 2)mst(T) + 3ac(T™).

Proof: For an active terminal 7, the total cost of the token arcs (i, h) given to 7 is < 30;. The cost of the
edges added that are incident to ¢, but excluding the cost due to the token arcs, is < ao; if |B;| > r; + 1
(in this case, B; = B;, no token arcs are given to 7, and we add edges to the r; nearest neighbours of 7, and
then we add < 20 —r; < 1.5k —k edges of cost < ap; to nodes in By, for a total cost of < o;+ %a,ui < aoy),
and otherwise is < (2+ (8+2)a) Y yer, cin < (24 (B + 2)a)o; = 180; (by hop-rule). This proves part (i).
For part (ii), observe that the total cost of the {4 1 tracks (that were constructed in step (2) and modified
in step (4)) is < (20 + 2)mst(T) + 3ao(T*); for the second term, note that the contribution of i € T™ is
< 20; if |B;i| < ri + 1, and otherwise is < 2aypu, for each of < 2¢ = 1.5k nodes in B,;, and this sums to
< (2ap;)(1.5k) < 3ao;. [

Proposition 10 (i) The total cost of the edges added by step (5) and incident to an inactive terminal v
is < 401o,. (i) The total increase in the cost of the tracks in step (5) is at most 20(T — T*).

Proof: We claim that the cost of the added edges for an inactive terminal v with parent ¢ is < 4010,.
Let 4 be a constant such that the cost of the added edges incident to an active terminal ¢ is < yo;. (From
step (4) and Proposition 9, we have v = 18.) First, note that if r, < rp,, then the cost of the added
edges incident to v is given by the cost of copying r, neighbours from the parent p(v) and this cost is
< YOpw) + 1w c(v,p(v)) < Lyoy, + 1y - (B + Lap, < (157 + (8 + 1)a)o, < 390,. Now, assume that
Ty 2 Tp(v), hence, o, 2> 040

First, consider the cost incurred in copying the neighbours of the source terminal p(v). This cost
consists of two components, (i) the cost of copying rp,) < 7, neighbours from the parent p(v), and
(ii) the cost of copying the remaining (at most ry,) — rp) < k/2) nodes from Ny(,y. The component (i)
is <yOp) + 1o c(v,p(v)) < yop + 1o (B4 Dap, < (v+ (8 + a)o, < 300,.

Now, consider component (ii). We claim that component (ii) is < 3370,. Consider any node y €
Npw) = Np(w)- Let w be the first (earliest processed) sibling of v that has an edge wy (i.e., step (5) added the
edge wy while processing w and no prior sibling u of w has y € N,,); possibly, w # p(v). Call w the sponsor
of y. By examining the details of step (5), it can be seen that for each node z € N, — Np(w), there exists a
distinct node 2’ € T', such that ¢(w, z) < 25¢(w,). Thus for each node y € N,y — Ny(y), the sponsor w of
y has a distinct node y’ € T', such that ¢(w, y) < 25¢(w, y'). Moreover, there is a distinct node 2’ € ', such

15

that e(w, y’) < 24p, + ¢(v,2’). To see this, first note that ¢(v, w) < ¢(v,p(v)) + c(p(v), w) < 2¢(v,p(v)) <
2(8 4 1)ap, < 24u,; next, focus on the nodes z; in T', ordered by increasing cost of the edge vz, say
L1, %2, ..., %y, ; suppose that y is the sth closest neighbour of w; then note that c¢(w,y’) < 24u, + ¢(v, z4)
because each of the nodes z; in I', has ¢(w,z;) < ¢(v,w) + ¢(v, z;), hence, for each of the s nodes z;,
Jj=1,...,s we have c¢(w,z;) < 24p, + ¢(v, z;). Moreover, ¢(v,y) < c(v,w) + c(w,y) < 24p, + c(w, y).
Hence, for each node y € Np(,) — Np(y), there is distinct node 2’ € ', such that c(v, y) < 24p, +25(24p, +
c(v, ")) < 624p, + 25¢(v, 2’) (since p,, < p, and c(w,y) < 25¢(w, y') < 25(24p, + ¢(v,2’)), where w and
y" are as above). Then, summing over all nodes y € Np(w) = Np(v), we see that the total cost of these edges
vy is < (| Npw) = Np) 1) (624p,) + 250, < (k/2)(624p,) + 250, < 3120, + 250, < 3370,

