
Approximation Algorithms for Network Design with Metri CostsJoseph Cheriyan� and Adrian VettayAbstrat. We study undireted networks with edge osts that satisfy the triangle inequality.Let n denote the number of nodes. We present an O(1)-approximation algorithm for a gener-alization of the metri-ost subset k-node-onnetivity problem. Our approximation guaranteeis proved via lower bounds that apply to the simple edge-onnetivity version of the problem,where the requirements are for edge-disjoint paths rather than for openly node-disjoint paths. Aorollary is that, for metri osts and for eah k = 1; 2; : : : ; n�1, there exists a k-node onnetedgraph whose ost is within a fator of 24 of the ost of any simple k-edge onneted graph. Thisresolves an open question in the area. Based on our O(1)-approximation algorithm, we presentan O(log rmax)-approximation algorithm for the metri-ost node-onnetivity survivable net-work design problem where rmax denotes the maximum requirement over all pairs of nodes. Ourresults ontrast with the ase of edge osts of zero or one, where Kortsarz et al. (SICOMP 33,pp.704-720) reently proved, assuming NP* quasi-P, a hardness-of-approximation lower boundof 2log1�� n for the subset k-node-onnetivity problem, where � denotes a small positive number.1 IntrodutionA basi problem in network design is to �nd a minimum-ost sub-network H of a given network G suhthat H satis�es some prespei�ed onnetivity requirements. Fundamental examples inlude the minimumspanning tree (MST) problem and the traveling salesman problem (TSP). By a network we mean anundireted graph together with non-negative osts for the edges, and we use n to denote the numberof nodes. Our fous is on networks where the edge osts are metri; that is, the edge osts satisfy thetriangle inequalities. This speial ase is signi�ant from both theoretial and pratial viewpoints; metriosts arise in many appliations of network design, and perhaps in most of the obvious ones, suh as thedesign of teleommuniation networks. Our goal is to design and analyse approximation algorithms forsome key problems in network design. Moreover, we resolve a long-standing onjeture on metri graphs,where by a metri graph we mean a omplete graph Kn together with edge-osts that satisfy the triangleinequalities.We attak the metri-ost node-onnetivity survivable network design problem (NC-SNDP). In thisproblem, we are given a metri graph, as well as a onnetivity requirement ri;j between every pair ofnodes i and j. Let rmax denote maxi;j2V ri;j. The goal is to �nd a minimum-ost subgraph H that satis�esthese requirements, that is, H should have ri;j openly node-disjoint paths between every pair of nodes iand j. There are two well-known speial ases of NC-SNDP. The �rst is the subset k-node-onnetivityproblem, where we are given a set of terminal nodes T � V and ri;j = k preisely if both i and j are in T ,otherwise ri;j = 0. The seond is the lassial k-node onneted spanning subgraph problem (k-NCSS) whereri;j = k for every pair of nodes; this is the speial ase of the subset k-node-onnetivity problem withT = V . We also study a new speial ase of NC-SNDP that we all the subset [k; 1:5k℄-node-onnetivityproblem: given a set of terminal nodes T � V and an (integer) requirement ri for eah node i 2 T , where1 � k � ri � 1:5k, the goal is to �nd a minimum-ost subgraph that has min(ri; rj) openly node-disjoint(28 April 2005)�Dept. of Comb. & Opt., University of Waterloo, Waterloo, ON, Canada. jheriyan�uwaterloo.ayDepartment of Mathematis and Statistis, and Shool of Computer Siene, MGill University. vetta�math.mgill.a1



i; j-paths for every pair of nodes i; j 2 T . (Thus the subset k-node-onnetivity problem is the speial asewhere ri = k; 8i 2 T .) See Setion 4 for more disussion.Most network design problems stay NP-hard and APX-hard even assuming metri osts. This remainstrue even for small onnetivity requirements; for example, Bern & Plassmann [3℄ showed that the Steinertree problem (the lassial speial ase of the subset k-node-onnetivity problem with k = 1) is APX-hard even with edge osts of 1 and 2. Over the past deade, there has been signi�ant researh onapproximation algorithms for network design, and there have been some notable suesses in the designof networks that satisfy various types of \edge onnetivity" requirements, e.g., Goemans & Williamson[17℄, and Jain [18℄, but from the perspetive of approximation algorithms, the design of networks subjetto \node onnetivity" requirements is a murky area. For example, Kortsarz, Krauthgamer & Lee [21℄reently proved a hardness-of-approximation lower bound of 2log1�� n for the subset k-node onnetivityproblem in graphs with zero-one edge osts, provided that NP* DTIME(npolylog(n)), where, � denotes asmall positive real number. (We give a detailed disussion on previous work in the area after stating ourresults.)We present a 24-approximation algorithm for the metri-ost subset k-node-onnetivity problem, andthen we generalize this to get an O(1)-approximation algorithm for the metri-ost subset [k; 1:5k℄-node-onnetivity problem. Modulo P6=NP and up to onstant fators, these are the best possible results. Thesealgorithms are deterministi and ombinatorial; they do not use linear programming relaxations. Basedon this, we present an O(log rmax)-approximation algorithm for the metri-ost NC-SNDP. The algorithmfor NC-SNDP is based on a linear programming relaxation. Also, it uses a 2-approximation algorithm ofGoemans & Williamson [17℄ (see also Agrawal et al. [1℄) for the generalized Steiner tree problem. Moreover,we resolve the following long-standing onjeture: In a metri graph and for eah k = 1; 2; : : : ; n� 1, theminimum ost of a k-node onneted spanning subgraph is within a onstant fator of the minimumost of a simple k-edge onneted spanning subgraph. Thus, for metri graphs, the requirements of k-node-onnetivity and simple k-edge-onnetivity are equivalent for the objetive funtion, up to onstantfators. A similar result holds for requirements of subset [k; 1:5k℄-node-onnetivity versus subset simple[k; 1:5k℄-edge-onnetivity.We apply two lower bounds on the optimal value of the subset [k; 1:5k℄-onnetivity problem. We mayassume (without loss of generality) that there exist at least two terminals with the maximum requirement.Hene, every solution subgraph has at least ri edges inident to eah terminal i, beause there is anotherterminal j with rj � ri, so the solution subgraph must have ri openly node-disjoint i; j-paths. Our �rstlower bound omes from the the minimum ost of a subgraph that has degree � ri for every terminal i.Our seond lower bound omes from the ost of a minimum spanning tree of the subgraph indued bythe terminals. For any node i, we use �i or �(i) to denote the sum of the osts of the ri heapest edgesinident to i in the omplete graph, and for any set of nodes S, we use �(S) to denote Pi2S �i. We usethe abbreviations MST for minimum-ost spanning tree, and TSP for the traveling salesman problem. Letmst(T ) denote the ost of an MST of the subgraph indued by T . Our lower bounds are:(i) 12 �(T ), and(ii) k2 mst(T ).Note that these lower bounds apply also to the simple edge-onnetivity version of the subset [k; 1:5k℄-onnetivity problem, where the requirements are for min(ri; rj) edge-disjoint paths between every pair ofnodes i; j 2 T ; note that multi-edges are not allowed in the solution subgraph. See Setion 2 for moredetails. Throughout, we use opt to denote the ost of an optimal solution. Next, we state our main resultsformally. 2



Theorem 1 There is a polynomial-time algorithm for omputing a solution to the metri-ost subset k-node onnetivity problem of ost � 10�(T ) + 4(k2) mst(T ) � 24opt.Consider k-NCSS, the speial ase of the subset k-node onnetivity problem in whih the terminal set Tis V . Let k-ECSS be the problem of �nding a minimum-ost simple k-edge onneted spanning subgraph.Then our two lower bounds apply for both k-NCSS and k-ECSS. This gives the next result.Corollary 2 In a network with metri osts, there is a k-node onneted spanning subgraph whose ost isat most 24 times the minimum ost of a simple k-edge onneted spanning subgraph.Remarks: For metri graphs, it is well known that there exists a 2-node onneted graph of ost � theost of any 2-edge onneted graph (see Appendix 1), but this does not hold for k � 3 (see [4, Fig.1℄ andAppendix 1 for examples). Also, note that the 12 �(V ) lower bound for k-ECSS does not apply for theversion where multi-edges are allowed. In more detail, if multi-edges are allowed, then there exist k-edgeonneted graphs H suh that any k-node onneted graph has ost � �(k) (H). See Appendix 1 formore details.Theorem 3 There is a polynomial-time algorithm for omputing a solution to the metri-ost subset[k; 1:5k℄-node-onnetivity problem of ost � O(1) � (�(T ) + k2 mst(T )) � O(1) � opt.Remark: A loose analysis gives a onstant fator between 800 and 1000 in the above theorem. Possibly,an approximation guarantee of � 100 an be obtained by some hanges to the algorithm. We have notattempted to optimise the onstants in the approximation guarantees.Theorem 4 There is a polynomial-time algorithm for omputing a solution to the metri-ost NC-SNDPof ost � O(ln rmax) � opt.Previous workOver the past few deades, there has been signi�ant researh on approximation algorithms for networkdesign. For early work in network design, see for example Dantzig, Ford & Fulkerson [12℄. A elebrated andstill unsurpassed result was Christo�des' 32 -approximation algorithm for the metri-ost TSP [8℄. Partlymotivated by Christo�des' result, there followed a stream of researh on related problems in the designof metri-ost networks. Most of this researh foused on small onnetivity requirements, suh as 2-edgeonnetivity and 2-node onnetivity; see Frederikson & Ja'Ja' [14℄, Monma & Shallross [26℄, Monma,Munson & Pulleyblank [25℄, and Bienstok, Brikell & Monma [4℄. For onstant k, this last paper givesa onstant-fator approximation algorithm for k-NCSS. Moreover, the proof also shows that for metrigraphs and any onstant k, there exists a k-node onneted spanning subgraph of Kn whose ost is withina onstant fator of the ost of any k-edge onneted spanning subgraph, see [4, Se.4℄. They left openthe question of extending these results to all k. This was followed by another burst of researh, partlyinitiated by the work of Goemans & Bertsimas [15℄ who presented a logarithmi approximation algorithmfor a general model alled the edge-onnetivity survivable network design problem (EC-SNDP) assumingmetri osts. Soon after this, the researh fous hanged from metri osts to the more general setting ofnon-negative osts. Agrawal, Klein & Ravi [1℄, and Goemans & Williamson [17℄ built on the primal-dualmethod to obtain O(1)-approximation algorithms for some speial ases of EC-SNDP with small (i.e., zeroand one) onnetivity requirements. Later, these methods were generalized to EC-SNDP, albeit with alogarithmi approximation guarantee, by Goemans et al. [16℄ based on work by Williamson et al. [31℄. Thisline of researh ulminated with a 2-approximation algorithm for EC-SNDP by Jain [18℄.3



