
Approximation Algorithms for Network Design with Metri
 CostsJoseph Cheriyan� and Adrian VettayAbstra
t. We study undire
ted networks with edge 
osts that satisfy the triangle inequality.Let n denote the number of nodes. We present an O(1)-approximation algorithm for a gener-alization of the metri
-
ost subset k-node-
onne
tivity problem. Our approximation guaranteeis proved via lower bounds that apply to the simple edge-
onne
tivity version of the problem,where the requirements are for edge-disjoint paths rather than for openly node-disjoint paths. A
orollary is that, for metri
 
osts and for ea
h k = 1; 2; : : : ; n�1, there exists a k-node 
onne
tedgraph whose 
ost is within a fa
tor of 24 of the 
ost of any simple k-edge 
onne
ted graph. Thisresolves an open question in the area. Based on our O(1)-approximation algorithm, we presentan O(log rmax)-approximation algorithm for the metri
-
ost node-
onne
tivity survivable net-work design problem where rmax denotes the maximum requirement over all pairs of nodes. Ourresults 
ontrast with the 
ase of edge 
osts of zero or one, where Kortsarz et al. (SICOMP 33,pp.704-720) re
ently proved, assuming NP* quasi-P, a hardness-of-approximation lower boundof 2log1�� n for the subset k-node-
onne
tivity problem, where � denotes a small positive number.1 Introdu
tionA basi
 problem in network design is to �nd a minimum-
ost sub-network H of a given network G su
hthat H satis�es some prespe
i�ed 
onne
tivity requirements. Fundamental examples in
lude the minimumspanning tree (MST) problem and the traveling salesman problem (TSP). By a network we mean anundire
ted graph together with non-negative 
osts for the edges, and we use n to denote the numberof nodes. Our fo
us is on networks where the edge 
osts are metri
; that is, the edge 
osts satisfy thetriangle inequalities. This spe
ial 
ase is signi�
ant from both theoreti
al and pra
ti
al viewpoints; metri

osts arise in many appli
ations of network design, and perhaps in most of the obvious ones, su
h as thedesign of tele
ommuni
ation networks. Our goal is to design and analyse approximation algorithms forsome key problems in network design. Moreover, we resolve a long-standing 
onje
ture on metri
 graphs,where by a metri
 graph we mean a 
omplete graph Kn together with edge-
osts that satisfy the triangleinequalities.We atta
k the metri
-
ost node-
onne
tivity survivable network design problem (NC-SNDP). In thisproblem, we are given a metri
 graph, as well as a 
onne
tivity requirement ri;j between every pair ofnodes i and j. Let rmax denote maxi;j2V ri;j. The goal is to �nd a minimum-
ost subgraph H that satis�esthese requirements, that is, H should have ri;j openly node-disjoint paths between every pair of nodes iand j. There are two well-known spe
ial 
ases of NC-SNDP. The �rst is the subset k-node-
onne
tivityproblem, where we are given a set of terminal nodes T � V and ri;j = k pre
isely if both i and j are in T ,otherwise ri;j = 0. The se
ond is the 
lassi
al k-node 
onne
ted spanning subgraph problem (k-NCSS) whereri;j = k for every pair of nodes; this is the spe
ial 
ase of the subset k-node-
onne
tivity problem withT = V . We also study a new spe
ial 
ase of NC-SNDP that we 
all the subset [k; 1:5k℄-node-
onne
tivityproblem: given a set of terminal nodes T � V and an (integer) requirement ri for ea
h node i 2 T , where1 � k � ri � 1:5k, the goal is to �nd a minimum-
ost subgraph that has min(ri; rj) openly node-disjoint(28 April 2005)�Dept. of Comb. & Opt., University of Waterloo, Waterloo, ON, Canada. j
heriyan�uwaterloo.
ayDepartment of Mathemati
s and Statisti
s, and S
hool of Computer S
ien
e, M
Gill University. vetta�math.m
gill.
a1



i; j-paths for every pair of nodes i; j 2 T . (Thus the subset k-node-
onne
tivity problem is the spe
ial 
asewhere ri = k; 8i 2 T .) See Se
tion 4 for more dis
ussion.Most network design problems stay NP-hard and APX-hard even assuming metri
 
osts. This remainstrue even for small 
onne
tivity requirements; for example, Bern & Plassmann [3℄ showed that the Steinertree problem (the 
lassi
al spe
ial 
ase of the subset k-node-
onne
tivity problem with k = 1) is APX-hard even with edge 
osts of 1 and 2. Over the past de
ade, there has been signi�
ant resear
h onapproximation algorithms for network design, and there have been some notable su

esses in the designof networks that satisfy various types of \edge 
onne
tivity" requirements, e.g., Goemans & Williamson[17℄, and Jain [18℄, but from the perspe
tive of approximation algorithms, the design of networks subje
tto \node 
onne
tivity" requirements is a murky area. For example, Kortsarz, Krauthgamer & Lee [21℄re
ently proved a hardness-of-approximation lower bound of 2log1�� n for the subset k-node 
onne
tivityproblem in graphs with zero-one edge 
osts, provided that NP* DTIME(npolylog(n)), where, � denotes asmall positive real number. (We give a detailed dis
ussion on previous work in the area after stating ourresults.)We present a 24-approximation algorithm for the metri
-
ost subset k-node-
onne
tivity problem, andthen we generalize this to get an O(1)-approximation algorithm for the metri
-
ost subset [k; 1:5k℄-node-
onne
tivity problem. Modulo P6=NP and up to 
onstant fa
tors, these are the best possible results. Thesealgorithms are deterministi
 and 
ombinatorial; they do not use linear programming relaxations. Basedon this, we present an O(log rmax)-approximation algorithm for the metri
-
ost NC-SNDP. The algorithmfor NC-SNDP is based on a linear programming relaxation. Also, it uses a 2-approximation algorithm ofGoemans & Williamson [17℄ (see also Agrawal et al. [1℄) for the generalized Steiner tree problem. Moreover,we resolve the following long-standing 
onje
ture: In a metri
 graph and for ea
h k = 1; 2; : : : ; n� 1, theminimum 
ost of a k-node 
onne
ted spanning subgraph is within a 
onstant fa
tor of the minimum
ost of a simple k-edge 
onne
ted spanning subgraph. Thus, for metri
 graphs, the requirements of k-node-
onne
tivity and simple k-edge-
onne
tivity are equivalent for the obje
tive fun
tion, up to 
onstantfa
tors. A similar result holds for requirements of subset [k; 1:5k℄-node-
onne
tivity versus subset simple[k; 1:5k℄-edge-
onne
tivity.We apply two lower bounds on the optimal value of the subset [k; 1:5k℄-
onne
tivity problem. We mayassume (without loss of generality) that there exist at least two terminals with the maximum requirement.Hen
e, every solution subgraph has at least ri edges in
ident to ea
h terminal i, be
ause there is anotherterminal j with rj � ri, so the solution subgraph must have ri openly node-disjoint i; j-paths. Our �rstlower bound 
omes from the the minimum 
ost of a subgraph that has degree � ri for every terminal i.Our se
ond lower bound 
omes from the 
ost of a minimum spanning tree of the subgraph indu
ed bythe terminals. For any node i, we use �i or �(i) to denote the sum of the 
osts of the ri 
heapest edgesin
ident to i in the 
omplete graph, and for any set of nodes S, we use �(S) to denote Pi2S �i. We usethe abbreviations MST for minimum-
ost spanning tree, and TSP for the traveling salesman problem. Letmst(T ) denote the 
ost of an MST of the subgraph indu
ed by T . Our lower bounds are:(i) 12 �(T ), and(ii) k2 mst(T ).Note that these lower bounds apply also to the simple edge-
onne
tivity version of the subset [k; 1:5k℄-
onne
tivity problem, where the requirements are for min(ri; rj) edge-disjoint paths between every pair ofnodes i; j 2 T ; note that multi-edges are not allowed in the solution subgraph. See Se
tion 2 for moredetails. Throughout, we use opt to denote the 
ost of an optimal solution. Next, we state our main resultsformally. 2



Theorem 1 There is a polynomial-time algorithm for 
omputing a solution to the metri
-
ost subset k-node 
onne
tivity problem of 
ost � 10�(T ) + 4(k2) mst(T ) � 24opt.Consider k-NCSS, the spe
ial 
ase of the subset k-node 
onne
tivity problem in whi
h the terminal set Tis V . Let k-ECSS be the problem of �nding a minimum-
ost simple k-edge 
onne
ted spanning subgraph.Then our two lower bounds apply for both k-NCSS and k-ECSS. This gives the next result.Corollary 2 In a network with metri
 
osts, there is a k-node 
onne
ted spanning subgraph whose 
ost isat most 24 times the minimum 
ost of a simple k-edge 
onne
ted spanning subgraph.Remarks: For metri
 graphs, it is well known that there exists a 2-node 
onne
ted graph of 
ost � the
ost of any 2-edge 
onne
ted graph (see Appendix 1), but this does not hold for k � 3 (see [4, Fig.1℄ andAppendix 1 for examples). Also, note that the 12 �(V ) lower bound for k-ECSS does not apply for theversion where multi-edges are allowed. In more detail, if multi-edges are allowed, then there exist k-edge
onne
ted graphs H su
h that any k-node 
onne
ted graph has 
ost � �(k) 
(H). See Appendix 1 formore details.Theorem 3 There is a polynomial-time algorithm for 
omputing a solution to the metri
-
ost subset[k; 1:5k℄-node-
onne
tivity problem of 
ost � O(1) � (�(T ) + k2 mst(T )) � O(1) � opt.Remark: A loose analysis gives a 
onstant fa
tor between 800 and 1000 in the above theorem. Possibly,an approximation guarantee of � 100 
an be obtained by some 
hanges to the algorithm. We have notattempted to optimise the 
onstants in the approximation guarantees.Theorem 4 There is a polynomial-time algorithm for 
omputing a solution to the metri
-
ost NC-SNDPof 
ost � O(ln rmax) � opt.Previous workOver the past few de
ades, there has been signi�
ant resear
h on approximation algorithms for networkdesign. For early work in network design, see for example Dantzig, Ford & Fulkerson [12℄. A 
elebrated andstill unsurpassed result was Christo�des' 32 -approximation algorithm for the metri
-
ost TSP [8℄. Partlymotivated by Christo�des' result, there followed a stream of resear
h on related problems in the designof metri
-
ost networks. Most of this resear
h fo
used on small 
onne
tivity requirements, su
h as 2-edge
onne
tivity and 2-node 
onne
tivity; see Frederi
kson & Ja'Ja' [14℄, Monma & Shall
ross [26℄, Monma,Munson & Pulleyblank [25℄, and Biensto
k, Bri
kell & Monma [4℄. For 
onstant k, this last paper givesa 
onstant-fa
tor approximation algorithm for k-NCSS. Moreover, the proof also shows that for metri
graphs and any 
onstant k, there exists a k-node 
onne
ted spanning subgraph of Kn whose 
ost is withina 
onstant fa
tor of the 
ost of any k-edge 
onne
ted spanning subgraph, see [4, Se
.4℄. They left openthe question of extending these results to all k. This was followed by another burst of resear
h, partlyinitiated by the work of Goemans & Bertsimas [15℄ who presented a logarithmi
 approximation algorithmfor a general model 
alled the edge-
onne
tivity survivable network design problem (EC-SNDP) assumingmetri
 
osts. Soon after this, the resear
h fo
us 
hanged from metri
 
osts to the more general setting ofnon-negative 
osts. Agrawal, Klein & Ravi [1℄, and Goemans & Williamson [17℄ built on the primal-dualmethod to obtain O(1)-approximation algorithms for some spe
ial 
ases of EC-SNDP with small (i.e., zeroand one) 
onne
tivity requirements. Later, these methods were generalized to EC-SNDP, albeit with alogarithmi
 approximation guarantee, by Goemans et al. [16℄ based on work by Williamson et al. [31℄. Thisline of resear
h 
ulminated with a 2-approximation algorithm for EC-SNDP by Jain [18℄.3