Finally, consider the total cost of the edges from v to the nodes in N, — Np(,). As mentioned above,
for each node y € N, — Ny, there exists a distinct node y" € T', such that c(v,y) < 25¢(v,y’). Also,
|Ny — Nyl < 7o — k, and for each node y' € T', we have ¢(v,y’) < p,, + c(v,y’). Hence, > {c(v,y) : y €
Ny — Ny} < (ro — k) - 254, + 250, < 500, — 25k, < 500, — 25(%=)pu, = (50 — 25(3))0, = 150,

Summing the three contributions (from components (i), (ii), and the previous paragraph), we see that
the total cost of the edges added (by step (5)) incident to an inactive terminal v is < (30+ 337+ 34)0, <

4010,.

The total increase in the cost of the tracks in step (5) is at most 20(T — T™), because during the
processing of an inactive terminal v, step (5) may insert each node x € I', into the tracks at an incremental
cost of 2¢(v, 2). This completes the proof of the proposition. [|

Remarks: The constant factor of 401 in the above proposition is not optimal. An easy way to improve on it
is to replace the constant 25 in the analysis of component (ii) by 19, by tightening the analysis of case (a)
in step (5); using the notation from there, recall that this analysis shows that 3¢(v,) > py,, and hence the
newly added edge has cost < 25¢(v,z). It can be seen that the ‘3’ may be replaced by (2a+ 1)/a = %,
and thus the newly added edge has cost < 19¢(v,z). We did not optimise the analysis, to avoid further
complications.

Proof of Theorem 8: We claim that the cost of the solution subgraph H is ¢(H) < 9000pT = O(1)0OPT.
By Propositions 9 and 10 and using k > 4, we have ¢(H) < (3ac(T™) 4+ 20(T — T%) + (20 + 2)mst(T)) +
(180(T*) +4010(T — T™)) < 4030(T) + (4)(§)mst(T) < 9000PT.

We claim that the solution subgraph H satisfies the connectivity requirements. Consider any pair of
inactive terminals s,¢t. (The proof is similar but simpler for a pair of active terminals, or for one active
and omne inactive terminal.) First assume that there are at least three active terminals (that is, |T*| > 3).
Without loss of generality let ry = min(rs,r;). We claim that H has r, openly disjoint s,¢-paths. Recall
that each inactive terminal v has inner neighbours on all ¢ 4+ 1 tracks, and has outer neighbours on the
first r, — (€ + 1) tracks among @1, ..., Q¢ (an active terminal v has at least r, — ¢ tracks that have outer
neighbours). It follows that we have have { + 1+ r; — ({ + 1) = r; openly disjoint s, ¢-paths using these
tracks. (One of these s,t-paths consists of a path of the special track Qo = @ and the edges sp(s) and
tp(t).)

Clearly, the connectivity requirements hold for the case of |T*| = 1. Now, suppose that |T*| = 2. The
above arguments still apply unless both s and ¢t have inner and outer neighbours on a track that consists
of exactly two nodes, call them z and y. In this case, our track consists of a single edge zy (since we
discarded the second copy of zy in step (5')). Still, this track gives two openly disjoint s, t-paths, namely,
s, z,t and s,y,t. Thus it can be seen that the connectivity requirements hold. This completes the proof of
Theorem 8. [|

16

5 The algorithm for node-connectivity SNDP

This section presents a proof of Theorem 4, based on (the algorithms in) Theorems 1, 3. For the sake of
motivation, let us obtain an O(In ry,,,)-approximation algorithm for a restricted version of NC-SNDP where
every terminal has a requirement r; and every pair of terminals ¢, j has the requirement r; ; = min(r;, r;).
The method is similar to the method for proving Theorem 3 from Theorems 1 and 8.