Although there was onsiderable interest in extending these methods to the setting of node onnetivity,there was limited suess even for rather speial ases of NC-SNDP. We mention a few results and referthe interested reader to [6℄ for more referenes. For the ase of non-negative edge osts, Kortsarz & Nutov[22℄ and [7℄ have logarithmi (or worse) approximation guarantees for the k-NCSS problem. For metriosts, there is an O(1)-approximation algorithm due to Khuller & Raghavahari [20℄, and there are otherrelated results in [5, 23℄. Some explanation for this lak of good approximation algorithms for NC-SNDPomes from the reent hardness-of-approximation results of Kortsarz, Krauthgamer & Lee [21℄. Also, seethe surveys by Frank [13℄, Khuller [19℄, and Stoer [28℄, and the book by Vazirani [30℄.We briey mention the relationship between our work and the stream of exiting reent results onPTAS's (polynomial-time approximation shemes) for related problems. Beginning with the results ofArora [2℄ on the Eulidean TSP, many PTAS's have been obtained for problems in \geometri networkdesign" where the edge osts ome from speial metris suh as the Eulidean metri, see [9, 10, 11, 27℄and the referenes in those papers. But, modulo P6=NP, suh PTAS's do not exist in the setting of interestto us, namely, (general) metri osts; this follows from APX-hardness results in [3, 21, 29℄.The rest of the paper is strutured as follows. In Setion 2, we disuss some preliminaries, and give anoverview of our method for the metri-ost subset k-node onnetivity problem. We present a onstant-fator approximation algorithm for the problem in Setion 3. Setion 4 gives a onstant-fator approx-imation algorithm for a generalisation. This leads to an O(log rmax)-approximation algorithm for themetri-ost NC-SNDP in Setion 5.2 Preliminaries and an overview of the algorithm for subset k-onnetivityApart from Setion 1, we omit the word `node' from terms suh as `node-onnetivity' when there is nodanger of ambiguity.Let the input graph be G = (V;E). We denote the nodes by numbers i = 1; 2; : : : ; n, and for nodes i; jthe edge between them is denoted ij. The ost of an edge ij 2 E is denoted ij or (i; j). The osts aresaid to be metri if the triangle inequality holds: (v; w) � (v; u) + (u; w); 8u; v; w 2 V . Whenever weassume metri osts, we also assume that G is the omplete graph. Let k be an integer suh that n > k � 1(k may be a funtion of n). For a pair of nodes i; j, let �(i; j) denote the maximum number of openlynode-disjoint i; j-paths. Reall that T denotes the set of terminal nodes. We use n0 to denote jT j, and weassume T = f1; : : : ; n0g.Let us formalize the lower bounds (i) and (ii) for the subset [k; 1:5k℄-onnetivity problem stated inSetion 1. For eah terminal node i, let �i denote the set of ri nearest neighbours of i; by onvention,i 62 �i. (Thus j�ij = ri and 8x 2 �i; y 62 �i [ fig; iy � ix.) Then note that �i denotes Px2�i ix. Also,for eah terminal node i, let �i denote �i=ri, namely, the average ost of an edge from i to one of its rinearest neighbours. Note that eah terminal node i has at least ri neighbours in an optimal subgraph,thus opt � 12�(T ). This gives the �rst lower bound. Next, we laim that opt � k2mst(T ). In more detail,we have opt � 12eopt(T; 2k) � k2mst(T ), where eopt(T; �) denotes the minimum ost of a �-edgeonneted subgraph of G[T ℄ (allowing multi-edges). To see this, start with a graph orresponding to opt,and take two opies per edge to get an Eulerian multi-graph H 0 that is 2k-edge onneted on T , thenapply the Lov�asz-Mader splitting-o� theorem [24, Ex.6.51℄, [13℄, to eliminate all nodes of V � T from H 0to get a 2k-edge onneted multi-graph on the node set T that has ost � eopt(T; 2k); then we applythe well-known fat that eopt(T; �) � �2mst(T ). For metri osts, splitting o� edges does not inreasethe ost. This gives the seond lower bound: opt � k2mst(T ).4
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3Figure 1: A key speial ase of the algorithm. Here, k = 6, T = f1; 2; 3; 4g, and the sets fig[�i (indiatedby dotted blobs) for i 2 T are pairwise disjoint. The traks Q1; Q2; Q3 are indiated by irles.We �rst give an overview of our method for subset k-onnetivity by desribing a key speial asewhere k is even, say k = 2`, and the sets fig [ �i of the terminals i are pairwise disjoint (that is,(fig [ �i) \ (fjg [ �j) = ;; 8i 6= j 2 T ). Arbitrarily name the nodes in �i as i1; i2; : : : ; ik, 8i 2 T .Construt a heap yle Q on the terminals using the well-known MST-doubling heuristi for the TSP.(Start with an MST of the subgraph indued by T , replae eah edge by two opies, and shortut theresulting onneted Eulerian graph to get a yle Q with V (Q) = T and (Q) � 2mst(T ).) Let thesequene of terminals on Q be 1; 2; : : : ; n0; 1 (renumber the nodes if needed). For eah � = 1; : : : ; `, onstruta yle Q� \parallel" to Q where Q� = 1� ; 1`+� ; 2� ; 2`+� ; 3� ; : : : ; (n0�1)`+� ; n0� ; n0`+� ; 1� . (See Figure 1;informally, start with the yle 1� ; 2� ; : : : ; n0� ; 1� , then for eah i = 1; : : : ; n0 insert the node i`+� betweennodes i� and (i + 1)� .) Let us refer to these yles as traks. It an be seen that a trak Q� has ost(Q� ) � (Q)+Pti=1 2((i; i�)+(i; i`+� )) (see the seond subroutine below), and the total ost of the traksis P�̀=1 (Q� ) � ` � (Q)+2�(T ). Finally, for eah terminal i 2 T , we add the k edges ii1; ii2; : : : ; iik. Theresulting subgraph is our solution graph H ; it has ost (H) � 2` �mst(T )+3�(T ) � 2opt+6opt = 8opt.Note that eah terminal has preisely two neighbours in eah trak. Thus H satis�es the onnetivityrequirements, beause for every pair of terminals i; j(i 6= j), eah of the k=2 traks ontributes 2 openlydisjoint i; j paths.The algorithm uses the following two subroutines. Note that the solution graph H is simple, so whenwe add edges to H we do so without reating multi-edges.� The �rst subroutine opies a spei�ed set of neighbours of a terminal i to another terminal v (possibly,v is adjaent to i). More preisely, given a terminal i and a spei�ed set of neighbours of i, all itNi, and another terminal v, the subroutine adds an edge vx to H for eah node x 2 Ni (withoutreating multi-edges or loops in H). After this step, �(i; v) � jNij in H . The ost of the newedges is � jNij (i; v) + Px2Ni (i; x); moreover, if there is a positive real number  suh thatPx2Ni (i; x)� �i, then the ost of the new edges is � jNij (i; v) + �i.� The other subroutine starts with a yle ontaining a terminal i and inserts new node(s) into theyle. Given a yle Q0, a terminal i in Q0, and a node x 62 V (Q0), we �rst add two opies of theedge ix to Q0 to get a onneted Eulerian graph. Then we shortut this Eulerian graph (as in the5



