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ember, 2004Abstra
tOur main result is an O(nm)-time (deterministi
) algorithm for 
onstru
ting an ear de
om-position of a mat
hing-
overed graph, where n and m denote the number of nodes and edges.The improvement in the running time 
omes from new stru
tural results that give a sharpenedversion of Lov�asz and Plummer's Two-ear Theorem. Our algorithm is based on O(nm)-timealgorithms for two other fundamental problems in mat
hing theory, namely, �nding all the al-lowed edges of a graph, and �nding the 
anoni
al partition of an elementary graph. To thebest of our knowledge, no faster deterministi
 algorithms are known for these two fundamentalproblems.1 Introdu
tionMat
hing is a topi
 of 
entral importan
e for graph theory, 
omputer s
ien
e, and 
ombinato-rial optimization. Problems from mat
hing theory have a
ted as 
atalysts in the developmentof key topi
s within these areas, e.g., polynomial-time algorithms (Edmonds' maximum-mat
hingalgorithm [E 65℄ led him to the signi�
an
e of polynomial-time algorithms), polyhedral 
ombina-tori
s (Edmonds' 
hara
terization of the mat
hing polytope inspired the development of this topi
[S
 03℄), and the study of 
ombinatorial latti
es (whi
h developed from Lov�asz's 
hara
terizationof the mat
hing latti
e [Lo 87℄), et
. Moreover, mat
hing has many pra
ti
al appli
ations, su
h asthe s
heduling of parallel pro
essors, determining 
hemi
al bonds, and the Ising model in statisti
alphysi
s; see [AMO93, LP 86℄ for more appli
ations.In the study of graphs with perfe
t mat
hings, it is natural to fo
us on those edges that o

urin at least one perfe
t mat
hing | su
h an edge is 
alled allowed. (The relevant de�nitions arein Se
tions 1 & 2.) Moreover, it 
an be seen that we may restri
t our attention to a 
onne
tedgraph ea
h of whose edges is allowed. Su
h graphs are 
alled mat
hing 
overed; they arise nat-urally in many graph-theoreti
al investigations. In parti
ular, several well-known theorems and
onje
tures su
h as the Four-Colour Theorem, Tutte's 5-Flow Conje
ture, and Seymour's Cir
uitDouble Cover Conje
ture, may be redu
ed to 2-
onne
ted 
ubi
 graphs and su
h graphs are mat
h-ing 
overed. (For instan
e, the Four-Colour Theorem is equivalent to the statement that everyplanar 2-
onne
ted 
ubi
 graph is 3-edge-
olourable.) Following the lead of Kotzig [Ko 59℄, Lov�aszand Plummer [LP 86℄ started the systemati
 study of mat
hing 
overed graphs. These studiesover a period of forty years have revealed a deep and ri
h stru
ture. In a landmark paper, Lov�asz�(mh
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[Lo 87℄ gave a good 
hara
terization of the mat
hing latti
e and proposed a deep 
onje
ture. This
onje
ture was re
ently settled by Carvalho et al. [CLM 02℄ based on some major new results onmat
hing 
overed graphs. See [CLM 03, LP 86, Mu 94℄ for surveys on some of these topi
s.Our fo
us is on 
omputing an ear de
omposition of a mat
hing-
overed graph. Ear de
omposi-tion te
hniques are the basis of some of the key advan
es in mat
hing theory and algorithms. Anearly advan
e is Edmonds' maximum-mat
hing algorithm [E 65℄, whi
h 
onstru
ts an ear de
om-position of 
ertain (fa
tor-
riti
al) subgraphs by repeatedly shrinking odd 
ir
uits. Hetyei [H 64℄and Lov�asz & Plummer laun
hed a systemati
 study of ear de
ompositions in mat
hing-
overedgraphs. An important result from this resear
h is Lov�asz & Plummer's Two-ear Theorem [LP 73,Theorem 5.4℄ (or see [LP 86, Theorem 5.4.6℄). Ear de
omposition te
hniques and the Two-ear The-orem have been instrumental in obtaining further advan
es in mat
hing theory, su
h as Lov�asz's
hara
terization of the mat
hing latti
e [Lo 87℄.Let n and m denote the number of nodes and edges of the input graph. While dis
ussingrunning times, we assume m = 
(n) so we use O(n+m) = O(m). Our main result is an O(nm)-time (deterministi
) algorithm for 
onstru
