An O(V E) Algorithm for Ear Decompositions of Matching-Covered Graphs

Marcelo H. de Carvalho ™ Joseph Cheriyan !

10 December, 2004

Abstract

Our main result is an O(nm)-time (deterministic) algorithm for constructing an ear decom-
position of a matching-covered graph, where n and m denote the number of nodes and edges.
The improvement in the running time comes from new structural results that give a sharpened
version of Lovasz and Plummer’s Two-ear Theorem. Our algorithm is based on O(nm)-time
algorithms for two other fundamental problems in matching theory, namely, finding all the al-
lowed edges of a graph, and finding the canonical partition of an elementary graph. To the
best of our knowledge, no faster deterministic algorithms are known for these two fundamental
problems.

1 Introduction

Matching is a topic of central importance for graph theory, computer science, and combinato-
rial optimization. Problems from matching theory have acted as catalysts in the development
of key topics within these areas, e.g., polynomial-time algorithms (Edmonds’ maximum-matching
algorithm [E 65] led him to the significance of polynomial-time algorithms), polyhedral combina-
torics (Edmonds’ characterization of the matching polytope inspired the development of this topic
[Sc 03]), and the study of combinatorial lattices (which developed from Lovasz’s characterization
of the matching lattice [Lo 87]), etc. Moreover, matching has many practical applications, such as
the scheduling of parallel processors, determining chemical bonds, and the Ising model in statistical
physics; see [AMO93, LP 86] for more applications.

In the study of graphs with perfect matchings, it is natural to focus on those edges that occur
in at least one perfect matching — such an edge is called allowed. (The relevant definitions are
in Sections 1 & 2.) Moreover, it can be seen that we may restrict our attention to a connected
graph each of whose edges is allowed. Such graphs are called matching covered; they arise nat-
urally in many graph-theoretical investigations. In particular, several well-known theorems and
conjectures such as the Four-Colour Theorem, Tutte’s 5-Flow Conjecture, and Seymour’s Circuit
Double Cover Conjecture, may be reduced to 2-connected cubic graphs and such graphs are match-
ing covered. (For instance, the Four-Colour Theorem is equivalent to the statement that every
planar 2-connected cubic graph is 3-edge-colourable.) Following the lead of Kotzig [Ko 59], Lovéasz
and Plummer [LP 86] started the systematic study of matching covered graphs. These studies
over a period of forty years have revealed a deep and rich structure. In a landmark paper, Lovasz

*(mhc@dct.ufms.br) UFMS-Brazil. Supported by ©NpPq, Brasil, by PRONEX/CNPq (664107/1997-4), by
FUNDECT-MS(0284/01), and by a Fellowship from the University of Waterloo, Canada.

T(jchelriyan@uwatelrloo.ca) Department of Combinatorics & Optimization, University of Waterloo, Ontario,

Canada. Supported by NSERC grant No. OGP0138432.

[Lo 87] gave a good characterization of the matching lattice and proposed a deep conjecture. This
conjecture was recently settled by Carvalho et al. [CLM 02] based on some major new results on
matching covered graphs. See [CLM 03, LP 86, Mu 94] for surveys on some of these topics.

Our focus is on computing an ear decomposition of a matching-covered graph. Ear decomposi-
tion techniques are the basis of some of the key advances in matching theory and algorithms. An
early advance is Edmonds’ maximum-matching algorithm [E 65], which constructs an ear decom-
position of certain (factor-critical) subgraphs by repeatedly shrinking odd circuits. Hetyei [H 64]
and Lovasz & Plummer launched a systematic study of ear decompositions in matching-covered
graphs. An important result from this research is Lovasz & Plummer’s Two-ear Theorem [LP 73,
Theorem 5.4] (or see [LP 86, Theorem 5.4.6]). Ear decomposition techniques and the Two-ear The-
orem have been instrumental in obtaining further advances in matching theory, such as Lovész’s
characterization of the matching lattice [Lo 87].

Let n and m denote the number of nodes and edges of the input graph. While discussing
running times, we assume m = Q(n) so we use O(n + m) = O(m). Our main result is an O(nm)-
time (deterministic) algorithm for constructing an ear decomposition of a matching-covered graph,
improving on the previous best running time of O(nm?) due to Little & Rendl [LR 89]. An earlier
algorithm due to Naddef & Pulleyblank [NP 82] runs in time O(y/n-m?®). Our improvement in the
running time comes from several things. One of our key contributions is a new structural result
that gives a sharpened version of Lovész and Plummer’s Two-ear Theorem (see Theorem 3.5). This
enables us to quickly find “double ears” (which is a bottleneck step in algorithms for finding the
ear decomposition). Another new feature of our algorithm is that it incrementally constructs both
the ear decomposition of the edge set, and the canonical partition of the node set. These are the
two main structures studied in the theory of matching-covered graphs. The canonical partition has
been investigated by Kotzig [Ko 59] and Lovész, see [LP 86, Chapter 5.2].