MST-doubling heuristi for the TSP) to obtain a new yle Q with node set V (Q0)[fxg. The inreasein ost is � 2(i; x).It is important for our analysis to get good upper bounds on the osts of the traks. Note that thetraks are pairwise node disjoint; thus eah terminal is in at most one trak. But, for upper-boundingthe trak osts, we use the following aounting trik: Consider any trak Q� . We assume that the trakinitially onsists of all the terminals, thus V (Q� ) = T , and using the MST-doubling heuristi we have(Q� ) � 2mst(T ). Subsequently, the algorithm may insert new nodes into the trak { suh insertions ourwhile we are proessing some terminal { thus for inserting node x while proessing terminal i the ost(Q� ) inreases by � 2(i; x). Possibly, x may be another terminal { in that ase, we impliitly removex from Q� and then insert x via the double-edge ix. At the end of the exeution, we keep only thoseterminals that were expliitly inserted into Q� and remove all the other terminals from Q� ; learly, thisdoes not inrease the ost (Q� ). Note that this \historial view" of Q� is only needed for upper-boundingthe ost. Other than this, it may be easier to view the traks as being pairwise node disjoint all throughthe exeution, and this is the viewpoint we use in presenting the detailed algorithm.3 The algorithm for subset k-onnetivityThis setion is devoted to an algorithm and proof for Theorem 1. The detailed algorithm follows. Ananalysis of the ost of the edges added to H (the solution graph) is given after the algorithm. A terminalmay be in two states ative or inative. Initially, all the terminals are ative. Let ` denote dk=2e. Initially,H is the graph onsisting of all the terminal nodes and no edges, thus H = (T; ;).(1) [de-ativate terminals & onstrut disjoint balls for ative terminals℄Renumber the terminals as 1; 2; : : : ; n0 by inreasing value of �; thus �1 � �2 � � � � � �n0 .Note: �h � �j i� �h � �j .San the terminals in the order 1; 2; : : : ; n0, and skip the urrent terminal if it is inative. For anative terminal i, onstrut the set Bi = fj j (i; j)� ��ig, where we hoose � = 2. For eah ativeterminal v > i, if iv � (��i + ���v), where we �x � = 2, then make v inative, and reord i as theparent of v by assigning p(v) = i. (The aim is to ensure that the sets Bi of ative terminals i arepairwise disjoint.)Note that i 2 Bi and jBij � 1 + (1� 1�)k = 1 + k2 . (Otherwise, we have � k=� = k=2 nodes x in �iwith (i; x) > ��i = ��i=k, so these nodes ontribute > �i to Px2�i (i; x).) Hene, jBi � figj � `.Also note that �p(v) � �v for eah inative terminal v.Choose the ` nodes in Bi nearest to i and name them as i1; i2; : : : ; i` suh that (i; i1) � (i; i2) �� � � � (i; i`).(2) [onstrut ` traks on the disjoint balls℄After step (1), let T � denote the set of ative terminals and let n� = jT �j. If n� < 3, then applystep (20) and stop. Otherwise, onstrut a heap yle Q on the ative terminals by applying theMST-doubling heuristi for the TSP to the subgraph indued by T �. Renumber the terminals suhthat Q = 1; 2; : : : ; n�; 1, that is, the ative terminals get the numbers in f1; : : : ; n�g aording to theirordering in Q. Construt ` traks Q1; Q2; : : : ; Q`, where trak Q� = 1� ; 2� ; : : : ; n�� ; 1� (� = 1; : : : ; `).Add all the traks (but not the yle Q) to H . The ost of the traks onstruted in this step isanalysed in Proposition 6 below. 6



(20) [speial handling for 1 or 2 ative terminals℄Skip this step if n� � 3. Suppose n� = 1. Let the ative terminal be i. Add all the edges iv; v 2 �i,and then for eah inative terminal j, opy the set �i of neighbours of i to j. The resulting graph Hsatis�es the onnetivity requirements.Suppose n� = 2. Let the ative terminals be h; i, with �h � �i. Add all the edges hq; q 2 �h, andiv; v 2 �i. Then add a mathing M of maximum size between the nodes in �i � (�h [ fhg) and in�h � (�i [ fig); now, eah mathing edge qv (say q 2 �h � fig and v 2 �i � fhg) gives an h; i path,namely, h; q; v; i. Finally, for eah inative terminal j, opy the set �p(j) of neighbours of p(j) to j.The resulting graph H satis�es the onnetivity requirements.(3) [augment disjoint balls and assign token ars℄In summary, this step sans the ative terminals i and augments eah \ball" Bi to get an \augmentedball" B0i (that ideally has jB0ij � ri+1 = k+1) suh that these augmented balls are pairwise disjoint.The obvious onstrution for B0i is to start with Bi and then add some nodes from �i � Bi, butthen the augmented balls may interset. We \de-interset" two interseting sets B0h and B0i, whilepreserving the balls Bh and Bi, by assigning so-alled token ars to the ative terminals suh that foreah ative terminal i, jB0ij plus the number of token ars assigned to i is � ri+ 1 = k+ 1. Considerone speial ase: suppose that h and i are ative terminals and node q is in B0h\B0i but q 62 Bh [Bi.Then we ompare the osts of the edges hq and iq and \replae" the ostlier edge, say iq, by a tokenar whose ost we �x to be 3iq; that is, we remove q from B0i and instead assign to i a token arwith ost 3iq. The details follow.Renumber the terminals so that the ative terminals i in order of inreasing �i values are 1; 2; : : : ; n�,and san the ative terminals in this order. Start the san of i 2 T � by de�ning B0i := Bi if �i � Bi,and B0i := �i otherwise. If B0i is disjoint from B0h for all ative terminals h < i; then ontinue withthe next ative terminal, otherwise, for eah ative terminal h < i with B0h \ B0i 6= ;, examine thenodes q in B0h \B0i in any order. Note that �h � �i.
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x 2 Bh; note that the ost of ix is � iq + hq + hx � iq + 2��h � 3iq.) See Figure 2 for anillustration.(b) Otherwise, q 2 B0h�Bh. Suppose q 2 Bi. Then note that hq+iq � hi � (��h+���i) (the lastinequality holds beause both h; i are ative), and iq � ��i, hene, hq � �(�h+�i) (reall that� = 2). Remove q from B0h and give to h a token ar (h; i) with ost 3hq. (Later, this token arwill be replaed by an edge hx, x 2 Bi, of ost � hq+iq+ix � hq+2��i � hq+2hq � 3hq.)() Suppose q 2 B0h �Bh and q 2 B0i � Bi. Then we ompare iq and hq.If iq � hq, then remove q from B0i and give to i a token ar (i; h) with ost 3iq. (Later, thistoken ar will be replaed by an edge ix, x 2 Bh, of ost � iq + hq + hx � 2iq + ��h � 3iq,where the last inequality holds beause iq > ��i � ��h.)Otherwise, we have iq < hq. Then we remove q from B0h and give to h a token ar (h; i) withost 3hq. (Later, this token ar will be replaed by an edge hx, x 2 Bi, of ost � hq+iq+ix �2hq+ ��i � 3hq, where the last inequality holds beause hq + iq � hi � (��h + ���i) (as in(b) above), hene, hq � �2 (�h + ��i) � ��i (reall that � = 2).)After step (3), note that the ost of a token ar (i; j) depends on the ost of the assoiated edge iqand is 3iq.(4) [attah ative terminals to traks℄In summary, this step sans eah ative terminal i and adds edges from i to the traks suh that eahtrak Q� ; � = 1; : : : ; bk=2, gets two neighbours of i, and the last trak Q` gets � 1 neighbour of i.First add edges from i to eah of i1; i2; : : : ; i`; also, mark the nodes i1; i2; : : : ; i` as used.Then for eah � = 1; 2; : : : ; bk=2, do the following. If an unused token ar (i; h) is available, thenhoose it, mark it as used, and add the edge ih� ; note that h� is in Bh and is the \�rst neighbour"of h in trak Q� ; also, note that (i; h�) is � the ost of the token ar (i; h). If no unused token arsare available, then hoose an unused node q 2 B0i, mark it as used, insert q into trak Q� , and addthe edge iq. (Note that the number of token ars given to i plus jB0ij is � k+ 1, hene, this step will�nd bk=2 token ars or unused nodes, exluding the nodes i1; i2; : : : ; i`.)For eah ative terminal i, let Ni denote the set of neighbours of i in the traks, just after step (4)is applied to i.(5) [attah inative terminals to traks℄Finally, \attah" the inative terminals to the traks. Note that an inative terminal may be alreadyin one of the traks. For eah inative terminal j, opy the set of neighbours Np(j) of the parent p(j)to j.Proposition 5 The ost of the graph onstruted in step (20) is � 16opt.Proof: Suppose n� = 1, and let i be the (unique) ative terminal. Then (H) � �i+Pj2T�T �(kij+�i) ��i+Pj2T�T �(k(��i+���j)+�i) � �i+Pj2T�T �(�(1+�)�j+�j) � 7�(T ) � 14opt (we have � = 2; � = 2,and we used �i � �j for an inative terminal j).Suppose n� = 2, and let i; h be the two ative terminals. Then reall that M denotes a mathing ofmaximum size between the nodes in �i � (�h [ fhg) and in �h � (�i [ fig); note that an edge qv 2 M(say, q 2 �h; v 2 �i) has ost � hq + hi + iv, hene, (M) � �h + �i + k � mst(T ); the other edgesin H ontribute a ost of � �h + �i +Pj2T�T �(�(1 + �)�j + �j) (as in the analysis for n� = 1) hene,(H) � 7�(T ) + k �mst(T ) � 16opt. 8