ting an ear de
omposition of a mat
hing-
overed graph,improving on the previous best running time of O(nm2) due to Little & Rendl [LR 89℄. An earlieralgorithm due to Naddef & Pulleyblank [NP 82℄ runs in time O(pn �m3). Our improvement in therunning time 
omes from several things. One of our key 
ontributions is a new stru
tural resultthat gives a sharpened version of Lov�asz and Plummer's Two-ear Theorem (see Theorem 3.5). Thisenables us to qui
kly �nd \double ears" (whi
h is a bottlene
k step in algorithms for �nding theear de
omposition). Another new feature of our algorithm is that it in
rementally 
onstru
ts boththe ear de
omposition of the edge set, and the 
anoni
al partition of the node set. These are thetwo main stru
tures studied in the theory of mat
hing-
overed graphs. The 
anoni
al partition hasbeen investigated by Kotzig [Ko 59℄ and Lov�asz, see [LP 86, Chapter 5.2℄.Our algorithm impli
itly solves (within the same time bound) two other fundamental problemsin mat
hing theory (1) �nding all the allowed edges of a graph, and (2) �nding the 
anoni
alpartition of an elementary graph. For both problems, it is easy to design O(nm)-time algorithms,using well-known results on eÆ
ient implementations of Edmonds' maximum-mat
hing algorithm(see [Ta 83℄) and results from the mat
hing folklore, but to the best of our knowledge, no fasterdeterministi
 algorithms are known. It may not be possible to improve on our running time ofO(nm) for ear de
ompositions, until faster algorithms are developed for problems (1), (2), thoughwe do not have a proof for this 
laim. (Faster randomized algorithms are known for problems (1),(2), and these run in time M(n)(logn)O(1) = O(n2:38) where M(n) denotes the running time formultiplying two n � n matri
es, see [RV 89, C 97℄.)Ear de
ompositions of mat
hing-
overed graphsWe list a few 
entral de�nitions, in
luding that of an ear de
omposition. Other de�nitions andpreliminaries are in Se
tion 2. Let G = (V;E) be a graph. A mat
hing of G is a subset M of theedges su
h that no two of the edges in M have an end node in 
ommon. A perfe
t mat
hing is onewith 
ardinality jV j=2. An edge is 
alled allowed if it o

urs in at least one perfe
t mat
hing. Agraph with a perfe
t mat
hing is 
alled elementary if its allowed edges form a 
onne
ted subgraph,and the graph is 
alled mat
hing-
overed if it is 
onne
ted and ea
h of its edges is allowed. (Thus,a mat
hing-
overed graph is elementary.) A subgraph G0 of G is 
alled ni
e if G � V (G0) has aperfe
t mat
hing.Let H be a subgraph of G. A single ear of G relative to H is a path of G of odd length thathas both ends in H but no internal nodes in H . (For our purposes, a single ear has distin
t endnodes.) Given any bipartite mat
hing-
overed graph G, there exists a sequen
eG1 � G2 � : : : � G` = G2



of ni
e mat
hing-
overed subgraphs of G su
h that (i) G1 = K2, and (ii) for 2 � i � `, Gi =Gi�1 + Pi, where Pi is a single ear of G relative to Gi�1, see [LP 86℄.For a bipartite mat
hing-
overed graph G = (V;E), with bipartition V = (A;B), su
h ade
omposition 
an be 
omputed via the following folklore algorithm. Find a perfe
t mat
hingM , then dire
t all edges of M from A to B and dire
t the remaining edges from B to A. Take G1to be any edge of M , and then for i = 2; 3; : : :, take Pi to be any dire
ted path that has only itsstart node and end node in Gi�1. It is easy to show that the method is 
orre
t by showing thatea
h subgraph Gi is ni
e and mat
hing-
overed. Ex
luding the 
omputation of M , this algorithmruns in linear time.Su
h de
ompositions (via single ears) do not exist for non-bipartite mat
hing-
overed graphs.For example, K4 has no su
h de
omposition. To extend this type of de
omposition to all mat
hing-
overed graphs, we need the notion of a double ear. A double ear P � of G relative to a subgraph His a pair fP 0; P 00g, where P 0 and P 00 are two node-disjoint single ears of G relative to H . We 
