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ABSTRACT. We present an approximation algorithm for the problem of finding a minimum-cost
k-vertex connected spanning subgraph, assuming that the number of vertices is at least 6k*. The
approximation guarantee is 6 times the kth harmonic number (which is O(log k)), and also this is

an upper bound on the integrality ratio for a standard linear programming relaxation.

1. INTRODUCTION

Let G = (V, E) be an undirected graph, let each edge e € E have a nonnegative cost ¢., and let &
be a positive integer. The mincost k-VCSS problem is to find a spanning subgraph H of minimum
cost such that H is k-vertex connected. (A graph is called k-vertex connected if it has at least
k + 1 vertices, and the removal of any & — 1 vertices leaves a connected graph.) The problem is
NP-hard for k > 2, and for £ = 1 it is the minimum spanning tree problem. Our paper addresses
the “special case” of the problem where the graph has order |V| > 6k?; this too is NP-hard for
E > 2. (So for a fixed k, our method handles all graphs except a finite set of “small” graphs,
and our method fails on each of the “small” graphs.) Our approximation guarantee is 6 times the
Eth harmonic number, which is O(logk). Also, this is an upper bound on the integrality ratio
for a standard linear programming relaxation. Several previous papers have attacked the mincost
E-VCSS problem (without restrictions on |V]), with the goal of improving on the approximation
guarantee (see the references). An approximation guarantee of more than k/2 has been presented
n [11]; also, an upper bound of O(k) on the integrality ratio was known [4, 5]. Better results were
not known for our “special case,” but we mention that our results may not improve on previous
results for small & (k = 2,3,4,...). (An O(logk) approximation guarantee was claimed earlier in
[15], but subsequently an error has been found and that claim has been withdrawn; see the erratum

of [15].) For more discussion on related problems and results, see the introduction of [3].
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Our algorithm is based on two results: (1) a polynomial-time algorithm of Frank and Tardos [5]
for finding a minimum-cost k-outconnected subdigraph of a digraph (directed graph), and (2) an
upper bound on the order of 3-critical graphs by Mader [12]. The Frank-Tardos algorithm has
been applied earlier to the mincost k-VCSS problem by several authors, starting with Khuller and
Raghavachari [10]; see also [1, 2, 11]. The scaling trick used in Lemma 3.2 below has been used
earlier by [8, 9].

2. NOTATION AND PRELIMINARY RESULTS

Throughout, we assume that the input graph G = (V| E) is k-vertex connected. Let n denote |V|.

2.1. A LINEAR PROGRAMMING RELAXATION. Let H* denote a k-VCSS of minimum cost, and let
2" = c(H") = ) .cp(n Ce denote its cost. The following LP (linear program) P(k) gives a lower
bound z(k) on z* (Frank discusses this LP in [4]). There is a variable z., 0 < 2. < 1, for each edge
e in G. The intention is that the edge incidence vector of every k-VCSS H (possibly, H = H*)
forms a feasible solution for P(k). A setpair W = (WW;,W},) is an ordered pair of disjoint vertex
sets,so W; CV, Wy, CV,and W;NW};, = (. An edge uv of G is said to cover W if u € Wy, v € W,
or v € Wy,u € Wy. Let 6(W) denote the set of all edges in G that cover W. If W, contains at
least one vertex, say p, and Wy contains at least one vertex, say ¢, then note that H has at least
k—(n—|WUWp|) edges in 6(W), because on removing the vertices in V — (W, UW},) from H, the
resulting graph has at least this number of openly disjoint paths between p and ¢ and each of these
paths contributes one (or more) distinct edges to §(W). (Two paths are called openly disjoint if
every vertex that belongs to both paths is an end vertex of both paths.) Let & denote the set of
all setpairs (Wi, Wp) such that Wy # (0 and W), # 0. It is convenient to keep a parameter {, where
( is a positive integer, and write the LP relaxation P(¢) for the mincost (-VCSS problem.

P(() - z({) = minimize Zce Te
e€ly
subject to Z ze > L — (n— W UWy]), VWWes
e€d(W)
0 <z, < 1, Veec FE.

Lemma 2.1. Let z*({) be the minimum cost of an (-VCSS. Then z*(() > z({).