Proposition 6 (i) The total ost of the edges added by step (4) and inident to an ative terminal i is� 4�i. (ii) At the end of step (4), the total ost of the ` traks is � 2` �mst(T ) + 4�(T �).Proof: For an ative terminal i, the total ost of the token ars (i; h) given to i is � 3�i. The ost of theedges added that are inident to i, but exluding the ost due to the token ars, is � ��i if jBij � k + 1(in this ase, B0i = Bi and no token ars are given to i), and is �Px2�i ix � �i otherwise. Thus the totalost of the added edges inident to i is � max(��i; �i + 3�i) � 4�i.The total ost of the ` traks (that were onstruted in step (2) and modi�ed in step (4)) is � 2` �mst(T ) + 4�(T �). To see this, �rst onsider the term 2` �mst(T ). Reall (from Setion 2) the aountingtrik we use for upper-bounding the ost of a trak; due to this, we take the upper bound on the ost of Q(the heap yle on T � in step (2)) to be 2mst(T ) rather than 2mst(T �). Summed over ` traks, this gives2` �mst(T ). For the seond term, note that i 2 T � ontributes �Pq2B0i 2(i; q), and this is � 2k(��i) if�i � Bi (then B0i = Bi), and � 2�i otherwise (then B0i = �i).Proposition 7 The total ost of the edges added by step (5) and inident to the inative terminals is� 10�(T � T �).Proof: Suppose the ost of the added edges inident to an ative terminal i is � �i. (From Proposition 6,we have  = 4.) Then the ost of the edges added for an inative terminal j with parent i is � k �ij+�i �k(��i + ���j) + �i � (�(� + 1) + )�j , using the fat that �p(j) � �j . Thus the total ost of the edgesadded in this step is � 10�(T � T �), using � = 2; � = 2;  = 4.Proof of Theorem 1: By the above propositions, the total ost of H is � 2` �mst(T )+4�(T �)+�(T �)+10�(T �T �) � (k+1)mst(T ) + 8�(T �) + 10�(T �T �) � (k+1)mst(T ) + 10�(T ) � (2+ 2k )opt+20opt �24opt.We laim that the graph H has the required onnetivity property, namely, �(i; j) � k; 8i 6= j 2 T .To see this, onsider any pair of terminals i; j and onsider any one trak Q� . Suppose that either i is inQ� , or i is not in Q� but has two neighbours in Q� . Suppose the same statement holds for j (that is, jis in Q� , or j is not in Q� but has two neighbours in Q�). Then, Q� (together with the edges from i andj to Q�) ontributes two openly disjoint i; j paths. Similarly, Q� ontributes one i; j path if both i andj either are in Q� or have a neighbour in Q� . By onstrution, eah ative terminal has two neighboursin eah of the traks Q� for � = 1; : : : ; bk=2, and has a neighbour in Q`; similarly, eah inative terminalis either in Q� or has two neighbours in Q� for � = 1; : : : ; bk=2, and is in Q` or has a neighbour in Q`.Then, for any two terminals i and j, H has k openly disjoint i; j paths, sine eah of the traks Q� for� = 1; : : : ; bk=2, ontributes two openly disjoint i; j paths, Q` ontributes an i; j path, and these k pathstogether are openly disjoint.4 The algorithm for subset [k; 1:5k℄-onnetivityIn this setion, we extend the methods of the previous setion to obtain an O(1)-approximation algorithmfor the the subset [k; 1:5k℄-onnetivity problem. It seems likely that these methods will give similar resultsfor the subset [k; � k℄-onnetivity problem, for any onstant �, 1 � � < 2, but they do not extend to � = 2for the following reason: as in Setion 3, we hoose some terminals to be ative and we onstrut pairwise-disjoint sets Bi of radius O(1)�i for the ative terminals i, where Bi has at least a fration � of the nodesin �i (� = 12 in Setion 3); our method assumes � � �2 , i.e., the size of every set Bi�fig is at least half themaximum requirement; then, for � = 2 and an ative terminal i with ri = k we need jBi � figj � k = j�ij9



and this is not possible for sets of radius O(1)�i. Our main appliation is to the NC-SNDP, and for this,any onstant � > 1 suÆes; we hose � = 1:5 for onveniene.The main diÆulty in extending the methods of Setion 3 omes from the fat that an ative terminali may have an inative terminal v with rv > ri as a hild. Then we annot satisfy the onnetivityrequirement of v by opying the neighbours of i to v. Roughly speaking, we handle this as follows: we pika hild v� of i with the maximum requirement, and opy all the neighbours of i to v�; then, if needed, weadd new neighbours for v� in the traks by examining the nodes x 2 �v� ; if x 2 B0h for some ative terminalh then we proeed similarly to step (3) of Setion 3 (though there are new ompliations), otherwise, weeither insert x as a new node into a trak or we \transform" to the ase of x 2 B0h. For any other inativehild v of i, we attempt to opy the \�rst" rv neighbours of v� to v. This is an informal (and inaurate)overview; the details are given below. The main ontribution of this setion is an algorithm and proof forthe following restrited ase of Theorem 3.Theorem 8 Let k be an integer multiple of 4, thus k = 0 (mod 4). There is polynomial-time algorithmfor omputing a solution to the metri-ost subset [k; 1:5k℄-onnetivity problem of ost � O(1) � opt.Remark: A loose analysis gives a onstant fator between 800 and 900 in the above theorem.Theorem 3 follows by ombining this theorem with Theorem 1. To see this, suppose that k 6= 0 (mod 4)(otherwise, we are done). Let k̂ � k denote the next integer multiple of 4; learly, k̂ � k � 3. Then foreah � = k; k + 1; : : : ; k̂ � 1, we apply the algorithm in Theorem 1 to the following instane �(�) of thesubset �-onnetivity problem to obtain a solution subgraph H(�): we take the requirement of a terminali in �(�) to be r0i = 0 if ri < �, and we take r0i = � if ri � �; the rest of the instane stays the same.Finally, we apply the algorithm of this setion to the instane of subset [k̂; 1:5k̂℄-onnetivity where wetake the requirement of a terminal i to be r0i = 0 if ri < k̂, and we take r0i = ri if ri � k̂; the rest ofthe instane stays the same. Let H 0 be the solution subgraph. Then, for the original instane (of subset[k; 1:5k℄-onnetivity), we output the solution subgraph H� = H(k)[H(k+1)[� � �[H(k̂�1)[H 0 whoseost is at most O(1)opt. To see that H� satis�es the onnetivity requirements, note that for every pairof terminals i; j, one of the subgraphs forming H� (namely, one of H(k); H(k+ 1); : : : ; H(k̂ � 1); H 0) hasmin(ri; rj) openly disjoint i; j-paths.Assume that k is an integer multiple of 4. Let ` denote 3k=4. For any terminal i and any edge ix ofthe omplete graph, let eix = e(i; x) denote the normalized edge ost max(ix; �i).The detailed algorithm follows. A terminal may be in two states ative or inative. Initially, all theterminals are ative, and H is the graph onsisting of all the terminal nodes and no edges, thus H = (T; ;).See Appendix 2 for a summary of the notation.(1) [de-ativate terminals & onstrut disjoint balls for ative terminals℄Renumber the terminals as 1; 2; : : : ; n0 by inreasing value of �; thus �1 � �2 � � � � � �n0 .Note: �h � �j does not imply �h � �j sine the requirements may di�er, but we do have �h � 1:5�j .San the terminals in the order 1; 2; : : : ; n0, and skip the urrent terminal if it is inative. For anative terminal i, onstrut the set Bi = fj j (i; j)� ��ig, where we hoose � = 4. For eah ativeterminal v > i, if iv � (��i + ���v), where we �x � = 2, then make v inative, and reord i as theparent of v by assigning p(v) = i. (The aim is to ensure that the sets Bi of ative terminals i arepairwise disjoint.)Note that i 2 Bi and jBij � 1 + (1 � 1�)k = 1 + 3k4 . (Otherwise, we have � k=� = k=4 nodes xin �i with (i; x) > ��i = ��i=k, so these nodes ontribute > �i to Px2�i (i; x).) Also note that�p(v) � �v for eah inative terminal v. 10