all P 0and P 00 the members of the double ear P �. By an ear of G (relative to some subgraph H) we meaneither a single ear or a double ear. For an ear P � of G relative to a subgraph H , we use H + P �to denote the graph obtained from H by adding the edges and internal nodes of the 
onstituentpath(s) of P �. An ear de
omposition of a mat
hing-
overed graph G is a sequen
eG1 � G2 � : : : � G` = Gof ni
e mat
hing-
overed subgraphs of G su
h that (i) G1 = K2, and (ii) for 2 � i � `, Gi =Gi�1+ P �, where P � is an ear (single or double) of G relative to Gi�1. The following fundamentaltheorem is due to Lov�asz and Plummer [LP 73℄ (see also [S 98℄).Theorem 1.1 (Ear De
omposition Theorem) Every mat
hing-
overed graph has an ear de-
omposition.Whenever we use a double ear P � = fP 0; P 00g, we impli
itly assume that adding either P 0 or P 00as a single ear does not give a mat
hing-
overed graph; thus, the ear de
ompositions in our paperare in fa
t what Lov�asz and Plummer 
all \nonre�nable graded ear de
ompositions" (see [LP 86,Se
tion 5.4℄). (We will mention this expli
itly, where this is relevant.)Most algorithms for 
omputing su
h an ear de
omposition have to deal with a bottlene
k,namely, �nding a double ear when it is impossible to add any single ear. If we try to �nd anappropriate pair of single ears by an exhaustive sear
h, then this step alone may 
ontribute arunning time of O(nm). In Se
tion 3, we present a sharpened version of Lov�asz and Plummer'sTwo-ear Theorem that enables us to �nd a double ear in (essentially) linear running time.Se
tion 2 summarizes notation, de�nitions, and basi
 results on elementary graphs. Also, thisse
tion has deterministi
 algorithms (from the mat
hing folklore) for the 
anoni
al partition, andfor the allowed edges. Se
tion 3 sharpens the Two-ear Theorem. Our ear de
omposition algorithmand its analysis are presented in Se
tion 4.2 Preliminaries2.1 De�nitions and notationWe list some standard de�nitions frommat
hing theory, see [LP 86℄. Let G = (V;E) be a graph. Forsubgraphs H and P of G, H + P denotes the union, i.e., H + P = (V (H)[ V (P ); E(H)[E(P )).Given a mat
hing M , a node is 
alled mat
hed if it is in
ident to an edge of M , and is 
alledexposed (or,M -exposed) otherwise. An M -alternating path is a path whose edges are alternately inM and not in M . An M -augmenting path is an M -alternating path su
h that both end nodes areM -exposed. 3



A graph G is 
alled fa
tor-
riti
al if, for every node v of G, the subgraph G � v has a perfe
tmat
hing. For any graph H , let o
(H) denote the number of odd 
omponents of H , where a(
onne
ted) 
omponent of H is 
alled odd (or even) if it has an odd (even) number of verti
es. LetG be a graph with a perfe
t mat
hing. A node set B of G is 
alled a barrier if o
(G � B) = jBj.Clearly, the empty set is a barrier of G, but hen
eforth, by a barrier we shall mean a nonemptybarrier. All singleton subsets of V (G) are barriers of G. We refer to su
h barriers as trivial barriers.For a graph G = (V;E) and a subset S of V , �G(S) (or simply �(S)) denotes the set of edgesthat have exa
tly one end in S, and it is 
alled an (edge-) 
ut of G with S and S = V � S as itsshores. The graph obtained from G by 
ontra
ting its shore S to a single node is 
alled a 
ontra
tionof G, denoted by G=S.2.2 Elementary graphsThe following results are fundamental for our purposes and are (ex
ept for Corollary 2.7) provedin Lov�asz and Plummer's book [LP 86℄ (see also [Mu 94℄). The next theorem 
hara
terizes the(in
lusionwise) maximal barriers of an elementary graph.Theorem 2.1 Let G be an elementary graph, and let � denote the binary relation on V whereu � v if G� fu; vg has no perfe
t mat
hing. Then, the relation � is an equivalen
e relation on Vand the equivalen
e 
lasses are pre
isely the (in
lusionwise) maximal barriers of G.The partition of V into maximal barriers is 
alled the 
anoni
