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NETWORK DESIGN VIA ITERATIVE ROUNDINGOF SETPAIR RELAXATIONSJOSEPH CHERIYAN*, SANTOSH VEMPALAy, ADRIAN VETTAReceived August 16, 2001Revised October 2, 2001A typical problem in network design is to �nd a minimum-cost sub-network H of a givennetwork G such that H satis�es some prespeci�ed connectivity requirements. Our focusis on approximation algorithms for designing networks that satisfy vertex connectivityrequirements. Our main tool is a linear programming relaxation of the following setpairformulation due to Frank and Jordan: a setpair consists of two subsets of vertices (ofthe given network G); each setpair has an integer requirement, and the goal is to �nd aminimum-cost subset of the edges of G such that each setpair is covered by at least as manyedges as its requirement. We introduce the notion of skew bisupermodular functions anduse it to prove that the basic solutions of the linear program are characterized by \non-crossing families" of setpairs. This allows us to apply Jain's iterative rounding methodto �nd approximately optimal integer solutions. We give two applications. (1) In the k-vertex connectivity problem we are given a (directed or undirected) graph G=(V;E) withnonnegative edge costs, and the task is to �nd a minimum-cost spanning subgraph H suchthat H is k-vertex connected. Let n= jV j, and let � < 1 be a positive number such thatk�(1��)n. We give an O(pn=�)-approximation algorithm for both problems (directed orundirected), improving on the previous best approximation guarantees for k in the range
(pn)<k<n�
(1). (2) We give a 2-approximation algorithm for the element connectivityproblem, matching the previous best approximation guarantee due to Fleischer, Jain andWilliamson.Mathematics Subject Classi�cation (2000): 68W25, 90C35; 05C40, 68R10, 90C27,90B10* Supported in part by NSERC research grant OGP0138432.y Supported in part by NSF Career Award CCR-9875024.



2 JOSEPH CHERIYAN, SANTOSH VEMPALA, ADRIAN VETTA1. IntroductionA typical problem in network design is to �nd a minimum-cost sub-networkH of a given network G such that H satis�es some prespeci�ed connectivityrequirements; examples are the minimum spanning tree (MST) problem andthe traveling salesman problem (TSP). By a network we mean a graph (ei-ther undirected or directed) together with non-negative costs for the edges.Problems in network design have a central position in combinatorial opti-mization and theoretical computer science, and moreover, they arise in manypractical settings (e.g., telephone networks). Many of the problems in net-work design are NP-hard. Over the past decade, there has been signi�cantresearch on approximation algorithms for network design, and there havebeen some notable successes in the design of networks that satisfy varioustypes of \edge connectivity" requirements, e.g., Goemans and Williamson[9], Jain [11], etc. Fewer results are known on the design of networks subjectto \vertex connectivity" requirements. There are several recent results forrestricted edge costs, such as uniform costs or metric costs, but in this pa-per we discuss only the general case of non-negative costs. Our focus is onapproximation algorithms for designing networks that satisfy vertex connec-tivity requirements. Our results are based on the iterative rounding method(due to Jain [11]) and on an integer programming formulation called thesetpair formulation (due to Frank and Jordan [5]).Let G=(V;E) be the graph of the given network, and let n denote thenumber of vertices. Most of the previous research in this area is based onan integer programming formulation called the cut covering model. A non-negative, integer requirement f(S;V nS) is assigned to each vertex partition(S;V nS), and the goal is to �nd a minimum-cost subgraph H such that eachcut (S;V nS) has at least f(S;V nS) edges of H. (For example, in the MSTproblem, f(S;V nS)=1 for each nonempty vertex set S, S 6=V .) Althoughthis model captures many \edge connectivity" problems in network design,it seems less suited for \vertex connectivity" problems.The iterative rounding method works as follows. Formulate the problemas an integer program, and then solve the LP (linear programming) relax-ation to �nd a basic (extreme point) optimum solution x. Pick an edge e�of highest value (i.e., xe� �xe; 8e2E) and add it to the solution subgraphH (initially, E(H) is empty). Then update the LP and the integer program,since the variable xe� is implicitly �xed at value 1. In detail, decrease by 1the r.h.s. of every constraint where the variable xe� occurs, and then removethis variable from the LP. The resulting LP is the same as the LP for the \re-duced" problem where the edge e� is pre-selected for H. Under appropriateconditions on the requirement function f , the problem turns out to be \self



NETWORK DESIGN VIA SETPAIR RELAXATIONS 3reducible," i.e., the essential properties of the original problem are preservedin the reduced problem. Iteratively solve the reduced problem. Jain [11] ap-plied this method to the cut covering model, and proved that it achievesan approximation guarantee of 2 provided that the requirement function fis weakly supermodular. (Such requirement functions capture several inter-esting problems, e.g., the Steiner network problem.) His proof is based on akey property of the LP: every non-zero basic solution has an edge of valueat least 12 . This result is based on an extension of a classic result that, underappropriate conditions on the requirement function f , every basic solutionof the LP is characterized by a laminar family of \tight sets."The setpair formulation [5] is a generalization of the cut covering model.A setpair (Wt;Wh) consists of two disjoint vertex sets Wt and Wh, i.e.,Wt � V; Wh � V; Wt \Wh = ;. Each setpair (Wt;Wh) is assigned an non-negative, integer requirement f(Wt;Wh). The goal is to �nd a minimum-cost subgraph H that satis�es the requirement of every setpair, i.e., foreach setpair (Wt;Wh), H should have at least f(Wt;Wh) edges that haveone end-vertex in Wt and the other end-vertex in Wh. Note that the cutcovering model is a special case of the setpair formulation in which everysetpair (Wt;Wh) with a positive requirement has Wt=V nWh (i.e., a pair ofcomplementary sets).We introduce a special class of requirement functions f , namely, skewbisupermodular functions (see Section 2). These functions are a commongeneralization of weakly supermodular (symmetric) functions ([3], [8]) andcrossing bisupermodular functions [5]. Skew bisupermodular requirementfunctions are useful because the basic solutions of the LP relaxation arecharacterized by \non-crossing families" of setpairs (see Section 3 and The-orem 3.3). Note the correspondence with the cut covering model, where thebasic solutions of the LP relaxation may be characterized by a laminar fam-ily of sets. Based on this, we obtain lower bounds on the maximum value ofan edge for the basic solutions of the LP relaxation. Also, this LP relaxationhas the self-reducibility property needed for the iterative rounding method.Hence, these structural results immediately give approximation algorithms.We give applications to two speci�c problems. In the k-vertex connectivityproblem we are given a graph G=(V;E) (either directed or undirected) withnonnegative edge costs c :E!R+ , and the task is to �nd a minimum-costspanning subgraphH such that H is k-vertex connected. A graph is called k-vertex connected if it has at least k+1 vertices, and the deletion of any set ofk�1 vertices leaves a connected graph. We give an approximation algorithmfor the undirected problem, and our method extends to the directed problem.Our approximation guarantee is O(pn=�) where � is a positive real number



