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t. We present an approximation algorithm for the problem of �nding a minimum-
ostk-vertex 
onne
ted spanning subgraph, assuming that the number of verti
es is at least 6k2. Theapproximation guarantee is 6 times the kth harmoni
 number (whi
h is O(log k)), and also this isan upper bound on the integrality ratio for a standard linear programming relaxation.1. Introdu
tionLet G = (V;E) be an undire
ted graph, let ea
h edge e 2 E have a nonnegative 
ost 
e, and let kbe a positive integer. The min
ost k-VCSS problem is to �nd a spanning subgraph H of minimum
ost su
h that H is k-vertex 
onne
ted. (A graph is 
alled k-vertex 
onne
ted if it has at leastk + 1 verti
es, and the removal of any k � 1 verti
es leaves a 
onne
ted graph.) The problem isNP-hard for k � 2, and for k = 1 it is the minimum spanning tree problem. Our paper addressesthe \spe
ial 
ase" of the problem where the graph has order jV j � 6k2; this too is NP-hard fork � 2. (So for a �xed k, our method handles all graphs ex
ept a �nite set of \small" graphs,and our method fails on ea
h of the \small" graphs.) Our approximation guarantee is 6 times thekth harmoni
 number, whi
h is O(log k). Also, this is an upper bound on the integrality ratiofor a standard linear programming relaxation. Several previous papers have atta
ked the min
ostk-VCSS problem (without restri
tions on jV j), with the goal of improving on the approximationguarantee (see the referen
es). An approximation guarantee of more than k=2 has been presentedin [11℄; also, an upper bound of O(k) on the integrality ratio was known [4, 5℄. Better results werenot known for our \spe
ial 
ase," but we mention that our results may not improve on previousresults for small k (k = 2; 3; 4; : : :). (An O(log k) approximation guarantee was 
laimed earlier in[15℄, but subsequently an error has been found and that 
laim has been withdrawn; see the erratumof [15℄.) For more dis
ussion on related problems and results, see the introdu
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2 CHERIYAN, VEMPALA, AND VETTAOur algorithm is based on two results: (1) a polynomial-time algorithm of Frank and Tardos [5℄for �nding a minimum-
ost k-out
onne
ted subdigraph of a digraph (dire
ted graph), and (2) anupper bound on the order of 3-
riti
al graphs by Mader [12℄. The Frank-Tardos algorithm hasbeen applied earlier to the min
ost k-VCSS problem by several authors, starting with Khuller andRaghava
hari [10℄; see also [1, 2, 11℄. The s
aling tri
k used in Lemma 3.2 below has been usedearlier by [8, 9℄. 2. Notation and preliminary resultsThroughout, we assume that the input graph G = (V;E) is k-vertex 
onne
ted. Let n denote jV j.2.1. A linear programming relaxation. Let H� denote a k-VCSS of minimum 
ost, and letz� = 
(H�) =Pe2E(H�) 
e denote its 
ost. The following LP (linear program) P (k) gives a lowerbound z(k) on z� (Frank dis
usses this LP in [4℄). There is a variable xe, 0 � xe � 1, for ea
h edgee in G. The intention is that the edge in
iden
e ve
tor of every k-VCSS H (possibly, H = H�)forms a feasible solution for P (k). A setpair W = (Wt;Wh) is an ordered pair of disjoint vertexsets, so Wt � V , Wh � V , and Wt \Wh = ;. An edge uv of G is said to 
over W if u 2 Wt; v 2 Whor v 2 Wt; u 2 Wh. Let Æ(W ) denote the set of all edges in G that 
over W . If Wt 
ontains atleast one vertex, say p, and Wh 
ontains at least one vertex, say q, then note that H has at leastk� (n�jWt[Whj) edges in Æ(W ), be
ause on removing the verti
es in V � (Wt[Wh) from H , theresulting graph has at least this number of openly disjoint paths between p and q and ea
h of thesepaths 
ontributes one (or more) distin
t edges to Æ(W ). (Two paths are 
alled openly disjoint ifevery vertex that belongs to both paths is an end vertex of both paths.) Let S denote the set ofall setpairs (Wt;Wh) su
h that Wt 6= ; and Wh 6= ;. It is 
onvenient to keep a parameter `, where` is a positive integer, and write the LP relaxation P (`) for the min
ost `-VCSS problem.P (`) : z(`) = minimize Xe2E 
e xesubje
t to Xe2Æ(W )xe � ` � (n� jWt [Whj); 8W 2 S0 � xe � 1; 8 e 2 E:Lemma 2.1. Let z�(`) be the minimum 
ost of an `-VCSS. Then z�(`) � z(`).2.2. k-Out
onne
ted subgraphs. A graph is said to be k-out
onne
ted from a so-
alled rootvertex r if there exist k openly disjoint paths from r to v, for ea
h vertex v, v 6= r. Themin
ost k-OCproblem is as follows: given an undire
ted graph G = (V;E), a root vertex r 2 V , and nonnegative
osts on the edges, �nd a minimum-
ost subgraph H of G su
h that H is k-out
onne
ted from r.This problem is NP-hard for k � 2.