Although there was 
onsiderable interest in extending these methods to the setting of node 
onne
tivity,there was limited su

ess even for rather spe
ial 
ases of NC-SNDP. We mention a few results and referthe interested reader to [6℄ for more referen
es. For the 
ase of non-negative edge 
osts, Kortsarz & Nutov[22℄ and [7℄ have logarithmi
 (or worse) approximation guarantees for the k-NCSS problem. For metri

osts, there is an O(1)-approximation algorithm due to Khuller & Raghava
hari [20℄, and there are otherrelated results in [5, 23℄. Some explanation for this la
k of good approximation algorithms for NC-SNDP
omes from the re
ent hardness-of-approximation results of Kortsarz, Krauthgamer & Lee [21℄. Also, seethe surveys by Frank [13℄, Khuller [19℄, and Stoer [28℄, and the book by Vazirani [30℄.We brie
y mention the relationship between our work and the stream of ex
iting re
ent results onPTAS's (polynomial-time approximation s
hemes) for related problems. Beginning with the results ofArora [2℄ on the Eu
lidean TSP, many PTAS's have been obtained for problems in \geometri
 networkdesign" where the edge 
osts 
ome from spe
ial metri
s su
h as the Eu
lidean metri
, see [9, 10, 11, 27℄and the referen
es in those papers. But, modulo P6=NP, su
h PTAS's do not exist in the setting of interestto us, namely, (general) metri
 
osts; this follows from APX-hardness results in [3, 21, 29℄.The rest of the paper is stru
tured as follows. In Se
tion 2, we dis
uss some preliminaries, and give anoverview of our method for the metri
-
ost subset k-node 
onne
tivity problem. We present a 
onstant-fa
tor approximation algorithm for the problem in Se
tion 3. Se
tion 4 gives a 
onstant-fa
tor approx-imation algorithm for a generalisation. This leads to an O(log rmax)-approximation algorithm for themetri
-
ost NC-SNDP in Se
tion 5.2 Preliminaries and an overview of the algorithm for subset k-
onne
tivityApart from Se
tion 1, we omit the word `node' from terms su
h as `node-
onne
tivity' when there is nodanger of ambiguity.Let the input graph be G = (V;E). We denote the nodes by numbers i = 1; 2; : : : ; n, and for nodes i; jthe edge between them is denoted ij. The 
ost of an edge ij 2 E is denoted 
ij or 
(i; j). The 
osts aresaid to be metri
 if the triangle inequality holds: 
(v; w) � 
(v; u) + 
(u; w); 8u; v; w 2 V . Whenever weassume metri
 
osts, we also assume that G is the 
omplete graph. Let k be an integer su
h that n > k � 1(k may be a fun
tion of n). For a pair of nodes i; j, let �(i; j) denote the maximum number of openlynode-disjoint i; j-paths. Re
all that T denotes the set of terminal nodes. We use n0 to denote jT j, and weassume T = f1; : : : ; n0g.Let us formalize the lower bounds (i) and (ii) for the subset [k; 1:5k℄-
onne
tivity problem stated inSe
tion 1. For ea
h terminal node i, let �i denote the set of ri nearest neighbours of i; by 
onvention,i 62 �i. (Thus j�ij = ri and 8x 2 �i; y 62 �i [ fig; 
iy � 
ix.) Then note that �i denotes Px2�i 
ix. Also,for ea
h terminal node i, let �i denote �i=ri, namely, the average 
ost of an edge from i to one of its rinearest neighbours. Note that ea
h terminal node i has at least ri neighbours in an optimal subgraph,thus opt � 12�(T ). This gives the �rst lower bound. Next, we 
laim that opt � k2mst(T ). In more detail,we have opt � 12e
opt(T; 2k) � k2mst(T ), where e
opt(T; �) denotes the minimum 
ost of a �-edge
onne
ted subgraph of G[T ℄ (allowing multi-edges). To see this, start with a graph 
orresponding to opt,and take two 
opies per edge to get an Eulerian multi-graph H 0 that is 2k-edge 
onne
ted on T , thenapply the Lov�asz-Mader splitting-o� theorem [24, Ex.6.51℄, [13℄, to eliminate all nodes of V � T from H 0to get a 2k-edge 
onne
ted multi-graph on the node set T that has 
ost � e
opt(T; 2k); then we applythe well-known fa
t that e
opt(T; �) � �2mst(T ). For metri
 
osts, splitting o� edges does not in
reasethe 
ost. This gives the se
ond lower bound: opt � k2mst(T ).4
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3Figure 1: A key spe
ial 
ase of the algorithm. Here, k = 6, T = f1; 2; 3; 4g, and the sets fig[�i (indi
atedby dotted blobs) for i 2 T are pairwise disjoint. The tra
ks Q1; Q2; Q3 are indi
ated by 
ir
les.We �rst give an overview of our method for subset k-
onne
tivity by des
ribing a key spe
ial 
asewhere k is even, say k = 2`, and the sets fig [ �i of the terminals i are pairwise disjoint (that is,(fig [ �i) \ (fjg [ �j) = ;; 8i 6= j 2 T ). Arbitrarily name the nodes in �i as i1; i2; : : : ; ik, 8i 2 T .Constru
t a 
heap 
y
le Q on the terminals using the well-known MST-doubling heuristi
 for the TSP.(Start with an MST of the subgraph indu
ed by T , repla
e ea
h edge by two 
opies, and short
ut theresulting 
onne
ted Eulerian graph to get a 
y
le Q with V (Q) = T and 
(Q) � 2mst(T ).) Let thesequen
e of terminals on Q be 1; 2; : : : ; n0; 1 (renumber the nodes if needed). For ea
h � = 1; : : : ; `, 
onstru
ta 
y
le Q� \parallel" to Q where Q� = 1� ; 1`+� ; 2� ; 2`+� ; 3� ; : : : ; (n0�1)`+� ; n0� ; n0`+� ; 1� . (See Figure 1;informally, start with the 
y
le 1� ; 2� ; : : : ; n0� ; 1� , then for ea
h i = 1; : : : ; n0 insert the node i`+� betweennodes i� and (i + 1)� .) Let us refer to these 
y
les as tra
ks. It 
an be seen that a tra
k Q� has 
ost
(Q� ) � 
(Q)+Pti=1 2(
(i; i�)+
(i; i`+� )) (see the se
ond subroutine below), and the total 
ost of the tra
ksis P�̀=1 
(Q� ) � ` � 
(Q)+2�(T ). Finally, for ea
h terminal i 2 T , we add the k edges ii1; ii2; : : : ; iik. Theresulting subgraph is our solution graph H ; it has 
ost 
(H) � 2` �mst(T )+3�(T ) � 2opt+6opt = 8opt.Note that ea
h terminal has pre
isely two neighbours in ea
h tra
k. Thus H satis�es the 
onne
tivityrequirements, be
ause for every pair of terminals i; j(i 6= j), ea
h of the k=2 tra
ks 
ontributes 2 openlydisjoint i; j paths.The algorithm uses the following two subroutines. Note that the solution graph H is simple, so whenwe add edges to H we do so without 
reating multi-edges.� The �rst subroutine 
opies a spe
i�ed set of neighbours of a terminal i to another terminal v (possibly,v is adja
ent to i). More pre
isely, given a terminal i and a spe
i�ed set of neighbours of i, 
all itNi, and another terminal v, the subroutine adds an edge vx to H for ea
h node x 2 Ni (without
reating multi-edges or loops in H). After this step, �(i; v) � jNij in H . The 
ost of the newedges is � jNij 
(i; v) + Px2Ni 
(i; x); moreover, if there is a positive real number 
 su
h thatPx2Ni 
(i; x)� 
�i, then the 
ost of the new edges is � jNij 
(i; v) + 
�i.� The other subroutine starts with a 
y
le 
ontaining a terminal i and inserts new node(s) into the
y
le. Given a 
y
le Q0, a terminal i in Q0, and a node x 62 V (Q0), we �rst add two 
opies of theedge ix to Q0 to get a 
onne
ted Eulerian graph. Then we short
ut this Eulerian graph (as in the5



MST-doubling heuristi
 for the TSP) to obtain a new 
y
le Q with node set V (Q0)[fxg. The in
reasein 
ost is � 2
(i; x).It is important for our analysis to get good upper bounds on the 
osts of the tra
ks. Note that thetra
ks are pairwise node disjoint; thus ea
h terminal is in at most one tra
k. But, for upper-boundingthe tra
k 
osts, we use the following a

ounting tri
k: Consider any tra
k Q� . We assume that the tra
kinitially 
onsists of all the terminals, thus V (Q� ) = T , and using the MST-doubling heuristi
 we have
(Q� ) � 2mst(T ). Subsequently, the algorithm may insert new nodes into the tra
k { su
h insertions o

