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1. Introduction

A typical problem in network design is to find a minimum-cost sub-network
H of a given network GG such that H satisfies some prespecified connectivity
requirements; examples are the minimum spanning tree (MST) problem and
the traveling salesman problem (TSP). By a network we mean a graph (ei-
ther undirected or directed) together with non-negative costs for the edges.
Problems in network design have a central position in combinatorial opti-
mization and theoretical computer science, and moreover, they arise in many
practical settings (e.g., telephone networks). Many of the problems in net-
work design are NP-hard. Over the past decade, there has been significant
research on approximation algorithms for network design, and there have
been some notable successes in the design of networks that satisfy various
types of “edge connectivity” requirements, e.g., Goemans and Williamson
[9], Jain [11], etc. Fewer results are known on the design of networks subject
to “vertex connectivity” requirements. There are several recent results for
restricted edge costs, such as uniform costs or metric costs, but in this pa-
per we discuss only the general case of non-negative costs. Our focus is on
approximation algorithms for designing networks that satisfy vertex connec-
tivity requirements. Our results are based on the iterative rounding method
(due to Jain [11]) and on an integer programming formulation called the
setpair formulation (due to Frank and Jordan [5]).

Let G=(V,E) be the graph of the given network, and let n denote the
number of vertices. Most of the previous research in this area is based on
an integer programming formulation called the cut covering model. A non-
negative, integer requirement f(.S,V'\S) is assigned to each vertex partition
(S,V\S), and the goal is to find a minimum-cost subgraph H such that each
cut (S,V'\S) has at least f(S,V'\S) edges of H. (For example, in the MST
problem, f(S,V'\ S)=1 for each nonempty vertex set S, S#V.) Although
this model captures many “edge connectivity” problems in network design,
it seems less suited for “vertex connectivity” problems.

The iterative rounding method works as follows. Formulate the problem
as an integer program, and then solve the LP (linear programming) relax-
ation to find a basic (extreme point) optimum solution . Pick an edge e*
of highest value (i.e., x¢+ > 2., Ve € E) and add it to the solution subgraph
H (initially, E(H) is empty). Then update the LP and the integer program,
since the variable x.« is implicitly fixed at value 1. In detail, decrease by 1
the r.h.s. of every constraint where the variable x.+ occurs, and then remove
this variable from the LP. The resulting LP is the same as the LP for the “re-
duced” problem where the edge e* is pre-selected for H. Under appropriate
conditions on the requirement function f, the problem turns out to be “self
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reducible,” i.e., the essential properties of the original problem are preserved
in the reduced problem. Iteratively solve the reduced problem. Jain [11] ap-
plied this method to the cut covering model, and proved that it achieves
an approximation guarantee of 2 provided that the requirement function f
is weakly supermodular. (Such requirement functions capture several inter-
esting problems, e.g., the Steiner network problem.) His proof is based on a
key property of the LP: every non-zero basic solution has an edge of value
at least % This result is based on an extension of a classic result that, under
appropriate conditions on the requirement function f, every basic solution
of the LP is characterized by a laminar family of “tight sets.”

The setpair formulation [5] is a generalization of the cut covering model.
A setpair (W;,W},) consists of two disjoint vertex sets W; and W), i.e.,
W, CV, W, CV, W;NnW;, =0. Each setpair (W;,W},) is assigned an non-
negative, integer requirement f(W;, W},). The goal is to find a minimum-
cost subgraph H that satisfies the requirement of every setpair, i.e., for
each setpair (W;,W},), H should have at least f(W;,W}) edges that have
one end-vertex in W; and the other end-vertex in W},. Note that the cut
covering model is a special case of the setpair formulation in which every
setpair (W, W},) with a positive requirement has Wy =V \ W), (i.e., a pair of
complementary sets).

We introduce a special class of requirement functions f, namely, skew
bisupermodular functions (see Section 2). These functions are a common
generalization of weakly supermodular (symmetric) functions ([3], [8]) and
crossing bisupermodular functions [5]. Skew bisupermodular requirement
functions are useful because the basic solutions of the LP relaxation are
characterized by “non-crossing families” of setpairs (see Section 3 and The-
orem 3.3). Note the correspondence with the cut covering model, where the
basic solutions of the LP relaxation may be characterized by a laminar fam-
ily of sets. Based on this, we obtain lower bounds on the maximum value of
an edge for the basic solutions of the LP relaxation. Also, this LP relaxation
has the self-reducibility property needed for the iterative rounding method.
Hence, these structural results immediately give approximation algorithms.

We give applications to two specific problems. In the k-vertex connectivity
problem we are given a graph G=(V, F) (either directed or undirected) with
nonnegative edge costs ¢: £ — R, and the task is to find a minimum-cost
spanning subgraph H such that H is k-vertex connected. A graph is called k-
vertex connected if it has at least k41 vertices, and the deletion of any set of
k—1 vertices leaves a connected graph. We give an approximation algorithm
for the undirected problem, and our method extends to the directed problem.
Our approximation guarantee is O(y/n/e) where € is a positive real number
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such that k < (1—e€)n. For both the directed and the undirected problems,
our results improve on the previous best approximation guarantees provided
that & is in the range 2(\/n) <k <n—2(1). The previous best approximation
guarantee for the directed problem was §2(k) [6], and the previous best
approximation guarantee for the undirected problem was O(logk) for k <
V& 2], and (k) for k> /% [14]. (An O(logk) approximation guarantee
for the undirected problem was claimed earlier in [15], but subsequently an
error has been found and that claim has been withdrawn.) Very recently
(and two years after this paper was completed), improved approximation
guarantees for the k-vertex connectivity problem have been reported in [13].