2.2. k-OUTCONNECTED SUBGRAPHS. A graph is said to be k-outconnected from a so-called root
vertex r if there exist k& openly disjoint paths from r to v, for each vertex v, v # r. The mincost k-OC
problem is as follows: given an undirected graph G = (V| E), a root vertex r € V', and nonnegative
costs on the edges, find a minimum-cost subgraph H of G such that H is k-outconnected from r.

This problem is NP-hard for k > 2.
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Theorem 2.2 (Frank and Tardos (1989), Khuller and Raghavachari (1996)). Let G = (V, E), r,
and ¢ : E — Ry be as above. There is a 2-approximation algorithm for the mincost k-OC problem.

Moreover, the subgraph found by this algorithm has cost at most 2z(k).

Proof. In the directed version G of G, each edge e of G is replaced by two oppositely oriented arcs,
and each of these two arcs has cost ¢.. Here is an LP relaxation (in fact, an LP formulation) P of
the directed mincost k-OC problem on G (with any vertex r as the root): There is a variable z,
for each arc a in CA¥; let R denote the set of all setpairs W = (Wy, W) such that the root r is in
W, and Wy, # 0; and for W € R let 6(W) denote the set of arcs (u,v) in G with u € Wy, v € Wi,

P minimize Z Ca Ta
acE(G)
subject to Z Ta > k — (n—|WUWy]), VIWeR
acd(W)
0 < 2, < 1, Va e E(G).

This LP P has an integer optimal solution (see [4, Theorems 2.1, 2.2]). The Frank-Tardos algorithm
solves the directed mincost k-OC problem on G by finding a minimum-cost subdigraph H that
is k-outconnected from r, and the cost c(I:T) equals the optimal value of P. (The arc incidence
vector of H forms an optimal solution of ]3) Finally, we claim that the optimal value of Pis at
most 2z(k), hence, the undirected version of H satisfies the theorem (it is a subgraph of G that is

k-outconnected from r, and it has cost at most 2z(k)).

To see that the optimal value of P is at most 2z(k), observe that the LP relaxation of the directed
mincost k-VCSS problem on G has optimal value at most 2z(k) (because a feasible solution @ of
P(k) (the k-VCSS LP on G) gives a feasible solution of the directed k-VCSS LP on G, by assigning
the value z. to each of the two arcs corresponding to each edge €). Moreover, an optimal solution

of the directed £-VCSS LP on CAJ is also a feasible solution of P. Our claim follows. O

Remark: Our algorithm may apply this result to find a solution to the mincost ¢-OC problem
that has cost at most 2z((), where 1 < £ < k.

2.3. 3-CRITICAL GRAPHS. For a graph G, let k(G) denote the vertez connectivity, i.e., the minimum
number of vertices whose removal results in a disconnected graph or the trivial graph (namely, k7).
An (-separator of a connected graph is a set of £ vertices whose removal results in a disconnected

graph.

A graph G = (V| E) is called 3-critical if the vertex connectivity decreases by |S| on removing the
vertices in any set S of at most three vertices, that is, if K(G—S) = k(G)—|S|, VS CV,|S|<3.

If G is not 3-critical, then note that there exists a set .S of three vertices such that no x(G)-separator
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contains all the vertices in S. Mader gives an upper bound on the order of 3-critical graphs, [12].
(The proof is written in German, and the result is discussed (without proof) in two survey papers

written in English [13, 14].)

Theorem 2.3 (Mader (1977)). A S-critical graph with vertex connectivity k has less than 6k?

vertices.

3. THE ALGORITHM AND ITS ANALYSIS

The algorithm starts with ¢ := 1, and a minimum-cost spanning tree Hy. Each iteration i =1,2,...,
augments H; to H;y; by adding edges from E(G)— E(H;) such that the vertex connectivity increases
by at least one, and the “augmenting cost” ¢(H;11) — ¢(H;) is approximately minimum. A detailed
description of an iteration follows. Let { = w(H;). If { = k, then we stop and output H; as
the desired k-VCSS. Now, suppose { < k. For each edge in H;, we change the cost to zero (the
other edges keep the original costs). By Mader’s theorem (and the fact that n is at least 6&?)
there exist three vertices such that no f-separator of H; contains all three vertices. We find three
such vertices ry, r2, r3 by exhaustively checking for each vertex set .S of cardinality three whether
k(H; —S) > £ — 3. For each of these three vertices, we apply the Frank-Tardos algorithm with
root r; (j =1, 2, or 3) and the modified edge costs to find a supergraph H; ; of H; thatis ({+ 1)-
outconnected from r;. We take (the edge set of) H;4y to be the union of (the edge sets of) H; 1,
H;,, and H; 3.