Choose the ` nodes in Bi nearest to i and name them as i1; i2; : : : ; i` suh that (i; i1) � (i; i2) �� � � � (i; i`).(2) [onstrut ` traks on the disjoint balls℄After step (1), let T � denote the set of ative terminals and let n� = jT �j. If n� < 3, then applystep (50) and stop. Otherwise, onstrut a heap yle Q on the ative terminals by applying theMST-doubling heuristi for the TSP to the subgraph indued by T �. Renumber the terminals suhthat Q = 1; 2; : : : ; n�; 1, that is, the ative terminals get the numbers in f1; : : : ; n�g aording to theirordering in Q. Construt ` traks Q1; Q2; : : : ; Q`, where trak Q� = 1� ; 2� ; : : : ; n�� ; 1� (� = 1; : : : ; `).Moreover, we have a speial trak Q0 = Q; this trak is used to satisfy the requirements of inativeterminals, but not the requirements between ative terminals. Add all the traks to H . (Althoughthe traks are similar to eah other, our onstrution distinguishes between the traks and relies onthe ordering of the traks given by the trak indies 0; 1; 2; 3; : : : .)(3) [augment disjoint balls and assign token ars℄This step is the same as step (3) in the algorithm for subset k-onnetivity in Setion 3, exept thatsome parameters are di�erent: here, we have � = 4, � = 2, ` = 3k4 .After step (3), note that the sets B0i of the ative terminals i are pairwise disjoint, eah suh set hassize � 1+ (3k=�) = 1+ (3k=4) (sine B0i � Bi and jBij � 1+ (3k=�)), and for eah ative terminal ithe number of token ars given to i plus jB0ij is � ri+1. Also, note that the ost of a token ar (i; j)depends on the ost of the assoiated edge iq and is 3iq.(4) [attah ative terminals to traks℄In summary, this step sans eah ative terminal i and adds edges from i to the traks suh that ihas a neighbour i� in eah of the traks Q� ; � = 1; : : : ; `, and moreover, i has a seond neighbour ineah of the ri� ` traks Q� ; � = 1; : : : ; ri� `. (Possibly, i may have more than ri� ` traks that eahhave two neighbours of i.) We all i� the inner neighbour of i in Q� , and if i has another neighbourx in Q� then we all x the outer neighbour of i in Q� .Note that the sets B0j of the ative terminals j are pairwise disjoint. In step (4), every node addedto a trak is in B0j for some ative terminal j (this an be seen from the desription below). We alla node x free if x 62 SfBj j j 2 T �g and x is in none of the traks of the urrent graph H . Whileproessing a terminal v we may �nd a free node x 2 �v and we may insert x as the outer neighbour ofv in a trak. Throughout the exeution, x stays in the same trak, and stays as the outer neighbourof v, but other terminals too may add x as their outer neighbour on that trak.We examine the ative terminals in any order. Let i be the urrent ative terminal. First, we addedges from i to eah of i1; i2; : : : ; i`; also, we mark the nodes i1; i2; : : : ; i` as used (with respet to i).We start with the variable � = 1; this variable denotes the number of the trak where the next outerneighbour of i is plaed.If any unused nodes remain in Bi, then hoose an unused node x 2 Bi with minimum (i; x), mark xas used w.r.t. i, insert x into trak Q� , inrease � by one, and add the edge ix. We repeat this stepuntil either Bi has no unused nodes or � = `+ 1 (meaning that i has an outer neighbour in eah ofthe ` traks). If � � (ri � `) + 1, then we are �nished with step (4) for i, otherwise, we ontinue.If an unused token ar (i; h) is available, then we hoose it, mark it as used, add the edge ih� , andinrease � by one; note that h� is in Bh and is the inner neighbour of h in trak Q� ; also, note that(i; h�) is � the ost of the token ar (i; h). We repeat this step until there are no unused token arsor � = (ri� `)+1. If � < (ri� `)+1, then we ontinue, otherwise, we are �nished with step (4) for i.11



We hoose an unused node x 2 B0i � Bi with minimum (i; x), and mark it as used w.r.t. i (notethat x is a free node). Then we insert x into trak Q� and add the edge ix, provided there exists nosuitable \target terminal" h 6= i (the details are given below; note that the target terminal is de�nedwith respet to the edge ix). If a suitable h exists, then we disard x and add the edge ih� , that is,we take the inner neighbour of h in Q� to be the outer neighbour of i in Q� . (The reason for usingan edge ih� rather than ix is that x is a free node now, but later we may �nd that x is essential forattahing some inative terminal v to the traks, and at that step, we will be fored to \replae" theedge ix by some other edge iy; to avoid suh \replaements" we look ahead, and we use the edge ixonly if there are no \future onits" for x.)The details are as follows. We hek whether there exists an ative terminal h 6= i suh thathop-rule (i; h) � (2 + (� + 1)�)(i; x)� 14(i; x); and �h � (i; x):If suh an h exists, then we add the edge ih� . Note that (i; h�) � (i; h)+��h � (2+(�+2)�)(i; x)�18(i; x). If no suh h exists, then (as mentioned before) we insert x into trak Q� and add the edgeix. In either ase, we inrease � by one.Note that the number of token ars given to i plus jB0ij is � ri+1, hene, this step will �nd ri tokenars or unused nodes (inluding the nodes i1; : : : ; i`).After all ative terminals have been examined by step (4), it an be seen that H satis�es the on-netivity requirements of all ative terminals.Note that an inative terminal may be in one of the traks Q1; Q2; : : : ; Q`, although none of theative terminals is in those traks.For eah ative terminal i, let Ni denote the (ordered) set of neighbours of i in the graph H �V (Q0)at the end of step (4). (Thus, Ni is the set of neighbours attahing i to the other traks | exludingthe trak Q0 ontaining i.) Note that jNij � ri; 8i 2 T � (if jBij > ri + 1 then Ni may have > rinodes). Moreover, we order the nodes in eah set Ni suh that the inner neighbours of i ome �rstin the order i1; i2; : : : ; i`, followed by the outer neighbours in the order of their trak numbers (theouter neighbour in Q1, followed by the outer neighbour in Q2, . . . ).Remark: The ordered sets Ni for i 2 T � are used in step (5), and there it is ritial that the totalost of the edges from i to the nodes in Ni is � �i for a onstant ; in partiular, none of these edgeosts should be \harged" to the mst lower bound.(5) [attah inative terminals to traks℄Finally, \attah" eah inative terminal to the traks.By a sibling of an inative terminal v we mean either the parent p(v) or another hild of p(v).In summary, we �rst opy to v the neighbours of a sibling, and then, if needed, we add additionalneighbours via �v { note that v's requirement rv may be muh greater than that of any of its siblings,hene, opying the neighbours of a sibling may not suÆe. We also use the speial trak Q0 to satisfythe requirements of inative terminals; to see the need for Q0 onsider a hild v of an ative terminali with rv = ri + 1 and �v = fig [ �i; we handle the requirement of v by adding the edge vi { thusattahing v to Q0 { and then opying the neighbours of i to v.Fous on an ative terminal i and its hildren, and let v� have the maximum requirement amongthese terminals; assume that v� 6= i (the other ase is easy). Step (5) attahes v� to the traks via aneighbour in eah of the `+ 1 traks Q0; Q1; : : : ; Q` and two neighbours in eah of the rv� � (`+ 1)12



traks Q1; Q2; : : : ; Qrv��(`+1). These neighbours of v� onstitute the ordered set Nv� ; we use ourstandard ordering, i.e., the neighbour i = p(v�) in Q0 omes �rst, followed by the inner neighbours inthe traks Q1; : : : ; Q`, followed by the outer neighbours, and further, the neighbours are ordered bytheir trak number. Similarly, we have an ordered set of neighbours Nv for eah inative terminal v,where Nv is the (ordered) set of nodes x suh that step (5) { while proessing v { adds an edge fromv to x. (Possibly, v ours in a trak, but then neither of the two neighbours of v in the trak oursin Nv unless step (5) { while proessing v { added the edge from v to that node.) A key propertyof our onstrution is that for eah sibling v of v�, Nv is a pre�x of Nv� ; in partiular, for eah� 2 f1; 2; : : : ; rv� (`+1)g, the outer neighbour of v in trak Q� is the same as the outer neighbour ofv� in that trak. Therefore, if �v ontains two or more outer neighbours of siblings of v, then all ofthese outer neighbours are in distint traks. (Thus, for siblings v1; v2; : : : , our onstrution makesthe setsNv1 ; Nv2 ; : : : \onsistent" even though the sets �v1 ;�v2 ; : : : may have arbitrary intersetions.)We examine the ative terminals i in order of inreasing �i values, and we examine the hildren v (ofi) in order of inreasing �v values. By a prior sibling of v we mean either the parent p(v) or anotherhild of p(v) that preedes v in this ordering. For eah hild v of i, de�ne the soure terminal of v,denoted p̂(v), to be a prior sibling with the maximum requirement; furthermore, de�ne the orderedset N0v to be fp(v)g[Np(v) if p̂(v) = p(v) (i.e., the soure terminal is the parent), and let N0v = Np̂(v)otherwise (if the soure terminal is not the parent).If the requirement of v is � jN0v j, then we \opy" the �rst rv nodes of N0v to v, i.e., for eah of the�rst rv nodes in the ordered set N0v , we add an edge from v to that node. Step (5) for v is �nishedafter this.If the requirement of v is > jN0v j, then we \opy" all the nodes of N0v to v, i.e., for eah of the nodesin N0v , we add an edge from v to that node. We mark all these new neighbours of v as used w.r.t. v.Let � 2 f1; : : : ; `g be the next available trak for v, i.e., v has two neighbours in eah of the traksQ1; : : : ; Q��1, but has only one neighbour in eah of the traks Q� ; : : : ; Q`.We repeat the following until step (5) has added a total of rv neighbours of v. We pik an unusednode x 2 �v with minimum vx, and mark x as used w.r.t. v. First, suppose that x is free. If thefollowing version of the hop-rule does not apply to vx (i.e., there exists no h satisfying the rule), thenwe insert x into trak Q� and add the edge vx. Also, we inrease � by one. This auses an inreaseof 2vx in the ost of the traks, and an inrease of vx in the ost of the edges from v to the traks.To apply the modi�ed hop-rule, we hek whether there exists an ative terminal h 6= i = p(v) suhthat (v; h) � (2 + (� + 1)�)e(v; x) � 14e(v; x); and �h � e(v; x):If suh an h exists, then we add the edge vh� and we have (v; h�) � (v; h) + ��h � (2 + (� +2)�)e(v; x)� 18e(v; x). Also, we inrease � by one.Now, suppose that x is not free. Then one of the following mutually exlusive ases applies:(a) x 2 Bh for some ative terminal h.(b) x 2 Nh �SfBj : j 2 T �g for some ative terminal h.() x is in one of the traks, and neither (a) nor (b) applies.Consider ase (a). Note that h 6= i = p(v), beause we added edges from v to all nodes in N0v � B0i �Bi (and marked all those nodes as used w.r.t. v) before piking x, hene, x 62 Bi. First, suppose that13
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inative terminal w annot use the edge wx. Hene, we annot have e(v; x) < e(w; x).This ompletes the desription of step (5).(50) [speial handling for 1 or 2 ative terminals℄Suppose that n� = 1, and T � = fig. Then we ignore the traks altogether, but we ompute theordered set Ni via step (4) applied to i, and the ordered set Nv for eah inative terminal v byapplying step (5) to v. We add the edges from eah terminal v (where v = i or v is a hild of i) toall the nodes in Nv.Now, suppose that n� = 2, and T � = fh; ig. We proeed as in steps (2){(5), exept that wetemporarily allow traks that onsist of exatly two nodes and two opies of the edge between them.In partiular, the speial trak Q0 onsists of nodes h; i and two opies of the edge hi. At the end,for eah trak onsisting of exatly two nodes, we keep only one opy of the edge between them; thusthe solution graph H is simple.Proposition 9 (i) The total ost of the edges added by step (4) and inident to an ative terminal i is� 18�i. (ii) At the end of step (4), the total ost of the `+ 1 traks is � (2`+ 2)mst(T ) + 3��(T �).Proof: For an ative terminal i, the total ost of the token ars (i; h) given to i is � 3�i. The ost of theedges added that are inident to i, but exluding the ost due to the token ars, is � ��i if jBij � ri + 1(in this ase, B0i = Bi, no token ars are given to i, and we add edges to the ri nearest neighbours of i, andthen we add � 2`�ri � 1:5k�k edges of ost � a�i to nodes in Bi, for a total ost of � �i+ k2��i � ��i),and otherwise is � (2 + (�+ 2)�)Ph2�i ih � (2+ (�+ 2)�)�i = 18�i (by hop-rule). This proves part (i).For part (ii), observe that the total ost of the `+1 traks (that were onstruted in step (2) and modi�edin step (4)) is � (2` + 2)mst(T ) + 3��(T �); for the seond term, note that the ontribution of i 2 T � is� 2�i if jBij � ri + 1, and otherwise is � 2��i for eah of � 2` = 1:5k nodes in Bi, and this sums to� (2��i)(1:5k) � 3��i.Proposition 10 (i) The total ost of the edges added by step (5) and inident to an inative terminal vis � 401�v. (ii) The total inrease in the ost of the traks in step (5) is at most 2�(T � T �).Proof: We laim that the ost of the added edges for an inative terminal v with parent i is � 401�v.Let  be a onstant suh that the ost of the added edges inident to an ative terminal i is � �i. (Fromstep (4) and Proposition 9, we have  = 18.) First, note that if rv � rp(v), then the ost of the addededges inident to v is given by the ost of opying rv neighbours from the parent p(v) and this ost is� �p(v) + rv � (v; p(v)) � 1:5�v + rv � (� + 1)��v � (1:5 + (� + 1)�)�v � 39�v . Now, assume thatrv � rp(v), hene, �v � �p(v).First, onsider the ost inurred in opying the neighbours of the soure terminal p̂(v). This ostonsists of two omponents, (i) the ost of opying rp(v) � rv neighbours from the parent p(v), and(ii) the ost of opying the remaining (at most rp̂(v) � rp(v) � k=2) nodes from Np̂(v). The omponent (i)is � �p(v) + rv � (v; p(v))� �v + rv � (� + 1)��v � ( + (� + 1)�)�v � 30�v .Now, onsider omponent (ii). We laim that omponent (ii) is � 337�v. Consider any node y 2Np̂(v)�Np(v). Let w be the �rst (earliest proessed) sibling of v that has an edge wy (i.e., step (5) added theedge wy while proessing w and no prior sibling u of w has y 2 Nu); possibly, w 6= p̂(v). Call w the sponsorof y. By examining the details of step (5), it an be seen that for eah node x 2 Nw�Np̂(w), there exists adistint node x0 2 �w suh that (w; x) � 25e(w; x0). Thus for eah node y 2 Np̂(v)�Np(v), the sponsor w ofy has a distint node y0 2 �w suh that (w; y) � 25e(w; y0). Moreover, there is a distint node x0 2 �v suh15