Our algorithm implicitly solves (within the same time bound) two other fundamental problems
in matching theory (1) finding all the allowed edges of a graph, and (2) finding the canonical
partition of an elementary graph. For both problems, it is easy to design O(nm)-time algorithms,
using well-known results on efficient implementations of Edmonds’ maximum-matching algorithm
(see [Ta 83]) and results from the matching folklore, but to the best of our knowledge, no faster
deterministic algorithms are known. It may not be possible to improve on our running time of
O(nm) for ear decompositions, until faster algorithms are developed for problems (1), (2), though
we do not have a proof for this claim. (Faster randomized algorithms are known for problems (1),
(2), and these run in time M (n)(logn)°() = O(n*3®) where M (n) denotes the running time for
multiplying two n X n matrices, see [RV 89, C 97].)

Ear decompositions of matching-covered graphs

We list a few central definitions, including that of an ear decomposition. Other definitions and
preliminaries are in Section 2. Let G = (V| E) be a graph. A matching of G is a subset M of the
edges such that no two of the edges in M have an end node in common. A perfect matching is one
with cardinality |V|/2. An edge is called allowed if it occurs in at least one perfect matching. A
graph with a perfect matching is called elementary if its allowed edges form a connected subgraph,
and the graph is called matching-covered if it is connected and each of its edges is allowed. (Thus,
a matching-covered graph is elementary.) A subgraph Gq of G is called nice if G — V(Gp) has a
perfect matching.

Let H be a subgraph of G. A single ear of G relative to H is a path of G of odd length that
has both ends in H but no internal nodes in H. (For our purposes, a single ear has distinct end
nodes.) Given any bipartite matching-covered graph G, there exists a sequence

GicGyC...CcGy=G

of nice matching-covered subgraphs of G such that (i) G; = K3, and (ii) for 2 < ¢ < (, G; =
G;_1 + P;, where P; is a single ear of G relative to G;_1, see [LP 86].

For a bipartite matching-covered graph G = (V, E), with bipartition V' = (A4, B), such a
decomposition can be computed via the following folklore algorithm. Find a perfect matching
M, then direct all edges of M from A to B and direct the remaining edges from B to A. Take G,
to be any edge of M, and then for : = 2,3, ..., take P; to be any directed path that has only its
start node and end node in G;_;. It is easy to show that the method is correct by showing that
each subgraph G; is nice and matching-covered. Excluding the computation of M, this algorithm
runs in linear time.

Such decompositions (via single ears) do not exist for non-bipartite matching-covered graphs.
For example, K4 has no such decomposition. To extend this type of decomposition to all matching-
covered graphs, we need the notion of a double ear. A double ear P* of G relative to a subgraph H
is a pair {P’, P"}, where P’ and P” are two node-disjoint single ears of G relative to H. We call P’
and P” the members of the double ear P*. By an ear of G (relative to some subgraph H) we mean
either a single ear or a double ear. For an ear P* of G relative to a subgraph H, we use H 4+ P*
to denote the graph obtained from H by adding the edges and internal nodes of the constituent
path(s) of P*. An ear decomposition of a matching-covered graph G is a sequence

G1CG2C...CG52G

of nice matching-covered subgraphs of G such that (i) G; = K3, and (ii) for 2 < ¢ < (, G; =
Gi_1+ P*, where P* is an ear (single or double) of G relative to G;_1. The following fundamental
theorem is due to Lovdsz and Plummer [LP 73] (see also [S 98]).

Theorem 1.1 (Ear Decomposition Theorem) FEvery matching-covered graph has an ear de-
composition.

Whenever we use a double ear P* = {P’, P"}, we implicitly assume that adding either P’ or P”
as a single ear does not give a matching-covered graph; thus, the ear decompositions in our paper
are in fact what Lovasz and Plummer call “nonrefinable graded ear decompositions” (see [LP 86,
Section 5.4]). (We will mention this explicitly, where this is relevant.)

Most algorithms for computing such an ear decomposition have to deal with a bottleneck,
namely, finding a double ear when it is impossible to add any single ear. If we try to find an
appropriate pair of single ears by an exhaustive search, then this step alone may contribute a
running time of O(nm). In Section 3, we present a sharpened version of Lovasz and Plummer’s
Two-ear Theorem that enables us to find a double ear in (essentially) linear running time.

Section 2 summarizes notation, definitions, and basic results on elementary graphs. Also, this
section has deterministic algorithms (from the matching folklore) for the canonical partition, and
for the allowed edges. Section 3 sharpens the Two-ear Theorem. Our ear decomposition algorithm
and its analysis are presented in Section 4.

2 Preliminaries

2.1 Definitions and notation

We list some standard definitions from matching theory, see [LP 86]. Let G = (V, E') be a graph. For
subgraphs H and P of G, H + P denotes the union, i.e., H+ P = (V(H)UV(P), E(H)U E(P)).
Given a matching M, a node is called matched if it is incident to an edge of M, and is called
exposed (or, M-exposed) otherwise. An M-alternating path is a path whose edges are alternately in
M and not in M. An M-augmenting path is an M-alternating path such that both end nodes are
M-exposed.