4 JOSEPH CHERIYAN, SANTOSH VEMPALA, ADRIAN VETTAsuch that k� (1� �)n. For both the directed and the undirected problems,our results improve on the previous best approximation guarantees providedthat k is in the range 
(pn)<k<n�
(1). The previous best approximationguarantee for the directed problem was 
(k) [6], and the previous bestapproximation guarantee for the undirected problem was O(logk) for k �pn6 [2], and 
(k) for k >pn6 [14]. (An O(logk) approximation guaranteefor the undirected problem was claimed earlier in [15], but subsequently anerror has been found and that claim has been withdrawn.) Very recently(and two years after this paper was completed), improved approximationguarantees for the k-vertex connectivity problem have been reported in [13].In the element connectivity problem [12], we are given an undirectedgraph G=(V;E) with nonnegative edge costs c :E!R+ ; moreover, there isa set of terminal vertices T �V and between each pair of distinct terminalsi and j a connectivity requirement rij is speci�ed (each rij is a non-negativeinteger, and rij=rji). Terminals are reliable and do not fail. Edges and non-terminal vertices are unreliable and are subject to failure. The edges andnon-terminals are called elements. The problem is to �nd a minimum-costsubgraph H that contains rij element disjoint paths between each pair ofterminals i and j. Alternatively, for every pair of terminals i and j, H shouldcontain a path between i and j despite the failure of up to rij�1 elements.The problem is NP-hard. Recently, Fleischer, Jain, and Williamson [7] gavea 2-approximation algorithm for this problem, improving on the previousbest approximation guarantee of 2 ln(maxfrijg) due to Jain et al [12]. Wegive a di�erent proof of the same 2-approximation guarantee. The elementconnectivity problem is a generalization of the Steiner network problem, seeGoemans et al [8] and Jain [11]. Even for special cases of this problem, thebest approximation guarantee known is 2, and moreover, the LP relaxationhas an integrality ratio of at least 2� 2n .Let us brie
y comment on the relation of this work to [7]. We use thesame linear programming relaxation for the element connectivity problem asFleischer et al, but the two proofs are di�erent. In particular, the de�nitionsof \noncrossing setpairs" are di�erent. (In our setting, noncrossing setpairsmay be tail disjoint, or head disjoint, or comparable (this follows [1,5]),whereas [7] has a more restricted notion of noncrossing setpairs.) We haveincluded a proof of (a generalization of) the 2-approximation guarantee forelement connectivity for the sake of completeness.For many of the speci�c problems in network design that are captured bythe setpairs formulation, the linear programming relaxation can be writtenas a compact linear program via a \
ow formulation." Moreover, an appro-priate optimal solution can be computed in strongly polynomial time via



NETWORK DESIGN VIA SETPAIR RELAXATIONS 5Tardos' algorithm [16]. The computed optimal solution may not be basic,but it will have an edge of su�ciently large value. This applies to both thek-vertex connectivity problem and the element connectivity problem, and issimilar to the method used by Jain in [11, Section 9].Summarizing, our goal is to present general results on the iterative round-ing of setpair relaxations, to model diverse problems in network design, andto derive good approximation guarantees for speci�c problems. The rest ofthis paper is organized as follows. Section 2 has notation and de�nitionspertaining to the setpair formulation. Section 3 contains our main result onskew bisupermodular functions, a combinatorial characterization of the ba-sic solutions of the LP. Section 4 gives the approximation algorithm for thek-vertex connectivity problem. The concluding section, Section 5 describesa setpair formulation for the element connectivity problem, and gives ourproof of the 2-approximation guarantee.2. The Setpair Formulation and Skew Bisupermodular FunctionsOne of the new contributions of this section is the notion of skew bisuper-modular functions (and the related notions of reverse setpairs and overlap-ping setpairs). Most of the other material is based on [5].A setpair W =(Wt;Wh) is an ordered pair of disjoint vertex sets; eitherWt or Wh may be empty. We say that Wt is the tail of W , and Wh is thehead of W . Let S denote the set of all setpairs. Denote by �(W )=�(Wt;Wh)the set of edges with one end-vertex in Wt and the other in Wh; note that acut �(Wt;V nWt) is the special case of �(W ) where the head and tail of Wform a complementary pair of vertex sets.The setpair formulation (discussed in Section 1) may be written as thefollowing integer program (IP).minimize Xe2E ce xe(IP) subject to Xe2�(W ) xe � f(W ); 8W 2 Sxe 2 f0; 1g; 8 e 2 EHere, f is some non-negative integer function on the setpairs, and c :E!R+gives the edge costs. Let (LP) denote the linear programming relaxationobtained from (IP) by replacing the constraints xe2f0;1g by 0�xe�1 forall edges e2E.