Let opT denote the optimal value of the instance (of restricted NC-SNDP). First, foreach p = 1,2,...,7,
we apply the algorithm in Theorem 1 to the following instance II(p) of the subset p-connectivity problem
to obtain a solution subgraph H(p): we take the requirement of a terminal 7 in II(p) to be ri = 0if r; < p,
and we take r; = p if r; > p; the rest of the instance stays the same. By Theorem 1, the cost of H(p)
is O(1) - opT. After this, we repeatedly apply the algorithm in Theorem 8 to solve an instance (specified
below) of subset [p, 1.5p]-connectivity, where p is an integer multiple of 4 (p = 8,12,16,24, ..., details
later), to obtain a solution subgraph H'(p). The instances of subset [p, 1.5p]-connectivity are as follows:
we take the requirement of a terminal ¢ to be r! = 0 if r; < p, we take r} = r; if p < r; < 1.5p, and we
take v/ = 1.5p if r; > 1.5p. By Theorem 8, the cost of H'(p) is O(1) - opT. We start with p = 8, and
we iterate until 7,4, < 1.5p; after each iteration, we update p to the largest integer multiple of 4 that is
< 1.5 times the previous p. Clearly, the number of iterations is O(In rp4,). Finally, we output the solution
subgraph H* for the instance (of restricted NC-SNDP); H* is the union of all the solution subgraphs H (p),
p=1,...,7, and H'(p), p = 8,12,.... Thus H* is the union of O(In ry,,) subgraphs such that each of
these subgraphs has cost O(1) - opT, and so H* has cost O(In ry,q,) - OPT. To see that H* satisfies the
connectivity requirements, note that for every pair of terminals 7, j, one of the subgraphs forming H™ has
min(r;, r;) openly disjoint ¢, j-paths, namely, the subgraph H (min(r;, r;)) if min(r;, r;) < 7, otherwise, any
subgraph H'(p) where p satisfies p < min(r;, ;) < 1.5p.

Our algorithm for metric-cost NC-SNDP is similar to the algorithm described above for the restricted
version of NC-SNDP. Let II* be an instance of NC-SNDP, and let opT denote its optimal value. We
use k7 to denote an integer multiple of 4 such that r,. < 1.5k7. We repeatedly apply the algorithm
of Theorem 1 (for subset k-connectivity) for k = 1,...,7, and derived instances II(1),...,II(7) to obtain
solution subgraphs H(1),...,H(7). Then we repeatedly apply the algorithm of Theorem 8 (for subset
[k, 1.5k]-connectivity) for k = 8,12,16,24, ..., k/ and derived instances IT’(8), 11'(12), ..., I'(kf) to obtain
solution subgraphs H'(8),..., H'(k/). We start these iterations with k& = 8, and we iterate until k = k7;
after each iteration, we update k to the largest integer multiple of 4 that is < 1.5 times the previous k.
The construction of the derived instances II(p) and II'(k) is described below.

Finally, we output the solution subgraph H* for IT*; H* is the union of all the solution subgraphs H (k),
k=1,....7, and H'(k), k = 8,12,. .., k%: we call these solution subgraphs the constituent subgraphs of
H*. Below, we prove that the cost of each of the constituent subgraphs is at most O(1) - opT. Clearly, the
number of iterations is O(In ryq,). Thus H* is the union of O(In r,,4,) subgraphs such that each of these
subgraphs has cost O(1) - opT, and so H* has cost O(In ry,q,) - OPT. Below, we prove that H* satisfies the
connectivity requirements, because for every pair of terminals ¢, 7, one of the constituent subgraphs of H*
has > r; ; openly disjoint ¢, j-paths.

We define the derived instances via a well-studied problem in network design, namely, the generalized
Steiner tree problem, which is as follows: we are given a graph G = (V| E), edge costs ¢, and § sets of

terminal nodes ﬁl, 152, .. .,ﬁq; the goal is to compute an (approximately) minimum-cost forest F' of G
such that each terminal set D,,,m = 1,...,¢q, is contained in a (connected) component of F. Goemans

and Williamson [17], based on earlier work by Agrawal et al. [1], gave 2-approximation algorithms for this

problem based on the primal-dual method.