urwhile we are pro
essing some terminal { thus for inserting node x while pro
essing terminal i the 
ost
(Q� ) in
reases by � 2
(i; x). Possibly, x may be another terminal { in that 
ase, we impli
itly removex from Q� and then insert x via the double-edge ix. At the end of the exe
ution, we keep only thoseterminals that were expli
itly inserted into Q� and remove all the other terminals from Q� ; 
learly, thisdoes not in
rease the 
ost 
(Q� ). Note that this \histori
al view" of Q� is only needed for upper-boundingthe 
ost. Other than this, it may be easier to view the tra
ks as being pairwise node disjoint all throughthe exe
ution, and this is the viewpoint we use in presenting the detailed algorithm.3 The algorithm for subset k-
onne
tivityThis se
tion is devoted to an algorithm and proof for Theorem 1. The detailed algorithm follows. Ananalysis of the 
ost of the edges added to H (the solution graph) is given after the algorithm. A terminalmay be in two states a
tive or ina
tive. Initially, all the terminals are a
tive. Let ` denote dk=2e. Initially,H is the graph 
onsisting of all the terminal nodes and no edges, thus H = (T; ;).(1) [de-a
tivate terminals & 
onstru
t disjoint balls for a
tive terminals℄Renumber the terminals as 1; 2; : : : ; n0 by in
reasing value of �; thus �1 � �2 � � � � � �n0 .Note: �h � �j i� �h � �j .S
an the terminals in the order 1; 2; : : : ; n0, and skip the 
urrent terminal if it is ina
tive. For ana
tive terminal i, 
onstru
t the set Bi = fj j 
(i; j)� ��ig, where we 
hoose � = 2. For ea
h a
tiveterminal v > i, if 
iv � (��i + ���v), where we �x � = 2, then make v ina
tive, and re
ord i as theparent of v by assigning p(v) = i. (The aim is to ensure that the sets Bi of a
tive terminals i arepairwise disjoint.)Note that i 2 Bi and jBij � 1 + (1� 1�)k = 1 + k2 . (Otherwise, we have � k=� = k=2 nodes x in �iwith 
(i; x) > ��i = ��i=k, so these nodes 
ontribute > �i to Px2�i 
(i; x).) Hen
e, jBi � figj � `.Also note that �p(v) � �v for ea
h ina
tive terminal v.Choose the ` nodes in Bi nearest to i and name them as i1; i2; : : : ; i` su
h that 
(i; i1) � 
(i; i2) �� � � � 
(i; i`).(2) [
onstru
t ` tra
ks on the disjoint balls℄After step (1), let T � denote the set of a
tive terminals and let n� = jT �j. If n� < 3, then applystep (20) and stop. Otherwise, 
onstru
t a 
heap 
y
le Q on the a
tive terminals by applying theMST-doubling heuristi
 for the TSP to the subgraph indu
ed by T �. Renumber the terminals su
hthat Q = 1; 2; : : : ; n�; 1, that is, the a
tive terminals get the numbers in f1; : : : ; n�g a

ording to theirordering in Q. Constru
t ` tra
ks Q1; Q2; : : : ; Q`, where tra
k Q� = 1� ; 2� ; : : : ; n�� ; 1� (� = 1; : : : ; `).Add all the tra
ks (but not the 
y
le Q) to H . The 
ost of the tra
ks 
onstru
ted in this step isanalysed in Proposition 6 below. 6



(20) [spe
ial handling for 1 or 2 a
tive terminals℄Skip this step if n� � 3. Suppose n� = 1. Let the a
tive terminal be i. Add all the edges iv; v 2 �i,and then for ea
h ina
tive terminal j, 
opy the set �i of neighbours of i to j. The resulting graph Hsatis�es the 
onne
tivity requirements.Suppose n� = 2. Let the a
tive terminals be h; i, with �h � �i. Add all the edges hq; q 2 �h, andiv; v 2 �i. Then add a mat
hing M of maximum size between the nodes in �i � (�h [ fhg) and in�h � (�i [ fig); now, ea
h mat
hing edge qv (say q 2 �h � fig and v 2 �i � fhg) gives an h; i path,namely, h; q; v; i. Finally, for ea
h ina
tive terminal j, 
opy the set �p(j) of neighbours of p(j) to j.The resulting graph H satis�es the 
onne
tivity requirements.(3) [augment disjoint balls and assign token ar
s℄In summary, this step s
ans the a
tive terminals i and augments ea
h \ball" Bi to get an \augmentedball" B0i (that ideally has jB0ij � ri+1 = k+1) su
h that these augmented balls are pairwise disjoint.The obvious 
onstru
tion for B0i is to start with Bi and then add some nodes from �i � Bi, butthen the augmented balls may interse
t. We \de-interse
t" two interse
ting sets B0h and B0i, whilepreserving the balls Bh and Bi, by assigning so-
alled token ar
s to the a
tive terminals su
h that forea
h a
tive terminal i, jB0ij plus the number of token ar
s assigned to i is � ri+ 1 = k+ 1. Considerone spe
ial 
ase: suppose that h and i are a
tive terminals and node q is in B0h\B0i but q 62 Bh [Bi.Then we 
ompare the 
osts of the edges hq and iq and \repla
e" the 
ostlier edge, say iq, by a tokenar
 whose 
ost we �x to be 3
iq; that is, we remove q from B0i and instead assign to i a token ar
with 
ost 3
iq. The details follow.Renumber the terminals so that the a
tive terminals i in order of in
reasing �i values are 1; 2; : : : ; n�,and s
an the a
tive terminals in this order. Start the s
an of i 2 T � by de�ning B0i := Bi if �i � Bi,and B0i := �i otherwise. If B0i is disjoint from B0h for all a
tive terminals h < i; then 
ontinue withthe next a
tive terminal, otherwise, for ea
h a
tive terminal h < i with B0h \ B0i 6= ;, examine thenodes q in B0h \B0i in any order. Note that �h � �i.
i

x
q

h

iΓ

2Q

iB hB

lQ

1QFigure 2: An illustration of step (3)(a) in Se
tion 3: the \dashed edge" iq is repla
ed by a token ar
 ihthat is later (in step (4)) repla
ed by an edge ix; x 2 Bh.(a) Suppose q 2 Bh. Then note that q 62 Bi and 
iq > ��i � ��h. Remove q from B0i and give toi a token ar
 (i; h) with 
ost 3
iq. (Later, this token ar
 will be repla
ed by an edge ix where7



x 2 Bh; note that the 
ost of ix is � 
iq + 
hq + 
hx � 
iq + 2��h � 3
iq.) See Figure 2 for anillustration.(b) Otherwise, q 2 B0h�Bh. Suppose q 2 Bi. Then note that 
hq+
iq � 
hi � (��h+���i) (the lastinequality holds be
ause both h; i are a
tive), and 
iq � ��i, hen
e, 
hq � �(�h+�i) (re
all that� = 2). Remove q from B0h and give to h a token ar
 (h; i) with 
ost 3
hq. (Later, this token ar
will be repla
ed by an edge hx, x 2 Bi, of 
ost � 
hq+
iq+
ix � 
hq+2��i � 
hq+2
hq � 3
hq.)(
) Suppose q 2 B0h �Bh and q 2 B0i � Bi. Then we 
ompare 
iq and 
hq.If 
iq � 
hq, then remove q from B0i and give to i a token ar
 (i; h) with 
ost 3
iq. (Later, thistoken ar
 will be repla
ed by an edge ix, x 2 Bh, of 
ost � 
iq + 
hq + 
hx � 2
iq + ��h � 3
iq,where the last inequality holds be
ause 
iq > ��i � ��h.)Otherwise, we have 
iq < 
hq. Then we remove q from B0h and give to h a token ar
 (h; i) with
ost 3
hq. (Later, this token ar
 will be repla
ed by an edge hx, x 2 Bi, of 
ost � 
hq+
iq+
ix �2
hq+ ��i � 3
hq, where the last inequality holds be
ause 
hq + 
iq � 
hi � (��h + ���i) (as in(b) above), hen
e, 
hq � �2 (�h + ��i) � ��i (re
all that � = 2).)After step (3), note that the 
ost of a token ar
 (i; j) depends on the 
ost of the asso
iated edge iqand is 3
iq.(4) [atta
h a
tive terminals to tra
ks℄In summary, this step s
ans ea
h a
tive terminal i and adds edges from i to the tra
ks su
h that ea
htra
k Q� ; � = 1; : : : ; bk=2
, gets two neighbours of i, and the last tra
k Q` gets � 1 neighbour of i.First add edges from i to ea
h of i1; i2; : : : ; i`; also, mark the nodes i1; i2; : : : ; i` as used.Then for ea
h � = 1; 2; : : : ; bk=2
, do the following. If an unused token ar
 (i; h) is available, then
hoose it, mark it as used, and add the edge ih� ; note that h� is in Bh and is the \�rst neighbour"of h in tra
k Q� ; also, note that 
(i; h�) is � the 
ost of the token ar
 (i; h). If no unused token ar
sare available, then 
hoose an unused node q 2 B0i, mark it as used, insert q into tra
k Q� , and addthe edge iq. (Note that the number of token ar
s given to i plus jB0ij is � k+ 1, hen
e, this step will�nd bk=2
 token ar
s or unused nodes, ex
luding the nodes i1; i2; : : : ; i`.)For ea
h a
tive terminal i, let Ni denote the set of neighbours of i in the tra
ks, just after step (4)is applied to i.(5) [atta
h ina
tive terminals to tra
ks℄Finally, \atta
h" the ina
tive terminals to the tra
ks. Note that an ina
tive terminal may be alreadyin one of the tra
ks. For ea
h ina
tive terminal j, 
opy the set of neighbours Np(j) of the parent p(j)to j.Proposition 5 The 
ost of the graph 
onstru
ted in step (20) is � 16opt.Proof: Suppose n� = 1, and let i be the (unique) a
tive terminal. Then 
(H) � �i+Pj2T�T �(k
ij+�i) ��i+Pj2T�T �(k(��i+���j)+�i) � �i+Pj2T�T �(�(1+�)�j+�j) � 7�(T ) � 14opt (we have � = 2; � = 2,and we used �i � �j for an ina
tive terminal j).Suppose n� = 2, and let i; h be the two a
tive terminals. Then re
all that M denotes a mat
hing ofmaximum size between the nodes in �i � (�h [ fhg) and in �h � (�i [ fig); note that an edge qv 2 M(say, q 2 �h; v 2 �i) has 
ost � 
hq + 
hi + 
iv, hen
e, 
(M) � �h + �i + k � mst(T ); the other edgesin H 
ontribute a 
ost of � �h + �i +Pj2T�T �(�(1 + �)�j + �j) (as in the analysis for n� = 1) hen
e,
(H) � 7�(T ) + k �mst(T ) � 16opt. 8