al partition of G, denoted by P(G).Suppose P(G) = fS1; S2; : : : ; Skg, where S1 _[S2 _[ : : : _[Sk = V , then ea
h of the sets Si; 1 � i � k;is 
alled a 
lass of P(G).Proposition 2.2 The following properties hold for an elementary graph G.(i) An edge e of G is allowed if and only if no barrier 
ontains both ends of e.(ii) If B is a (nonempty) barrier of G, then G�B has no even 
omponents.(iii) A barrier B of G is maximal if and only if all 
omponents of G�B are fa
tor-
riti
al.Proposition 2.3 Let H be an elementary graph, and let G be obtained from H by adding someedges. Let B be a barrier of G, and let K be an odd 
omponent of G� B. Then B is a barrier ofH, and H �B has an odd 
omponent whose node set is V (K).Proposition 2.4 Let G be an elementary graph, and let e be an edge not in G but with both endsin V (G). Then, P(G + e) is a re�nement of P(G), that is, for ea
h 
lass S 0 of P(G + e) thereexists a 
lass S of P(G) su
h that S 0 � S.Proposition 2.5 Let G be an elementary graph and let e := xy be an allowed edge of G. If graphG0 is obtained from G by subdividing e by the insertion of two new nodes u and v su
h that the path
orresponding to e is x; u; v; y, then P(G0) is the same as P(G) ex
ept that u is added to the 
lassof y and v is added to the 
lass of x.Proposition 2.6 Suppose that G is an elementary graph and X; Y are barriers in G su
h thatX \ Y 6= ; and G has no edges between X � Y and Y �X. Then X \ Y and X [ Y are barriersin G.Corollary 2.7 Suppose that G is an elementary graph, and S1; S2; : : : ; S` are barriers in G su
hthat S1 \ S2 \ � � � \ S` 6= ; and for any i and j, 1 � i < j � `, G has no edges between Si � Sj andSj � Si. Then S1 \ S2 \ � � � \ S` and S1 [ S2 [ � � � [ S` are barriers in G.4



2.3 Algorithmi
 preliminariesThe fastest known (deterministi
) algorithms for �nding a maximum mat
hing are due to Mi
ali &Vazirani [MV 80, V 94℄ and Goldberg & Karzanov [GK 04℄ (the running times are O(pn � m)and O(pn � m � log(n2=m)logn ), respe
tively). We do not use these algorithms. Instead, we use theeÆ
ient implementation of Edmonds' maximum-mat
hing algorithm as presented by Tarjan [Ta 83℄;this implementation a
hieves linear running time for ea
h iteration (augmentation) of Edmonds'algorithm by using Gabow and Tarjan's linear-time method for (a spe
ial 
ase of) disjoint set union[GT 85℄.Given any mat
hingM , this algorithm assigns labels to the nodes as follows: a node v is labeled 0(meaning, even) if there is an even-length alternating path from v to anM -exposed node, otherwise,v is labeled 1 (meaning, odd) if there is an odd-length alternating path from v to an exposed node,otherwise, v is unlabeled. Thus every exposed node is labeled 0. (If M is a maximum mat
hing,then this labeling 
orresponds to the Gallai-Edmonds de
omposition, see [LP 86, Chapter 3.2℄: Thesets of nodes labeled 0 and 1 are the sets D(G) and A(G), respe
tively, and the set of unlabelednodes is the set C(G).) For a proof of the next result, see [Ta 83, pp. 115{122℄, [GT 85℄, [E 65℄.Proposition 2.8 (Edmonds' Algorithm) Let G be a graph, and let M be any mat
hing of G(M need not be maximum).(i) Then the above labeling of the nodes 
an be 
omputed in O(m) time.(ii) Given any node v labeled 0, an even-length M -alternating path from v to some M -exposednode 
an be 
omputed in O(m) time.(iii) If there exists an M -augmenting path, then one 
an be 
omputed in O(m) time. Moreover,we may start with an empty mat
hing, and 
ompute a maximum mat
hing in O(nm) time.Proposition 2.9 Let G be an elementary graph and let v be a node of G. Suppose that a perfe
tmat
hing M of G is given.(i) The 
lass of the 
anoni
al partition P(G) that 
ontains v 
an be found in O(m) time. More-over, P(G) 
an be 
omputed in O(nm) time.(ii) The allowed edges in
ident to v 
an be found in O(m) time. Moreover, all the allowed edges
an be found in O(nm) time.Proof: Suppose that v is mat