6 JOSEPH CHERIYAN, SANTOSH VEMPALA, ADRIAN VETTA2.1. Crossing Setpairs.Given two setpairs W = (Wt;Wh) and Y = (Yt;Yh), let W 
Y denote thesetpair (Wt[Yt; Wh\Yh); and letW�Y denote the setpair (Wt\Yt; Wh[Yh):Two setpairs W and Y are said to be comparable if(i) Wt�Yt and Wh�Yh, or (ii) Wt�Yt and Wh�Yh.The former case is denoted byW �Y and the latter case by W �Y . Notethat W �W �Y and W �W 
Y .Two setpairs W and Y are said to be non-crossing if(i) they are comparable, or (ii) their tails are disjoint, or(iii) their heads are disjoint.Otherwise, W and Y are said to cross. Note that W and Y cross if andonly if their tails intersect, their heads intersect and they are not comparable.For a setpair W = (Wt;Wh), let W = (Wh;Wt) be the reverse setpair.Observe that �(W )=�(W ) for an undirected graph. Also, note thatW 
Y =W �Y .Two setpairs W and Y are said to be overlapping if(i) W and Y cross, or(ii) W and Y cross (which is the same as W and Y cross).Otherwise, the setpairs are called non-overlapping. A family of setpairsL�S is called non-crossing (non-overlapping) if no two setpairs in L cross(overlap). 2.2. Bisubmodular Functions.A real-valued function f on S is called bisubmodular if for any two setpairsW and Y we havef(W ) + f(Y ) � f(W 
 Y ) + f(W � Y ):A non-negative, integer-valued function f on S is called crossing bisupermod-ular if for any two crossing setpairs W and Y with f(W )>0 and f(Y )>0,we have f(W ) + f(Y ) � f(W 
 Y ) + f(W � Y ):Let �W denote the edge incidence vector of �(W ). For any two setpairsW and Y , note that if an edge is present in �(W �Y ) or �(W 
Y ), then itis present in �(W ) or �(Y ), and if an edge is present in both �(W �Y ) and�(W
Y ), then it is present in both �(W ) and �(Y ). Hence, we have �W
Y+�W�Y ��W +�Y . Consequently, for any non-negative vector x :E!R+ onthe edges, the corresponding function on setpairs, x(�(W ))=Pe2�(W )xe, is



NETWORK DESIGN VIA SETPAIR RELAXATIONS 7bisubmodular. (For any vector x on a groundset U and a subset Q of U ,x(Q) denotes Pi2Qxi.)2.3. Skew Bisupermodular Functions.A non-negative, integer-valued function f on S is called skew bisupermodularif for any two overlapping setpairs W and Y with f(W )> 0 and f(Y )> 0,we have(i) f(W )+f(Y )�f(W 
Y )+f(W �Y ), or(ii) f(W )+f(Y )�f(W 
Y )+f(W �Y ).This is motivated by problems on undirected graphs. For these prob-lems, it turns out that the relevant functions f are symmetric, i.e., f(W )=f(W ); 8W 2S.Note that every crossing bisupermodular function is skew bisupermod-ular. Also, every weakly supermodular symmetric function is skew bisu-permodular (see the proof of Lemma 5.2). Thus the skew bisupermodularproperty is a generalization of these earlier notions.3. Characterizing a Basic Solution via a Non-Overlapping FamilyThe main result of this section, Theorem 3.3, characterizes a basic solutionof (LP) via a non-overlapping family of setpairs, assuming that the givengraph G is undirected and the requirement function f is symmetric and skewbisupermodular. This result is an extension of classic results to our setting.Our proof is similar to earlier proofs in [11, Lemma 4.2] and [1, Theorem 2.1];however, when we add a new setpair W to our non-overlapping family, wehave to ensure that neither W nor W crosses a setpair in the family. Theresults in this section may not apply to directed graphs.Given a feasible solution x to (LP), a setpair W is called tight ifx(�(W ))=f(W ).Lemma 3.1. Let the requirement function f of (LP) be symmetric andskew bisupermodular, and let x be a feasible solution to (LP) such thatxe>0 for all edges e2E. Suppose that the setpairs W and Y have f(W )>0;f(Y )>0, and moreover, W and Y overlap, and are tight (also, note thatW is tight, it overlaps Y , and f(W )>0). Then one of the following holds:(i) The setpairs W
Y and W�Y are tight, and �W+�Y =�W
Y +�W�Y .(ii) The setpairs W
Y and W�Y are tight, and �W+�Y =�W
Y +�W�Y .



8 JOSEPH CHERIYAN, SANTOSH VEMPALA, ADRIAN VETTAProof. Assume that f(W )+f(Y )�f(W 
Y )+f(W �Y ). The other caseis similar. Then:f(W 
 Y ) + f(W � Y ) � x(�(W 
 Y )) + x(�(W � Y ))� x(�(W )) + x(�(Y ))= f(W ) + f(Y )� f(W 
 Y ) + f(W � Y )Hence, all the inequalities hold as equations, therefore,W
Y andW�Y areboth tight. This proves the �rst part of (i). The second part of (i) followsfrom the following three facts: �W+�Y ��W
Y +�W�Y ; xe>0 for all edgese; x(�(W 
Y ))+x(�(W �Y )) = x(�(W ))+x(�(Y )).The next result is in [1, Lemma 2.3] and is used to prove the main resultof this section.Lemma 3.2. Let W , Y and Z be setpairs. If Z crosses W 
Y (or W �Y )then either Z crosses W or Z crosses Y .Theorem 3.3. Let the requirement function f of (LP) be symmetric andskew bisupermodular, and let x be a basic solution of (LP) such that 0<xe< 1 for all edges e2E. Then there exists a non-overlapping family L oftight setpairs such that:(i) Every setpair W 2L has f(W )�1.(ii) jLj= jEj.(iii) The vectors �W , W 2L, are linearly independent.(iv) x is the unique solution to fx(�(W ))=f(W ); 8W 2Lg.Proof. Since x is a basic solution of (LP), and none of the constraints0 � xe � 1 (e 2 E) holds with equality, there exist jEj tight setpair con-straints x(�(W ))=f(W )>0 such that the edge incidence vectors �W corre-sponding to these constraints are linearly independent. Let L be a maximal,non-overlapping family of tight setpairs and let span(L) denote the vectorspace spanned by the vectors �W , where W 2 L. The theorem holds be-cause span(L) equals span(F), where F is the family of all tight setpairs.We prove this by contradiction. Suppose that there is a tight setpair Y suchthat �Y =2 span(L). Take such a Y that overlaps the minimum number ofsetpairs in L (this is a key step). Choose any setpair W 2L that overlapsY ; there exists such a W by the maximality of L.Either part (i) or part (ii) in the statement of Lemma 3.1 holds for Wand Y . Assume that part (ii) holds. The other case is similar. Thus, thesetpairsW
Y andW�Y are tight. In addition, �W+�Y =�W
Y+�W�Y . It