17

Here is the construction for one of the derived instances IT'(k); recall that this is an instance of the
subset [k, 1.5k]-connectivity problem, where k is a fixed parameter. We start from II* and construct a
requirements graph R with node set T and edge set E(R) as follows. For each terminal pair ¢,; with
kE < r;; < 1.5k (ie., the requirement for the pair is within the valid range for our derived instance), we
add the edge ij to R. Denote the node sets of the (connected) components of R by 151, 152, .. .,ﬁq. Next,
we define an instance II(gst) of the generalized Steiner tree problem on the graph G with edge costs ¢
(here, G, c are as in II*), and with terminal sets Dy, D,,.. .,ﬁq. We solve this auxiliary problem II(gst)
by applying the primal-dual algorithm of Goemans and Williamson [17]. Let FF C E(G) be the forest
computed by the Goemans-Williamson algorithm, and let Fy, Fy, ..., F, denote the partition of F into
connected components. Let the set of terminals in the component of F,,, be denoted by D,,, m=1,...,¢;
thus each set D,, is the union of one or more of the terminal sets ﬁl, 152, .. .,ﬁq. Foreach m=1,...,¢,
we define an instance II7, (k) of the subset [k, 1.5k]-connectivity problem as follows: the graph G and the
edge costs ¢ are as in IT*; the set of terminal nodes is D,,, and the requirement r} of a terminal i € D,;, is
defined to be max(r;; : {i,j} € E(R)); clearly, k < rl < 1.5k, Vi € D,,. We take the derived instance
IT"(k) to be the disjoint union of these instances Il (k), m = 1,...,q, i.e., we assume that each instance
IT". (k) has its own copy of G and ¢. To solve IT'(k), we take each m = 1,...,¢, and apply the algorithm
in Theorem 8 separately to II/ (k) to obtain a solution subgraph, call it H/, (k). (These instances II] (k)
are pairwise disjoint, and we solve them separately, one by one.) Then we take the union of the subgraphs
H{(k),...,H] (k) and call it H'(k); this is the solution subgraph of II’(k). The cost of the subgraphs
H! (k), m=1,...,¢,is analysed below.

Our reasons for using the auxiliary problem II(gst) for defining the instance II'(k) may be seen from
the following example. Suppose that k is large (say k = /n) and the edges in F(R) form a matching say
{{s1,t1},{s2,t2}, ..., {54, t4}}, say ¢ = O(n). Moreover, suppose that G has a cut §(S) such that each edge
in this cut is expensive, and some of the edges in F'(R) have both ends in S and the remaining edges in E(R)
have both ends in V' — §. Say the optimal solution consists of two disjoint subgraphs, one contained in the
subgraph induced by § and the other contained in the subgraph induced by V — S. Then we cannot take
IT'(k) to be a single instance with terminal set {s1,...,54,%1,...,t5}, because then every solution subgraph
will have > k edges from the expensive cut §(S). Also, we cannot take II'(k) to consist of § separate
sub-instances with one sub-instance for each connected component of R = (T, E(R)), because the optimal
values of these sub-instances may sum to § - OPT, and the solution subgraph computed by our algorithm
may have cost as high as this (assuming that the algorithm returns the union of the solution subgraphs of
these ¢ sub-instances). We get around this difficulty by using the Goemans-Williamson algorithm to merge
the connected components of R = (T, E(R)) into appropriate “clusters” and then we construct a separate
sub-instance for each of these “clusters” (these are the sub-instances that we called I (%), ..., I (k)). The
key point is that (i) these sub-instances have pairwise disjoint terminal sets Dy, ..., D, hence, the sum
of the o() lower-bounds (used in Theorem 8), namely, Y7 _ o(D,,), is < the o() lower-bound of IT*, and
(ii) the following proof (which is based on the 2-approximation guarantee of Goemans and Williamson)
shows that the sum of the mst() lower-bounds for these sub-instances, namely, > 7 _, mst(D,,), is < O(1)
times the mst() lower-bound of IT*. Also, for each sub-instance, the solution subgraph has cost within an
O(1) factor of the sum of its o() and mst() lower-bounds. Hence, the union of the solution subgraphs of
these sub-instances has cost within an O(1) factor of the optimal value of II*.