A graph G is called factor-critical if, for every node v of GG, the subgraph G — v has a perfect
matching. For any graph H, let oc(H) denote the number of odd components of H, where a
(connected) component of H is called odd (or even) if it has an odd (even) number of vertices. Let
G be a graph with a perfect matching. A node set B of G is called a barrier if oc(G — B) = |B].
Clearly, the empty set is a barrier of G, but henceforth, by a barrier we shall mean a nonempty
barrier. All singleton subsets of V(G) are barriers of G. We refer to such barriers as trivial barriers.

For a graph G = (V, E) and a subset S of V', 0g(S) (or simply 9(S)) denotes the set of edges
that have exactly one end in S, and it is called an (edge-) cut of G with S and S =V — S as its
shores. The graph obtained from G by contracting its shore S to a single node is called a contraction

of G, denoted by G/S.

2.2 Elementary graphs

The following results are fundamental for our purposes and are (except for Corollary 2.7) proved
in Lovasz and Plummer’s book [LP 86] (see also [Mu 94]). The next theorem characterizes the
(inclusionwise) maximal barriers of an elementary graph.

Theorem 2.1 Let G be an elementary graph, and let ~ denote the binary relation on V where
u~v if G—{u,v} has no perfect matching. Then, the relation ~ is an equivalence relation on V
and the equivalence classes are precisely the (inclusionwise) mazimal barriers of G.

The partition of V' into maximal barriers is called the canonical partition of G, denoted by P(G).
Suppose P(G) = {S1,Sa, ..., Sk}, where S;USyU...USE =V, then each of the sets S;,1 < < k,
is called a class of P(G).

Proposition 2.2 The following properties hold for an elementary graph G.
(i) An edge e of G is allowed if and only if no barrier contains both ends of e.
(ii) If B is a (nonempty) barrier of G, then G — B has no even components.

(i1i) A barrier B of G is mazimal if and only if all components of G — B are factor-critical.

Proposition 2.3 Let H be an elementary graph, and let G be obtained from H by adding some
edges. Let B be a barrier of G, and let K be an odd component of G — B. Then B is a barrier of
H, and H — B has an odd component whose node set is V (I).

Proposition 2.4 Let G be an elementary graph, and let ¢ be an edge not in G but with both ends
in V(G). Then, P(G + €) is a refinement of P(G), that is, for each class S’ of P(G + €) there
exists a class S of P(G) such that S’ C S.

Proposition 2.5 Let G be an elementary graph and let e :== xy be an allowed edge of G. If graph
G’ is obtained from G by subdividing e by the insertion of two new nodes u and v such that the path
corresponding to e is x,u,v,y, then P(G') is the same as P(G) except that u is added to the class
of y and v is added to the class of x.

Proposition 2.6 Suppose that G is an elementary graph and XY are barriers in G such that
XNY #0 and G has no edges between X —Y andY — X. Then X NY and X UY are barriers
n G.

Corollary 2.7 Suppose that G is an elementary graph, and Sy, So,...,S¢ are barriers in G such
that SN SeN---NS¢# 0 and for any i and j, 1 <1< j < {, G has no edges between S; — S; and
S;—=Si. Then S1NSeN---NSp and S1US;U---USy are barriers in G.

2.3 Algorithmic preliminaries

The fastest known (deterministic) algorithms for finding a maximum matching are due to Micali &

Vazirani [MV 80, V 94] and Goldberg & Karzanov [GK 04] (the running times are O(y/n - m)

and O(y/n - m - %), respectively). We do not use these algorithms. Instead, we use the
efficient implementation of Edmonds’ maximum-matching algorithm as presented by Tarjan [Ta 83];
this implementation achieves linear running time for each iteration (augmentation) of Edmonds’
algorithm by using Gabow and Tarjan’s linear-time method for (a special case of) disjoint set union
[GT 85].

Given any matching M, this algorithm assigns labels to the nodes as follows: a node v is labeled 0
(meaning, even) if there is an even-length alternating path from v to an M-exposed node, otherwise,
v is labeled 1 (meaning, odd) if there is an odd-length alternating path from v to an exposed node,
otherwise, v is unlabeled. Thus every exposed node is labeled 0. (If M is a maximum matching,
then this labeling corresponds to the Gallai-Edmonds decomposition, see [LP 86, Chapter 3.2]: The
sets of nodes labeled 0 and 1 are the sets D(G) and A(G), respectively, and the set of unlabeled
nodes is the set C(G).) For a proof of the next result, see [Ta 83, pp. 115-122], [GT 85], [E 65].

Proposition 2.8 (Edmonds’ Algorithm) Let G be a graph, and let M be any matching of G
(M need not be mazimum,).

(1) Then the above labeling of the nodes can be computed in O(m) time.

(1i) Given any node v labeled 0, an even-length M-alternating path from v to some M -exposed
node can be computed in O(m) time.

(i1i) If there exists an M-augmenting path, then one can be computed in O(m) time. Moreover,
we may start with an empty matching, and compute a mazimum matching in O(nm) time.

Proposition 2.9 Let G be an elementary graph and let v be a node of G. Suppose that a perfect
matching M of G is given.