NETWORK DESIGN VIA SETPAIR RELAXATIONS 9follows that either �W
Y =2span(L) or �W�Y =2span(L). Consider the formercase. Again, the other case is similar. Let Q=W 
Y and take any setpairZ 2 L. Suppose that Z overlaps Q. Then either Z crosses Q or Z crossesQ=W 
Y =W �Y . Suppose that Z crosses Q. We apply Lemma 3.2 to Zand Q, noting that Z does not cross W , to see that Z crosses Y . Similarly,if Z crosses Q, then by Lemma 3.2, Z crosses Y . Hence, Z overlaps Y . Soevery setpair in L that overlaps Q also overlaps Y .It follows that Q overlaps fewer setpairs in L than Y . To see this, notethat (1) W overlaps Y , by our choice of W , and (2) W does not overlap Q,because Q�W (so Q does not cross W ) and W and Q are head disjoint(so W does not cross Q). Thus we get a contradiction to the choice of Y ,since Q is a tight setpair that overlaps fewer setpairs in L than Y , and�Q =2span(L).Remarks. In the theorem, if we replace a setpair W 2L by its reverse W ,then this preserves the properties (i){(iv).4. An Approximation Algorithm for the k-Vertex ConnectivityProblemThe main result of this section is as follows.Theorem 4.1. Let k and n be positive integers, and let �<1 be a positivenumber such that k is at most (1��)n. There is a polynomial-time algorithmthat, given an n-vertex (directed or undirected) graph, �nds a solution to thek-vertex connectivity problem of cost at most O(pn=�) times the optimalcost.The k-vertex connectivity problem is modeled by the following integerprogram.(IP-VC) minimize Xe2E ce xesubject to Xe2�(W ) xe � f(W ) 8W 2 Sxe 2 f0; 1g 8 e 2 EHere, f is the following non-negative integer function de�ned on the setpairs.f(W ) = ( max f0; k � jV n (Wh [Wt)jg; if Wt 6= ; and Wh 6= ;;0; otherwise.



10 JOSEPH CHERIYAN, SANTOSH VEMPALA, ADRIAN VETTAWe use (LP-VC) to denote the linear programming relaxation.The k-vertex connectivity requirement function f is crossing bisupermod-ular [5], hence, f is also skew bisupermodular. This can be seen as follows.For each setpair W , let p(W ) denote jV n (Wt[Wh)j. For any two setpairsW =(Wt;Wh) and Y =(Yt;Yh), we have p(W )+p(Y )=p(W
Y )+p(W�Y ),becausej(Wt [ Yt)[ (Wh \ Yh)j+ j(Wt \ Yt)[ (Wh [ Yh)j = jWtj+ jWhj+ jYtj+ jYhj:Hence, the above function f(�) is crossing bisupermodular (if eitherW
Y orW�Y has head or tail empty, then note thatW;Y do not cross). The resultsin [5] imply that a basic optimal solution to (LP-VC) (if it exists) can befound in polynomial time, see [5], [10, Theorem 6.4.9]. Moreover, the require-ment function f and (LP-VC) have the following \self-reducibility" property:for any edge e the \reduced" requirement function f 0 is also crossing bisuper-modular (and skew bisupermodular), where f 0 is given by f 0(W )=f(W )�1if the setpair W has e2�(W ) and f 0(W )=f(W ) otherwise (since the zero-one incidence function of e on S is bisubmodular).Theorem 4.1 follows directly from the next result.Theorem 4.2. Let �<1 be a positive number, and suppose that k�(1��)n.Then any nonzero basic solution of (LP-VC) has an edge of value 
(p �n).We give the proof for undirected graphs, using results on skew bisuper-modular functions. After that, we sketch the proof for directed graphs viacrossing bisupermodular functions. The next result is from [1, Theorem 1.1].Theorem 4.3. Suppose that the requirement function f for the linear pro-gram (LP-VC) is crossing (or, skew) bisupermodular. Let x be a nonzerobasic solution of (LP-VC), and let L be a non-crossing family of setpairscharacterizing x. Then there exists an edge e with xe� 1
�pjLj� .Focus on a nonzero basic solution x of (LP-VC). By Theorem 3.3, xcorresponds to a noncrossing family of setpairs L such that each setpair hasa nonempty head and a nonempty tail. We may assume that each setpairW 2L has jWhj� jWtj, else we may replace W by W and this preserves allthe properties of L in Theorem 3.3. Let P denote the poset (and the Hassediagram) representing L, and recall that P has a node W for each setpairW in L and it has an arc (W;Y ), where Y 2 L, if W � Y and there is noother Z 2 L such that W � Z � Y (we omit arcs implied by transitivityfrom P); we call W a child of Y , and call Y a parent of W . (Note that theterms \node" and \arc" refer to the poset P, and the terms \vertex" and



NETWORK DESIGN VIA SETPAIR RELAXATIONS 11\edge" refer to the input graph or digraph G.) A diamond of a poset is aset of four nodes W;X;Y;Z such that X and Y are incomparable, W is acommon descendant of X;Y , and Z is a common ancestor of X;Y . A posetis called diamond-free if it contains no diamond. The poset P representingL is diamond-free, see [1, Lemma 3.1].Let m denote jLj. If m< 4n=�, then by the above theorem, there is anedge e with xe�q ��(n) . Hence, in this case, Theorem 4.2 holds. The rest ofthe proof focuses on the other case (m�4n=�) and shows that there existsan edge e with either xe� 1�(1) or xe�
(�)�
(p �n). (Note that k�n�1,hence �� 1n , and so ��p �n .)Lemma 4.4. Suppose that k�(1��)n. Then there are at most 2� pairwiseincomparable setpairs in L such that all their tails contain a common vertex.Proof. Let the setpairs Y 1;Y 2; : : : ;Y q2L be pairwise incomparable, and letv be a vertex that occurs in the tail of each of these setpairs. Since the Y i areincomparable and their tails intersect, their heads are disjoint. Each headY ih has cardinality at least 12(n�k)� 12�n; this follows from the propertiesof L, and the fact that each requirement f(Y i) is at least one. Hence, thereare at most 2� such setpairs.We partition the setpairs in L into several sets.� W is a type I setpair if it has no parents in P.� W is a type II setpair if it has at least two parents in P.� W is a type III setpair if it has exactly one parent Y in P, and Wt=Yt.� W is a type IV setpair if it has exactly one parent Y in P, and Wt 6=Yt.Lemma 4.5. Suppose that k � (1� �)n. (a) Then there are at most 2n�setpairs of type IV. (b) Moreover, each setpair (node) in P has at most 2�children.Proof. We prove (a) �rst, then (b). To each type IV setpair W with parentY we assign a vertex v in Wt nYt. We claim that a vertex can be assignedto at most 2� setpairs of type IV. This will imply the claim. Take a vertexv that is assigned to the type IV setpairs W 1;W 2; : : : ;W q. Let their parentsbe Y 1;Y 2; : : : ;Y q, respectively. Now v 2W 1t \W 2t \ �� � \W qt , but v 62 Y 1t [Y 2t [�� �[Y qt . The setpairsW 1;W 2; : : : ;W q associated with v must be pairwiseincomparable (since v is in the tail of everyW i, but for every proper ancestorof a W i note that v is not in the tail). Then by Lemma 4.4 applied toW 1;W 2; : : : ;W q, there are at most 2� such setpairs whose tails contain v.