The construction of the instances II(p), p = 1,...,7, is similar to that of the instances IT'(k). We start
with R = (T, E(R)) where E(R) consists of terminal pairs {7, j} with r; ; = p. Then we obtain a family of
pairwise disjoint sub-instances II1(p), II3(p), ... and these sub-instances together form II(p).

Proof of Theorem 4: Recall that II* denotes the instance of NC-SNDP, opT denotes the optimal value

18

of I1*, and H™ denotes the solution subgraph of II* found by our algorithm. The goal is to analyze the
cost of the constituent subgraphs of H* and show that each has cost < O(1)-oPT, and then to show that
H~ satisfies the connectivity requirements. The proof is based on the following LP (linear programming)
relaxation P of II* that interprets each requirement r; ; as a requirement for r; ; edge-disjoint 7, j paths.
Thus the optimal value of P* gives a lower bound on opT. The LP has a variable z., 0 < z. < 1, for
each edge ¢ € E; the intention is that each feasible solution H of II* gives a zero-one vector 2 € R that
satisfies two conditions: z. = 1iff e € H, and « satisfies the constraints of the LP (though feasible zero-one
solutions of the LP may not give feasible solutions of II*).

P z* = min) ¢ Cele
subject to
z(6(S)) > max{r;; : 1€ 85,7¢S5}, VSCV
xe > 0, VeeFE

Focus on one of the derived instances II'(k) and its associated generalized Steiner tree instance II(gst).
We use the notation from the construction of IT'(k) given above. Goemans and Williamson [17] proved that
the cost of the forest computed by their algorithm is < 2 times the optimal value z(gst) of the following LP
relaxation P(gst) of II(gst). The LP has a variable z., 0 < z. < 1, for each edge e € E; the intention is that
each feasible solution F of II(gst) corresponds to a zero-one vector z € R” that satisfies two conditions:
z. = 1iff e € F, and z satisfies the constraints of the LP.

P(gst) : z(gst) = min) pceT.
subject to
2(6(8)) > 1, ¥VSCV:Im=1,....4:0#SN Dy, # Dy,
xe > 0, VeeFE

A key observation is that k - z(gst) < opT. To see this, note that multiplying the right-hand-side of any
constraint of the LP P(gst) by k gives a constraint that is valid for the LP P*. (This follows because
whenever we have a constraint 2(5(S)) > 1 in the LP P(gst), then the node set S separates two terminals
v, w such that the requirements graph R has an v, w-path consisting of terminal-pairs {7, j} such that
ri; > k; since the v, w-path of R “crosses” S, one of the terminal-pairs {¢, j} in the v, w-path “crosses” S,
therefore, max{r; ; : ¢ € S,j € S} > k, hence, the constraint “z(6(S)) > k” is a valid constraint for the
LP P*.) Consequently, for every feasible solution z* of the LP P*, we see that %x* is a feasible solution
of the LP P(gst). Moreover, if z* is an optimal solution of the LP P*, then we have z(gst) < 1c(z*) =
%z* < 1OPT or equivalently, k - z(gst) < OPT.

Focus on the cost of the solution subgraph H'(k) = H
each m =1,...,q the cost of H,,(k) is O(k) - mst(Dy,) + O(1
the terminal set of H/ (k). Then the cost of H'(k) is

1(k) U Hy(k)U---U Hy(k), and note that for
)-0(Dp) (by Theorem 8), where D,, denotes

O(k) - Yozt mst(Dm) + O(1) - (D)
< O(k) - (m) +O(1)-o(T) (since mst(Dy,) < 2¢(Fp), Ym=1,...,q)
< O(k) - o(F) O(1) -o(T)
< O(1)-opT+O(1)-0(T) (since ¢(F) < 2z(gst) and z(gst) < opT/k)
< O(1) -opr.

A similar analysis for the solution subgraphs H(1),..., H(7) shows that each has cost < O(1) - oPT.
Thus our claim for the cost of the solution subgraph H* follows: ¢(H*) = O(In ry,qy) - OPT.