In the element connectivity problem [12], we are given an undirected
graph G=(V, E) with nonnegative edge costs c¢: F— R, ; moreover, there is
a set of terminal vertices T'CV and between each pair of distinct terminals
i and j a connectivity requirement r;; is specified (each r;; is a non-negative
integer, and r;; =7;;). Terminals are reliable and do not fail. Edges and non-
terminal vertices are unreliable and are subject to failure. The edges and
non-terminals are called elements. The problem is to find a minimum-cost
subgraph H that contains r;; element disjoint paths between each pair of
terminals ¢ and 7. Alternatively, for every pair of terminals 7 and j, H should
contain a path between 7 and j despite the failure of up to r;; —1 elements.
The problem is NP-hard. Recently, Fleischer, Jain, and Williamson [7] gave
a 2-approximation algorithm for this problem, improving on the previous
best approximation guarantee of 2In(max{r;;}) due to Jain et al [12]. We
give a different proof of the same 2-approximation guarantee. The element
connectivity problem is a generalization of the Steiner network problem, see
Goemans et al [8] and Jain [11]. Even for special cases of this problem, the
best approximation guarantee known is 2, and moreover, the LP relaxation
has an integrality ratio of at least 2 — %

Let us briefly comment on the relation of this work to [7]. We use the
same linear programming relaxation for the element connectivity problem as
Fleischer et al, but the two proofs are different. In particular, the definitions
of “noncrossing setpairs” are different. (In our setting, noncrossing setpairs
may be tail disjoint, or head disjoint, or comparable (this follows [1,5]),
whereas [7] has a more restricted notion of noncrossing setpairs.) We have
included a proof of (a generalization of) the 2-approximation guarantee for
element connectivity for the sake of completeness.

For many of the specific problems in network design that are captured by
the setpairs formulation, the linear programming relaxation can be written
as a compact linear program via a “flow formulation.” Moreover, an appro-
priate optimal solution can be computed in strongly polynomial time via



NETWORK DESIGN VIA SETPAIR RELAXATIONS 5

Tardos’ algorithm [16]. The computed optimal solution may not be basic,
but it will have an edge of sufficiently large value. This applies to both the
k-vertex connectivity problem and the element connectivity problem, and is
similar to the method used by Jain in [11, Section 9].

Summarizing, our goal is to present general results on the iterative round-
ing of setpair relaxations, to model diverse problems in network design, and
to derive good approximation guarantees for specific problems. The rest of
this paper is organized as follows. Section 2 has notation and definitions
pertaining to the setpair formulation. Section 3 contains our main result on
skew bisupermodular functions, a combinatorial characterization of the ba-
sic solutions of the LP. Section 4 gives the approximation algorithm for the
k-vertex connectivity problem. The concluding section, Section 5 describes
a setpair formulation for the element connectivity problem, and gives our
proof of the 2-approximation guarantee.

2. The Setpair Formulation and Skew Bisupermodular Functions

One of the new contributions of this section is the notion of skew bisuper-
modular functions (and the related notions of reverse setpairs and overlap-
ping setpairs). Most of the other material is based on [5].

A setpair W= (W;,Wp,) is an ordered pair of disjoint vertex sets; either
Wy or Wy, may be empty. We say that W; is the tail of W, and W), is the
head of W. Let S denote the set of all setpairs. Denote by §(W)=4§(W;, W)
the set of edges with one end-vertex in W; and the other in W},; note that a
cut 6(Wy,V \ W) is the special case of (W) where the head and tail of W
form a complementary pair of vertex sets.

The setpair formulation (discussed in Section 1) may be written as the
following integer program (IP).

minimize Z Ce Te
eceF
(IP) subject to S @ > f(W), VWeS
eco(W)
x. € {0,1}, Vee E

Here, f is some non-negative integer function on the setpairs, and c: £ — R,
gives the edge costs. Let (LP) denote the linear programming relaxation
obtained from (IP) by replacing the constraints x, € {0,1} by 0<z. <1 for
all edges e€ F.
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2.1. Crossing Setpairs.

Given two setpairs W = (W, Wy) and Y = (Y;,Y}), let W @Y denote the
setpair (W,UYy, W,NY3), and let W@EY denote the setpair (W;NY;, W,UY},).
Two setpairs W and Y are said to be comparable if
(i) Wy DY and W, CYp,, or (ii) W;CY; and W}, DY},
The former case is denoted by W <Y and the latter case by W > Y. Note
that W<W @Y and W-WRY.
Two setpairs W and Y are said to be non-crossing if
(i) they are comparable, or (ii) their tails are disjoint, or
(iii) their heads are disjoint.
Otherwise, W and Y are said to cross. Note that W and Y cross if and
only if their tails intersect, their heads intersect and they are not comparable.
For a setpair W = (W;,W},), let W = (W},,W;) be the reverse setpair.
Observe that §(W)=4§(W) for an undirected graph. Also, note that W oY =
WaY.
Two setpairs W and Y are said to be overlapping if
(i) W and Y cross, or
(ii) W and Y cross (which is the same as W and Y cross).
Otherwise, the setpairs are called non-overlapping. A family of setpairs
L C S is called non-crossing (non-overlapping) if no two setpairs in £ cross
(overlap).

2.2. Bisubmodular Functions.

A real-valued function f on § is called bisubmodular if for any two setpairs
W and Y we have

fW)+fY) 2 fWaY)+ f(WaY).

A non-negative, integer-valued function f on S is called crossing bisupermod-
ular if for any two crossing setpairs W and Y with f(W)>0 and f(Y)>0,
we have

fW)+fY) <fWaY)+fWaY).