12 JOSEPH CHERIYAN, SANTOSH VEMPALA, ADRIAN VETTAFor (b), consider all the children Y 1;Y 2; : : : ;Y q of a node W 2P. ThenY 1;Y 2; : : : ;Y q are pairwise incomparable (otherwise, one of the arcs (Y i;W )in P is redundant), and moreover, each of the tails Y it , i=1; : : : ; q, containsWt which is nonempty. Then by Lemma 4.4 applied to Y 1;Y 2; : : : ;Y q, wehave q� 2� .We have jLj=m� 4n� , hence, by Lemma 4.5, L has at least m6 setpairs ofone of the types I, II, or III.(Type I) Suppose that there are at least m6 type I setpairs. The type Isetpairs are pairwise incomparable. Hence the edge sets �(W ), where W is atype I setpair, are quasidisjoint, i.e., for each edge uv, there are at most twosetpairs W;Y (among the type I setpairs) such that uv2 �(W ) (say u2Wtand v2Wh) and uv2 �(Y ) (say v2Yt and u2Yh). Hence, there is a type Isetpair W 2L such that �(W ) has size at most 12, and so there is an edgee2�(W ) with xe� 112 .(Type II) Suppose that there are at least m6 type II setpairs. Let Y 1; : : : ;Y qbe the minimal nodes in P (those with no children); clearly, these nodes arepairwise incomparable. Each Y i and its ancestors forms a (directed) tree(since P is diamond-free). Each node of P is in at most 2� of these trees, byLemma 4.4. Focus on one of the trees and note that the number of leaf nodes(maximal nodes of P) of the tree is greater than or equal to the number oftype II nodes in the tree. Summing over all the trees, we see that the totalnumber of leaf nodes (maximal nodes of P) is at least �2 times the numberof type II nodes in P, hence, P has at least m�12 maximal nodes; clearly, thesenodes are pairwise incomparable. Then the edge sets �(W ), where W is amaximal node of P, are quasidisjoint, so there is an edge e with xe� �24 .(Type III) Finally, suppose that there are at least m6 type III setpairs. Con-sider all of the type III setpairs W 1;W 2; : : :W q and their unique parentsY 1;Y 2; : : : Y q. Observe that f(W i)+1�f(Y i), since jWt[Whj < jYt[Yhj.Moreover, if W i and W j (where 1� i< j� q) have distinct parents Y i andY j, then the edge sets �(Y i)n�(W i) and �(Y j)n�(W j) are quasidisjoint. Tosee this, consider an edge uv2�(Y i)n�(W i) with u2Y it =W it and v2Y ih�W ih.Now, every proper ancestor Z of W i has v2Zh, so if W j is an ancestor ofW i, then we cannot have uv2�(Y j)n�(W j), u2Y jt =W jt , and v2Y jh �W jh .Consequently, by Lemma 4.5(b), any edge occurs in at most 4� of the edgesets �(Y i)n�(W i), and moreover, x(�(Y i)n�(W i))� 1, for each i=1; : : : ; q.Hence, there is an edge e with xe� �24 .This concludes the proof of Theorem 4.2 for undirected graphs: anynonzero basic solution of (LP-VC) has an edge of value 
(p�=n).The proof extends to directed graphs via Theorem 4.3. We partition thenoncrossing family of setpairs L into two subfamilies L1 and L2, depending



NETWORK DESIGN VIA SETPAIR RELAXATIONS 13on whether or not a setpair W 2L has jWhj�jWtj. Suppose that jL1j�jL2j;otherwise, we use a symmetric argument. Then we apply the arguments forundirected graphs to L1 (partitioning it into types I, II, III, IV, etc.). Weobtain similar lower bounds on maxfxeg, the main di�erence being that welose a factor of two in the lower bound (since we have jL1j� m2 rather thanjLj=m). Hence, Theorem 4.2 holds for directed graphs.Theorem 4.1 follows from Theorem 4.2: for k�(1��)n, iterative roundinggives an O(pn=�) approximation algorithm for the (directed or undirected)k-vertex connectivity problem.Is it possible to improve substantially on our analysis of the iterativerounding method for the k-vertex connectivity problem? This is not clearat present, since our approximation guarantee holds for directed graphs forlarge values of k (say n=2<k<n�
(1)), and for this case, the previous bestapproximation guarantee was 
(k). Moreover, there is an example of theundirected problem such that there is a basic solution x of (LP-VC) suchthat each edge e has xe� 1
(pk) . Hence, in Theorem 4.2, the lower bound onthe maximum value of an edge cannot be improved beyond 1
(pk) . We haveno new lower bounds for the integrality ratio of (LP-VC).5. An Approximation Algorithm for the Element ConnectivityProblemThis section proves a 2-approximation guarantee for a generalization of theelement connectivity problem. A symmetric, non-negative, integral function on the subsets of a groundset U is called weakly supermodular if  (U)=0,and for every two subsets X and Z, we have either  (X)+ (Z)�  (X \Z)+ (X[Z) or  (X)+ (Z)� (X\Z)+ (X[Z), where X=U nX ( issymmetric if  (X)= (X);8X�U). Recall that T �V is given as the set ofterminal vertices of an undirected graph G=(V;E), and each edge e has anonnegative cost ce. In the generalized element connectivity problem, ratherthan specifying the connectivity requirements by a function r : (T�T )!Z+,we use a weakly supermodular function on the set of terminals g0 : 2T !Z+(we assume that g0 is symmetric, it assigns a nonnegative integer value toeach subset of T , and g0(T ) = g0(;) = 0). For the integer program (IP), therequirement function f on the setpairs W 2S is de�ned via g0 as follows:f(W ) = ( max f 0; g0(Wh \ T )� jV n (Wt [Wh)j g; if T �Wt [Wh;0; otherwise:



14 JOSEPH CHERIYAN, SANTOSH VEMPALA, ADRIAN VETTANote that if a setpair W has a positive requirement, then all the terminalsare in Wt[Wh.Let (LP-EC) denote the linear programming relaxation of this integerprogram. Theorem 5.5 shows a key property of (LP-EC), namely, there existsan edge of value at least 12 in any non-zero basic solution. If a polynomial-time strong separation oracle for (LP-EC) is available, then a basic optimalsolution to (LP-EC) (if it exists) can be found in polynomial time. Thus thenext result follows from the iterative rounding method.Theorem 5.1. Consider the generalized element connectivity problem, andsuppose that a strong separation oracle is available (for the linear program-ming relaxation). Then there is a polynomial-time algorithm that given aninstance of the problem, �nds a solution of cost at most twice the optimalcost.For the special case of the element connectivity problem, a strong sepa-ration oracle is available, and thus we obtain an e�cient algorithm with anapproximation guarantee of 2; this matches the earlier result of Fleischer,Jain, and Williamson [7].Lemma 5.2. If the function g0 is weakly supermodular, then the require-ment function f for the generalized element connectivity problem is skewbisupermodular.Proof. De�ne a function g(�) on the setpairs W 2S by g(W )=g0(Wh\T ).We claim that the function g is skew bisupermodular. This follows from theterm by term correspondence between the skew bisupermodular inequalitiesfor g and the weakly supermodular inequalities for g0. (To see this in detail,consider overlapping setpairs W and Y with g(W )>0;g(Y )>0. Clearly, forboth W and Y , T is contained in the union of the head and the tail. Thenboth W 
Y and W �Y also have this property. Let X =Wh \T and letZ=Yh\T . Suppose that one of the weakly supermodular inequalities holdsforX and Z, say, g0(X)+g0(Z)�g0(X\Z)+g0(X[Z). Note that g0(X)=g(W ),g0(Z)= g(Y ), g0(X \Z)= g(W 
Y ), and g0(X [Z)= g(W �Y ). Hence, theskew bisupermodular inequality g(W )+g(Y )� g(W 
Y )+g(W �Y ) holdsfor W and Y .)Now, consider the function f(�). We may write f(�) asf(W ) = ( max f 0; g(W )� p(W ) g; if T �Wt [Wh;0; otherwise;where p(W ) denotes jV n(Wt[Wh)j for each setpairW . Recall from Section 4that for any two setpairs W , Y we have p(W )+p(Y )=p(W
Y )+p(W�Y ),



NETWORK DESIGN VIA SETPAIR RELAXATIONS 15and p(W )+p(Y ) = p(W 
Y )+p(W �Y ). Thus it can be seen that f(�) isskew bisupermodular.Now, consider the special case of the element connectivity problem. Forall i; j 2 T , there is a requirement for rij element disjoint paths between iand j. De�ne the function g0(�) on T as follows. Let g0(S) = maxi2S;j 62Sfrijg forany subset S of T . (Note that g0 is symmetric, nonnegative, integral, andg0(T )=g0(;)=0.) Frank [3, Proposition 5.4] (also Goemans et al [8]) showedthat g0 is weakly supermodular. De�ne the requirement function f(�) on thesetpairsW 2S as in the generalized problem. It is easily seen that the integerprogram (IP) models the element connectivity problem (for more details see[12]). Lemma 5.2 applies and shows that f is a skew bisupermodular func-tion. Moreover, for this special case, a strong separation oracle for (LP-EC)is available using standard network 
ow techniques, hence, a basic optimalsolution to (LP-EC) (if it exists) can be found in polynomial time. ThusTheorem 5.1 gives an (e�cient) 2-approximation algorithm for the elementconnectivity problem (without further assumptions).To prove Theorem 5.5 (there exists an edge of value at least 12 in any non-zero basic solution of (LP-EC)), we need to develop some preliminaries anda key lemma. Based on this, the rest of the proof becomes an easy extensionof the arguments in Jain's proof of [11, Lemma 4.6].Let x be a non-zero basic solution of (LP-EC). We may assume that eachedge e2E has xe>0, since any other edges may be discarded. In addition,we may assume that each edge e2E has xe<1, otherwise we are done. LetL be the corresponding non-overlapping family of setpairs of Theorem 3.3.Since E is the support of a basic solution, jEj= jLj. Let m denote jEj. Let� be an arbitrarily chosen terminal vertex in T . For each setpair in L, weassume that the head contains � . Otherwise, if � is in the tail of W 2L, thenwe replaceW byW and this preserves all the properties of L in Theorem 3.3.Then the tails of the setpairs in L form a laminar family. This holds becausethe setpairs in L are pairwise non-overlapping, and the heads of any twosetpairs in L intersect (since � is in every head). Moreover, each setpairW 2L has a terminal in its tail (since f(W )> 0 implies g0(Wh\T )> 0, soWh\T �T ). We may also view L as a forest of rooted trees. Call W 2L theparent of Y 2L (and Y a child of W ) if Wt�Yt and any other setpair Z2Lwith Zt�Yt either has Zt�Wt or has Zt=Wt and Zh�Wh. We may referto the setpairs in L as nodes of the forest. We say that a setpair Y 2L issmaller than a setpair W 2L if Y �W , i.e., Yt�Wt and Y is a descendantof W in the forest.