APPROXIMATING MINCOST k-VERTEX CONNECTED SUBGRAPHS 3Theorem 2.2 (Frank and Tardos (1989), Khuller and Raghava
hari (1996)). Let G = (V;E), r,and 
 : E ! R+ be as above. There is a 2-approximation algorithm for the min
ost k-OC problem.Moreover, the subgraph found by this algorithm has 
ost at most 2z(k).Proof. In the dire
ted version bG of G, ea
h edge e of G is repla
ed by two oppositely oriented ar
s,and ea
h of these two ar
s has 
ost 
e. Here is an LP relaxation (in fa
t, an LP formulation) bP ofthe dire
ted min
ost k-OC problem on bG (with any vertex r as the root): There is a variable xafor ea
h ar
 a in bG; let R denote the set of all setpairs W = (Wt;Wh) su
h that the root r is inWt and Wh 6= ;; and for W 2 R let Æ̂(W ) denote the set of ar
s (u; v) in bG with u 2 Wt; v 2 Wh.bP : minimize Xa2E( bG) 
a xasubje
t to Xa2Æ̂(W )xa � k � (n� jWt [Whj); 8W 2 R0 � xa � 1; 8 a 2 E( bG):This LP bP has an integer optimal solution (see [4, Theorems 2.1, 2.2℄). The Frank-Tardos algorithmsolves the dire
ted min
ost k-OC problem on bG by �nding a minimum-
ost subdigraph bH thatis k-out
onne
ted from r, and the 
ost 
( bH) equals the optimal value of bP . (The ar
 in
iden
eve
tor of bH forms an optimal solution of bP .) Finally, we 
laim that the optimal value of bP is atmost 2z(k), hen
e, the undire
ted version of bH satis�es the theorem (it is a subgraph of G that isk-out
onne
ted from r, and it has 
ost at most 2z(k)).To see that the optimal value of bP is at most 2z(k), observe that the LP relaxation of the dire
tedmin
ost k-VCSS problem on bG has optimal value at most 2z(k) (be
ause a feasible solution x ofP (k) (the k-VCSS LP on G) gives a feasible solution of the dire
ted k-VCSS LP on bG, by assigningthe value xe to ea
h of the two ar
s 
orresponding to ea
h edge e). Moreover, an optimal solutionof the dire
ted k-VCSS LP on bG is also a feasible solution of bP . Our 
laim follows. �Remark: Our algorithm may apply this result to �nd a solution to the min
ost `-OC problemthat has 
ost at most 2z(`), where 1 � ` � k.2.3. 3-Criti
al graphs. For a graphG, let �(G) denote the vertex 
onne
tivity, i.e., the minimumnumber of verti
es whose removal results in a dis
onne
ted graph or the trivial graph (namely, K1).An `-separator of a 
onne
ted graph is a set of ` verti
es whose removal results in a dis
onne
tedgraph.A graph G = (V;E) is 
alled 3-
riti
al if the vertex 
onne
tivity de
reases by jSj on removing theverti
es in any set S of at most three verti
es, that is, if �(G�S) = �(G)�jSj; 8S � V; jSj � 3.If G is not 3-
riti
al, then note that there exists a set S of three verti
es su
h that no �(G)-separator
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ontains all the verti
es in S. Mader gives an upper bound on the order of 3-
riti
al graphs, [12℄.(The proof is written in German, and the result is dis
ussed (without proof) in two survey paperswritten in English [13, 14℄.)Theorem 2.3 (Mader (1977)). A 3-
riti
al graph with vertex 
onne
tivity k has less than 6k2verti
es. 3. The algorithm and its analysisThe algorithm starts with i := 1, and a minimum-
ost spanning treeH1. Ea
h iteration i = 1; 2; : : : ;augmentsHi toHi+1 by adding edges fromE(G)�E(Hi) su
h that the vertex 
onne
tivity in
reasesby at least one, and the \augmenting 
ost" 
(Hi+1)�
(Hi) is approximately minimum. A detaileddes
ription of an iteration follows. Let ` = �(Hi). If ` = k, then we stop and output Hi asthe desired k-VCSS. Now, suppose ` < k. For ea
h edge in Hi, we 
hange the 
ost to zero (theother edges keep the original 
osts). By Mader's theorem (and the fa
t that n is at least 6k2)there exist three verti
es su
h that no `-separator of Hi 
ontains all three verti
es. We �nd threesu
h verti
es r1; r2; r3 by exhaustively 
he
king for ea
h vertex set S of 
ardinality three whether�(Hi � S) > ` � 3. For ea
h of these three verti
es, we apply the Frank-Tardos algorithm withroot rj (j = 1, 2, or 3) and the modi�ed edge 
osts to �nd a supergraph Hi;j of Hi that is (`+ 1)-out
onne
ted from rj. We take (the edge set of) Hi+1 to be the union of (the edge sets of) Hi;1,Hi;2, and Hi;3.Lemma 3.1. At every iteration i = 1; 2; : : :, we have �(Hi+1) � �(Hi) + 1.Proof. Let ` = �(Hi). Note that ` < k. Suppose that �(Hi+1) = `. Then Hi+1 has an `-separatorC, C � V . Now, Hi is not 3-
riti
al by Mader's theorem, sin
e n � 6k2 > 6`2. Hen
e, thereexist three verti
es in Hi su
h that for ea
h `-separator of Hi, at least one of these three verti
es isabsent from the `-separator. The algorithm �nds three su
h verti
es r1; r2; r3. W.l.o.g. r1 is absentfrom C. The graph Hi;1, whi
h is a subgraph of Hi+1, is (` + 1)-out
onne
ted from r1. Hen
e,Hi+1 has (`+1) openly disjoint paths between r1 and v, for every other vertex v, and one of thesepaths survives in Hi+1 � C. We have a 
ontradi
tion, sin
e Hi+1 � C is 
onne
ted. The lemmafollows. �Lemma 3.2. At every iteration i = 1; 2; : : :, we have 
(Hi+1)� 
(Hi) � 6z(k)k � ` , where ` = �(Hi).Proof. Note that ` < k. We will prove that for ea
h of the three supergraphs Hi;j (j = 1, 2, or3) of Hi, the augmenting 
ost 
(Hi;j) � 
(Hi) is at most 2z(k)=(k � `). Then the lemma followsimmediately.