hed to w in M , that is, vw 2 M . Delete v from G and M , andapply one iteration of Edmonds' algorithm to the graph G� v and mat
hing M � vw to obtain alabeling of the remaining nodes. By Proposition 2.8, this 
an be done in time O(m).Let S be the set of odd nodes (nodes labeled 1). By basi
 results from mat
hing theory, the
omponents of G � v � S are all fa
tor-
riti
al. (In more detail, S is the set A(G � v) in theGallai-Edmonds de
omposition of G � v, see [LP 86, Exer
ise 9.1.2℄, hen
e, S [ fvg is a barrierof G; moreover, by Proposition 2.2,part(ii), G � v � S has no even 
omponents.) Hen
e, byProposition 2.2,part(iii), S[fvg is a maximal barrier of G, that is, S [fvg forms the 
lass of P(G)that 
ontains v. Also, note that ea
h node in G� v gets a label of 0 or 1 (there are no unlabelednodes), be
ause G� v�S has no even 
omponents. It follows from Proposition 2.2,part(i) that anedge vx of G is allowed if and only if x is labeled 0.Remark: The linear-time method (in Proposition 2.9) for �nding the allowed edges in
ident to anode v extends to any graph that has a perfe
t mat
hing.5



3 A sharpened Two-ear TheoremThis se
tion develops our method for eÆ
iently �nding a double ear by sharpening some well-knownmat
hing theory results of Lov�asz and Plummer.Let H be a mat
hing-
overed graph. Let F = fe1; e2; : : : ; ekg, k � 2, be a set of edges not inH , but having both ends in H , su
h that the graph H +F is mat
hing-
overed. In this se
tion, weuse G to denote the graph H + F (rather than the input graph for our algorithm), and moreover,we assume the following:Adding any of the edges ei 2 F to H as a single ear gives a graph that is not mat
hing-
overed, that is, H + ei has no perfe
t mat
hing 
ontaining ei, for ea
h i = 1; : : : ; k.Then by Proposition 2.2, ea
h edge ei has both ends in the same 
lass of the 
anoni
al partitionP(H). The next lemma gives an easy 
hara
terization of pairs of edges in F that form double ears.(Re
all our 
onvention: for every double ear P � = fP 0; P 00g, adding either P 0 or P 00 as a single eargives a graph that is not mat
hing 
overed.)Lemma 3.1 For two distin
t edges e; f 2 F , the pair fe; fg is a double ear relative to H if andonly if the ends of f lie in distin
t 
lasses of the 
anoni
al partition P(H + e).Proof: Let Q := fe; fg be a double ear relative to H . Then, H +Q is a mat
hing-
overed graph,and so edge f is allowed in H +Q. It follows that the ends of f are in distin
t 
lasses of P(H + e).Conversely, if the ends of f are in distin
t 
lasses of P(H + e), then f is allowed in H + fe; fg.But note that f is not allowed in H + f (by the assumption at the start of this se
tion). Similarly,e is not allowed in H + e. Thus, every perfe
t mat
hing in H + fe; fg 
ontaining one of e and falso 
ontains the other edge, and so fe; fg is a double ear relative to H .The next result is the key one for our algorithm. It is inspired by the Two-ear Lemma and itsproof in Lov�asz and Plummer's book (see [LP 86, Lemma 5.4.5℄).Lemma 3.2 Let S 2 P(H) and suppose that there is pre
isely one edge in F , say ek = xy, withboth ends in S. Then the edge ek is a member of a double ear of G = H + F relative to H (i.e.,fek; ejg is a double ear for some j = 1; : : : ; k � 1).Proof: If jF j = 2, then obviously the lemma holds. Thus assume jF j > 2. Suppose to the 
ontrarythat for ea
h i = 1; 2; : : : ; k � 1, there is no perfe
t mat
hing in H + ei + ek 
ontaining ek. Thus,the ends x and y of ek belong to the same 
lass (or maximal barrier) of the 
anoni
al partitionP(H + ei), 
all this 
lass S(ei). Re
all that the addition of edges to an elementary graph re�nesits maximal barriers (by Proposition 2.4). As fx; yg � S, it follows that S(ei) � S. Moreover, we
laim that S(ei) is a barrier in H and both ends of ei are in the same 
omponent of H � S(ei). Tosee this, note that ei has no end in S (sin
e ei is not allowed in H+ei both its ends are in the same
lass of P(H) and this 