Let Xy denote the edge incidence vector of §(W). For any two setpairs
W and Y, note that if an edge is present in §(W &Y) or §(W @Y), then it
is present in 6(W) or 6(Y), and if an edge is present in both (W @Y) and
J(W®Y), then it is present in both §(W) and §(Y"). Hence, we have Xy oy +
Xway < Xw + Xy . Consequently, for any non-negative vector z: F— Ry on
the edges, the corresponding function on setpairs, 2(6(W))=>__cs)Te, is
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bisubmodular. (For any vector @ on a groundset U and a subset @ of U,
z(Q) denotes ;o x;.)

2.3. Skew Bisupermodular Functions.

A non-negative, integer-valued function f on § is called skew bisupermodular
if for any two overlapping setpairs W and Y with f(W) >0 and f(Y) >0,
we have

() F(W)+F(Y) S F(WSY)+ F(WSY), or

(i) F(W) + f(V) < F(W V) 4+ f(WeaY).

This is motivated by problems on undirected graphs. For these prob-
lems, it turns out that the relevant functions f are symmetric, i.e., f(W)=
f(W), VYW ES.

Note that every crossing bisupermodular function is skew bisupermod-
ular. Also, every weakly supermodular symmetric function is skew bisu-
permodular (see the proof of Lemma 5.2). Thus the skew bisupermodular
property is a generalization of these earlier notions.

3. Characterizing a Basic Solution via a Non-Overlapping Family

The main result of this section, Theorem 3.3, characterizes a basic solution
of (LP) via a non-overlapping family of setpairs, assuming that the given
graph G is undirected and the requirement function f is symmetric and skew
bisupermodular. This result is an extension of classic results to our setting.
Our proof is similar to earlier proofs in [11, Lemma 4.2] and [1, Theorem 2.1];
however, when we add a new setpair W to our non-overlapping family, we
have to ensure that neither W nor W crosses a setpair in the family. The
results in this section may not apply to directed graphs.

Given a feasible solution « to (LP), a setpair W is called tight if
z(6(W))=f(W).

Lemma 3.1. Let the requirement function f of (LP) be symmetric and
skew bisupermodular, and let @ be a feasible solution to (LP) such that
x>0 for all edges e € E. Suppose that the setpairs W and Y have f(W)>
0, f(Y)>0, and moreover, W and Y overlap, and are tight (also, note that
W is tight, it overlaps Y, and f(W)>0). Then one of the following holds:

(i) The setpairs W @Y and W &Y are tight, and Xw + Xy =Xwey +Xway -
(i) The setpairs W@Y and WY are tight, and Xw +Xy =Xgpoy +Xgpay -
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Proof. Assume that f(W)+ f(V)<f(W@Y)+ f(WaY). The other case
is similar. Then:

fWaY)+ f(WaY)

<

Hence, all the inequalities hold as equations, therefore, W®Y and WY are
both tight. This proves the first part of (i). The second part of (i) follows
from the following three facts: Xy +Xy > Xweoy +Xwaey; . >0 for all edges
e; x(J(WRY))+2(d(WaY)) = x2(6(W))+2(6(Y)). |

The next result is in [1, Lemma 2.3] and is used to prove the main result
of this section.

Lemma 3.2. Let W, Y and Z be setpairs. If Z crosses WY (or WaY)
then either 7 crosses W or 7 crosses'Y . |

Theorem 3.3. Let the requirement function f of (LP) be symmetric and
skew bisupermodular, and let & be a basic solution of (LP) such that 0 <
x. < 1 for all edges e € E. Then there exists a non-overlapping family L of
tight setpairs such that:

(i) Every setpair W € L has f(W)>1.

(ii) 1] = | E.

(iii) The vectors Xy, W € L, are linearly independent.

(iv) x is the unique solution to {x(§(W))=f(W), YW € L}.

Proof. Since z is a basic solution of (LP), and none of the constraints
0 <z, <1 (e €F) holds with equality, there exist |E| tight setpair con-
straints x(§(W)) = f(W) >0 such that the edge incidence vectors Xy corre-
sponding to these constraints are linearly independent. Let £ be a maximal,
non-overlapping family of tight setpairs and let span(L) denote the vector
space spanned by the vectors Xy, where W € L. The theorem holds be-
cause span(L) equals span(F), where F is the family of all tight setpairs.
We prove this by contradiction. Suppose that there is a tight setpair Y such
that Xy ¢ span(L). Take such a Y that overlaps the minimum number of
setpairs in £ (this is a key step). Choose any setpair W € £ that overlaps
Y'; there exists such a W by the maximality of L.

Either part (i) or part (ii) in the statement of Lemma 3.1 holds for W
and Y. Assume that part (ii) holds. The other case is similar. Thus, the
setpairs W®Y and W@Y are tight. In addition, Xy +Xy =Xwoy T\ 7ey- It
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follows that either Xy oy & span(L) or Xypoy & span(L). Consider the former

case. Again, the other case is similar. Let Q =W @Y and take any setpair
Z € L. Suppose that Z overlaps Q. Then either Z crosses () or Z crosses

Q=Wa@Y=WaY. Suppose that Z crosses Q. We apply Lemma 3.2 to Z
and Q. noting that Z does not cross W, to see that Z crosses Y. Similarly,
if Z crosses @, then by Lemma 3.2, Z crosses Y. Hence, Z overlaps Y. So
every setpair in £ that overlaps @ also overlaps Y.

It follows that () overlaps fewer setpairs in £ than Y. To see this, note
that (1) W overlaps Y, by our choice of W, and (2) W does not overlap Q,
because @ < W (so Q does not cross W) and W and @Q are head disjoint
(so W does not cross Q). Thus we get a contradiction to the choice of Y,
since () is a tight setpair that overlaps fewer setpairs in £ than Y, and
Xq ¢ span(L). |

Remarks. In the theorem, if we replace a setpair W € £ by its reverse W,
then this preserves the properties (i) (iv).