Proposition 6 (i) The total 
ost of the edges added by step (4) and in
ident to an a
tive terminal i is� 4�i. (ii) At the end of step (4), the total 
ost of the ` tra
ks is � 2` �mst(T ) + 4�(T �).Proof: For an a
tive terminal i, the total 
ost of the token ar
s (i; h) given to i is � 3�i. The 
ost of theedges added that are in
ident to i, but ex
luding the 
ost due to the token ar
s, is � ��i if jBij � k + 1(in this 
ase, B0i = Bi and no token ar
s are given to i), and is �Px2�i 
ix � �i otherwise. Thus the total
ost of the added edges in
ident to i is � max(��i; �i + 3�i) � 4�i.The total 
ost of the ` tra
ks (that were 
onstru
ted in step (2) and modi�ed in step (4)) is � 2` �mst(T ) + 4�(T �). To see this, �rst 
onsider the term 2` �mst(T ). Re
all (from Se
tion 2) the a

ountingtri
k we use for upper-bounding the 
ost of a tra
k; due to this, we take the upper bound on the 
ost of Q(the 
heap 
y
le on T � in step (2)) to be 2mst(T ) rather than 2mst(T �). Summed over ` tra
ks, this gives2` �mst(T ). For the se
ond term, note that i 2 T � 
ontributes �Pq2B0i 2
(i; q), and this is � 2k(��i) if�i � Bi (then B0i = Bi), and � 2�i otherwise (then B0i = �i).Proposition 7 The total 
ost of the edges added by step (5) and in
ident to the ina
tive terminals is� 10�(T � T �).Proof: Suppose the 
ost of the added edges in
ident to an a
tive terminal i is � 
�i. (From Proposition 6,we have 
 = 4.) Then the 
ost of the edges added for an ina
tive terminal j with parent i is � k �
ij+
�i �k(��i + ���j) + 
�i � (�(� + 1) + 
)�j , using the fa
t that �p(j) � �j . Thus the total 
ost of the edgesadded in this step is � 10�(T � T �), using � = 2; � = 2; 
 = 4.Proof of Theorem 1: By the above propositions, the total 
ost of H is � 2` �mst(T )+4�(T �)+
�(T �)+10�(T �T �) � (k+1)mst(T ) + 8�(T �) + 10�(T �T �) � (k+1)mst(T ) + 10�(T ) � (2+ 2k )opt+20opt �24opt.We 
laim that the graph H has the required 
onne
tivity property, namely, �(i; j) � k; 8i 6= j 2 T .To see this, 
onsider any pair of terminals i; j and 
onsider any one tra
k Q� . Suppose that either i is inQ� , or i is not in Q� but has two neighbours in Q� . Suppose the same statement holds for j (that is, jis in Q� , or j is not in Q� but has two neighbours in Q�). Then, Q� (together with the edges from i andj to Q�) 
ontributes two openly disjoint i; j paths. Similarly, Q� 
ontributes one i; j path if both i andj either are in Q� or have a neighbour in Q� . By 
onstru
tion, ea
h a
tive terminal has two neighboursin ea
h of the tra
ks Q� for � = 1; : : : ; bk=2
, and has a neighbour in Q`; similarly, ea
h ina
tive terminalis either in Q� or has two neighbours in Q� for � = 1; : : : ; bk=2
, and is in Q` or has a neighbour in Q`.Then, for any two terminals i and j, H has k openly disjoint i; j paths, sin
e ea
h of the tra
ks Q� for� = 1; : : : ; bk=2
, 
ontributes two openly disjoint i; j paths, Q` 
ontributes an i; j path, and these k pathstogether are openly disjoint.4 The algorithm for subset [k; 1:5k℄-
onne
tivityIn this se
tion, we extend the methods of the previous se
tion to obtain an O(1)-approximation algorithmfor the the subset [k; 1:5k℄-
onne
tivity problem. It seems likely that these methods will give similar resultsfor the subset [k; � k℄-
onne
tivity problem, for any 
onstant �, 1 � � < 2, but they do not extend to � = 2for the following reason: as in Se
tion 3, we 
hoose some terminals to be a
tive and we 
onstru
t pairwise-disjoint sets Bi of radius O(1)�i for the a
tive terminals i, where Bi has at least a fra
tion � of the nodesin �i (� = 12 in Se
tion 3); our method assumes � � �2 , i.e., the size of every set Bi�fig is at least half themaximum requirement; then, for � = 2 and an a
tive terminal i with ri = k we need jBi � figj � k = j�ij9



and this is not possible for sets of radius O(1)�i. Our main appli
ation is to the NC-SNDP, and for this,any 
onstant � > 1 suÆ
es; we 
hose � = 1:5 for 
onvenien
e.The main diÆ
ulty in extending the methods of Se
tion 3 
omes from the fa
t that an a
tive terminali may have an ina
tive terminal v with rv > ri as a 
hild. Then we 
annot satisfy the 
onne
tivityrequirement of v by 
opying the neighbours of i to v. Roughly speaking, we handle this as follows: we pi
ka 
hild v� of i with the maximum requirement, and 
opy all the neighbours of i to v�; then, if needed, weadd new neighbours for v� in the tra
ks by examining the nodes x 2 �v� ; if x 2 B0h for some a
tive terminalh then we pro
eed similarly to step (3) of Se
tion 3 (though there are new 
ompli
ations), otherwise, weeither insert x as a new node into a tra
k or we \transform" to the 
ase of x 2 B0h. For any other ina
tive
hild v of i, we attempt to 
opy the \�rst" rv neighbours of v� to v. This is an informal (and ina

urate)overview; the details are given below. The main 
ontribution of this se
tion is an algorithm and proof forthe following restri
ted 
ase of Theorem 3.Theorem 8 Let k be an integer multiple of 4, thus k = 0 (mod 4). There is polynomial-time algorithmfor 
omputing a solution to the metri
-
ost subset [k; 1:5k℄-
onne
tivity problem of 
ost � O(1) � opt.Remark: A loose analysis gives a 
onstant fa
tor between 800 and 900 in the above theorem.Theorem 3 follows by 
ombining this theorem with Theorem 1. To see this, suppose that k 6= 0 (mod 4)(otherwise, we are done). Let k̂ � k denote the next integer multiple of 4; 
learly, k̂ � k � 3. Then forea
h � = k; k + 1; : : : ; k̂ � 1, we apply the algorithm in Theorem 1 to the following instan
e �(�) of thesubset �-
onne
tivity problem to obtain a solution subgraph H(�): we take the requirement of a terminali in �(�) to be r0i = 0 if ri < �, and we take r0i = � if ri � �; the rest of the instan
e stays the same.Finally, we apply the algorithm of this se
tion to the instan
e of subset [k̂; 1:5k̂℄-
onne
tivity where wetake the requirement of a terminal i to be r0i = 0 if ri < k̂, and we take r0i = ri if ri � k̂; the rest ofthe instan
e stays the same. Let H 0 be the solution subgraph. Then, for the original instan
e (of subset[k; 1:5k℄-
onne
tivity), we output the solution subgraph H� = H(k)[H(k+1)[� � �[H(k̂�1)[H 0 whose
ost is at most O(1)opt. To see that H� satis�es the 
onne
tivity requirements, note that for every pairof terminals i; j, one of the subgraphs forming H� (namely, one of H(k); H(k+ 1); : : : ; H(k̂ � 1); H 0) hasmin(ri; rj) openly disjoint i; j-paths.Assume that k is an integer multiple of 4. Let ` denote 3k=4. For any terminal i and any edge ix ofthe 
omplete graph, let e
ix = e
(i; x) denote the normalized edge 
ost max(
ix; �i).The detailed algorithm follows. A terminal may be in two states a
tive or ina
tive. Initially, all theterminals are a
tive, and H is the graph 
onsisting of all the terminal nodes and no edges, thus H = (T; ;).See Appendix 2 for a summary of the notation.(1) [de-a
tivate terminals & 
onstru
t disjoint balls for a
tive terminals℄Renumber the terminals as 1; 2; : : : ; n0 by in
reasing value of �; thus �1 � �2 � � � � � �n0 .Note: �h � �j does not imply �h � �j sin
e the requirements may di�er, but we do have �h � 1:5�j .S
an the terminals in the order 1; 2; : : : ; n0, and skip the 
urrent terminal if it is ina
tive. For ana
tive terminal i, 
onstru
t the set Bi = fj j 
(i; j)� ��ig, where we 
hoose � = 4. For ea
h a
tiveterminal v > i, if 
iv � (��i + ���v), where we �x � = 2, then make v ina
tive, and re
ord i as theparent of v by assigning p(v) = i. (The aim is to ensure that the sets Bi of a
tive terminals i arepairwise disjoint.)Note that i 2 Bi and jBij � 1 + (1 � 1�)k = 1 + 3k4 . (Otherwise, we have � k=� = k=4 nodes xin �i with 
(i; x) > ��i = ��i=k, so these nodes 
ontribute > �i to Px2�i 
(i; x).) Also note that�p(v) � �v for ea
h ina
tive terminal v. 10



Choose the ` nodes in Bi nearest to i and name them as i1; i2; : : : ; i` su
h that 
(i; i1) � 
(i; i2) �� � � � 
(i; i`).(2) [
onstru
t ` tra
ks on the disjoint balls℄After step (1), let T � denote the set of a
tive terminals and let n� = jT �j. If n� < 3, then applystep (50) and stop. Otherwise, 
onstru
t a 
heap 
y
le Q on the a
tive terminals by applying theMST-doubling heuristi
 for the TSP to the subgraph indu
ed by T �. Renumber the terminals su
hthat Q = 1; 2; : : : ; n�; 1, that is, the a
tive terminals get the numbers in f1; : : : ; n�g a

ording to theirordering in Q. Constru
t ` tra
ks Q1; Q2; : : : ; Q`, where tra
k Q� = 1� ; 2� ; : : : ; n�� ; 1� (� = 1; : : : ; `).Moreover, we have a spe
ial tra
k Q0 = Q; this tra
k is used to satisfy the requirements of ina
tiveterminals, but not the requirements between a
tive terminals. Add all the tra
ks to H . (Althoughthe tra
ks are similar to ea
h other, our 
onstru
tion distinguishes between the tra
ks and relies onthe ordering of the tra
ks given by the tra
k indi
es 0; 1; 2; 3; : : : .)(3) [augment disjoint balls and assign token ar
s℄This step is the same as step (3) in the algorithm for subset k-
onne
tivity in Se
tion 3, ex
ept thatsome parameters are di�erent: here, we have � = 4, � = 2, ` = 3k4 .After step (3), note that the sets B0i of the a
tive terminals i are pairwise disjoint, ea
h su
h set hassize � 1+ (3k=�) = 1+ (3k=4) (sin
e B0i � Bi and jBij � 1+ (3k=�)), and for ea
h a
tive terminal ithe number of token ar
s given to i plus jB0ij is � ri+1. Also, note that the 
ost of a token ar
 (i; j)depends on the 
ost of the asso
iated edge iq and is 3
iq.(4) [atta
h a
tive terminals to tra
ks℄In summary, this step s
ans ea
h a
tive terminal i and adds edges from i to the tra
ks su
h that ihas a neighbour i� in ea
h of the tra
ks Q� ; � = 1; : : : ; `, and moreover, i has a se
ond neighbour inea
h of the ri� ` tra
ks Q� ; � = 1; : : : ; ri� `. (Possibly, i may have more than ri� ` tra
ks that ea
hhave two neighbours of i.) We 
all i� the inner neighbour of i in Q� , and if i has another neighbourx in Q� then we 
all x the outer neighbour of i in Q� .Note that the sets B0j of the a
tive terminals j are pairwise disjoint. In step (4), every node addedto a tra
k is in B0j for some a
tive terminal j (this 
an be seen from the des
ription below). We 
alla node x free if x 62 SfBj j j 2 T �g and x is in none of the tra
ks of the 
urrent graph H . Whilepro
essing a terminal v we may �nd a free node x 2 �v and we may insert x as the outer neighbour ofv in a tra
k. Throughout the exe
ution, x stays in the same tra
k, and stays as the outer neighbourof v, but other terminals too may add x as their outer neighbour on that tra
k.We examine the a
tive terminals in any order. Let i be the 
urrent a
tive terminal. First, we addedges from i to ea
h of i1; i2; : : : ; i`; also, we mark the nodes i1; i2; : : : ; i` as used (with respe
t to i).We start with the variable � = 1; this variable denotes the number of the tra
k where the next outerneighbour of i is pla
ed.If any unused nodes remain in Bi, then 
hoose an unused node x 2 Bi with minimum 
(i; x), mark xas used w.r.t. i, insert x into tra
k Q� , in
rease � by one, and add the edge ix. We repeat this stepuntil either Bi has no unused nodes or � = `+ 1 (meaning that i has an outer neighbour in ea
h ofthe ` tra
ks). If � � (ri � `) + 1, then we are �nished with step (4) for i, otherwise, we 
ontinue.If an unused token ar
 (i; h) is available, then we 
hoose it, mark it as used, add the edge ih� , andin
rease � by one; note that h� is in Bh and is the inner neighbour of h in tra
k Q� ; also, note that
(i; h�) is � the 
ost of the token ar
 (i; h). We repeat this step until there are no unused token ar
sor � = (ri� `)+1. If � < (ri� `)+1, then we 
ontinue, otherwise, we are �nished with step (4) for i.11