Lemma 3.1. At every iteration i = 1,2, ..., we have k(H;y1) > k(H;) + 1.

Proof. Let { = k(H;). Note that { < k. Suppose that x(H,y1) = {. Then H;;; has an (-separator
C, C C V. Now, H; is not 3-critical by Mader’s theorem, since n > 6k%* > 6(%2. Hence, there
exist three vertices in H; such that for each f-separator of H;, at least one of these three vertices is
absent from the f-separator. The algorithm finds three such vertices rq, ro, r3. W.l.o.g. ry is absent
from C. The graph H,, which is a subgraph of H;i;, is ({ 4+ 1)-outconnected from r;. Hence,
H; i1 has ({4 1) openly disjoint paths between ry and v, for every other vertex v, and one of these

paths survives in H;1q — C'. We have a contradiction, since H;;; — C' is connected. The lemma

follows. O

(@2

2(k)
k—(

Lemma 3.2. At every iteration i = 1,2, ..., we have ¢(H;41) — ¢(H;) < where { = k(H;).

Proof. Note that { < k. We will prove that for each of the three supergraphs H;; (j = 1, 2, or
3) of H;, the augmenting cost ¢(H; ;) — c(H;) is at most 2z(k)/(k — £). Then the lemma follows

immediately.
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Let @ : E — R, be an optimal solution to the linear program P(k); note that the cost of @ (with

respect to the original edge costs ¢) is z(k).

Recall that (during the construction of H; ;, j = 1,2,3) the edge costs are modified such that an
edge already in H; has zero cost, while the other edges have the original costs. Let & : E — R
be given by

1, if eis in H;

pa otherwise.

Clearly, # has modified cost at most z(k)/(k — (). We claim that @ is a feasible solution to the
LP P(¢+ 1). Then, by Theorem 2.2, the Frank-Tardos algorithm finds an (¢ + 1)-outconnected
supergraph of H; with augmenting cost at most 2z(k)/(k — ().

To see the claim, consider any setpair W € § and its constraint in the LP P({ 4 1),
Do w2+ —g
ccs(W)
where ¢ = n — |W, UWj,|. First, suppose that H; has no edges in §(W). Then since H; is (-vertex
connected, we have ¢ > (. If ¢ > { + 1, then, obviously, @ satisfies this constraint. Otherwise, if
g = {, then @' satisfies this constraint because (i) @ satisfies the constraint of W in the LP P(k),

namely, Z ze > k—(, and (ii) each edge e € §(W) has 2. = 2. /(k — (). Now, suppose that H;
e€d(W)
has p > 1 edges in §(W). If p < ({ 4+ 1) — ¢, then delete < p vertices from W; and W}, to obtain a

new setpair W such that W, + 0+ Wy, and H; has no edges in 5(W), and then apply the previous

reasoning to W to infer that @ satisfies the constraint of W, and hence alsoof W. If p > ({+1) —g¢,

then Z . > |E(H)NS(W)|=p> ({+1) — ¢g. Thus the claim holds. O
ccs(W)

Theorem 3.3. Suppose that the input graph G = (V, E) is k-vertex connected and has order |V| >

6k2. Then the algorithm terminates with a k-VCSS that has cost at most 6(14 % + % 4o+ %)z(k),

where z(k) is the optimal value of the LP relazation. The algorithm runs in time O (k*n*(n+k*5)).