16 JOSEPH CHERIYAN, SANTOSH VEMPALA, ADRIAN VETTALemma 5.3. Let Y =(Yt;Yh) and Z=(Zt;Zh) be setpairs in L. If Y and Zare tail disjoint, then Yt�Zh and Zt�Yh.Proof. Note that Yt and Zh have a terminal in common, since Yt has atleast one terminal, and Zt[Zh contains all the terminals. Similarly, Zt andYh have a terminal in common. Suppose that Yt is not a subset of Zh. Thenit can be seen that Yt and Zh intersect properly (since � 2Zh nYt and thereis a vertex in Yt nZh). Hence, Z crosses Y , and so Y and Z overlap. Thiscontradiction shows that Yt�Zh. Similarly, we have Zt�Yh.In the rest of this section, we take the edges in E to be bidirected. Thatis, we replace every undirected edge fp;qg in E by a pair of directed arcs pqand qp. For a setpair W =(Wt;Wh), let �(W ) denote the set of arcs pq withp 2Wt and q 2Wh. (Though we use the same notation �() for undirectededges and directed arcs, the context will resolve any ambiguity.) The othernotation, x, �W , etc. remains the same. An arc pq is called good if there is asetpair W 2L such that pq is in �(W ). Note that, in the undirected setting,every edge e is in �(W ) for some W 2L, but in the directed setting, theremay exist arcs that are not good.The proof of the main result hinges on assigning token arcs to the setpairsin L. Here is a brief sketch; the details are given in the proof of Theorem 5.5.We have jLj= jEj=m and thus a total of 2m arcs. If a basic solution x of(LP-EC) has xe< 12 for each edge e, then we will be able to distribute thetoken arcs among the setpairs in L such that each gets at least two tokenarcs and some setpair gets at least three token arcs. Thus, we end up withat least 2jLj+1=2m+1 arcs. This contradiction shows that our assumptionon maxe fxeg is false. We use the following two rules to distribute the tokenarcs such that no arc is assigned to two di�erent setpairs.Rule 1. If �� is a good arc, then we assign it to the smallest setpair W 2Lsuch that ��2�(W ).Rule 2. If �� is not a good arc, then we assign it to the smallest setpairW 2L such that �2Wt and � 62Wh.(Rule 2 is essential in the sense that the analysis fails if we insist onassigning arcs pq only to those setpairs W such that fp;qg2�(W ).)Given two setpairs W and Y , let �(W ) O �(Y ) denote the symmetricdi�erence of �(W ) and �(Y ). Given S1;S2; : : : ;S`, a collection of mutuallydisjoint vertex sets, we denote by 
(S1;S2; : : : ;S`) the set of arcs pq suchthat p and q are in di�erent sets Si and Sj, where 1� i; j�`.



NETWORK DESIGN VIA SETPAIR RELAXATIONS 17Lemma 5.4. Let W be a setpair in the forest L, and let its children be thesetpairs Y 1;Y 2; : : : ;Y `. Then for every arc pq in(�(W ) O (�(Y 1) [ � � � [ �(Y `))) n 
(Y 1t ; : : : ; Yt̀ )either pq or qp is assigned to W by Rule 1 or Rule 2.Proof. Note that the lemma applies to all arcs in the symmetric di�erence of�(W ) and Sì=1 �(Y i) except for arcs whose two end-vertices are in the tailsof di�erent children. Figure 1 illustrates the arguments that follow, for theparticular case of `=2. [Note, for example, that the arc a4 is in 
(Y 1t ;Y 2t ).]

Figure 1. An illustration of the proof of Lemma 5.4.We have two cases to deal with.(a) pq2�(W ) n Sì=1 �(Y i).Now q 2Wh� Y ih, for i=1; : : : ; `. However, by assumption, p2Wt n[ì=1Y itand so W is the smallest setpair in L such that p is in the tail. Thus, W isthe smallest setpair in L with pq2�(W ), and hence pq is assigned to W byRule 1. [The arc a1 in Figure 1 is an example.](b) pq2�(Y i) n �(W ), for some i2f1; : : : ; `g, and pq =2
(Y 1t ; : : : ;Yt̀ ).Note that p2Y it �Wt and q 62Wh. We have two subcases.(i) q2Wt.



18 JOSEPH CHERIYAN, SANTOSH VEMPALA, ADRIAN VETTAFirst, we show that qp is not a good arc. Clearly, q 62 Y it as pq 2 �(Y i).For any other child Y j , observe that q 62 Y jt as pq =2 
(Y 1t ; : : : ;Yt̀ ). Hence,q2Wt n[j̀=1Y jt . Then W is the smallest setpair in L whose tail contains q,and there is no setpair Z 2 L such that qp 2 �(Z) (otherwise, p 2 Zh\Wtand q2Wt�Zt, which is impossible). Thus qp is not a good arc. Moreover,p 62Wh (since p2Wt), and so Rule 2 assigns qp to W . [The arc a2 in Figure 1is an example.](ii) q 62Wt.We �rst show that qp is not a good arc. Suppose Z2L is a setpair suchthat qp 2 �(Z). Note that Wt and Zt are disjoint, because p 2Wt nZt andq2Zt nWt. Then by Lemma 5.3 Zt�Wh. This gives a contradiction (sinceq 2 Zt, q 62Wh). Therefore, qp is not a good arc and Rule 2 applies to qp.Rule 2 assigns qp to W since p 2Wt, q =2Wh, and for any smaller setpairX 2L with p2Xt we have q2Xh (since p2Y it and q2Y ih). [The arc a3 inFigure 1 is an example.]The next result is proved by contradiction, and uses similar argumentsto Jain's proof of [11, Lemma 4.6]. We include the proof, for the sake ofcompleteness.Theorem 5.5. Any non-zero basic solution of (LP-EC) has an edge of valueat least 12 .Proof. Let x 6=0 be a basic solution of (LP-EC) such that xe< 12 for eachedge e. Then the following claim implies that we end up with at least 2jLj+1token arcs. This is a contradiction. Hence, maxe fxeg� 12 .De�ne the corequirement of an edge e, denoted �(e), to be 12�xe>0, andthe corequirement of a setpair W , denoted �(W ), to be Pe2�(W )�(e). Fora tight setpair W , note that �(W )= 12 j�(W )j�f(W )>0, hence, if �(W )=12 , then j�(W )j is odd. Also, note that if �(W ) � �(Y 1)[ �� � [ �(Y `), then�(W ) =Pe2�(W )�(e)� �(Y 1)+ � � �+�(Y `). (Observe that corequirementsare not de�ned for arcs.)Claim. Suppose that xe < 12 ; 8e 2E. Then the arcs may be redistributedto the nodes in the forest L such that for each rooted subtree of L eachnode gets at least two token arcs and the root gets at least three token arcs.Moreover, a root with corequirement 6= 12 gets at least four token arcs.We prove the claim by induction. For the base case take a leaf nodeW 2L.Then �(W ) has at least 3 arcs. By Rule 1, all these arcs are assigned to W .If W gets exactly 3 token arcs, then note that f(W )=1 and j�(W )j=3, sowe have �(W )= 12 . Thus W satis�es the induction hypothesis.