We 
hoose an unused node x 2 B0i � Bi with minimum 
(i; x), and mark it as used w.r.t. i (notethat x is a free node). Then we insert x into tra
k Q� and add the edge ix, provided there exists nosuitable \target terminal" h 6= i (the details are given below; note that the target terminal is de�nedwith respe
t to the edge ix). If a suitable h exists, then we dis
ard x and add the edge ih� , that is,we take the inner neighbour of h in Q� to be the outer neighbour of i in Q� . (The reason for usingan edge ih� rather than ix is that x is a free node now, but later we may �nd that x is essential foratta
hing some ina
tive terminal v to the tra
ks, and at that step, we will be for
ed to \repla
e" theedge ix by some other edge iy; to avoid su
h \repla
ements" we look ahead, and we use the edge ixonly if there are no \future 
on
i
ts" for x.)The details are as follows. We 
he
k whether there exists an a
tive terminal h 6= i su
h thathop-rule 
(i; h) � (2 + (� + 1)�)
(i; x)� 14
(i; x); and �h � 
(i; x):If su
h an h exists, then we add the edge ih� . Note that 
(i; h�) � 
(i; h)+��h � (2+(�+2)�)
(i; x)�18
(i; x). If no su
h h exists, then (as mentioned before) we insert x into tra
k Q� and add the edgeix. In either 
ase, we in
rease � by one.Note that the number of token ar
s given to i plus jB0ij is � ri+1, hen
e, this step will �nd ri tokenar
s or unused nodes (in
luding the nodes i1; : : : ; i`).After all a
tive terminals have been examined by step (4), it 
an be seen that H satis�es the 
on-ne
tivity requirements of all a
tive terminals.Note that an ina
tive terminal may be in one of the tra
ks Q1; Q2; : : : ; Q`, although none of thea
tive terminals is in those tra
ks.For ea
h a
tive terminal i, let Ni denote the (ordered) set of neighbours of i in the graph H �V (Q0)at the end of step (4). (Thus, Ni is the set of neighbours atta
hing i to the other tra
ks | ex
ludingthe tra
k Q0 
ontaining i.) Note that jNij � ri; 8i 2 T � (if jBij > ri + 1 then Ni may have > rinodes). Moreover, we order the nodes in ea
h set Ni su
h that the inner neighbours of i 
ome �rstin the order i1; i2; : : : ; i`, followed by the outer neighbours in the order of their tra
k numbers (theouter neighbour in Q1, followed by the outer neighbour in Q2, . . . ).Remark: The ordered sets Ni for i 2 T � are used in step (5), and there it is 
riti
al that the total
ost of the edges from i to the nodes in Ni is � 
�i for a 
onstant 
; in parti
ular, none of these edge
osts should be \
harged" to the mst lower bound.(5) [atta
h ina
tive terminals to tra
ks℄Finally, \atta
h" ea
h ina
tive terminal to the tra
ks.By a sibling of an ina
tive terminal v we mean either the parent p(v) or another 
hild of p(v).In summary, we �rst 
opy to v the neighbours of a sibling, and then, if needed, we add additionalneighbours via �v { note that v's requirement rv may be mu
h greater than that of any of its siblings,hen
e, 
opying the neighbours of a sibling may not suÆ
e. We also use the spe
ial tra
k Q0 to satisfythe requirements of ina
tive terminals; to see the need for Q0 
onsider a 
hild v of an a
tive terminali with rv = ri + 1 and �v = fig [ �i; we handle the requirement of v by adding the edge vi { thusatta
hing v to Q0 { and then 
opying the neighbours of i to v.Fo
us on an a
tive terminal i and its 
hildren, and let v� have the maximum requirement amongthese terminals; assume that v� 6= i (the other 
ase is easy). Step (5) atta
hes v� to the tra
ks via aneighbour in ea
h of the `+ 1 tra
ks Q0; Q1; : : : ; Q` and two neighbours in ea
h of the rv� � (`+ 1)12



tra
ks Q1; Q2; : : : ; Qrv��(`+1). These neighbours of v� 
onstitute the ordered set Nv� ; we use ourstandard ordering, i.e., the neighbour i = p(v�) in Q0 
omes �rst, followed by the inner neighbours inthe tra
ks Q1; : : : ; Q`, followed by the outer neighbours, and further, the neighbours are ordered bytheir tra
k number. Similarly, we have an ordered set of neighbours Nv for ea
h ina
tive terminal v,where Nv is the (ordered) set of nodes x su
h that step (5) { while pro
essing v { adds an edge fromv to x. (Possibly, v o

urs in a tra
k, but then neither of the two neighbours of v in the tra
k o

ursin Nv unless step (5) { while pro
essing v { added the edge from v to that node.) A key propertyof our 
onstru
tion is that for ea
h sibling v of v�, Nv is a pre�x of Nv� ; in parti
ular, for ea
h� 2 f1; 2; : : : ; rv� (`+1)g, the outer neighbour of v in tra
k Q� is the same as the outer neighbour ofv� in that tra
k. Therefore, if �v 
ontains two or more outer neighbours of siblings of v, then all ofthese outer neighbours are in distin
t tra
ks. (Thus, for siblings v1; v2; : : : , our 
onstru
tion makesthe setsNv1 ; Nv2 ; : : : \
onsistent" even though the sets �v1 ;�v2 ; : : : may have arbitrary interse
tions.)We examine the a
tive terminals i in order of in
reasing �i values, and we examine the 
hildren v (ofi) in order of in
reasing �v values. By a prior sibling of v we mean either the parent p(v) or another
hild of p(v) that pre
edes v in this ordering. For ea
h 
hild v of i, de�ne the sour
e terminal of v,denoted p̂(v), to be a prior sibling with the maximum requirement; furthermore, de�ne the orderedset N0v to be fp(v)g[Np(v) if p̂(v) = p(v) (i.e., the sour
e terminal is the parent), and let N0v = Np̂(v)otherwise (if the sour
e terminal is not the parent).If the requirement of v is � jN0v j, then we \
opy" the �rst rv nodes of N0v to v, i.e., for ea
h of the�rst rv nodes in the ordered set N0v , we add an edge from v to that node. Step (5) for v is �nishedafter this.If the requirement of v is > jN0v j, then we \
opy" all the nodes of N0v to v, i.e., for ea
h of the nodesin N0v , we add an edge from v to that node. We mark all these new neighbours of v as used w.r.t. v.Let � 2 f1; : : : ; `g be the next available tra
k for v, i.e., v has two neighbours in ea
h of the tra
ksQ1; : : : ; Q��1, but has only one neighbour in ea
h of the tra
ks Q� ; : : : ; Q`.We repeat the following until step (5) has added a total of rv neighbours of v. We pi
k an unusednode x 2 �v with minimum 
vx, and mark x as used w.r.t. v. First, suppose that x is free. If thefollowing version of the hop-rule does not apply to vx (i.e., there exists no h satisfying the rule), thenwe insert x into tra
k Q� and add the edge vx. Also, we in
rease � by one. This 
auses an in
reaseof 2
vx in the 
ost of the tra
ks, and an in
rease of 
vx in the 
ost of the edges from v to the tra
ks.To apply the modi�ed hop-rule, we 
he
k whether there exists an a
tive terminal h 6= i = p(v) su
hthat 
(v; h) � (2 + (� + 1)�)e
(v; x) � 14e
(v; x); and �h � e
(v; x):If su
h an h exists, then we add the edge vh� and we have 
(v; h�) � 
(v; h) + ��h � (2 + (� +2)�)e
(v; x)� 18e
(v; x). Also, we in
rease � by one.Now, suppose that x is not free. Then one of the following mutually ex
lusive 
ases applies:(a) x 2 Bh for some a
tive terminal h.(b) x 2 Nh �SfBj : j 2 T �g for some a
tive terminal h.(
) x is in one of the tra
ks, and neither (a) nor (b) applies.Consider 
ase (a). Note that h 6= i = p(v), be
ause we added edges from v to all nodes in N0v � B0i �Bi (and marked all those nodes as used w.r.t. v) before pi
king x, hen
e, x 62 Bi. First, suppose that13
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tion 4, showing v, p(v) = i, the prior sibling p̂(v) of v, Niand Np̂(v); the \dashed edge" vx is repla
ed by the edge vh� sin
e the a
tive terminal h has x 2 Bh.3e
(v; x) � �h. Then we dis
ard x as a neighbour of v and we add the edge (v; h�) to H , i.e., the innerneighbour of h in Q� is made the outer neighbour of v in Q� . Also, we in
rease � by one. The newedge has 
ost 
(v; h�) � 
(v; x) + 
(h; x) + ��h � 
(v; x) + 2��h � (1 + 6�)e
(v; x) � 25e
(v; x). Now,suppose that 3e
(v; x) < �h. Then we have a 
ontradi
tion be
ause 
(h; i) � 
(h; x)+
(v; x)+
(v; i)���h+
(v; x)+���v+��i � ��h+(1+��)e
(v; x)+��i = ��h+9e
(v; x)+��i (by � = 4; � = 2) <��i + (� + 3)�h < ��i + ���h, and moreover, �i � �v � e
(v; x) < �h. To verify the 
ontradi
tion,re
all from step (1) that for a
tive terminals i; h with �i � �h, we have 
(h; i) � ��i + ���h. SeeFigure 3 for an illustration.Consider 
ase (b). As in 
ase (a), note that h 6= i = p(v), be
ause we added edges from v to allnodes in N0v � Ni (and marked all those nodes as used w.r.t. v) before pi
king x. First, suppose thate
(v; x) � e
(h; x). Then we dis
ard x as a neighbour of v and we add the edge (v; h�) to H . Also, wein
rease � by one. The new edge has 
ost 
(v; h�) � 
(v; x)+
(h; x)+��h � (2+�)e
(v; x) � 6e
(v; x).Now, suppose that e
(v; x) < e
(h; x). Note that e
(h; x) = 
(h; x) > ��h, sin
e x 62 Bh. Thenwe have a 
ontradi
tion by the hop-rule of step (4), be
ause 
(h; i) � 
(h; x) + 
(v; x) + 
(v; i) <2
(h; x) + (� + 1)��v < (2 + (� + 1)�)
(h; x) � 14
(h; x) and �i � �v � e
(v; x) < 
(h; x). Thus thehop-rule of step (4) applies to h and hx, so the a
tive terminal h 
annot use the edge hx. Hen
e, we
annot have e
(v; x) < e
(h; x).Now, 
onsider 
ase (
). Let w be the �rst ina
tive terminal whose pro
essing by step (5) results in theaddition of the edge wx (i.e., x 
hanges from a free node to a nonfree node when step (5) pro
essesw). Let p(w) = h. Note that h 6= i (i.e., p(w) 6= p(v)), otherwise, w is a prior sibling of v (sin
e theedge wx was added during the pro
essing of w by step (5)), and for every prior sibling u of v, ea
hnode in Nu is already used w.r.t. v (sin
e we added edges from v to all nodes in N0v � Np̂(v)). First,suppose that e
(v; x) � e
(w; x). Then we dis
ard x as a neighbour of v and we add the edge (v; h�) toH . Also, we in
rease � by one. The new edge has 
ost 
(v; h�) � 
(v; x) + 
(w; x) + 
(h; w)+ ��h �2e
(v; x) + �(� + 2)�w � 2e
(v; x)+ �(� + 2)e
(v; x) � (2 + �(� + 2))e
(v; x) � 18e
(v; x). Now, supposethat e
(v; x) < e
(w; x). Then we have a 
ontradi
tion by the modi�ed hop-rule of step (5), be
ause
(w; i) � 
(w; x) + 
(v; x) + 
(v; i) < 2e
(w; x) + (� + 1)��v < (2 + (� + 1)�)e
(w; x) � 14e
(w; x) and�i � �v � e
(v; x) < e
(w; x). Thus the modi�ed hop-rule of step (5) applies to w and wx, so the14