4. An Approximation Algorithm for the k-Vertex Connectivity
Problem

The main result of this section is as follows.

Theorem 4.1. Let k and n be positive integers, and let e <1 be a positive
number such that k is at most (1—e)n. There is a polynomial-time algorithm
that, given an n-vertex (directed or undirected) graph, finds a solution to the
k-vertex connectivity problem of cost at most O(y/n/e€) times the optimal
cost. |

The k-vertex connectivity problem is modeled by the following integer
program.

(IP-VC) minimize Y co 2
eEE
subject to Z xe > f(W) YWesS
cEd(W)
z. € {0,1} Vee E

Here, f is the following non-negative integer function defined on the setpairs.

) = { mas {0, k= VA OV UWDJL, - if W 0 and Wi 0

0, otherwise.
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We use (LP-VC) to denote the linear programming relaxation.

The k-vertex connectivity requirement function f is crossing bisupermod-
ular [5], hence, f is also skew bisupermodular. This can be seen as follows.
For each setpair W, let p(W) denote |V \ (W;UWy})|. For any two setpairs
W =(W;,Wy) and Y =(Y;,Y},), we have p(W)+p(V)=p(WRY)+p(WaDY),
because

(WY U (W, NYR)|+ (W N Y) U (W, UYR)| = Wil + [Wh| + Yy + [Yal.

Hence, the above function f(-) is crossing bisupermodular (if either W®Y or
WaY has head or tail empty, then note that W, Y do not cross). The results
in [5] imply that a basic optimal solution to (LP-VC) (if it exists) can be
found in polynomial time, see [5], [10, Theorem 6.4.9]. Moreover, the require-
ment function f and (LP-VC) have the following “self-reducibility” property:
for any edge e the “reduced” requirement function f’ is also crossing bisuper-
modular (and skew bisupermodular), where f’ is given by f/(W)=f(W)—1
if the setpair W has e€ §(W) and f'(W)= f(W) otherwise (since the zero-
one incidence function of e on § is bisubmodular).
Theorem 4.1 follows directly from the next result.

Theorem 4.2. Let e<1 be a positive number, and suppose that k< (1—¢)n.
Then any nonzero basic solution of (LP-VC) has an edge of value (/).

We give the proof for undirected graphs, using results on skew bisuper-
modular functions. After that, we sketch the proof for directed graphs via
crossing bisupermodular functions. The next result is from [1, Theorem 1.1].

Theorem 4.3. Suppose that the requirement function f for the linear pro-

gram (LP-VC) is crossing (or, skew) bisupermodular. Let & be a nonzero

basic solution of (LP-VC), and let L be a non-crossing family of setpairs

characterizing @. Then there exists an edge e with x.> S — ]
= a(Viz)

Focus on a nonzero basic solution z of (LP-VC). By Theorem 3.3, x
corresponds to a noncrossing family of setpairs £ such that each setpair has
a nonempty head and a nonempty tail. We may assume that each setpair
W € L has |W},|>|W,|, else we may replace W by W and this preserves all
the properties of £ in Theorem 3.3. Let P denote the poset (and the Hasse
diagram) representing £, and recall that P has a node W for each setpair
W in £ and it has an arc (W,Y), where Y € £, if W <Y and there is no
other Z € £ such that W < Z <Y (we omit arcs implied by transitivity
from P); we call W a child of Y, and call Y a parent of W. (Note that the
terms “node” and “arc” refer to the poset P, and the terms “vertex” and
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“edge” refer to the input graph or digraph G.) A diamond of a poset is a
set of four nodes W, X,Y, 7 such that X and Y are incomparable, W is a
common descendant of X,Y, and 7 is a common ancestor of X,Y. A poset
is called diamond-free if it contains no diamond. The poset P representing
L is diamond-free, see [1, Lemma 3.1].

Let m denote |L|. If m <4n/e, then by the above theorem, there is an

O(n)*

the proof focuses on the other case (m >4n/e) and shows that there exists
an edge e with either z,> % or x.>2(e) > Q(\/g) (Note that k<n-—1,

1
hence e> -, and so > \/g)

edge e with x. >, /5. Hence, in this case, Theorem 4.2 holds. The rest of

Lemma 4.4. Suppose that k<(1—¢€)n. Then there are at most % pairwise
incomparable setpairs in L such that all their tails contain a common vertex.

Proof. Let the setpairs Y',Y?2,...,Y 7€ L be pairwise incomparable, and let
v be a vertex that occurs in the tail of each of these setpairs. Since the Y7 are
incomparable and their tails intersect, their heads are disjoint. Each head
Y,f has cardinality at least %(n —k)> %677/; this follows from the properties
of £, and the fact that each requirement f(Y") is at least one. Hence, there

are at most % such setpairs. ]

We partition the setpairs in £ into several sets.

W is a type I setpair if it has no parents in P.

W is a type II setpair if it has at least two parents in P.

W is a type III setpair if it has exactly one parent Y in P, and W; =Y.
W is a type IV setpair if it has exactly one parent Y in P, and W;#Y;.

Lemma 4.5. Suppose that k < (1 —e€)n. (a) Then there are at most 2
setpairs of type IV. (b) Moreover, each setpair (node) in P has at most %

children.