that (w; y0) � 24�v + (v; x0). To see this, �rst note that (v; w) � (v; p(v))+ (p(v); w)� 2(v; p(v))�2(� + 1)��v � 24�v ; next, fous on the nodes xj in �v ordered by inreasing ost of the edge vxj , sayx1; x2; : : : ; xrv ; suppose that y0 is the sth losest neighbour of w; then note that (w; y0) � 24�v + (v; xs)beause eah of the nodes xj in �v has (w; xj) � (v; w) + (v; xj), hene, for eah of the s nodes xj ,j = 1; : : : ; s, we have (w; xj) � 24�v + (v; xj). Moreover, (v; y) � (v; w) + (w; y) � 24�v + (w; y).Hene, for eah node y 2 Np̂(v)�Np(v), there is distint node x0 2 �v suh that (v; y)� 24�v +25(24�v +(v; x0)) � 624�v + 25(v; x0) (sine �w � �v and (w; y) � 25e(w; y0) � 25(24�v + (v; x0)), where w andy0 are as above). Then, summing over all nodes y 2 Np̂(v)�Np(v), we see that the total ost of these edgesvy is � (jNp̂(v) �Np(v)j)(624�v) + 25�v � (k=2)(624�v) + 25�v � 312�v + 25�v � 337�v.Finally, onsider the total ost of the edges from v to the nodes in Nv �Np̂(v). As mentioned above,for eah node y 2 Nv � Np̂(v), there exists a distint node y0 2 �v suh that (v; y) � 25e(v; y0). Also,jNv �Np̂(v)j � rv � k, and for eah node y0 2 �v we have e(v; y0) � �v + (v; y0). Hene, Pf(v; y) : y 2Nv �Np̂(v)g � (rv � k) � 25�v + 25�v � 50�v � 25k�v � 50�v � 25(2rv3 )�v = (50� 25(23))�v = 1003 �v .Summing the three ontributions (from omponents (i), (ii), and the previous paragraph), we see thatthe total ost of the edges added (by step (5)) inident to an inative terminal v is � (30+ 337+ 34)�v �401�v.The total inrease in the ost of the traks in step (5) is at most 2�(T � T �), beause during theproessing of an inative terminal v, step (5) may insert eah node x 2 �v into the traks at an inrementalost of 2(v; x). This ompletes the proof of the proposition.Remarks: The onstant fator of 401 in the above proposition is not optimal. An easy way to improve on itis to replae the onstant 25 in the analysis of omponent (ii) by 19, by tightening the analysis of ase (a)in step (5); using the notation from there, reall that this analysis shows that 3e(v; x) � �h, and hene thenewly added edge has ost � 25e(v; x). It an be seen that the `3' may be replaed by (2� + 1)=� = 94 ,and thus the newly added edge has ost � 19e(v; x). We did not optimise the analysis, to avoid furtherompliations.Proof of Theorem 8: We laim that the ost of the solution subgraph H is (H) � 900opt = O(1)opt.By Propositions 9 and 10 and using k � 4, we have (H) � (3��(T �) + 2�(T � T �) + (2`+ 2)mst(T )) +(18�(T �) + 401�(T � T �)) � 403�(T ) + (4)(k2)mst(T ) � 900opt.We laim that the solution subgraph H satis�es the onnetivity requirements. Consider any pair ofinative terminals s; t. (The proof is similar but simpler for a pair of ative terminals, or for one ativeand one inative terminal.) First assume that there are at least three ative terminals (that is, jT �j � 3).Without loss of generality let rs = min(rs; rt). We laim that H has rs openly disjoint s; t-paths. Reallthat eah inative terminal v has inner neighbours on all ` + 1 traks, and has outer neighbours on the�rst rv � (`+ 1) traks among Q1; : : : ; Q` (an ative terminal v has at least rv � ` traks that have outerneighbours). It follows that we have have ` + 1 + rs � (` + 1) = rs openly disjoint s; t-paths using thesetraks. (One of these s; t-paths onsists of a path of the speial trak Q0 = Q and the edges sp(s) andtp(t).)Clearly, the onnetivity requirements hold for the ase of jT �j = 1. Now, suppose that jT �j = 2. Theabove arguments still apply unless both s and t have inner and outer neighbours on a trak that onsistsof exatly two nodes, all them x and y. In this ase, our trak onsists of a single edge xy (sine wedisarded the seond opy of xy in step (50)). Still, this trak gives two openly disjoint s; t-paths, namely,s; x; t and s; y; t. Thus it an be seen that the onnetivity requirements hold. This ompletes the proof ofTheorem 8. 16