ina
tive terminal w 
annot use the edge wx. Hen
e, we 
annot have e
(v; x) < e
(w; x).This 
ompletes the des
ription of step (5).(50) [spe
ial handling for 1 or 2 a
tive terminals℄Suppose that n� = 1, and T � = fig. Then we ignore the tra
ks altogether, but we 
ompute theordered set Ni via step (4) applied to i, and the ordered set Nv for ea
h ina
tive terminal v byapplying step (5) to v. We add the edges from ea
h terminal v (where v = i or v is a 
hild of i) toall the nodes in Nv.Now, suppose that n� = 2, and T � = fh; ig. We pro
eed as in steps (2){(5), ex
ept that wetemporarily allow tra
ks that 
onsist of exa
tly two nodes and two 
opies of the edge between them.In parti
ular, the spe
ial tra
k Q0 
onsists of nodes h; i and two 
opies of the edge hi. At the end,for ea
h tra
k 
onsisting of exa
tly two nodes, we keep only one 
opy of the edge between them; thusthe solution graph H is simple.Proposition 9 (i) The total 
ost of the edges added by step (4) and in
ident to an a
tive terminal i is� 18�i. (ii) At the end of step (4), the total 
ost of the `+ 1 tra
ks is � (2`+ 2)mst(T ) + 3��(T �).Proof: For an a
tive terminal i, the total 
ost of the token ar
s (i; h) given to i is � 3�i. The 
ost of theedges added that are in
ident to i, but ex
luding the 
ost due to the token ar
s, is � ��i if jBij � ri + 1(in this 
ase, B0i = Bi, no token ar
s are given to i, and we add edges to the ri nearest neighbours of i, andthen we add � 2`�ri � 1:5k�k edges of 
ost � a�i to nodes in Bi, for a total 
ost of � �i+ k2��i � ��i),and otherwise is � (2 + (�+ 2)�)Ph2�i 
ih � (2+ (�+ 2)�)�i = 18�i (by hop-rule). This proves part (i).For part (ii), observe that the total 
ost of the `+1 tra
ks (that were 
onstru
ted in step (2) and modi�edin step (4)) is � (2` + 2)mst(T ) + 3��(T �); for the se
ond term, note that the 
ontribution of i 2 T � is� 2�i if jBij � ri + 1, and otherwise is � 2��i for ea
h of � 2` = 1:5k nodes in Bi, and this sums to� (2��i)(1:5k) � 3��i.Proposition 10 (i) The total 
ost of the edges added by step (5) and in
ident to an ina
tive terminal vis � 401�v. (ii) The total in
rease in the 
ost of the tra
ks in step (5) is at most 2�(T � T �).Proof: We 
laim that the 
ost of the added edges for an ina
tive terminal v with parent i is � 401�v.Let 
 be a 
onstant su
h that the 
ost of the added edges in
ident to an a
tive terminal i is � 
�i. (Fromstep (4) and Proposition 9, we have 
 = 18.) First, note that if rv � rp(v), then the 
ost of the addededges in
ident to v is given by the 
ost of 
opying rv neighbours from the parent p(v) and this 
ost is� 
�p(v) + rv � 
(v; p(v)) � 1:5
�v + rv � (� + 1)��v � (1:5
 + (� + 1)�)�v � 39�v . Now, assume thatrv � rp(v), hen
e, �v � �p(v).First, 
onsider the 
ost in
urred in 
opying the neighbours of the sour
e terminal p̂(v). This 
ost
onsists of two 
omponents, (i) the 
ost of 
opying rp(v) � rv neighbours from the parent p(v), and(ii) the 
ost of 
opying the remaining (at most rp̂(v) � rp(v) � k=2) nodes from Np̂(v). The 
omponent (i)is � 
�p(v) + rv � 
(v; p(v))� 
�v + rv � (� + 1)��v � (
 + (� + 1)�)�v � 30�v .Now, 
onsider 
omponent (ii). We 
laim that 
omponent (ii) is � 337�v. Consider any node y 2Np̂(v)�Np(v). Let w be the �rst (earliest pro
essed) sibling of v that has an edge wy (i.e., step (5) added theedge wy while pro
essing w and no prior sibling u of w has y 2 Nu); possibly, w 6= p̂(v). Call w the sponsorof y. By examining the details of step (5), it 
an be seen that for ea
h node x 2 Nw�Np̂(w), there exists adistin
t node x0 2 �w su
h that 
(w; x) � 25e
(w; x0). Thus for ea
h node y 2 Np̂(v)�Np(v), the sponsor w ofy has a distin
t node y0 2 �w su
h that 
(w; y) � 25e
(w; y0). Moreover, there is a distin
t node x0 2 �v su
h15



that 
(w; y0) � 24�v + 
(v; x0). To see this, �rst note that 
(v; w) � 
(v; p(v))+ 
(p(v); w)� 2
(v; p(v))�2(� + 1)��v � 24�v ; next, fo
us on the nodes xj in �v ordered by in
reasing 
ost of the edge vxj , sayx1; x2; : : : ; xrv ; suppose that y0 is the sth 
losest neighbour of w; then note that 
(w; y0) � 24�v + 
(v; xs)be
ause ea
h of the nodes xj in �v has 
(w; xj) � 
(v; w) + 
(v; xj), hen
e, for ea
h of the s nodes xj ,j = 1; : : : ; s, we have 
(w; xj) � 24�v + 
(v; xj). Moreover, 
(v; y) � 
(v; w) + 
(w; y) � 24�v + 
(w; y).Hen
e, for ea
h node y 2 Np̂(v)�Np(v), there is distin
t node x0 2 �v su
h that 
(v; y)� 24�v +25(24�v +
(v; x0)) � 624�v + 25
(v; x0) (sin
e �w � �v and 
(w; y) � 25e
(w; y0) � 25(24�v + 
(v; x0)), where w andy0 are as above). Then, summing over all nodes y 2 Np̂(v)�Np(v), we see that the total 
ost of these edgesvy is � (jNp̂(v) �Np(v)j)(624�v) + 25�v � (k=2)(624�v) + 25�v � 312�v + 25�v � 337�v.Finally, 
onsider the total 
ost of the edges from v to the nodes in Nv �Np̂(v). As mentioned above,for ea
h node y 2 Nv � Np̂(v), there exists a distin
t node y0 2 �v su
h that 
(v; y) � 25e
(v; y0). Also,jNv �Np̂(v)j � rv � k, and for ea
h node y0 2 �v we have e
(v; y0) � �v + 
(v; y0). Hen
e, Pf
(v; y) : y 2Nv �Np̂(v)g � (rv � k) � 25�v + 25�v � 50�v � 25k�v � 50�v � 25(2rv3 )�v = (50� 25(23))�v = 1003 �v .Summing the three 
ontributions (from 
omponents (i), (ii), and the previous paragraph), we see thatthe total 
ost of the edges added (by step (5)) in
ident to an ina
tive terminal v is � (30+ 337+ 34)�v �401�v.The total in
rease in the 
ost of the tra
ks in step (5) is at most 2�(T � T �), be
ause during thepro
essing of an ina
tive terminal v, step (5) may insert ea
h node x 2 �v into the tra
ks at an in
remental
ost of 2
(v; x). This 
ompletes the proof of the proposition.Remarks: The 
onstant fa
tor of 401 in the above proposition is not optimal. An easy way to improve on itis to repla
e the 
onstant 25 in the analysis of 
omponent (ii) by 19, by tightening the analysis of 
ase (a)in step (5); using the notation from there, re
all that this analysis shows that 3e
(v; x) � �h, and hen
e thenewly added edge has 
ost � 25e
(v; x). It 
an be seen that the `3' may be repla
ed by (2� + 1)=� = 94 ,and thus the newly added edge has 
ost � 19e
(v; x). We did not optimise the analysis, to avoid further
ompli
ations.Proof of Theorem 8: We 
laim that the 
ost of the solution subgraph H is 
(H) � 900opt = O(1)opt.By Propositions 9 and 10 and using k � 4, we have 
(H) � (3��(T �) + 2�(T � T �) + (2`+ 2)mst(T )) +(18�(T �) + 401�(T � T �)) � 403�(T ) + (4)(k2)mst(T ) � 900opt.We 
laim that the solution subgraph H satis�es the 
onne
tivity requirements. Consider any pair ofina
tive terminals s; t. (The proof is similar but simpler for a pair of a
tive terminals, or for one a
tiveand one ina
tive terminal.) First assume that there are at least three a
tive terminals (that is, jT �j � 3).Without loss of generality let rs = min(rs; rt). We 
laim that H has rs openly disjoint s; t-paths. Re
allthat ea
h ina
tive terminal v has inner neighbours on all ` + 1 tra
ks, and has outer neighbours on the�rst rv � (`+ 1) tra
ks among Q1; : : : ; Q` (an a
tive terminal v has at least rv � ` tra
ks that have outerneighbours). It follows that we have have ` + 1 + rs � (` + 1) = rs openly disjoint s; t-paths using thesetra
ks. (One of these s; t-paths 
onsists of a path of the spe
ial tra
k Q0 = Q and the edges sp(s) andtp(t).)Clearly, the 
onne
tivity requirements hold for the 
ase of jT �j = 1. Now, suppose that jT �j = 2. Theabove arguments still apply unless both s and t have inner and outer neighbours on a tra
k that 
onsistsof exa
tly two nodes, 
all them x and y. In this 
ase, our tra
k 
onsists of a single edge xy (sin
e wedis
arded the se
ond 
opy of xy in step (50)). Still, this tra
k gives two openly disjoint s; t-paths, namely,s; x; t and s; y; t. Thus it 
an be seen that the 
onne
tivity requirements hold. This 
ompletes the proof ofTheorem 8. 16