Proof. We prove (a) first, then (b). To each type IV setpair W with parent
Y we assign a vertex v in W;\Y;. We claim that a vertex can be assigned
to at most % setpairs of type IV. This will imply the claim. Take a vertex
v that is assigned to the type IV setpairs W1, W2 ..., W9 Let their parents
be Y1 V2 ... Y9 respectively. Now v € WrNnW2n---NnW/, but v ¢ Y,! U
Y2U---UY,". The setpairs W', W2, ... W4 associated with v must be pairwise
incomparable (since v is in the tail of every W7, but for every proper ancestor
of a W' note that v is not in the tail). Then by Lemma 4.4 applied to
W', W?2,..., W9, there are at most % such setpairs whose tails contain v.
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For (b), consider all the children Y, Y?2,.... Y% of a node W € P. Then

Y1, Y2 ... Y9 are pairwise incomparable (otherwise, one of the arcs (Y, W)
in P is redundant), and moreover, each of the tails Y/, i=1,..., ¢, contains
W, which is nonempty. Then by Lemma 4.4 applied to Y, Y2, ... Y we
have ¢ < % |

We have |£L|=m> 47”, hence, by Lemma 4.5, £ has at least % setpairs of
one of the types I, II, or III.
(Type I) Suppose that there are at least 7 type I setpairs. The type I
setpairs are pairwise incomparable. Hence the edge sets §(W), where W is a
type I setpair, are quasidisjoint, i.e., for each edge uv, there are at most two
setpairs W, Y (among the type I setpairs) such that uv € 6(W) (say ue W,
and v e Wy) and wv €4(Y) (say v€Y; and u€Yy). Hence, there is a type I
setpair W € £ such that §(W) has size at most 12, and so there is an edge
e€d(W) with z.> &
(Type IT) Suppose that there are at least % type II setpairs. Let Yyt ..., v
be the minimal nodes in P (those with no children); clearly, these nodes are
pairwise incomparable. Each Y and its ancestors forms a (directed) tree
(since P is diamond-free). Each node of P is in at most % of these trees, by
Lemma 4.4. Focus on one of the trees and note that the number of leaf nodes
(maximal nodes of P) of the tree is greater than or equal to the number of
type II nodes in the tree. Summing over all the trees, we see that the total
number of leaf nodes (maximal nodes of 73) is at leaqt 5 times the number
of type IT nodes in P, hence, P has at least 75 maximal nodeq clearly, these
nodes are pairwise incomparable. Then the edge sets §(W), WhPI‘P W is a
maximal node of P, are quasidisjoint, so there is an edge e with x> 57
(Type III) Finally, suppose that there are at least 7 type III setpairs. Con—
sider all of the type III setpairs W' W?2, ...W¢? and their unique parents
Y1 Y2...Y% Observe that f(W")+1< f(Y?), since [W,UW}| < |[Y;UY,].
Moreover, if W and W7 (where 1<i < j<gq) have distinct parents Y? and
Y7, then the edge sets 5(Y’)\(5(W’) and (5(Y])\5(W]) are quasidisjoint. To
see this, consider an edge uv € §(Y )\(5(W’) with u €Y/ =W/ and v € Y —W/.
Now, every proper ancestor Z of W' has v € Zj,, so if W7 is an an(’eqtor of
Wi, then we cannot have uv€d(Y7)\§(W7), u GY] Wtj, and 7) EY] W]

Consequently, by Lemma 4.5(b), any edge occurs in at most ; of the edge
sets 6(Y?*)\ §(W?), and moreover, z(§(Y?)\ (W) >1, for each i=1,...,q
Hence, there is an edge e with x.> o3

This concludes the proof of Theorem 4.2 for undirected graphs: any
nonzero basic solution of (LP-VC) has an edge of value £2(y/¢/n).

The proof extends to directed graphs via Theorem 4.3. We partition the
noncrossing family of setpairs £ into two subfamilies £; and Ly, depending
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on whether or not a setpair W € £ has |Wy| > |W;|. Suppose that [£|>|Ls];
otherwise, we use a symmetric argument. Then we apply the arguments for
undirected graphs to £; (partitioning it into types I, 1T, TII, TV, etc.). We
obtain similar lower bounds on max{z.}, the main difference being that we
lose a factor of two in the lower bound (since we have [£;|> % rather than
|£|=m). Hence, Theorem 4.2 holds for directed graphs. |

Theorem 4.1 follows from Theorem 4.2: for k < (1—¢€)n, iterative rounding
gives an O(y/n/e) approximation algorithm for the (directed or undirected)
k-vertex connectivity problem.

Is it possible to improve substantially on our analysis of the iterative
rounding method for the k-vertex connectivity problem? This is not clear
at present, since our approximation guarantee holds for directed graphs for
large values of k (say n/2<k<n—2(1)), and for this case, the previous best
approximation guarantee was (2(k). Moreover, there is an example of the
undirected problem such that there is a basic solution & of (LP-VC) such

that each edge e has z. < ﬁ Hence, in Theorem 4.2, the lower bound on

the maximum value of an edge cannot be improved heyond ——. We have

2(Vk)

no new lower bounds for the integrality ratio of (LP-VC).

5. An Approximation Algorithm for the Element Connectivity
Problem

This section proves a 2-approximation guarantee for a generalization of the
element connectivity problem. A symmetric, non-negative, integral function
) on the subsets of a groundset U is called weakly supermodular if 1»(U)=0,
and for every two subsets X and Z, we have either ¢(X)+¢(Z) <¢(X N
Z)+ (X UZ) or Y(X)+9(Z) <p(XNZ)+9(XUZ), where X =U\ X (¢ is
symmetric if ¢(X)=v(X),¥X CU). Recall that TCV is given as the set of
terminal vertices of an undirected graph G = (V. FE), and each edge e has a
nonnegative cost c.. In the generalized element connectivity problem, rather
than specifying the connectivity requirements by a function r: (T'XT)— 7,
we use a weakly supermodular function on the set of terminals ¢': 27 =7
(we assume that ¢’ is symmetric, it assigns a nonnegative integer value to
each subset of T, and ¢'(T) =¢'(0)) =0). For the integer program (IP), the
requirement function f on the setpairs W €S is defined via ¢’ as follows:

f(W) = { max {0, ¢'(W, NT) — [V\ (Wy UW,)| }, it TC WU Wy;

0, otherwise.
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Note that if a setpair W has a positive requirement, then all the terminals
are in W, UWj,,.