(1) The class of the canonical partition P(G) that contains v can be found in O(m) time. More-
over, P(G) can be computed in O(nm) time.

(11) The allowed edges incident to v can be found in O(m) time. Moreover, all the allowed edges
can be found in O(nm) time.

Proof: Suppose that v is matched to w in M, that is, vw € M. Delete v from G and M, and
apply one iteration of Edmonds’ algorithm to the graph G — v and matching M — vw to obtain a
labeling of the remaining nodes. By Proposition 2.8, this can be done in time O(m).

Let S be the set of odd nodes (nodes labeled 1). By basic results from matching theory, the
components of G — v — S are all factor-critical. (In more detail, S is the set A(G — v) in the
Gallai-Edmonds decomposition of G — v, see [LP 86, Exercise 9.1.2], hence, S U {v} is a barrier
of G; moreover, by Proposition 2.2 part(ii), G — v — S has no even components.) Hence, by
Proposition 2.2,part(iil), SU{v} is a maximal barrier of G, that is, SU{v} forms the class of P(G)
that contains v. Also, note that each node in G — v gets a label of 0 or 1 (there are no unlabeled
nodes), because G — v — S has no even components. It follows from Proposition 2.2,part(i) that an
edge va of G is allowed if and ounly if « is labeled 0. [

Remark: The linear-time method (in Proposition 2.9) for finding the allowed edges incident to a
node v extends to any graph that has a perfect matching.

3 A sharpened Two-ear Theorem

This section develops our method for efficiently finding a double ear by sharpening some well-known
matching theory results of Lovasz and Plummer.

Let H be a matching-covered graph. Let F = {ey,€e3,...,ex}, k > 2, be a set of edges not in
H, but having both ends in H, such that the graph H + F' is matching-covered. In this section, we
use G to denote the graph H + F (rather than the input graph for our algorithm), and moreover,
we assume the following;:

Adding any of the edges e; € F to H as a single ear gives a graph that is not matching-
covered, that s, H + e; has no perfect matching containing ¢;, for each i =1,..., k.

Then by Proposition 2.2, each edge e; has both ends in the same class of the canonical partition
P(H). The next lemma gives an easy characterization of pairs of edges in F' that form double ears.
(Recall our convention: for every double ear P* = {P’, P}, adding either P’ or P" as a single ear
gives a graph that is not matching covered.)

Lemma 3.1 For two distinct edges e, f € F, the pair {e, f} is a double ear relative to H if and
only if the ends of f lie in distinct classes of the canonical partition P(H + €).

Proof: Let Q :={e, f} be a double ear relative to H. Then, H + @ is a matching-covered graph,
and so edge f is allowed in H 4 Q. It follows that the ends of f are in distinct classes of P(H + €).

Conversely, if the ends of f are in distinct classes of P(H + €), then f is allowed in H + {e, f}.
But note that f is not allowed in H + f (by the assumption at the start of this section). Similarly,
e is not allowed in H + e. Thus, every perfect matching in H + {e, f} containing one of e and f
also contains the other edge, and so {e, f} is a double ear relative to H. [|

The next result is the key one for our algorithm. It is inspired by the Two-ear Lemma and its
proof in Lovdsz and Plummer’s book (see [LP 86, Lemma 5.4.5]).

Lemma 3.2 Let S € P(H) and suppose that there is precisely one edge in F', say e, = vy, with
both ends in S. Then the edge ey is a member of a double ear of G = H + F relative to H (i.e.,
{ek, €;} is a double ear for some j=1,...,k—1).

Proof: If |F| = 2, then obviously the lemma holds. Thus assume |F| > 2. Suppose to the contrary
that for each ¢+ = 1,2,...,k — 1, there is no perfect matching in H + e; + e containing ex. Thus,
the ends @ and y of e, belong to the same class (or maximal barrier) of the canonical partition
P(H + e;), call this class S(e;). Recall that the addition of edges to an elementary graph refines
its maximal barriers (by Proposition 2.4). As {z,y} C S, it follows that S(e;) C S. Moreover, we
claim that S(e;) is a barrier in H and both ends of ¢; are in the same component of H — S(e;). To
see this, note that e; has no end in S (since ¢; is not allowed in H + e; both its ends are in the same
class of P(H) and this class differs from S by the choice of eg), hence, both ends of e; must be in
one of the factor-critical components, say K, of (H 4 ¢;) — S(e;). Then, by Proposition 2.3, S(e;)
is a barrier of H and H — S(e;) has an odd component with node set V(K). Our claim follows.

Let I := S(e;)NS(ez)N---NS(ex—1). Since {z,y} C S(e;) Vi, it follows that {z,y} C I. Thus,
I # (). Moreover, H has no edge with one end in S(e;) — S(e;) and the other end in S(e;) — S(e;),
for any ¢,7,1 < i < j <k, because any such edge would have both ends in S O S(e;) U S(e;) but a
matching-covered graph such as H cannot have an edge with both ends in one of its barriers. Then
by Corollary 2.7, I is a barrier in H.