Proof. The vertex connectivity of H; increases by at least one in every iteration, starting from one,

so the algorithm terminates with a k-VCSS in at most k — 1 iterations. The cost of the k-VCSS is

1 1 1
<B(L4 =4 =4t )z(k).
<O+ 5+ + )b

k—1
< e(Hy) + Z(C(Hi+1) —c(H;)) < i +

(Note that the minimum spanning tree H;y is an optimal solution to the mincost 1-OC problem

(with any vertex as the root), and an optimal solution @ of the LP P(k) gives a feasible solution

7@ of the LP P(1), hence by the proof of Theorem 2.2, ¢(H;) < 2z(1) < zzkﬂ)

To see the running time, note that each iteration ¢ (1 <4 < k) runs the Frank-Tardos algorithm at

most three times, and tests k(H; — S) for at most n> sets of vertices S of cardinality three. Gabow’s
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algorithm [7] tests the vertex connectivity » in time O((n+ £2?%) - kn), and there is a version of the

Frank-Tardos algorithm, due to Gabow, that runs in time O(k?n?|E|), [6, Theorem 4.5]. O

Acknowledgments. The first author thanks Zeev Nutov for several discussions.

(1]

(2]
(3]

[4]

[11]

REFERENCES

V.Auletta, Y.Dinitz, Z.Nutov and D.Parente, A 2-approximation algorithm for finding an optimum 3-vertex-
connected spanning subgraph, Journal of Algorithms, 32, 1999, pp. 21-30.

J.Cheriyan, T.Jordan and Z.Nutov, On rooted node-connectivity problems, Algorithmica, 30, 2001, pp. 353-375.
J.Cheriyan, S.Vempala and A.Vetta, Approximation algorithms for minimum-cost k-vertex connected subgraphs,
Proc. 84th Ann. ACM STOC, pp. 306-312, May 2002.

A Frank, Connectivity augmentation problems in network design, in Mathematical Programming: State of the
Art 1994, (Eds. J. R. Birge and K. G. Murty), pp. 34-63, The University of Michigan, Ann Arbor, MI, 1994.
A.Frank and E.Tardos, An application of submodular flows, Linear Algebra and its Applications, 114/115, 1989,
pp. 329-348.

H.N.Gabow, A representation for crossing set families with applications to submodular flow problems, Proc. 4th
Ann. ACM-SIAM Symposium on Discrete Algorithms, 1993, pp. 202-211.

H.N.Gabow, Using expander graphs to find vertex connectivity, Proc. 41st IEFE FOCS, Nov. 2000.
M.Goemans, A.Goldberg, S.Plotkin, D.Shmoys, E.Tardos and D.Williamson, Improved approximation algo-
rithms for network design problems, Proc. 5th Ann. ACM-SIAM Symposium on Discrete Algorithms, 1994,
pp- 223-232.

K.Jain, .Mandoiu, V.V.Vazirani and D.P.Williamson, A primal-dual schema based approximation algorithm
for the element connectivity problem, Proc. 10th Ann. ACM-SIAM Symposium on Discrete Algorithms, 1999,
pp. 484-489.

S.Khuller and B.Raghavachari, Improved approximation algorithms for uniform connectivity problems, Journal
of Algorithms, 21, 1996, pp. 434-450.

G.Kortsarz and Z.Nutov, Approximating node connectivity problems via set covers, Approzimation Algorithms
for Combinatorial Optimization, Third international workshop, APPROX 2000, (K.Jansen, S.Khuller (eds.)),
Springer, LNCS 1913, 2000, pp. 194-205.

W.Mader, Endlichkeitsitze fiir k-kritische Graphen, (German), Math. Ann., 229, 1977, pp. 143-153.
W.Mader, Connectivity and edge-connectivity in finite graphs, Surveys in Combinatorics (Proc. Seventh British
Combinatorial Conf., Cambridge, 1979), pp. 66-95, London Math. Soc. Lecture Note Ser., 38, Cambridge Univ.
Press, Cambridge-New York, 1979.

W.Mader, On k-critically n-connected graphs. Progress in Graph Theory (Waterloo, Ont., 1982), pp. 389-398,
Academic Press, Toronto, ON, 1984.

R.Ravi and D.P.Williamson, An approximation algorithm for minimum-cost vertex-connectivity problems. Al-
gorithmica, 18, 1997, pp. 21-43. (Preliminary version in Proc. 6th Ann. ACM-SIAM Symposium on Discrete
Algorithms, 1995, pp. 332-341.)

Erratum, September 2001, submitted to Algorithmica; (available on the web, at the URL
http://www.almaden.ibm.com/cs/people/dpw).