19

Finally, let us verify that H* satisfies the connectivity requirements. Consider any pair of terminals
i,j and their requirement r; ;. Assume that r; ; > 8 (otherwise, we are done by a similar but simpler
analysis). Focus on an iteration of the algorithm that fixes the parameter k such that k& < r; ; < 1.5k.
In that iteration, the requirements graph R has the edge {i,j}, hence, both ¢, j must be contained in one
of the terminal sets Dy, ..., Dy, say Dy. Now, consider the sub-instance IT} (k) and its solution subgraph
Hj(k) and note that Hj(k) must have > r; ; openly disjoint i, j-paths because both r{ and r} are > r; ;
(here, r/ and r’ denote the requirements of ¢ and j in IT{ (k)) Thus, H* has > r; ; openly disjoint ¢, j-paths.

This completes the proof of Theorem 4. [|

Acknowledgments. We thank Bill Cunningham, Michel Goemans, Balaji Raghavachari, Ram Ravi, and
Santosh Vempala for useful discussions over the years.

20

Appendix 1: Examples illustrating claims in Section 1

This appendix has details pertaining to Corollary 2 and the remarks following it (in Section 1). In
particular, we include a proof of the claim on 2-connected graphs with metric costs, and give examples to
show that this claim does not apply to k-connected graphs for & > 3. Also, we give examples showing that
for metric costs, a k-connected graph may be a factor of (k) times more expensive than a k-edge-connected
multi-graph. The next result is well known, but we include a proof for the reader’s convenience.

Proposition 11 In a metric graph, a minimum-cost 2-edge connected spanning subgraph has the same
cost as a minimum-cost 2-node connected spanning subgraph.

Proof: Take a counterexample such that the minimum-cost 2-edge connected spanning subgraph H con-
tains as few cut nodes as possible. Clearly H contains at least one cut node v. Let Wy and W5 be connected
components in H —{v}. Clearly, v lies on a cycle Cq in Wy U{v} and a cycle Cy in Wy U{v}. Let w; and w,
be neighbours of v on €7 and C5 respectively. Now, split off the edge-pair vwy, vws, that is add the edge
wywy and remove the edges vwy and vw;y. This creates a cycle C' on the node set V(Cq) UV (Cy). Thus
the resulting graph stays 2-edge connected. Note that the number of components in H — {v} decreases by
one. We repeat this step until H — {v} is connected. By the triangle inequality, the cost of the subgraph
does not increase. This contradicts our original choice of H. [

For k > 3, however, there exist k-edge connected spanning subgraphs of K, that have lower cost than
that of a minimum-cost k-node connected spanning subgraph. To see this let H be the union of two
k + 1 cliques that share exactly one node v. Let the nodes of these cliques be labelled aq,as, ..., a, v and
b1,b2, ..., bk, v, respectively. Next consider the complete graph K, on 2k + 1 nodes whose edges costs are
given by the shortest-path distances induced by H. That is, every edge in H has cost 1, and every edge
in E(K,) — E(H) has cost exactly 2. Since H itself is k-edge connected we see that I,, contains a k-edge
connected spanning subgraph of cost 2(’“;1) = k? + k. Now, any k-node connected spanning subgraph of
K, contains at least %(2]6 + 1)k = k2 4+ %k edges. Moreover there must be at least k& — 1 edges of cost 2
between nodes in ay, as, ..., ar and nodes in by, by, ..., b, otherwise we obtain a node-cut containing less
than k nodes. So any k-node connected spanning subgraph of K,, has cost at least k2 + %k + (k—1). This
is strictly greater than the cost of the k-edge connected graph H, if & > 3. The case of k = 3 is shown in

Figure 4.
a, b,
az bs
Figure 4: A metric-cost 3-edge connected graph that is strictly cheaper than any 3-node connected (span-
ning) graph. The edges in H have cost 1, and the edges in E(K,) — E(H) have cost 2.