NETWORK DESIGN VIA SETPAIR RELAXATIONS 19For the induction step, consider a subtree rooted at a node W 2L. Wehave four cases.(a) W has at least four children.By the induction hypothesis, each child has at least 3 token arcs. Wereassign one token arc from each child to W . Hence, W gets at least 4 tokenarcs.(b) W has three children.Call the children X, Y and Z. If one of the children has at least 4 tokenarcs, then we can reassign the token arcs from X, Y and Z to W so thatW has at least 4 token arcs and each of X, Y and Z is left with at least 2token arcs.Otherwise, by the induction hypothesis, each of X, Y and Z has 3 tokenarcs, so each has corequirement 12 and each of j�(X)j, j�(Y )j and j�(Z)jis odd. We reassign one token arc from each of X, Y and Z to W . Nowfocus on the symmetric di�erence of �(W ) and �(X)[ �(Y )[ �(Z). By thelinear independence of �W , �X , �Y and �Z , there is at least one arc pqin the symmetric di�erence. If possible, choose pq 62 
(Xt;Yt;Zt). Then byLemma 5.4 either pq or qp is assigned toW as a token arc. Hence,W ends upwith at least 4 token arcs. Otherwise, every arc in the symmetric di�erenceis in 
(Xt;Yt;Zt). Therefore �(W )��(X)[�(Y )[�(Z), and for each arc pq in(�(X)[�(Y )[�(Z))n�(W ) the arc qp is also in the same set (by Lemma 5.3).Hence, j�(W )j is odd, and so the corequirement �(W ) is a semi integer (i.e.,an odd integer multiple of 12). Moreover, �(W )<�(X)+�(Y )+�(Z) = 32 .Hence, �(W )= 12 , and so W satis�es the induction hypothesis.(c) W has two children.Call the children Y and Z. If we can assign 4 token arcs to W byreassigning token arcs from Y and Z, and by applying Lemma 5.4 to(�(W )O (�(Y )[ �(Z))) n 
(Yt;Zt), then we are done. Otherwise, we areleft with two subcases.(i) Each of Y and Z has 3 token arcs and a corequirement of 12 , and there isone arc pq in (�(W )O(�(Y )[�(Z))) n 
(Yt;Zt). Then W gets 3 token arcs,one each by reassigning arcs from Y and Z and one by Lemma 5.4. Bothj�(Y )j and j�(Z)j are odd (since �(Y ) =�(Z) = 12 ) and the arcs (if any) in
(Yt;Zt) occur in pairs uv and vu (by Lemma 5.3). Therefore, j�(W )j is oddand �(W ) is a semi integer. Moreover, 0<�(W )��(Y )+�(Z)+�(fp;qg)< 32 .Hence, �(W )= 12 , and so W satis�es the induction hypothesis.(ii) At least one of the children, say Z, has 3 token arcs and a corequire-ment of 12 , and there are no arcs in (�(W ) O (�(Y )[ �(Z))) n 
(Yt;Zt).We will prove by contradiction that this case cannot occur. First, note thatj�(W )j and j�(Y )j have opposite parity (one is odd and the other is even),



20 JOSEPH CHERIYAN, SANTOSH VEMPALA, ADRIAN VETTAbecause j�(Z)j is odd and the arcs in the symmetric di�erence of �(W ) and�(Y )[�(Z) occur in pairs uv and vu. Furthermore, note that �W , �Y and�Z are linearly independent. It follows that there is an arc in 
(Yt;Zt) andthere is an arc in �(Z)\�(W ). Hence, �(W )<�(Y )+�(Z) (due to the arc in
(Yt;Zt)) and �(Y )<�(W )+�(Z) (due to the arc in �(Z)\�(W )). There-fore, �(Y )� 12 <�(W )<�(Y )+ 12 , implying that �(Y )=�(W ) (since �(W )is an integer multiple of 12). Then j�(W )j and j�(Y )j have the same parity.This gives the desired contradiction.(d) W has one child.Call the child Y . If the symmetric di�erence of �(W ) and �(Y ) has exactly2 arcs and �(Y )= 12 , then W gets 3 token arcs (two by Lemma 5.4 and onereassigned from Y ). In this case, note that f(W )=f(Y ) and j�(W )j= j�(Y )j.As a result, �(W ) =�(Y ) = 12 . Otherwise, W gets at least 4 token arcs. Ineither case, W satis�es the induction hypothesis. This completes the proofof the claim.The theorem follows.Theorem 5.1 follows from Theorem 5.5 by applying the iterative roundingmethod to (LP-EC). Note that if f is a (non-negative, integral, symmetric)skew bisupermodular function on S and e is any edge, then the functionf 0 is also skew bisupermodular, where f 0(W ) = maxf0; f(W ) � 1g, ife2�(W ), and f 0(W )=f(W ), otherwise.References[1] J. Cheriyan and S. Vempala: Edge coverings of setpairs and the iterative round-ing method, submitted for journal publication, September 2001. Preliminary versionin the Proceedings of the 8th International Integer Programming and CombinatorialOptimization Conference, Utrecht, The Netherlands, pp. 30{44, 2001.[2] J. Cheriyan, S. Vempala and A. Vetta: An approximation algorithm for theminimum-cost k-vertex connected subgraph, SIAM Journal on Computing 32 (2003),1050{1055.[3] A. Frank: Augmenting graphs to meet edge-connectivity requirements, SIAM J.Discrete Math. 5 (1992), 25{53. Preliminary version in Proc. 31st IEEE FOCS,pp. 708{718, 1990.[4] A. Frank: Connectivity augmentation problems in network design, in MathematicalProgramming: State of the Art 1994, (Eds. J. R. Birge and K. G. Murty), pp. 34{63,The University of Michigan, Ann Arbor, MI, 1994.[5] A. Frank and T. Jordan: Minimal edge-coverings of pairs of sets, Journal of Com-binatorial Theory, Series B 65 (1995), 73{110.[6] A. Frank and �E. Tardos: An application of submodular 
ows, Linear Algebra andits Applications 114/115 (1989), 329{348.
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