lass di�ers from S by the 
hoi
e of ek), hen
e, both ends of ei must be inone of the fa
tor-
riti
al 
omponents, say K, of (H + ei)� S(ei). Then, by Proposition 2.3, S(ei)is a barrier of H and H � S(ei) has an odd 
omponent with node set V (K). Our 
laim follows.Let I := S(e1)\S(e2)\ � � �\ S(ek�1). Sin
e fx; yg � S(ei) 8i, it follows that fx; yg � I . Thus,I 6= ;. Moreover, H has no edge with one end in S(ei)� S(ej) and the other end in S(ej)� S(ei),for any i; j, 1 � i < j � k, be
ause any su
h edge would have both ends in S � S(ei)[ S(ej) but amat
hing-
overed graph su
h as H 
annot have an edge with both ends in one of its barriers. Thenby Corollary 2.7, I is a barrier in H .For i = 1; 2; : : : ; k�1, the above 
laim shows that ei joins two nodes in the same odd 
omponentof H � S(ei), and I � S(ei), hen
e, ei joins two nodes in the same 
omponent of H � I . Thus, I isa barrier in G and we 
on
lude that ek is not allowed in G. This is a 
ontradi
tion. Thus there isa j 2 f1; : : : ; k� 1g su
h that ek is allowed in H + ej + ek , so fej ; ekg is a double ear.6



Remark: In the above lemma, the 
ondition that there is exa
tly one edge with both ends in Sis 
ru
ial. Here is a 
ounterexample (from [S 98℄) to the weaker version of the lemma that omitsthis 
ondition: Let H be a 
y
le 1; 2; : : : ; 8; 1 on eight nodes, and let F = f15; 24; 37; 68g. Then theedge 15 is not a member of any double ear.We now deal with the 
ase where a 
lass S 2 P(H) 
ontains both ends of two or more edges ofF . This 
ase redu
es to the previous one via the following (te
hni
al) lemma whose proof may beskipped on �rst reading.Lemma 3.3 Let H be any mat
hing-
overed graph. Let S 2 P(H) and let B be a nontrivial barrierof H su
h that B � S. Let K be a 
omponent of H � B. Let H1 and H2 be the graphs obtainedfrom H by 
ontra
ting V (K) and V (H)� V (K) to single nodes v1 and v2, respe
tively. Then(i) H1 and H2 are mat
hing-
overed;(ii) B is a barrier of H1 and S � V (K) is the maximal barrier of H1 that 
ontains B.Proof: Let C := �(V (K)); also, note that jBj � 2. Let e be any edge of H1. Then e is also anedge of H , and as H is mat
hing-
overed, there is a perfe
t mat
hing M of H 
ontaining e. Sin
eB is a barrier of H , we have jM \Cj = 1. It follows that the restri
tion ofM to E(H1) is a perfe
tmat
hing of H1 
ontaining e. Thus, H1 is mat
hing-
overed. Similarly, H2 is mat
hing-
overed.This proves part(i).Every (odd) 
omponent of H � B distin
t from K is also a 
omponent of H1 � B. Moreover,the 
ontra
ted node v1 is a trivial 
omponent of H1 � B. Hen
e, H1 � B has pre
isely jBj odd
omponents, so B is a barrier of H1. Let B1 be the maximal barrier of H1 
ontaining B. We shallshow that B1 = S � V (K). First, note that v1 62 B1 be
ause there are edges of H1 joining v1 tonodes of B and all these edges are allowed in H1 (as H1 is mat
hing-
overed).Now, 
hoose any node u 2 B, and note that u 2 S \B1. We �rst show that B1 � (S � V (K)).Suppose that there is a node w 2 B1 whi
h is not in S. As v1 =2 B1, u and w are nodes of H . LetB01 := B1 � fu; wg. Note that (H1 � fu; wg)� B01 = H1 � B1 and this graph has jB1j = jB01j + 2odd 
omponents. Similarly, (H � fu; wg)� B01 = H � B1 and this graph has jB1j = jB01j + 2 odd
omponents (sin
e H1�B1 and H�B1 have the same 
omponents ex
ept for v1 and K). Therefore,H �fu; wg has no perfe
t mat
hing. On the other hand, as u 2 S and w =2 S, Theorem 2.1 impliesthat H � fu; wg has a perfe
t mat
hing. This 
ontradi
tion shows that B1 � (S � V (K)).Now, assume that w 2 (S � V (K))�B1. Then, H1 � fu; wg has a perfe
t mat
hing M1. Let edenote the edge ofM1 in
ident with v1. As H2 is mat
hing-
overed, there is a perfe
t mat
hingM2of H2 
ontaining e. Then, M1 [M2 is a perfe
t mat
hing of H � fu; wg. But H � fu; wg 
annothave a perfe
t mat
hing be
ause fu; wg � S. This 
ontradi
tion shows that (S � V (K))�B1 = ;,hen