Clearly, if the edge costs do not satisfy the triangle inequalities, then the minimum cost of a k-node
connected spanning subgraph of K, cannot be bounded in terms of the cost of a k-edge connected spanning

21

subgraph. To see this take any k-edge connected graph H that is not also k-node connected (e.g., see
Figure 4 for k = 3). Let every edge in H have cost 1 and every edge in E(K,) — E(H) have cost L. Since
any k-node connected spanning subgraph of K,, has cost > L, the claim follows by the choice of L.
Corollary 2 and the other results do not extend to multi-graphs. To see this, let & be an even number,
n—12>k > 2 and let H be obtained from a cycle on n nodes by taking %k copies of each edge. See
Figure 5. If each edge in H has cost 1 then a minimum-cost k-edge connected multi-graph has cost %nk

Figure 5: A metric-cost k-edge connected multi-graph that is a factor of O(k) cheaper than any k-node
connected spanning subgraph. The edge costs are given by the shortest-paths distances in the cycle.

Let the cost of the other edges of K, be given by the shortest-path distances in H. Each node has at
least k different neighbours in a k-node connected spanning subgraph, so the cost of the edges incident to
any node is > 2 Zigzl 1= k(% + 1). Hence, the minimum cost of a k-node connected spanning subgraph is
> Lnk?. This is a factor of O (k) times the cost of the k-edge connected graph H.

22

Appendix 2: Table of Notation & Symbols for Section 4

node set

set of terminal nodes

set of active terminal nodes

terminal nodes (usually active)

inactive terminal nodes

arbitrary nodes (terminals/nonterminals)
requirement of terminal 7

requirement of terminal pair 7, j

connectivity parameter

edge incident to nodes z,y

cost of edge xy

set of r; nearest neighbours of ¢

total cost of edges from ¢ to nodes in T';

average cost of an edge from ¢ to nodes in I';
normalized cost of edge iz

parameters of algorithm in Section 4

set of nodes within ball of radius apu; centered at ¢
number of tracks

tracks

index of current track

inner neighbours of active terminal ¢

parent of inactive terminal v

ordered set of nodes attaching terminal ¢ to tracks
cost of MST of subgraph induced by node set X

7‘17]

k- (k=0 (mod 4) in Section 4)
Ty

Cay OF ¢(2,Y)

r;

o;

Hy

c(i,x) := max(ciz, p;) (or €ip)
o, B,y (042475:2)

B,

(£ =3k/4in Section 4)
Qo,Q1,Q2, ..., Q

T

1,225 U

23

References

(1]

A.Agrawal, P.Klein and R.Ravi, “When trees collide : An approximation algorithm for the generalized Steiner
problem on networks,” SIAM Journal on Computing, 24, 445-456, 1995. Preliminary version in Proc. ACM
STOC, 1991.

S.Arora, “Polynomial-time approximation schemes for Euclidean TSP and other geometric problems,” Journal

of the ACM, 45, 753-782, 1998.

M.Bern and P.Plassmann, “The Steiner problem with edge lengths 1 and 2,” Information Processing Letters,
32, 171-176, 1989.

D.Bienstock, E.Brickell and C.Monma, “On the structure of minimum-weight k-connected spanning networks,”

SIAM J. Discrete Math., 3, 320-329, 1990.
J.Cheriyan, T.Jordédn and Z.Nutov, “On rooted node-connectivity problems,” Algorithmica, 30, 353-375, 2001.

J.Cheriyan, S.Vempala and A.Vetta, “Approximation algorithms for minimum-cost k-vertex connected sub-

graphs,” Proc. 34th ACM STOC, New York, 306-312, 2002.

J.Cheriyan, S.Vempala and A.Vetta, “An approximation algorithm for the minimum-cost k-vertex connected

subgraph,” SIAM Journal on Computing, 32, 1050-1055, 2003.

N.Christofides, “Worst case analysis of a new heuristic for the traveling salesman problem,” Report 388, Grad-
uate School of Industrial Administration, Carnegie Mellon University, Pittsburgh, 1976.

A.Czuma] and A.Lingas, “A polynomial time approximation scheme for Euclidean minimum cost k-

connectivity,” Proc. 25th ICALP, LNCS 1443, 682-694, 1998.