Fori=1,2,...,k—1, the above claim shows that ¢; joins two nodes in the same odd component
of H— S(e;), and I C S(e;), hence, e; joins two nodes in the same component of H — I. Thus, I is
a barrier in G and we conclude that ey is not allowed in G. This is a contradiction. Thus there is
aj€{l,...,k— 1} such that ey is allowed in H + €; + e, so {e;, ex} is a double ear. [

Remark: In the above lemma, the condition that there is exactly one edge with both ends in .S
is crucial. Here is a counterexample (from [S 98]) to the weaker version of the lemma that omits
this condition: Let H be a cycle 1,2,...,8,1 on eight nodes, and let F = {15,24,37,68}. Then the
edge 15 is not a member of any double ear.

We now deal with the case where a class S € P(H) contains both ends of two or more edges of
F. This case reduces to the previous one via the following (technical) lemma whose proof may be
skipped on first reading.

Lemma 3.3 Let H be any matching-covered graph. Let S € P(H) and let B be a nontrivial barrier
of H such that B C S. Let K be a component of H — B. Let Hy and Hy be the graphs obtained
from H by contracting V(K) and V(H) — V(K) to single nodes v1 and vq, respectively. Then

(i) Hy and Hy are matching-covered;

(11) B is a barrier of Hy and S — V (K) is the mazimal barrier of Hy that contains B.

Proof: Let C := 0(V(K)); also, note that |B| > 2. Let e be any edge of Hy. Then e is also an
edge of H, and as H is matching-covered, there is a perfect matching M of H containing e. Since
B is a barrier of H, we have |[M NC| = 1. It follows that the restriction of M to E(H;) is a perfect
matching of Hy containing e. Thus, H;y is matching-covered. Similarly, Hy is matching-covered.
This proves part(i).

Every (odd) component of H — B distinct from K is also a component of H; — B. Moreover,
the contracted node vy is a trivial component of Hy — B. Hence, H; — B has precisely |B| odd
components, so B is a barrier of Hy. Let By be the maximal barrier of H; containing B. We shall
show that By = S — V(K). First, note that v; ¢ By because there are edges of Hy joining vy to
nodes of B and all these edges are allowed in H; (as H; is matching-covered).

Now, choose any node u € B, and note that u € SN By. We first show that B; C (S — V(K)).
Suppose that there is a node w € By which is not in S. As vy ¢ By, v and w are nodes of H. Let
Bi := By — {u,w}. Note that (Hy — {u,w}) — B] = H; — By and this graph has |By| = |B}j| + 2
odd components. Similarly, (H — {u,w}) — B] = H — By and this graph has |B;| = |Bj| + 2 odd
components (since Hy — By and H — By have the same components except for v; and K). Therefore,
H — {u,w} has no perfect matching. On the other hand, as v € S and w ¢ S, Theorem 2.1 implies
that H — {u, w} has a perfect matching. This contradiction shows that By C (S — V(K)).

Now, assume that w € (S — V(K)) — By. Then, Hy — {u, w} has a perfect matching M;. Let e
denote the edge of M incident with vy. As H, is matching-covered, there is a perfect matching M,
of Hy containing e. Then, My U M is a perfect matching of H — {u, w}. But H — {u, w} cannot
have a perfect matching because {u, w} C S. This contradiction shows that (S — V(K)) — By = 0,
hence, B; = (S — V(K)). |

Let F* C F' denote the set of edges with both ends in S. Consider the graph G* := H + (F —
F*) = G — F*. Observe that H is a spanning matching-covered subgraph of G*.

Proposition 3.4 Consider the graph G* = H + (F — F*) and any edge e € F*. (Recall that
S € P(H), and F* C F consists of edges that have both ends in S.)

(i) If e is allowed in G* + e, then e is a member of a double ear relative to H.
(11) If e is not allowed in G* + e, then

(a) there is another edge f € F* whose ends are in distinct odd components of G*— B, where
B is the mazimal barrier of G* that contains both ends of e, and

(b) any such edge f is a member of a double ear relative to H.

Proof: For part(i), observe that e is the only edge with both ends in S in the graph G*+e. Let M
be a perfect matching of G* 4 ¢ containing e. Let F/ := M N F. Then H + F’ is matching-covered
and e is the only edge of F' with both ends in S. By Lemma 3.2, e is a member of a double ear of
H + F' relative to H. This proves part(i).

For part(ii), assume that e is not allowed in G* + e. Then both ends of e belong to a maximal
barrier B of G*. As e is allowed in H + F = G™ + F*, there is another edge f of F* with ends, say
z and y, in distinct odd components of G* — B. This proves part(a).

To prove part(b) via part(i), it suffices to show that f is allowed in the graph G*+ f. Observe
that {z,y} C S, because each edge in F* (including f) has both ends in S.

Let K be a component of G* — B containing one end of f, say z. Since H is a spanning
matching-covered subgraph of G*, Proposition 2.3 implies that B is a barrier of H, and one of the
odd components of H — B has node set V (K). Moreover, B C S, because both ends of e belong to S
and the addition of edges to an elementary graph refines its maximal barriers (by Proposition 2.4).