5 The algorithm for node-
onne
tivity SNDPThis se
tion presents a proof of Theorem 4, based on (the algorithms in) Theorems 1, 3. For the sake ofmotivation, let us obtain an O(ln rmax)-approximation algorithm for a restri
ted version of NC-SNDP whereevery terminal has a requirement ri and every pair of terminals i; j has the requirement ri;j = min(ri; rj).The method is similar to the method for proving Theorem 3 from Theorems 1 and 8.Let opt denote the optimal value of the instan
e (of restri
ted NC-SNDP). First, for ea
h � = 1; 2; : : : ; 7,we apply the algorithm in Theorem 1 to the following instan
e �(�) of the subset �-
onne
tivity problemto obtain a solution subgraph H(�): we take the requirement of a terminal i in �(�) to be r0i = 0 if ri < �,and we take r0i = � if ri � �; the rest of the instan
e stays the same. By Theorem 1, the 
ost of H(�)is O(1) � opt. After this, we repeatedly apply the algorithm in Theorem 8 to solve an instan
e (spe
i�edbelow) of subset [�; 1:5�℄-
onne
tivity, where � is an integer multiple of 4 (� = 8; 12; 16; 24; : : : , detailslater), to obtain a solution subgraph H 0(�). The instan
es of subset [�; 1:5�℄-
onne
tivity are as follows:we take the requirement of a terminal i to be r0i = 0 if ri < �, we take r0i = ri if � � ri � 1:5�, and wetake r0i = 1:5� if ri > 1:5�. By Theorem 8, the 
ost of H 0(�) is O(1) � opt. We start with � = 8, andwe iterate until rmax � 1:5�; after ea
h iteration, we update � to the largest integer multiple of 4 that is� 1:5 times the previous �. Clearly, the number of iterations is O(ln rmax). Finally, we output the solutionsubgraph H� for the instan
e (of restri
ted NC-SNDP); H� is the union of all the solution subgraphs H(�),� = 1; : : : ; 7, and H 0(�), � = 8; 12; : : : . Thus H� is the union of O(ln rmax) subgraphs su
h that ea
h ofthese subgraphs has 
ost O(1) � opt, and so H� has 
ost O(ln rmax) � opt. To see that H� satis�es the
onne
tivity requirements, note that for every pair of terminals i; j, one of the subgraphs forming H� hasmin(ri; rj) openly disjoint i; j-paths, namely, the subgraph H(min(ri; rj)) if min(ri; rj) � 7, otherwise, anysubgraph H 0(�) where � satis�es � � min(ri; rj) � 1:5�.Our algorithm for metri
-
ost NC-SNDP is similar to the algorithm des
ribed above for the restri
tedversion of NC-SNDP. Let �� be an instan
e of NC-SNDP, and let opt denote its optimal value. Weuse kf to denote an integer multiple of 4 su
h that rmax � 1:5kf . We repeatedly apply the algorithmof Theorem 1 (for subset k-
onne
tivity) for k = 1; : : : ; 7, and derived instan
es �(1); : : : ;�(7) to obtainsolution subgraphs H(1); : : : ; H(7). Then we repeatedly apply the algorithm of Theorem 8 (for subset[k; 1:5k℄-
onne
tivity) for k = 8; 12; 16; 24; : : : ; kf and derived instan
es �0(8);�0(12); : : : ;�0(kf ) to obtainsolution subgraphs H 0(8); : : : ; H 0(kf). We start these iterations with k = 8, and we iterate until k = kf ;after ea
h iteration, we update k to the largest integer multiple of 4 that is � 1:5 times the previous k.The 
onstru
tion of the derived instan
es �(�) and �0(k) is des
ribed below.Finally, we output the solution subgraph H� for ��; H� is the union of all the solution subgraphs H(k),k = 1; : : : ; 7, and H 0(k), k = 8; 12; : : : ; kf ; we 
all these solution subgraphs the 
onstituent subgraphs ofH�. Below, we prove that the 
ost of ea
h of the 
onstituent subgraphs is at most O(1) �opt. Clearly, thenumber of iterations is O(ln rmax). Thus H� is the union of O(ln rmax) subgraphs su
h that ea
h of thesesubgraphs has 
ost O(1) � opt, and so H� has 
ost O(ln rmax) � opt. Below, we prove that H� satis�es the
onne
tivity requirements, be
ause for every pair of terminals i; j, one of the 
onstituent subgraphs of H�has � ri;j openly disjoint i; j-paths.We de�ne the derived instan
es via a well-studied problem in network design, namely, the generalizedSteiner tree problem, whi
h is as follows: we are given a graph G = (V;E), edge 
osts 
, and q̂ sets ofterminal nodes D̂1; D̂2; : : : ; D̂q̂; the goal is to 
ompute an (approximately) minimum-
ost forest F of Gsu
h that ea
h terminal set D̂m; m = 1; : : : ; q̂; is 
ontained in a (
onne
ted) 
omponent of F . Goemansand Williamson [17℄, based on earlier work by Agrawal et al. [1℄, gave 2-approximation algorithms for thisproblem based on the primal-dual method. 17



Here is the 
onstru
tion for one of the derived instan
es �0(k); re
all that this is an instan
e of thesubset [k; 1:5k℄-
onne
tivity problem, where k is a �xed parameter. We start from �� and 
onstru
t arequirements graph R with node set T and edge set E(R) as follows. For ea
h terminal pair i; j withk � ri;j � 1:5k (i.e., the requirement for the pair is within the valid range for our derived instan
e), weadd the edge ij to R. Denote the node sets of the (
onne
ted) 
omponents of R by D̂1; D̂2; : : : ; D̂q̂. Next,we de�ne an instan
e �(gst) of the generalized Steiner tree problem on the graph G with edge 
osts 
(here, G; 
 are as in ��), and with terminal sets D̂1; D̂2; : : : ; D̂q̂. We solve this auxiliary problem �(gst)by applying the primal-dual algorithm of Goemans and Williamson [17℄. Let F � E(G) be the forest
omputed by the Goemans-Williamson algorithm, and let F1; F2; : : : ; Fq denote the partition of F into
onne
ted 
omponents. Let the set of terminals in the 
omponent of Fm be denoted by Dm, m = 1; : : : ; q;thus ea
h set Dm is the union of one or more of the terminal sets D̂1; D̂2; : : : ; D̂q̂. For ea
h m = 1; : : : ; q,we de�ne an instan
e �0m(k) of the subset [k; 1:5k℄-
onne
tivity problem as follows: the graph G and theedge 
osts 
 are as in ��; the set of terminal nodes is Dm, and the requirement r0i of a terminal i 2 Dm isde�ned to be max(ri;j : fi; jg 2 E(R)); 
learly, k � r0i � 1:5k; 8i 2 Dm. We take the derived instan
e�0(k) to be the disjoint union of these instan
es �0m(k), m = 1; : : : ; q, i.e., we assume that ea
h instan
e�0m(k) has its own 
opy of G and 
. To solve �0(k), we take ea
h m = 1; : : : ; q, and apply the algorithmin Theorem 8 separately to �0m(k) to obtain a solution subgraph, 
all it H 0m(k). (These instan
es �0m(k)are pairwise disjoint, and we solve them separately, one by one.) Then we take the union of the subgraphsH 01(k); : : : ; H 0m(k) and 
all it H 0(k); this is the solution subgraph of �0(k). The 
ost of the subgraphsH 0m(k), m = 1; : : : ; q, is analysed below.Our reasons for using the auxiliary problem �(gst) for de�ning the instan
e �0(k) may be seen fromthe following example. Suppose that k is large (say k = pn) and the edges in E(R) form a mat
hing sayffs1; t1g; fs2; t2g; : : : ; fsq̂; tq̂gg, say q̂ = �(n). Moreover, suppose that G has a 
ut Æ(S) su
h that ea
h edgein this 
ut is expensive, and some of the edges in E(R) have both ends in S and the remaining edges in E(R)have both ends in V �S. Say the optimal solution 
onsists of two disjoint subgraphs, one 
ontained in thesubgraph indu
ed by S and the other 
ontained in the subgraph indu
ed by V � S. Then we 
annot take�0(k) to be a single instan
e with terminal set fs1; : : : ; sq̂; t1; : : : ; tq̂g, be
ause then every solution subgraphwill have � k edges from the expensive 
ut Æ(S). Also, we 
annot take �0(k) to 
onsist of q̂ separatesub-instan
es with one sub-instan
e for ea
h 
onne
ted 
omponent of R = (T;E(R)), be
ause the optimalvalues of these sub-instan
es may sum to q̂ � opt, and the solution subgraph 
omputed by our algorithmmay have 
ost as high as this (assuming that the algorithm returns the union of the solution subgraphs ofthese q̂ sub-instan
es). We get around this diÆ
ulty by using the Goemans-Williamson algorithm to mergethe 
onne
ted 
omponents of R = (T;E(R)) into appropriate \
lusters" and then we 
onstru
t a separatesub-instan
e for ea
h of these \
lusters" (these are the sub-instan
es that we 
alled �01(k); : : : ;�0q(k)). Thekey point is that (i) these sub-instan
es have pairwise disjoint terminal sets D1; : : : ; Dq, hen
e, the sumof the �() lower-bounds (used in Theorem 8), namely, Pqm=1 �(Dm), is � the �() lower-bound of ��, and(ii) the following proof (whi
h is based on the 2-approximation guarantee of Goemans and Williamson)shows that the sum of the mst() lower-bounds for these sub-instan
es, namely, Pqm=1mst(Dm), is � O(1)times the mst() lower-bound of ��. Also, for ea
h sub-instan
e, the solution subgraph has 
ost within anO(1) fa
tor of the sum of its �() and mst() lower-bounds. Hen
e, the union of the solution subgraphs ofthese sub-instan
es has 
ost within an O(1) fa
tor of the optimal value of ��.The 
onstru
tion of the instan
es �(�), � = 1; : : : ; 7, is similar to that of the instan
es �0(k). We startwith R = (T;E(R)) where E(R) 
onsists of terminal pairs fi; jg with ri;j = �. Then we obtain a family ofpairwise disjoint sub-instan
es �1(�);�2(�); : : : and these sub-instan
es together form �(�).Proof of Theorem 4: Re
all that �� denotes the instan
e of NC-SNDP, opt denotes the optimal value18