Let (LP-EC) denote the linear programming relaxation of this integer
program. Theorem 5.5 shows a key property of (LP-EC), namely, there exists
an edge of value at least % in any non-zero basic solution. If a polynomial-
time strong separation oracle for (LP-EC) is available, then a basic optimal
solution to (LP-EC) (if it exists) can be found in polynomial time. Thus the
next result follows from the iterative rounding method.

Theorem 5.1. Consider the generalized element connectivity problem, and
suppose that a strong separation oracle is available (for the linear program-
ming relaxation). Then there is a polynomial-time algorithm that given an
instance of the problem, finds a solution of cost at most twice the optimal
cost. [ |

For the special case of the element connectivity problem, a strong sepa-
ration oracle is available, and thus we obtain an efficient algorithm with an
approximation guarantee of 2; this matches the earlier result of Fleischer,
Jain, and Williamson [7].

Lemma 5.2. If the function ¢’ is weakly supermodular, then the require-
ment function f for the generalized element connectivity problem is skew
bisupermodular.

Proof. Define a function g(-) on the setpairs W €S by g(W)=¢'(W,NT).
We claim that the function g is skew bisupermodular. This follows from the
term by term correspondence between the skew bisupermodular inequalities
for g and the weakly supermodular inequalities for ¢'. (To see this in detail,
consider overlapping setpairs W and Y with ¢g(W)>0,¢(Y)>0. Clearly, for
both W and Y, T is contained in the union of the head and the tail. Then
both W ®Y and W &Y also have this property. Let X =W, NT and let
Z =Y, NT. Suppose that one of the weakly supermodular inequalities holds
for X and Z, say, ¢'(X)+¢'(Z) < ¢ (XNZ)+¢'(XUZ). Note that ¢ (X)=g(W),
Jd(Z2)=9(Y), J(XNZ)=g(W®RY), and ¢'(XUZ)=g(W a&Y). Hence, the
skew bisupermodular inequality g(W)+g(Y) <g(W @Y )+g(W &Y') holds
for W and Y.)
Now, consider the function f(-). We may write f(-) as

max {0, g(W) —p(W)}, T CW, UWy;
0, otherwise;

f(W)—{

where p(W) denotes |V\(W;UW},)| for each setpair W. Recall from Section 4
that for any two setpairs W, Y we have p(W)+p(Y)=p(W QY )+p(WaY),
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and p(W)+p(Y)=p(W@Y)+p(W @ Y). Thus it can be seen that f(-) is
skew bisupermodular. ]

Now, consider the special case of the element connectivity problem. For
all i,j €T, there is a requirement for r;; element disjoint paths between i
and j. Define the function ¢'(-) on T as follows. Let ¢'(S) = ‘Iglaéés{r,;j} for

1€.5,)

3

any subset S of T. (Note that ¢’ is symmetric, nonnegative, integral, and
¢ (T)=4¢'(0)=0.) Frank [3, Proposition 5.4] (also Goemans et al [8]) showed
that ¢’ is weakly supermodular. Define the requirement function f(-) on the
setpairs W € § as in the generalized problem. It is easily seen that the integer
program (IP) models the element connectivity problem (for more details see
[12]). Lemma 5.2 applies and shows that f is a skew bisupermodular func-
tion. Moreover, for this special case, a strong separation oracle for (LP-EC)
is available using standard network flow techniques, hence, a basic optimal
solution to (LP-EC) (if it exists) can be found in polynomial time. Thus
Theorem 5.1 gives an (efficient) 2-approximation algorithm for the element
connectivity problem (without further assumptions).

To prove Theorem 5.5 (there exists an edge of value at least % in any non-
zero basic solution of (LP-EC)), we need to develop some preliminaries and
a key lemma. Based on this, the rest of the proof becomes an easy extension
of the arguments in Jain’s proof of [11, Lemma 4.6].

Let @ be a non-zero basic solution of (LP-EC). We may assume that each
edge e € F has x. >0, since any other edges may be discarded. In addition,
we may assume that each edge e € F has z. <1, otherwise we are done. Let
L be the corresponding non-overlapping family of setpairs of Theorem 3.3.
Since F is the support of a basic solution, |F|=|L|. Let m denote |E|. Let
7 be an arbitrarily chosen terminal vertex in 7. For each setpair in £, we
assume that the head contains 7. Otherwise, if 7 is in the tail of W € L, then
we replace W by W and this preserves all the properties of £ in Theorem 3.3.
Then the tails of the setpairs in £ form a laminar family. This holds because
the setpairs in £ are pairwise non-overlapping, and the heads of any two
setpairs in L intersect (since 7 is in every head). Moreover, each setpair
W € L has a terminal in its tail (since f(W) >0 implies ¢'(W, NT) >0, so
W,NT CT). We may also view L as a forest of rooted trees. Call W € L the
parent of Y € L (and Y a child of W) if W; DY; and any other setpair Z € L
with Z; DY; either has Z; D Wy or has Z; =W, and Z;,, C W},. We may refer
to the setpairs in £ as nodes of the forest. We say that a setpair Y € L is
smaller than a setpair We L if Y >W, ie., Y;CW; and Y is a descendant
of W in the forest.
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Lemma 5.3. Let Y =(Y,Y},) and Z=(Z;,Zy) be setpairs in L. If Y and Z
are tail disjoint, then Y; C Zj, and Z; CY},.