Let Hy be the graph obtained from H by contracting V (K) to a single node v;. By Lemma 3.3,
H; is matching-covered and By = S — V(K) is a maximal barrier of Hy containing B. Then y € B,
(since {z,y} C S and y ¢ V(K)) and vy ¢ By (since Hy, which is matching-covered, has edges
joining v; to nodes in B, so any barrier of H; containing B must be disjoint from vy). Hence,
Hy — {v1,y} contains a perfect matching M;. Now, focus again on K (the component of G* — B
containing z). By Proposition 2.2, K is factor-critical, hence, K — 2 has a perfect matching M.
Then, My UM, U{f} is a perfect matching of G* + f containing f = zy. Thus, part(b) follows by
applying part(i) to G* and f. [

Algorithmic aspects of double ears

Theorem 3.5 Let S € P(H), and let F* denote the set of edges of F with both ends in S. If
F* £ () then there is an edge of F* that is a member of a double ear relative to H. Moreover, such
an edge can be found in time O(m).

Proof: The first part of the theorem follows from Lemma 3.2 and Proposition 3.4.

For the running time, observe that if |F*| = 1 then the unique edge of F* is a member of a
double ear, and we are done.

If |F*| > 1, Proposition 3.4 gives the procedure for finding the right edge of F*: Start with the
graph G* = H 4 (F — F*), take any edge e of F* and find the class B of the canonical partition of
G* containing one of the ends of e. This can be done in time O(m) by Proposition 2.9. If the other
end of e does not lie in B then e is allowed in the graph G* + €, and by Proposition 3.4,part(i) e is
a member of a double ear relative to H. If both ends of e lie in B, then by Proposition 3.4,part(ii)
there is another edge of F* with ends in distinct odd components of G* — B, and any such edge is a
member of a double ear relative to H. We can find such an edge in time O(m). Thus, the running
time of this procedure is O(m). |

Suppose we have found an edge e € F that is a member of a double ear relative to H. Then
we apply Lemma 3.1 to find a second edge f € F such that {e, f} is a double ear relative to H.
This step can be implemented in linear time by maintaining relevant information on the canonical
partition, see Section 4 for details.

4 Finding an ear decomposition in O(nm) time

input: a matching-covered graph G = (V, E)
output: an ear decomposition of G and the canonical partition P(G)

(0) start by finding a perfect matching M of G;

(1) let 2y be any edge of M, let subgraph H correspond to zy, and let the canonical partition be
P(H) = {{z},{y}};

(2) while H # G do
(2.1) if H is a spanning subgraph of G then let F' = E(G) — E(H), else compute F using the detailed

explanation of this step in the text; note that each edge e; € F corresponds to a (single) ear P;
relative to H; finally, let Fy := F;

(2.2) repeat

(2.2.1) let Hy := H and let py := |P(Hop)|; let F’ be the set of edges in F that have their two ends
in distinct classes of P(H); replace F' by F — F’;
(2.2.2) sequentially examine the edges of F’ and add each edge to H as a single ear; update P(Hy)
to P(H);
(2.2.3) if po = |P(H)| and F # @ then find a double ear {e¢, f} C F by using the method in
Theorem 3.5; remove e, f from F and add them to H; update P(H — {e, f}) to get P(H);
(x2.2) until F = §;

(2.3) for each edge e€; € Fy take the corresponding path P; of G (see step (2.1)), and insert the internal

nodes of P; (if any) into appropriate classes of P(H) (see Proposition 2.5);

(#2) end (while loop); sToP.

Table 1: Ear-decomposition algorithm

Our algorithm is summarized in Table 1. The input consists of a matching-covered graph G, and
the output is an ear decomposition of G, together with the canonical partition P(G). Throughout
the computation, we maintain the canonical partition of the current graph H, P(H), and for each
class S € P(H), we maintain the node sets of the (connected) components of H — S (see the proof
of Lemma 4.2 for details). We represent P(H) explicitly, as well as by labeling each node v in H
by the class in P(H) that contains v. The rest of this section is devoted to a proof of the following
theorem.

Theorem 4.1 An ear decomposition of a matching-covered graph can be computed in O(nm) time.

To prove Theorem 4.1, we discuss each nontrivial step of the algorithm in detail, and analyse its
contribution to the running time. The following key lemma allows us to bound the total running
time for all changes to the canonical partition (over the whole computation), hence, when we analyse
the individual steps, we ignore the running time devoted to updates of the canonical partition. The
proof of the lemma is deferred to the end.

Lemma 4.2 Qver the whole computation, the total number of changes to the canonical partition
P(H) is O(n), and each update takes O(m) time. Thus the total running time for all changes to
the canonical partition is O(nm).

STEP (0):
We use an efficient implementation of Edmonds’ maximum-matching algorithm (see Proposition 2.8)
to find a perfect matching M of G in time O(nm).