of ��, and H� denotes the solution subgraph of �� found by our algorithm. The goal is to analyze the
ost of the 
onstituent subgraphs of H� and show that ea
h has 
ost � O(1) � opt, and then to show thatH� satis�es the 
onne
tivity requirements. The proof is based on the following LP (linear programming)relaxation P � of �� that interprets ea
h requirement ri;j as a requirement for ri;j edge-disjoint i; j paths.Thus the optimal value of P � gives a lower bound on opt. The LP has a variable xe, 0 � xe � 1, forea
h edge e 2 E; the intention is that ea
h feasible solution H of �� gives a zero-one ve
tor x 2 <E thatsatis�es two 
onditions: xe = 1 i� e 2 H , and x satis�es the 
onstraints of the LP (though feasible zero-onesolutions of the LP may not give feasible solutions of ��).P � : z� = minPe2E 
exesubje
t tox(Æ(S)) � maxfri;j : i 2 S; j 62 Sg; 8S � Vxe � 0; 8e 2 EFo
us on one of the derived instan
es �0(k) and its asso
iated generalized Steiner tree instan
e �(gst).We use the notation from the 
onstru
tion of �0(k) given above. Goemans and Williamson [17℄ proved thatthe 
ost of the forest 
omputed by their algorithm is � 2 times the optimal value z(gst) of the following LPrelaxation P (gst) of �(gst). The LP has a variable xe, 0 � xe � 1, for ea
h edge e 2 E; the intention is thatea
h feasible solution F of �(gst) 
orresponds to a zero-one ve
tor x 2 <E that satis�es two 
onditions:xe = 1 i� e 2 F , and x satis�es the 
onstraints of the LP.P (gst) : z(gst) = minPe2E 
exesubje
t tox(Æ(S)) � 1; 8S � V : 9m = 1; : : : ; q̂ : ; 6= S \ D̂m 6= D̂mxe � 0; 8e 2 EA key observation is that k � z(gst) � opt. To see this, note that multiplying the right-hand-side of any
onstraint of the LP P (gst) by k gives a 
onstraint that is valid for the LP P �. (This follows be
ausewhenever we have a 
onstraint x(Æ(S)) � 1 in the LP P (gst), then the node set S separates two terminalsv; w su
h that the requirements graph R has an v; w-path 
onsisting of terminal-pairs fi; jg su
h thatri;j � k; sin
e the v; w-path of R \
rosses" S, one of the terminal-pairs fi; jg in the v; w-path \
rosses" S,therefore, maxfri;j : i 2 S; j 62 Sg � k, hen
e, the 
onstraint \x(Æ(S)) � k" is a valid 
onstraint for theLP P �.) Consequently, for every feasible solution x� of the LP P �, we see that 1kx� is a feasible solutionof the LP P (gst). Moreover, if x� is an optimal solution of the LP P �, then we have z(gst) � 1k 
(x�) =1kz� � 1kopt, or equivalently, k � z(gst) � opt.Fo
us on the 
ost of the solution subgraph H 0(k) = H 01(k) [ H 02(k) [ � � � [ H 0q(k), and note that forea
h m = 1; : : : ; q the 
ost of H 0m(k) is O(k) �mst(Dm) +O(1) � �(Dm) (by Theorem 8), where Dm denotesthe terminal set of H 0m(k). Then the 
ost of H 0(k) isO(k) �Pqm=1mst(Dm) + O(1) �Pqm=1 �(Dm)� O(k) �Pqm=1 
(Fm) + O(1) � �(T ) (sin
e mst(Dm) � 2
(Fm); 8m = 1; : : : ; q)� O(k) � 
(F ) + O(1) � �(T )� O(1) � opt+ O(1) � �(T ) (sin
e 
(F ) � 2z(gst) and z(gst) � opt=k)� O(1) � opt:A similar analysis for the solution subgraphs H(1); : : : ; H(7) shows that ea
h has 
ost � O(1) � opt.Thus our 
laim for the 
ost of the solution subgraph H� follows: 
(H�) = O(ln rmax) � opt.19



Finally, let us verify that H� satis�es the 
onne
tivity requirements. Consider any pair of terminalsi; j and their requirement ri;j . Assume that ri;j � 8 (otherwise, we are done by a similar but simpleranalysis). Fo
us on an iteration of the algorithm that �xes the parameter k su
h that k � ri;j � 1:5k.In that iteration, the requirements graph R has the edge fi; jg, hen
e, both i; j must be 
ontained in oneof the terminal sets D1; : : : ; Dq, say D1. Now, 
onsider the sub-instan
e �01(k) and its solution subgraphH 01(k) and note that H 01(k) must have � ri;j openly disjoint i; j-paths be
ause both r0i and r0j are � ri;j(here, r0i and r0j denote the requirements of i and j in �01(k)) Thus, H� has � ri;j openly disjoint i; j-paths.This 
ompletes the proof of Theorem 4.A
knowledgments. We thank Bill Cunningham, Mi
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Appendix 1: Examples illustrating 
laims in Se
tion 1This appendix has details pertaining to Corollary 2 and the remarks following it (in Se
tion 1). Inparti
ular, we in
lude a proof of the 
laim on 2-
onne
ted graphs with metri
 
osts, and give examples toshow that this 
laim does not apply to k-
onne
ted graphs for k � 3. Also, we give examples showing thatfor metri
 
osts, a k-
onne
ted graph may be a fa
tor of �(k) times more expensive than a k-edge-
onne
tedmulti-graph. The next result is well known, but we in
lude a proof for the reader's 
onvenien
e.Proposition 11 In a metri
 graph, a minimum-
ost 2-edge 
onne
ted spanning subgraph has the same
ost as a minimum-
ost 2-node 
onne
ted spanning subgraph.Proof: Take a 
ounterexample su
h that the minimum-
ost 2-edge 
onne
ted spanning subgraph H 
on-tains as few 
ut nodes as possible. Clearly H 
ontains at least one 
ut node v. LetW1 andW2 be 
onne
ted
omponents in H�fvg. Clearly, v lies on a 
y
le C1 in W1[fvg and a 
y
le C2 in W2[fvg. Let w1 and w2be neighbours of v on C1 and C2 respe
tively. Now, split o� the edge-pair vw1; vw2, that is add the edgew1w2 and remove the edges vw1 and vw2. This 
reates a 
y
le C on the node set V (C1) [ V (C2). Thusthe resulting graph stays 2-edge 
onne
ted. Note that the number of 
omponents in H � fvg de
reases byone. We repeat this step until H � fvg is 
onne
ted. By the triangle inequality, the 
ost of the subgraphdoes not in
rease. This 
ontradi
ts our original 
hoi
e of H .For k � 3, however, there exist k-edge 
onne
ted spanning subgraphs of Kn that have lower 
ost thanthat of a minimum-
ost k-node 
onne
ted spanning subgraph. To see this let H be the union of twok+ 1 
liques that share exa
tly one node v. Let the nodes of these 
liques be labelled a1; a2; : : : ; ak; v andb1; b2; : : : ; bk; v, respe
tively. Next 
onsider the 
omplete graph Kn on 2k + 1 nodes whose edges 
osts aregiven by the shortest-path distan
es indu
ed by H . That is, every edge in H has 
ost 1, and every edgein E(Kn)�E(H) has 
ost exa
tly 2. Sin
e H itself is k-edge 
onne
ted we see that Kn 
ontains a k-edge
onne
ted spanning subgraph of 
ost 2�k+12 � = k2 + k. Now, any k-node 
onne
ted spanning subgraph ofKn 
ontains at least 12(2k + 1)k = k2 + 12k edges. Moreover there must be at least k � 1 edges of 
ost 2between nodes in a1; a2; : : : ; ak and nodes in b1; b2; : : : ; bk, otherwise we obtain a node-
ut 
ontaining lessthan k nodes. So any k-node 
onne
ted spanning subgraph of Kn has 
ost at least k2+ 12k+ (k� 1). Thisis stri
tly greater than the 
ost of the k-edge 
onne
ted graph H , if k � 3. The 
ase of k = 3 is shown inFigure 4.
b3

b2

a 1 b1

a 3

a 2

v

HFigure 4: A metri
-
ost 3-edge 
onne
ted graph that is stri
tly 
heaper than any 3-node 
onne
ted (span-ning) graph. The edges in H have 
ost 1, and the edges in E(Kn)�E(H) have 
ost 2.Clearly, if the edge 
osts do not satisfy the triangle inequalities, then the minimum 
ost of a k-node
onne
ted spanning subgraph of Kn 
annot be bounded in terms of the 
ost of a k-edge 
onne
ted spanning21



subgraph. To see this take any k-edge 
onne
ted graph H that is not also k-node 
onne
ted (e.g., seeFigure 4 for k = 3). Let every edge in H have 
ost 1 and every edge in E(Kn)�E(H) have 
ost L. Sin
eany k-node 
onne
ted spanning subgraph of Kn has 
ost � L, the 
laim follows by the 
hoi
e of L.Corollary 2 and the other results do not extend to multi-graphs. To see this, let k be an even number,n � 1 � k � 2, and let H be obtained from a 
y
le on n nodes by taking 12k 
opies of ea
h edge. SeeFigure 5. If ea
h edge in H has 
ost 1 then a minimum-
ost k-edge 
onne
ted multi-graph has 
ost 12nk.
Figure 5: A metri
-
ost k-edge 
onne
ted multi-graph that is a fa
tor of �(k) 
heaper than any k-node
onne
ted spanning subgraph. The edge 
osts are given by the shortest-paths distan
es in the 
y
le.Let the 
ost of the other edges of Kn be given by the shortest-path distan
es in H . Ea
h node has atleast k di�erent neighbours in a k-node 
onne
ted spanning subgraph, so the 
ost of the edges in
ident toany node is � 2P k2i=1 i = k(k2 + 1). Hen
e, the minimum 
ost of a k-node 
onne
ted spanning subgraph is� 14nk2. This is a fa
tor of �(k) times the 
ost of the k-edge 
onne
ted graph H .
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Appendix 2: Table of Notation & Symbols for Se
tion 4node set V (jV j = n)set of terminal nodes T (jT j = n0)set of a
tive terminal nodes T � (jT �j = n�)terminal nodes (usually a
tive) h; i; jina
tive terminal nodes u; v; warbitrary nodes (terminals/nonterminals) x; yrequirement of terminal i rirequirement of terminal pair i; j ri;j
onne
tivity parameter k (k = 0 (mod 4) in Se
tion 4)edge in
ident to nodes x; y xy
ost of edge xy 
xy or 
(x; y)set of ri nearest neighbours of i �itotal 
ost of edges from i to nodes in �i �iaverage 
ost of an edge from i to nodes in �i �inormalized 
ost of edge ix e
(i; x) := max(
ix; �i) (or e
ix)parameters of algorithm in Se
tion 4 �; �; 
 (� = 4; � = 2)set of nodes within ball of radius ��i 
entered at i Binumber of tra
ks ` (` = 3k=4 in Se
tion 4)tra
ks Q0; Q1; Q2; : : : ; Q`index of 
urrent tra
k �inner neighbours of a
tive terminal i i1; i2; : : : ; i`parent of ina
tive terminal v p(v)ordered set of nodes atta
hing terminal i to tra
ks Ni
ost of MST of subgraph indu
ed by node set X mst(X)
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