Proof. Note that Y; and Z; have a terminal in common, since Y; has at
least one terminal, and Z; U Z;, contains all the terminals. Similarly, Z; and
Y}, have a terminal in common. Suppose that Y; is not a subset of Z;,. Then
it can be seen that Y; and Zj, intersect properly (since 7€ Zj, \ Y; and there
is a vertex in Y;\ Z;,). Hence, Z crosses Y, and so Y and Z overlap. This
contradiction shows that Y; C Z;,. Similarly, we have Z; CY},. ]

In the rest of this section, we take the edges in E to be bidirected. That
is, we replace every undirected edge {p,q} in E by a pair of directed arcs pq
and gp. For a setpair W = (W;,W},), let §(W) denote the set of arcs pq with
p € Wy and ¢ € Wj,. (Though we use the same notation () for undirected
edges and directed arcs, the context will resolve any ambiguity.) The other
notation, x, Xy, etc. remains the same. An arc pq is called good if there is a
setpair W € £ such that pq is in §(W). Note that, in the undirected setting,
every edge e is in §(W) for some W € L, but in the directed setting, there
may exist arcs that are not good.

The proof of the main result hinges on assigning token arcs to the setpairs
in L. Here is a brief sketch; the details are given in the proof of Theorem 5.5.
We have |£|=|E|=m and thus a total of 2m arcs. If a basic solution x of
(LP-EC) has z. < 3 for each edge e, then we will be able to distribute the
token arcs among the setpairs in £ such that each gets at least two token
arcs and some setpair gets at least three token arcs. Thus, we end up with
at least 2|£|+1=2m+1 arcs. This contradiction shows that our assumption
on max, {x.} is false. We use the following two rules to distribute the token
arcs such that no arc is assigned to two different setpairs.

Rule 1. If af is a good arc, then we assign it to the smallest setpair W € L
such that age€§(W).

Rule 2. If af is not a good arc, then we assign it to the smallest setpair
W € L such that e W, and a ¢ W),.

(Rule 2 is essential in the sense that the analysis fails if we insist on
assigning arcs pq only to those setpairs W such that {p,q} €d6(W).)

Given two setpairs W and Y, let (W) v d(Y) denote the symmetric
difference of §(W) and 6(Y). Given S',52,...,S% a collection of mutually
disjoint vertex sets, we denote by v(S',52%,...,S%) the set of arcs pq such
that p and ¢ are in different sets S and S7, where 1<i, j </.
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Lemma 5.4. Let W be a setpair in the forest L, and let its children be the
setpairs Y1, Y2, ... Y. Then for every arc pq in

BW) v (3 u---Us(Y))) \ AV, Y
either pq or gp is assigned to W by Rule 1 or Rule 2.

Proof. Note that the lemma applies to all arcs in the symmetric difference of
(W) and Ule 5(Y'") except for arcs whose two end-vertices are in the tails
of different children. Figure 1 illustrates the arguments that follow, for the
particular case of /=2. [Note, for example, that the arc a4 is in y(Y;',Y;?)]

vyl R ¢

Figure 1. An illustration of the proof of Lemma 5.4.

We have two cases to deal with.
(a) pged(W) \ Ui, 5(V7).
Now qge W}, C Y,f, for i =1,...,0. However, by assumption, p € W;\ UleYti
and so W is the smallest setpair in £ such that p is in the tail. Thus, W is
the smallest setpair in £ with pg€ §(W), and hence pq is assigned to W by
Rule 1. [The arc a; in Figure 1 is an example.]
(b) pged(Y?) \ §(W), for some i€ {1,....0}, and pq¢~(V;',....V, ).
Note that p €Y, CW; and ¢&W}. We have two subcases.
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First, we show that gp is not a good arc. Clearly, ¢ € Y} as pg € 6(Y?).
For any other child Y7, observe that ¢ € Y/ as pq ¢ v(Y},...,Y,!). Hence,
q€ Wt\UleYtJ. Then W is the smallest setpair in £ whose tail contains ¢,
and there is no setpair Z € £ such that qp € §(Z) (otherwise, p € Z, N W;
and ¢ € W; C Z;, which is impossible). Thus ¢p is not a good arc. Moreover,
p & Wy, (since p€ Wy), and so Rule 2 assigns ¢gp to W. [The arc ag in Figure 1
is an example.]

(i) ¢ Wi

We first show that ¢p is not a good arc. Suppose Z € L is a setpair such
that gp € §(Z). Note that W; and Z; are disjoint, because p € W;\ Z; and
q € Zy\ W;. Then by Lemma 5.3 Z; CW,,. This gives a contradiction (since
q € Zt, q ¢ Wpy). Therefore, gp is not a good arc and Rule 2 applies to ¢p.
Rule 2 assigns gp to W since p € Wy, ¢ ¢ Wy, and for any smaller setpair
X € £ with p€ X; we have ¢ € X}, (since p €Y} and ¢ € Y}). [The arc a3 in
Figure 1 is an example.] ]

The next result is proved by contradiction, and uses similar arguments
to Jain’s proof of [11, Lemma 4.6]. We include the proof, for the sake of
completeness.