APPROXIMATING MINCOST k-VERTEX CONNECTED SUBGRAPHS 5Let x : E ! R+ be an optimal solution to the linear program P (k); note that the 
ost of x (withrespe
t to the original edge 
osts 
) is z(k).Re
all that (during the 
onstru
tion of Hi;j , j = 1; 2; 3) the edge 
osts are modi�ed su
h that anedge already in Hi has zero 
ost, while the other edges have the original 
osts. Let x0 : E ! R+be given by x0e = 8<:1; if e is in Hixek�` ; otherwise:Clearly, x0 has modi�ed 
ost at most z(k)=(k � `). We 
laim that x0 is a feasible solution to theLP P (` + 1). Then, by Theorem 2.2, the Frank-Tardos algorithm �nds an (` + 1)-out
onne
tedsupergraph of Hi with augmenting 
ost at most 2z(k)=(k� `).To see the 
laim, 
onsider any setpair W 2 S and its 
onstraint in the LP P (`+ 1),Xe2Æ(W )x0e � (`+ 1)� q;where q = n� jWt [Whj. First, suppose that Hi has no edges in Æ(W ). Then sin
e Hi is `-vertex
onne
ted, we have q � `. If q � ` + 1, then, obviously, x0 satis�es this 
onstraint. Otherwise, ifq = `, then x0 satis�es this 
onstraint be
ause (i) x satis�es the 
onstraint of W in the LP P (k),namely, Xe2Æ(W )xe � k� `, and (ii) ea
h edge e 2 Æ(W ) has x0e = xe=(k� `). Now, suppose that Hihas p � 1 edges in Æ(W ). If p < (`+ 1)� q, then delete � p verti
es from Wt and Wh to obtain anew setpair Ŵ su
h that Ŵt 6= ; 6= Ŵh and Hi has no edges in Æ(Ŵ ), and then apply the previousreasoning to Ŵ to infer that x0 satis�es the 
onstraint of Ŵ , and hen
e also ofW . If p � (`+1)�q,then Xe2Æ(W )x0e � jE(Hi)\ Æ(W )j = p � (`+ 1)� q. Thus the 
laim holds. �Theorem 3.3. Suppose that the input graph G = (V;E) is k-vertex 
onne
ted and has order jV j �6k2. Then the algorithm terminates with a k-VCSS that has 
ost at most 6(1+ 12 + 13 + � � �+ 1k )z(k),where z(k) is the optimal value of the LP relaxation. The algorithm runs in time O(k2n4(n+k2:5)).Proof. The vertex 
onne
tivity of Hi in
reases by at least one in every iteration, starting from one,so the algorithm terminates with a k-VCSS in at most k� 1 iterations. The 
ost of the k-VCSS is� 
(H1) + k�1Xi=1(
(Hi+1)� 
(Hi)) � 2z(k)k + k�1X̀=1 6z(k)k � ` � 6(1 + 12 + 13 + � � �+ 1k )z(k):(Note that the minimum spanning tree H1 is an optimal solution to the min
ost 1-OC problem(with any vertex as the root), and an optimal solution x of the LP P (k) gives a feasible solution1kx of the LP P (1), hen
e by the proof of Theorem 2.2, 
(H1) � 2z(1) � 2z(k)k .)To see the running time, note that ea
h iteration i (1 � i < k) runs the Frank-Tardos algorithm atmost three times, and tests �(Hi�S) for at most n3 sets of verti
es S of 
ardinality three. Gabow's



6 CHERIYAN, VEMPALA, AND VETTAalgorithm [7℄ tests the vertex 
onne
tivity � in time O((n+�2:5) ��n), and there is a version of theFrank-Tardos algorithm, due to Gabow, that runs in time O(k2n2jEj), [6, Theorem 4.5℄. �A
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