A.Czumaj, A.Lingas and H.Zhao, “Polynomial-time approximation schemes for the Euclidean survivable net-

work design problem,” Proc. 29th ICALP, LNCS 2380, 973-984, 2002.

A.Czumaj, M.Grigni, P.Sissokho and H.Zhao, “Approximation schemes for minimum 2-edge-connected and

biconnected subgraphs in planar graphs,” Proc. 15th ACM-SIAM SODA, 489-498, 2004.

G.B.Dantzig, L.R.Ford and D.R.Fulkerson, “Solution of a large-scale traveling-salesman problem,” Operations

Research 2, 393-410, 1954.

A.Frank, “Connectivity augmentation problems in network design,” in Mathematical Programming: State of

the Art 1994, (Eds. J. R. Birge and K. G. Murty), The University of Michigan, Ann Arbor, MI, 1994, 34-63.

G.L.Frederickson and J.Ja’Ja’, “On the relationship between the biconnectivity augmentation and traveling
salesman problems,” Theor. Comp. Sci. 19, 189-201, 1982.

M.Goemans and D.J.Bertsimas, “Survivable networks, linear programming relaxations and the parsimonious
property,” Mathematical Programming, 60, 145-166, 1993.

M.Goemans, A.Goldberg, S.Plotkin, D.Shmoys, E.Tardos and D.Williamson, “Improved approximation algo-
rithms for network design problems,” Proc. 5th Ann. ACM-SIAM Symposium on Discrete Algorithms, 223-232,
1994.

M.Goemans and D.Williamson, “A general approximation technique for constrained forest problems,” STAM
Journal on Computing, 24, 296-317, 1995.

K.Jain, “A factor 2 approximation algorithm for the generalized Steiner network problem,” Combinatorica,

21(1), 39-60, 2001. Preliminary version in Proc. 39th IEEE FOCS, 1998.

24

[19]

[20]

[21]

S.Khuller, “Approximation algorithms for finding highly connected subgraphs,” in Approzimation algorithms
for NP-hard problems, Ed. D.S.Hochbaum, PWS publishing co., Boston, 1996.

S.Khuller and B.Raghavachari, “Improved approximation algorithms for uniform connectivity problems,” Jour-

nal of Algorithms 21, 434-450, 1996.

G.Kortsarz, R.Krauthgamer and J.R.Lee, “Hardness of approximation for vertex-connectivity network design

problems,” SIAM J. Computing 33, 704-720, 2004.

G.Kortsarz and Z.Nutov, “Approximating k-node connected subgraphs via critical graphs,” Proc. 36th ACM
STOC, June 2004.

G.Kortsarz and Z.Nutov, “Approximating node connectivity problems via set covers,” Algorithmica 37, 75-92,
2003. Preliminary version in APPROX, Approxzimation algorithms for combinatorial optimization, Springer,

LNCS 1913, 194-205, 2000.

L.Lovasz, Combinatorial Problems and Ezercises, North-Holland, Amsterdam, and Akadémiai Kiad6, Budapest,

1979.

C.L.Monma, B.S.Munson and W.R.Pulleyblank, “Minimum-weight two-connected spanning networks,” Math-
ematical Programming 46, 153-171, 1990.

C.L.Monma and D.F.Shallcross, “Methods for designing communication networks with certain two-connectivity
survivability constraints,” Operations Research 37, 531-541, 1989.

J.S.B.Mitchell, “Guillotine subdivisions approximate polygonal subdivisions: a simple polynomial-time approx-
imation scheme for geometric TSP, k-MST, and related problems,” SIAM J. Computing 28, 1298-1309, 1999.

M.Stoer, Design of Survivable Networks, Lecture Notes in Mathematics 1531, Springer-Verlag, Berlin, 1992.

L.Trevisan, “When Hamming meets Euclid: the approximability of geometric TSP and MST,” SIAM Journal
on Computing, 30, 475-485, 2001.

V.V.Vazirani, Approzimation Algorithms, Springer-Verlag, Berlin, 2001.

D.Williamson, M.Goemans, M.Mihail and V.Vazirani, “A primal-dual approximation algorithm for generalized
Steiner network problems,” Combinatorica 15, 435-454, 1995.

25