STEP (2.1):
This step finds a set of edges F such that H 4 F is matching covered. We claim that this step takes
O(m) time (for each iteration of the while loop), and this step contributes a total of O(nm) to the
running time (over the whole computation). If V(H) = V(G), then we take F = E(G) — E(H),
and clearly, this takes linear time. Now, suppose that H is not a spanning subgraph of G. In this
case, we take any edge joining a node v in H to a node w not in H. Then vw is contained in
some perfect matching M™* of G and vw ¢ M, therefore, vw is contained in an alternating circuit
of M UM?*. Let vv’ and ww’ denote the edges of M incident with v and w, respectively. To find
an M-alternating circuit C' containing vw, we delete nodes v and w from G, and then we find an
M'-alternating path P from v’ to w’ in G — {v,w}, where M’ = M — {vv’, ww'}; C consists of the
edges v'v, vw, ww' and the path P. The running time is O(m), by Proposition 2.8. The edges of
C not in H form one or more ears Pj,..., P, relative to H. If some P; has internal nodes, e.g.,
P; = vovy ... vy, then we replace P; by the single edge e; := vovy. We now have F := {ey,e3,...,€4}.
In either case, H 4+ F is a matching-covered graph.

Over the whole computation, the number of executions of this step is O(n), because every
execution that finds an M-alternating circuit adds at least two nodes to H. Thus the total running
time contributed by this step is O(nm).

STEP (2.2.1):

We compute a list F’ consisting of the edges in F whose ends are in distinct classes of P(H), either
after each change of the canonical partition (in steps (2.2.2) or (2.2.3)), or when a new set F of
edges is found (in step (2.1)). Each execution of step (2.2.1) takes time O(1) per edge in F (by
comparing the class labels of the two ends). If F’ is nonempty, we remove edges one by one from
F" and add them to H in single ear addition steps. (Also, we update P(H), but we ignore the time
for this update since Lemma 4.2 handles this.) Thus the running time for step (2.2.1) is O(m) per
change of the canonical partition, and O(m) per new set F. By Lemma 4.2, there are O(n) changes
of the canonical partition, and we have seen that a new set F' is found O(n) times. Thus, over the
whole computation, the running time contributed by this step is O(nm).

STEP (2.2.3):

If H+ F has no single ear relative to H, then Theorem 3.5 gives a linear-time procedure for finding
an edge e that is a member of a double ear relative to H. We then add e to H, update the canonical
partition, and then search for any edge f € F — {e} with ends in distinct classes of the canonical
partition. By Lemma 3.1, {e, f} is a double ear relative to H. Edge f can be found in time O(m).
We now add f to H + e, and then update the canonical partition. Thus, the time for finding a
double ear is O(m) (ignoring the time for updates to P(H) which is handled in Lemma 4.2).

The number of classes of the canonical partition increases by at least two whenever we add a
double ear. (For every double ear P* = {P’, P"}, recall that adding either P’ or P” as a single ear
gives a graph that is not matching covered.) It follows that the number of double ear addition steps
is at most |V|/2 = O(n). Thus, over the whole computation, the running time contributed by this
step is O(nm).

Proof: (of LEMMA 4.2) For the sake of exposition, let us consider updating the canonical partition
P(H) = {S1,...,S;} of H when the ear added to H is a single edge, say e (the procedure is
analogous if a set F’ of two or more single ears is added). By Proposition 2.4 the new canonical
partition, P(H +-e¢), is a refinement of the old one P(H), that is, for each class S} of P(H +¢) there
exists a class S; of P(H) such that S’ C S;. A class S; of P(H) is not a maximal barrier of H + e

10

if and only if the ends of e are in distinct components of H — S;. For each class S; of P(H), we
maintain the node sets of the components of H — S;; this enables us to verify in time O(1) whether
S; is a maximal barrier of H + e. Hence, verifying whether every class S; of P(H) is a maximal
barrier of H + e takes time O(|P(H)|) = O(n), given the above information. Note that the total
time for such verification (over the whole computation) is O(nm), because we add O(m) ears, and
each ear requires O(n) time for the verification.

If S; is a maximal barrier of H + e, then S; is a class of P(H + €), otherwise, S; has “split”
into two or more classes of P(H + €). In the latter case, we repeatedly apply the algorithm of
Proposition 2.9 to partition S; into classes of P(H + €): we take an arbitrary node v; € S; and find
the class S'(v1) of P(H +¢) containing vy, by applying the algorithm of Proposition 2.9 to (H +e¢),
v1, and the restriction of M to H;if S; — S’(vy) has another node vy, then we apply the algorithm
to (H 4 €), vy, and the restriction of M to H, to find the class S’(v2) of P(H + €) containing vy,
and so on.

The next claim provides the main tool for bounding the total number of changes to the canonical
partition. Define the “class splits” tree 7 as follows. (This tree represents all of the splits of the
classes of the canonical partition, over the whole computation.) Each class of the canonical partition
during the execution corresponds to a node in 7. Also, to make T connected, we introduce a root
node that corresponds to the set {z,y}, where zy € M is the first edge added to H. An edge (S’, S)
is present in 7 if and only if S’ is a class resulting from the splitting of class S in the execution,
ie., " C S. In the execution, if a class S’ is obtained by adding some of the internal nodes of an
ear P; to a previous class S (via Proposition 2.5), then the same node of T corresponds to both S’

and S.