5 The algorithm for node-onnetivity SNDPThis setion presents a proof of Theorem 4, based on (the algorithms in) Theorems 1, 3. For the sake ofmotivation, let us obtain an O(ln rmax)-approximation algorithm for a restrited version of NC-SNDP whereevery terminal has a requirement ri and every pair of terminals i; j has the requirement ri;j = min(ri; rj).The method is similar to the method for proving Theorem 3 from Theorems 1 and 8.Let opt denote the optimal value of the instane (of restrited NC-SNDP). First, for eah � = 1; 2; : : : ; 7,we apply the algorithm in Theorem 1 to the following instane �(�) of the subset �-onnetivity problemto obtain a solution subgraph H(�): we take the requirement of a terminal i in �(�) to be r0i = 0 if ri < �,and we take r0i = � if ri � �; the rest of the instane stays the same. By Theorem 1, the ost of H(�)is O(1) � opt. After this, we repeatedly apply the algorithm in Theorem 8 to solve an instane (spei�edbelow) of subset [�; 1:5�℄-onnetivity, where � is an integer multiple of 4 (� = 8; 12; 16; 24; : : : , detailslater), to obtain a solution subgraph H 0(�). The instanes of subset [�; 1:5�℄-onnetivity are as follows:we take the requirement of a terminal i to be r0i = 0 if ri < �, we take r0i = ri if � � ri � 1:5�, and wetake r0i = 1:5� if ri > 1:5�. By Theorem 8, the ost of H 0(�) is O(1) � opt. We start with � = 8, andwe iterate until rmax � 1:5�; after eah iteration, we update � to the largest integer multiple of 4 that is� 1:5 times the previous �. Clearly, the number of iterations is O(ln rmax). Finally, we output the solutionsubgraph H� for the instane (of restrited NC-SNDP); H� is the union of all the solution subgraphs H(�),� = 1; : : : ; 7, and H 0(�), � = 8; 12; : : : . Thus H� is the union of O(ln rmax) subgraphs suh that eah ofthese subgraphs has ost O(1) � opt, and so H� has ost O(ln rmax) � opt. To see that H� satis�es theonnetivity requirements, note that for every pair of terminals i; j, one of the subgraphs forming H� hasmin(ri; rj) openly disjoint i; j-paths, namely, the subgraph H(min(ri; rj)) if min(ri; rj) � 7, otherwise, anysubgraph H 0(�) where � satis�es � � min(ri; rj) � 1:5�.Our algorithm for metri-ost NC-SNDP is similar to the algorithm desribed above for the restritedversion of NC-SNDP. Let �� be an instane of NC-SNDP, and let opt denote its optimal value. Weuse kf to denote an integer multiple of 4 suh that rmax � 1:5kf . We repeatedly apply the algorithmof Theorem 1 (for subset k-onnetivity) for k = 1; : : : ; 7, and derived instanes �(1); : : : ;�(7) to obtainsolution subgraphs H(1); : : : ; H(7). Then we repeatedly apply the algorithm of Theorem 8 (for subset[k; 1:5k℄-onnetivity) for k = 8; 12; 16; 24; : : : ; kf and derived instanes �0(8);�0(12); : : : ;�0(kf ) to obtainsolution subgraphs H 0(8); : : : ; H 0(kf). We start these iterations with k = 8, and we iterate until k = kf ;after eah iteration, we update k to the largest integer multiple of 4 that is � 1:5 times the previous k.The onstrution of the derived instanes �(�) and �0(k) is desribed below.Finally, we output the solution subgraph H� for ��; H� is the union of all the solution subgraphs H(k),k = 1; : : : ; 7, and H 0(k), k = 8; 12; : : : ; kf ; we all these solution subgraphs the onstituent subgraphs ofH�. Below, we prove that the ost of eah of the onstituent subgraphs is at most O(1) �opt. Clearly, thenumber of iterations is O(ln rmax). Thus H� is the union of O(ln rmax) subgraphs suh that eah of thesesubgraphs has ost O(1) � opt, and so H� has ost O(ln rmax) � opt. Below, we prove that H� satis�es theonnetivity requirements, beause for every pair of terminals i; j, one of the onstituent subgraphs of H�has � ri;j openly disjoint i; j-paths.We de�ne the derived instanes via a well-studied problem in network design, namely, the generalizedSteiner tree problem, whih is as follows: we are given a graph G = (V;E), edge osts , and q̂ sets ofterminal nodes D̂1; D̂2; : : : ; D̂q̂; the goal is to ompute an (approximately) minimum-ost forest F of Gsuh that eah terminal set D̂m; m = 1; : : : ; q̂; is ontained in a (onneted) omponent of F . Goemansand Williamson [17℄, based on earlier work by Agrawal et al. [1℄, gave 2-approximation algorithms for thisproblem based on the primal-dual method. 17



Here is the onstrution for one of the derived instanes �0(k); reall that this is an instane of thesubset [k; 1:5k℄-onnetivity problem, where k is a �xed parameter. We start from �� and onstrut arequirements graph R with node set T and edge set E(R) as follows. For eah terminal pair i; j withk � ri;j � 1:5k (i.e., the requirement for the pair is within the valid range for our derived instane), weadd the edge ij to R. Denote the node sets of the (onneted) omponents of R by D̂1; D̂2; : : : ; D̂q̂. Next,we de�ne an instane �(gst) of the generalized Steiner tree problem on the graph G with edge osts (here, G;  are as in ��), and with terminal sets D̂1; D̂2; : : : ; D̂q̂. We solve this auxiliary problem �(gst)by applying the primal-dual algorithm of Goemans and Williamson [17℄. Let F � E(G) be the forestomputed by the Goemans-Williamson algorithm, and let F1; F2; : : : ; Fq denote the partition of F intoonneted omponents. Let the set of terminals in the omponent of Fm be denoted by Dm, m = 1; : : : ; q;thus eah set Dm is the union of one or more of the terminal sets D̂1; D̂2; : : : ; D̂q̂. For eah m = 1; : : : ; q,we de�ne an instane �0m(k) of the subset [k; 1:5k℄-onnetivity problem as follows: the graph G and theedge osts  are as in ��; the set of terminal nodes is Dm, and the requirement r0i of a terminal i 2 Dm isde�ned to be max(ri;j : fi; jg 2 E(R)); learly, k � r0i � 1:5k; 8i 2 Dm. We take the derived instane�0(k) to be the disjoint union of these instanes �0m(k), m = 1; : : : ; q, i.e., we assume that eah instane�0m(k) has its own opy of G and . To solve �0(k), we take eah m = 1; : : : ; q, and apply the algorithmin Theorem 8 separately to �0m(k) to obtain a solution subgraph, all it H 0m(k). (These instanes �0m(k)are pairwise disjoint, and we solve them separately, one by one.) Then we take the union of the subgraphsH 01(k); : : : ; H 0m(k) and all it H 0(k); this is the solution subgraph of �0(k). The ost of the subgraphsH 0m(k), m = 1; : : : ; q, is analysed below.Our reasons for using the auxiliary problem �(gst) for de�ning the instane �0(k) may be seen fromthe following example. Suppose that k is large (say k = pn) and the edges in E(R) form a mathing sayffs1; t1g; fs2; t2g; : : : ; fsq̂; tq̂gg, say q̂ = �(n). Moreover, suppose that G has a ut Æ(S) suh that eah edgein this ut is expensive, and some of the edges in E(R) have both ends in S and the remaining edges in E(R)have both ends in V �S. Say the optimal solution onsists of two disjoint subgraphs, one ontained in thesubgraph indued by S and the other ontained in the subgraph indued by V � S. Then we annot take�0(k) to be a single instane with terminal set fs1; : : : ; sq̂; t1; : : : ; tq̂g, beause then every solution subgraphwill have � k edges from the expensive ut Æ(S). Also, we annot take �0(k) to onsist of q̂ separatesub-instanes with one sub-instane for eah onneted omponent of R = (T;E(R)), beause the optimalvalues of these sub-instanes may sum to q̂ � opt, and the solution subgraph omputed by our algorithmmay have ost as high as this (assuming that the algorithm returns the union of the solution subgraphs ofthese q̂ sub-instanes). We get around this diÆulty by using the Goemans-Williamson algorithm to mergethe onneted omponents of R = (T;E(R)) into appropriate \lusters" and then we onstrut a separatesub-instane for eah of these \lusters" (these are the sub-instanes that we alled �01(k); : : : ;�0q(k)). Thekey point is that (i) these sub-instanes have pairwise disjoint terminal sets D1; : : : ; Dq, hene, the sumof the �() lower-bounds (used in Theorem 8), namely, Pqm=1 �(Dm), is � the �() lower-bound of ��, and(ii) the following proof (whih is based on the 2-approximation guarantee of Goemans and Williamson)shows that the sum of the mst() lower-bounds for these sub-instanes, namely, Pqm=1mst(Dm), is � O(1)times the mst() lower-bound of ��. Also, for eah sub-instane, the solution subgraph has ost within anO(1) fator of the sum of its �() and mst() lower-bounds. Hene, the union of the solution subgraphs ofthese sub-instanes has ost within an O(1) fator of the optimal value of ��.The onstrution of the instanes �(�), � = 1; : : : ; 7, is similar to that of the instanes �0(k). We startwith R = (T;E(R)) where E(R) onsists of terminal pairs fi; jg with ri;j = �. Then we obtain a family ofpairwise disjoint sub-instanes �1(�);�2(�); : : : and these sub-instanes together form �(�).Proof of Theorem 4: Reall that �� denotes the instane of NC-SNDP, opt denotes the optimal value18