e, B1 = (S � V (K)).Let F � � F denote the set of edges with both ends in S. Consider the graph G� := H + (F �F �) = G� F �. Observe that H is a spanning mat
hing-
overed subgraph of G�.Proposition 3.4 Consider the graph G� = H + (F � F �) and any edge e 2 F �. (Re
all thatS 2 P(H), and F � � F 
onsists of edges that have both ends in S.)(i) If e is allowed in G� + e, then e is a member of a double ear relative to H.(ii) If e is not allowed in G� + e, then(a) there is another edge f 2 F � whose ends are in distin
t odd 
omponents of G��B, whereB is the maximal barrier of G� that 
ontains both ends of e, and(b) any su
h edge f is a member of a double ear relative to H.7



Proof: For part(i), observe that e is the only edge with both ends in S in the graph G�+e. LetMbe a perfe
t mat
hing of G�+ e 
ontaining e. Let F 0 :=M \ F . Then H + F 0 is mat
hing-
overedand e is the only edge of F 0 with both ends in S. By Lemma 3.2, e is a member of a double ear ofH + F 0 relative to H . This proves part(i).For part(ii), assume that e is not allowed in G� + e. Then both ends of e belong to a maximalbarrier B of G�. As e is allowed in H +F = G�+ F �, there is another edge f of F � with ends, sayx and y, in distin
t odd 
omponents of G� �B. This proves part(a).To prove part(b) via part(i), it suÆ
es to show that f is allowed in the graph G�+ f . Observethat fx; yg � S, be
ause ea
h edge in F � (in
luding f) has both ends in S.Let K be a 
omponent of G� � B 
ontaining one end of f , say x. Sin
e H is a spanningmat
hing-
overed subgraph of G�, Proposition 2.3 implies that B is a barrier of H , and one of theodd 
omponents of H�B has node set V (K). Moreover,B � S, be
ause both ends of e belong to Sand the addition of edges to an elementary graph re�nes its maximal barriers (by Proposition 2.4).Let H1 be the graph obtained from H by 
ontra
ting V (K) to a single node v1. By Lemma 3.3,H1 is mat
hing-
overed and B1 = S�V (K) is a maximal barrier of H1 
ontaining B. Then y 2 B1(sin
e fx; yg � S and y 62 V (K)) and v1 =2 B1 (sin
e H1, whi
h is mat
hing-
overed, has edgesjoining v1 to nodes in B, so any barrier of H1 
ontaining B must be disjoint from v1). Hen
e,H1 � fv1; yg 
ontains a perfe
t mat
hing M1. Now, fo
us again on K (the 
omponent of G� � B
ontaining x). By Proposition 2.2, K is fa
tor-
riti
al, hen
e, K � x has a perfe
t mat
hing M2.Then, M1 [M2 [ ffg is a perfe
t mat
hing of G�+ f 
ontaining f = xy. Thus, part(b) follows byapplying part(i) to G� and f .Algorithmi
 aspe
ts of double earsTheorem 3.5 Let S 2 P(H), and let F � denote the set of edges of F with both ends in S. IfF � 6= ; then there is an edge of F � that is a member of a double ear relative to H. Moreover, su
han edge 
an be found in time O(m).Proof: The �rst part of the theorem follows from Lemma 3.2 and Proposition 3.4.For the running time, observe that if jF �j = 1 then the unique edge of F � is a member of adouble ear, and we are done.If jF �j > 1, Proposition 3.4 gives the pro
edure for �nding the right edge of F �: Start with thegraph G� = H + (F � F �), take any edge e of F � and �nd the 
lass B of the 
anoni
al partition ofG� 
ontaining one of the ends of e. This 
an be done in time O(m) by Proposition 2.9. If the otherend of e does not lie in B then e is allowed in the graph G�+ e, and by Proposition 3.4,part(i) e isa member of a double ear relative to H . If both ends of e lie in B, then by Proposition 3.4,part(ii)there is another edge of F � with ends in distin
t odd 
omponents of G��B, and any su
h edge is amember of a double ear relative to H . We 
an �nd su
h an edge in time O(m). Thus, the runningtime of this pro
edure is O(m).Suppose we have found an edge e 2 F that is a member of a double ear relative to H . Thenwe apply Lemma 3.1 to �nd a se
ond edge f 2 F su
h that fe; fg is a double ear relative to H .This step 
an be implemented in linear time by maintaining relevant information on the 
anoni
alpartition, see Se
tion 4 for details.