Claim: Qver the whole computation, the total number of “class splits” is O(n), where each “class
split” corresponds to a class of the new canonical partition that is properly contained in a class of
the old canonical partition.

To prove this claim, focus on the “class split” tree 7. Each nonleaf node of 7 has at least two
children, and 7 has at most n leaf nodes. Hence, 7 has at most n — 1 nonleaf nodes and at most
2n edges. The claim follows since each “class split” in the execution corresponds to a distinct edge

of T.

Over the whole algorithm, the total time for updating the canonical partition, and the compo-
nents of H — S;, S; € P(H), is O(nm) by the above claim. The lemma follows. |

Acknowledgments. We thank U.S.R.Murty and J.F.Geelen for useful discussions.

References

[AMO93] R. K. Ahuja, T. L. Magnanti and J. B. Orlin, Network Flows: Theory, Algorithms and
Applications. Prentice-Hall, Englewood Cliffs, N. J., 1993.

[CLM 02] M. H. Carvalho, C. L. Lucchesi, and U. S. R. Murty, On a conjecture of Lovasz concern-
ing bricks I. The characteristic of a matching covered graph, J. Combinatorial Theory B
85 (2002), 94-136.
On a conjecture of Lovasz concerning bricks II. Bricks of finite characteristic, J. Combi-
natorial Theory B 85 (2002), 137-180.

[CLM 03] M. H. Carvalho, C. L. Lucchesi, and U. S. R. Murty, The matching lattice, in Recent
Advances in Algorithms and Combinatorics, edited by B. Reed and C. L. Sales, CMS
Books in Mathematics, Springer, 2003.

11

[C 97]

[E 65]
[GT 85]

[GK 04]

[H 64]

[Ko 59]

[LR 89]

[Lo 83]

[Lo 87]

[LP 73]

[LP 36]

[MV 80]

[Mu 94]

[ND 82]

[RV 89]

[Ta 83]

[V 94]

[Sc 03]

[S 98]

J. Cheriyan, Randomized 6(M (IV])) algorithms for problems in matching theory, SIAM
J. Computing 26 (1997), 1635-1655.

J. Edmonds, Paths, trees and flowers, Canad. J. Math. 17 (1965), 449-467.

H. N. Gabow and R. E. Tarjan, A linear time algorithm for a special case of disjoint set
unton, J. Computer and System Sciences 30 (1985), 209-221.

A. V. Goldberg and A. V. Karzanov, Maximum skew-symmetric flows and matchings,
Math. Program., Ser. A 100 (2004), 537-568.

G. Hetyei, 2 x 1-es téglalapokkal lefedheto idomokrol, Pécsi Tanarképzo Foéiskola Tud.
Kozl. (1964), 351-368.

A. Kotzig, Fin Beitrag zur Theorie der endlichen Graphen I-II-1II, Mat. Fyz. Casopis
9 (1959), 73-91, 136-159 and 10 (1960) 205-215.

C. H. C. Little and F. Rendl, An algorithm for the ear decomposition of a 1-factor covered
graph, J. Austral. Math. Soc. (Series A) 46 (1989), 296-301.

L. Lovasz, Ear decompositions of matching-covered graphs, Combinatorica 3 (1983), 105
117.

L. Lovasz, Matching structure and the matching lattice, J. Combinatorial Theory B 43
(1987), 187-222.

L. Lovasz and M. D. Plummer, On bicritical graphs, Infinite and finite sets (Collog.
Keszthely, Hungary, 1973), I, Eds.: A. Hajnal, R. Rado and V. T. Sés, Colloq. Math.
Soc. Janos Bolyai, 10, North-Holland, Amsterdam, 1975, 1051-1079.

L. Lovasz and M. D. Plummer, Matching Theory, Akadémiai Kiad6, Budapest, Hungary,
1986.

S. Micali and V. V. Vazirani, An O(\/|V||E|) algorithm for finding mazimum matching
in general graphs, Proc. 21st IEEE F.0.C.S. (1980), 17-27.

U. S. R. Murty, The matching lattice and related topics, preliminary report, Dept. of
Combinatorics & Optimization, Univ. Waterloo, Ontario, Canada, 1994.

D. Naddef and W. R. Pulleyblank, Far decompositions of elementary graphs and
GF(2)-rank of perfect matchings, Bonn Workshop on Combinatorial Optimization, Eds.:
A. Bachem, M. Grétschel and B. Korte, Ann. Discrete Math., 16, North-Holland, Ams-
terdam, 1982, 241-260.

M. O. Rabin and V. V. Vazirani, Maximum matchings in general graphs through ran-
domization, J. Algorithms 10 (1989), 557-567.

R. E. Tarjan, Data Structures and Network Algorithms, SIAM Publications, Philadelphia,
PA, 1983.

V. V. Vazirani, A theory of alternating paths and blossoms for proving correctness of the
OV E) general graph matching algorithm, Combinatorica 14 (1994), 71-109.

A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer-Verlag,
Berlin, 2003.

Z. Szigeti, The two ear theorem on matching-covered graphs, J. Combinatorial Theory B
74 (1998), 104-109.

12