of ��, and H� denotes the solution subgraph of �� found by our algorithm. The goal is to analyze theost of the onstituent subgraphs of H� and show that eah has ost � O(1) � opt, and then to show thatH� satis�es the onnetivity requirements. The proof is based on the following LP (linear programming)relaxation P � of �� that interprets eah requirement ri;j as a requirement for ri;j edge-disjoint i; j paths.Thus the optimal value of P � gives a lower bound on opt. The LP has a variable xe, 0 � xe � 1, foreah edge e 2 E; the intention is that eah feasible solution H of �� gives a zero-one vetor x 2 <E thatsatis�es two onditions: xe = 1 i� e 2 H , and x satis�es the onstraints of the LP (though feasible zero-onesolutions of the LP may not give feasible solutions of ��).P � : z� = minPe2E exesubjet tox(Æ(S)) � maxfri;j : i 2 S; j 62 Sg; 8S � Vxe � 0; 8e 2 EFous on one of the derived instanes �0(k) and its assoiated generalized Steiner tree instane �(gst).We use the notation from the onstrution of �0(k) given above. Goemans and Williamson [17℄ proved thatthe ost of the forest omputed by their algorithm is � 2 times the optimal value z(gst) of the following LPrelaxation P (gst) of �(gst). The LP has a variable xe, 0 � xe � 1, for eah edge e 2 E; the intention is thateah feasible solution F of �(gst) orresponds to a zero-one vetor x 2 <E that satis�es two onditions:xe = 1 i� e 2 F , and x satis�es the onstraints of the LP.P (gst) : z(gst) = minPe2E exesubjet tox(Æ(S)) � 1; 8S � V : 9m = 1; : : : ; q̂ : ; 6= S \ D̂m 6= D̂mxe � 0; 8e 2 EA key observation is that k � z(gst) � opt. To see this, note that multiplying the right-hand-side of anyonstraint of the LP P (gst) by k gives a onstraint that is valid for the LP P �. (This follows beausewhenever we have a onstraint x(Æ(S)) � 1 in the LP P (gst), then the node set S separates two terminalsv; w suh that the requirements graph R has an v; w-path onsisting of terminal-pairs fi; jg suh thatri;j � k; sine the v; w-path of R \rosses" S, one of the terminal-pairs fi; jg in the v; w-path \rosses" S,therefore, maxfri;j : i 2 S; j 62 Sg � k, hene, the onstraint \x(Æ(S)) � k" is a valid onstraint for theLP P �.) Consequently, for every feasible solution x� of the LP P �, we see that 1kx� is a feasible solutionof the LP P (gst). Moreover, if x� is an optimal solution of the LP P �, then we have z(gst) � 1k (x�) =1kz� � 1kopt, or equivalently, k � z(gst) � opt.Fous on the ost of the solution subgraph H 0(k) = H 01(k) [ H 02(k) [ � � � [ H 0q(k), and note that foreah m = 1; : : : ; q the ost of H 0m(k) is O(k) �mst(Dm) +O(1) � �(Dm) (by Theorem 8), where Dm denotesthe terminal set of H 0m(k). Then the ost of H 0(k) isO(k) �Pqm=1mst(Dm) + O(1) �Pqm=1 �(Dm)� O(k) �Pqm=1 (Fm) + O(1) � �(T ) (sine mst(Dm) � 2(Fm); 8m = 1; : : : ; q)� O(k) � (F ) + O(1) � �(T )� O(1) � opt+ O(1) � �(T ) (sine (F ) � 2z(gst) and z(gst) � opt=k)� O(1) � opt:A similar analysis for the solution subgraphs H(1); : : : ; H(7) shows that eah has ost � O(1) � opt.Thus our laim for the ost of the solution subgraph H� follows: (H�) = O(ln rmax) � opt.19



Finally, let us verify that H� satis�es the onnetivity requirements. Consider any pair of terminalsi; j and their requirement ri;j . Assume that ri;j � 8 (otherwise, we are done by a similar but simpleranalysis). Fous on an iteration of the algorithm that �xes the parameter k suh that k � ri;j � 1:5k.In that iteration, the requirements graph R has the edge fi; jg, hene, both i; j must be ontained in oneof the terminal sets D1; : : : ; Dq, say D1. Now, onsider the sub-instane �01(k) and its solution subgraphH 01(k) and note that H 01(k) must have � ri;j openly disjoint i; j-paths beause both r0i and r0j are � ri;j(here, r0i and r0j denote the requirements of i and j in �01(k)) Thus, H� has � ri;j openly disjoint i; j-paths.This ompletes the proof of Theorem 4.Aknowledgments. We thank Bill Cunningham, Mihel Goemans, Balaji Raghavahari, Ram Ravi, andSantosh Vempala for useful disussions over the years.
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Appendix 1: Examples illustrating laims in Setion 1This appendix has details pertaining to Corollary 2 and the remarks following it (in Setion 1). Inpartiular, we inlude a proof of the laim on 2-onneted graphs with metri osts, and give examples toshow that this laim does not apply to k-onneted graphs for k � 3. Also, we give examples showing thatfor metri osts, a k-onneted graph may be a fator of �(k) times more expensive than a k-edge-onnetedmulti-graph. The next result is well known, but we inlude a proof for the reader's onveniene.Proposition 11 In a metri graph, a minimum-ost 2-edge onneted spanning subgraph has the sameost as a minimum-ost 2-node onneted spanning subgraph.Proof: Take a ounterexample suh that the minimum-ost 2-edge onneted spanning subgraph H on-tains as few ut nodes as possible. Clearly H ontains at least one ut node v. LetW1 andW2 be onnetedomponents in H�fvg. Clearly, v lies on a yle C1 in W1[fvg and a yle C2 in W2[fvg. Let w1 and w2be neighbours of v on C1 and C2 respetively. Now, split o� the edge-pair vw1; vw2, that is add the edgew1w2 and remove the edges vw1 and vw2. This reates a yle C on the node set V (C1) [ V (C2). Thusthe resulting graph stays 2-edge onneted. Note that the number of omponents in H � fvg dereases byone. We repeat this step until H � fvg is onneted. By the triangle inequality, the ost of the subgraphdoes not inrease. This ontradits our original hoie of H .For k � 3, however, there exist k-edge onneted spanning subgraphs of Kn that have lower ost thanthat of a minimum-ost k-node onneted spanning subgraph. To see this let H be the union of twok+ 1 liques that share exatly one node v. Let the nodes of these liques be labelled a1; a2; : : : ; ak; v andb1; b2; : : : ; bk; v, respetively. Next onsider the omplete graph Kn on 2k + 1 nodes whose edges osts aregiven by the shortest-path distanes indued by H . That is, every edge in H has ost 1, and every edgein E(Kn)�E(H) has ost exatly 2. Sine H itself is k-edge onneted we see that Kn ontains a k-edgeonneted spanning subgraph of ost 2�k+12 � = k2 + k. Now, any k-node onneted spanning subgraph ofKn ontains at least 12(2k + 1)k = k2 + 12k edges. Moreover there must be at least k � 1 edges of ost 2between nodes in a1; a2; : : : ; ak and nodes in b1; b2; : : : ; bk, otherwise we obtain a node-ut ontaining lessthan k nodes. So any k-node onneted spanning subgraph of Kn has ost at least k2+ 12k+ (k� 1). Thisis stritly greater than the ost of the k-edge onneted graph H , if k � 3. The ase of k = 3 is shown inFigure 4.
b3

b2

a 1 b1

a 3

a 2

v

HFigure 4: A metri-ost 3-edge onneted graph that is stritly heaper than any 3-node onneted (span-ning) graph. The edges in H have ost 1, and the edges in E(Kn)�E(H) have ost 2.Clearly, if the edge osts do not satisfy the triangle inequalities, then the minimum ost of a k-nodeonneted spanning subgraph of Kn annot be bounded in terms of the ost of a k-edge onneted spanning21



subgraph. To see this take any k-edge onneted graph H that is not also k-node onneted (e.g., seeFigure 4 for k = 3). Let every edge in H have ost 1 and every edge in E(Kn)�E(H) have ost L. Sineany k-node onneted spanning subgraph of Kn has ost � L, the laim follows by the hoie of L.Corollary 2 and the other results do not extend to multi-graphs. To see this, let k be an even number,n � 1 � k � 2, and let H be obtained from a yle on n nodes by taking 12k opies of eah edge. SeeFigure 5. If eah edge in H has ost 1 then a minimum-ost k-edge onneted multi-graph has ost 12nk.
Figure 5: A metri-ost k-edge onneted multi-graph that is a fator of �(k) heaper than any k-nodeonneted spanning subgraph. The edge osts are given by the shortest-paths distanes in the yle.Let the ost of the other edges of Kn be given by the shortest-path distanes in H . Eah node has atleast k di�erent neighbours in a k-node onneted spanning subgraph, so the ost of the edges inident toany node is � 2P k2i=1 i = k(k2 + 1). Hene, the minimum ost of a k-node onneted spanning subgraph is� 14nk2. This is a fator of �(k) times the ost of the k-edge onneted graph H .
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Appendix 2: Table of Notation & Symbols for Setion 4node set V (jV j = n)set of terminal nodes T (jT j = n0)set of ative terminal nodes T � (jT �j = n�)terminal nodes (usually ative) h; i; jinative terminal nodes u; v; warbitrary nodes (terminals/nonterminals) x; yrequirement of terminal i rirequirement of terminal pair i; j ri;jonnetivity parameter k (k = 0 (mod 4) in Setion 4)edge inident to nodes x; y xyost of edge xy xy or (x; y)set of ri nearest neighbours of i �itotal ost of edges from i to nodes in �i �iaverage ost of an edge from i to nodes in �i �inormalized ost of edge ix e(i; x) := max(ix; �i) (or eix)parameters of algorithm in Setion 4 �; �;  (� = 4; � = 2)set of nodes within ball of radius ��i entered at i Binumber of traks ` (` = 3k=4 in Setion 4)traks Q0; Q1; Q2; : : : ; Q`index of urrent trak �inner neighbours of ative terminal i i1; i2; : : : ; i`parent of inative terminal v p(v)ordered set of nodes attahing terminal i to traks Niost of MST of subgraph indued by node set X mst(X)
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