Theorem 5.5. Any non-zero basic solution of (LP-EC) has an edge of value
at least %

Proof. Let z# 0 be a basic solution of (LP-EC) such that z. < 3 for each
edge e. Then the following claim implies that we end up with at least 2|£|+1
token arcs. This is a contradiction. Hence, max, {z.} > %

Define the corequirement of an edge e, denoted a(e), to be %—xe >0, and
the corequirement of a setpair W, denoted (W), to be 3_ .5y (e). For
a tight setpair W, note that a(W)=1[6(W)|— f(W) >0, hence, if a(W)=
%, then [6(W)| is odd. Also, note that if (W) C§(Y")U---US(Y"), then
a(W) =3 ceswyale) < (Y1) 4---+a(Y?). (Observe that corequirements
are not defined for arcs.)

Claim. Suppose that . < %, Ve € E. Then the arcs may be redistributed
to the nodes in the forest L such that for each rooted subtree of L each
node gets at least two token arcs and the root gets at least three token arcs.
Moreover, a root with corequirement #% gets at least four token arcs.

We prove the claim by induction. For the base case take a leaf node W € L.
Then §(WW) has at least 3 arcs. By Rule 1, all these arcs are assigned to W.
If W gets exactly 3 token arcs, then note that f(W)=1 and |§(W)| =3, so
we have a(W)= 3. Thus W satisfies the induction hypothesis.
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For the induction step, consider a subtree rooted at a node W € L. We
have four cases.

(a) W has at least four children.

By the induction hypothesis, each child has at least 3 token arcs. We
reassign one token arc from each child to W. Hence, W gets at least 4 token
arcs.

(b) W has three children.

Call the children X, Y and Z. If one of the children has at least 4 token
arcs, then we can reassign the token arcs from X, Y and Z to W so that
W has at least 4 token arcs and each of X, Y and 7 is left with at least 2
token arcs.

Otherwise, by the induction hypothesis, each of X, Y and Z has 3 token
arcs, so each has corequirement 5 and each of |§(X)|. |§(Y)| and |6(Z)]
is odd. We reassign one token arc from each of X, Y and Z to W. Now
focus on the symmetric difference of §(W) and 6(X)Ud(Y)Ud(Z). By the
linear independence of Xy, Xx, Xy and Xz, there is at least one arc pq
in the symmetric difference. If possible, choose pq & v(Xt,Y:, Z;). Then by
Lemma 5.4 either pq or gp is assigned to W as a token arc. Hence, W ends up
with at least 4 token arcs. Otherwise, every arc in the symmetric difference
is in v(Xy,Y:, Z;). Therefore §(W) C §(X)US(Y )Ud(Z), and for each arc pq in
(0(X)Uo(Y)US(Z))\6(W) the arc gp is also in the same set (by Lemma 5.3).
Hence, |§(WW)] is odd, and so the corequirement «(W) is a semi integer (i.e.,
an odd integer multiple of 3). Moreover, a(W) < a(X)+a(Y)+a(Z)=3.
Hence, a(W)= 7. and so W satisfies the induction hypothesis.

(¢) W has two children.

Call the children Y and Z. If we can assign 4 token arcs to W by
reassigning token arcs from Y and Z, and by applying Lemma 5.4 to
W)V (8(Y)US(Z))) \ (Y, Zt), then we are done. Otherwise, we are
left with two subcases.

(i) Each of Y and Z has 3 token arcs and a corequirement of 3, and there is
one arc pg in (6(W)V (8(Y)UI(Z))) \ v(Yi, Z;). Then W gets 3 token arcs,
one each by reassigning arcs from Y and Z and one by Lemma 5.4. Both
16(Y)| and |6(Z)| are odd (since a(Y)=a(Z) = 3) and the arcs (if any) in
(Y%, Zt) occur in pairs uv and vu (by Lemma 5.3). Therefore, |§(WW)] is odd
and o(W) is a semi integer. Moreover, 0 <a(W) < a(Y J4a(Z)+a({p,q}) < 3.
Hence, a(W)= 7, and so W satisfies the induction hypothesis.

(ii) At least one of the children, say Z, has 3 token arcs and a corequire-
ment of 1, and there are no arcs in (§(W) v (§(Y)Ud(2))) \ v(Vi.Z).
We will prove by contradiction that this case cannot occur. First, note that
|0(W)| and |6(Y")| have opposite parity (one is odd and the other is even),
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because |0(Z)] is odd and the arcs in the symmetric difference of §(W') and
d(Y)US(Z) occur in pairs uv and vu. Furthermore, note that Xy, Xy and
Xz are linearly independent. It follows that there is an arc in (Y}, Z;) and
there is an arc in 6(Z)NJ(W). Hence, a(W) < (Y )+a(Z) (due to the arc in
v(Y:, Zt)) and a(Y) <a(W)+a(Z) (due to the arc in 6(Z)Nd(W)). There-
fore, a(Y) — 3 <a(W)<a(Y)+ 3, implying that a(Y)=a(W) (since a(W)
is an integer multiple of 1). Then |§(W)| and |§(Y)| have the same parity.
This gives the desired contradiction.
(d) W has one child.

Call the child Y. If the symmetric difference of §(1W') and §(Y") has exactly
2 arcs and a(Y) =13, then W gets 3 token arcs (two by Lemma 5.4 and one
reassigned from Y'). In this case, note that f(W)=f(Y) and [§(W)|=]6(Y)|.
As a result, a(W)=a(Y)=1. Otherwise, W gets at least 4 token arcs. In
either case, W satisfies the induction hypothesis. This completes the proof
of the claim.

The theorem follows. |

Theorem 5.1 follows from Theorem 5.5 by applying the iterative rounding
method to (LP-EC). Note that if f is a (non-negative, integral, symmetric)
skew bisupermodular function on § and e is any edge, then the function
f' is also skew bisupermodular, where f'(W)=max{0, f(W) — 1}, if
e€d(W), and f'(W)= f(W), otherwise.
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