8



4 Finding an ear de
omposition in O(nm) timeinput: a mat
hing-
overed graph G = (V;E)output: an ear de
omposition of G and the 
anoni
al partition P(G)(0) start by �nding a perfe
t mat
hing M of G;(1) let xy be any edge of M , let subgraph H 
orrespond to xy, and let the 
anoni
al partition beP(H) = ffxg; fygg;(2) while H 6= G do(2.1) if H is a spanning subgraph of G then let F = E(G)�E(H), else 
ompute F using the detailedexplanation of this step in the text; note that ea
h edge ej 2 F 
orresponds to a (single) ear Pjrelative to H ; �nally, let F0 := F ;(2.2) repeat(2.2.1) let H0 := H and let p0 := jP(H0)j; let F 0 be the set of edges in F that have their two endsin distin
t 
lasses of P(H); repla
e F by F � F 0;(2.2.2) sequentially examine the edges of F 0 and add ea
h edge to H as a single ear; update P(H0)to P(H);(2.2.3) if p0 = jP(H)j and F 6= ; then �nd a double ear fe; fg � F by using the method inTheorem 3.5; remove e; f from F and add them to H ; update P(H � fe; fg) to get P(H);(�2.2) until F = ;;(2.3) for ea
h edge ej 2 F0 take the 
orresponding path Pj of G (see step (2.1)), and insert the internalnodes of Pj (if any) into appropriate 
lasses of P(H) (see Proposition 2.5);(�2) end (while loop); stop.Table 1: Ear-de
omposition algorithmOur algorithm is summarized in Table 1. The input 
onsists of a mat
hing-
overed graph G, andthe output is an ear de
omposition of G, together with the 
anoni
al partition P(G). Throughoutthe 
omputation, we maintain the 
anoni
al partition of the 
urrent graph H , P(H), and for ea
h
lass S 2 P(H), we maintain the node sets of the (
onne
ted) 
omponents of H � S (see the proofof Lemma 4.2 for details). We represent P(H) expli
itly, as well as by labeling ea
h node v in Hby the 
lass in P(H) that 
ontains v. The rest of this se
tion is devoted to a proof of the followingtheorem.Theorem 4.1 An ear de
omposition of a mat
hing-
overed graph 
an be 
omputed in O(nm) time.To prove Theorem 4.1, we dis
uss ea
h nontrivial step of the algorithm in detail, and analyse its
ontribution to the running time. The following key lemma allows us to bound the total runningtime for all 
hanges to the 
anoni
al partition (over the whole 
omputation), hen
e, when we analysethe individual steps, we ignore the running time devoted to updates of the 
anoni
al partition. Theproof of the lemma is deferred to the end.Lemma 4.2 Over the whole 
omputation, the total number of 
hanges to the 
anoni
al partitionP(H) is O(n), and ea
h update takes O(m) time. Thus the total running time for all 
hanges tothe 
anoni
al partition is O(nm). 9



step (0):We use an eÆ
ient implementation of Edmonds' maximum-mat
hing algorithm (see Proposition 2.8)to �nd a perfe
t mat
hing M of G in time O(nm).step (2.1):This step �nds a set of edges F su
h that H+F is mat
hing 
overed. We 
laim that this step takesO(m) time (for ea
h iteration of the while loop), and this step 
ontributes a total of O(nm) to therunning time (over the whole 
omputation). If V (H) = V (G), then we take F = E(G)� E(H),and 
learly, this takes linear time. Now, suppose that H is not a spanning subgraph of G. In this
ase, we take any edge joining a node v in H to a node w not in H . Then vw is 
ontained insome perfe
t mat
hing M� of G and vw 62 M , therefore, vw is 
ontained in an alternating 
ir
uitof M [M�. Let vv0 and ww0 denote the edges of M in
ident with v and w, respe
tively. To �ndan M -alternating 
ir
uit C 
ontaining vw, we delete nodes v and w from G, and then we �nd anM 0-alternating path P from v0 to w0 in G� fv; wg, where M 0 =M � fvv0; ww0g; C 
onsists of theedges v0v; vw; ww0 and the path P . The running time is O(m), by Proposition 2.8. The edges ofC not in H form one or more ears P1; : : : ; Pq relative to H . If some Pi has internal nodes, e.g.,Pi = v0v1 : : : v`, then we repla
e Pi by the single edge ei := v0v`. We now have F := fe1; e2; : : : ; eqg.In either 
ase, H + F is a mat
hing-
overed graph.Over the whole 
omputation, the number of exe
utions of this step is O(n), be
ause everyexe
ution that �nds anM -alternating 
ir
uit adds at least two nodes to H . Thus the total runningtime 
ontributed by this step is O(nm).step (2.2.1):We 
ompute a list F 0 
onsisting of the edges in F whose ends are in distin
t 
lasses of P(H), eitherafter ea
h 
hange of the 
anoni
al partition (in steps (2.2.2) or (2.2.3)), or when a new set F ofedges is found (in step (2.1)). Ea
h exe
ution of step (2.2.1) takes time O(1) per edge in F (by
omparing the 
lass labels of the two ends). If F 0 is nonempty, we remove edges one by one fromF 0 and add them to H in single ear addition steps. (Also, we update P(H), but we ignore the timefor this update sin
e Lemma 4.2 handles this.) Thus the running time for step (2.2.1) is O(m) per
hange of the 
anoni
al partition, and O(m) per new set F . By Lemma 4.2, there are O(n) 
hangesof the 
anoni
al partition, and we have seen that a new set F is found O(n) times. Thus, over thewhole 
omputation, the running time 
ontributed by this step is O(nm).step (2.2.3):If H+F has no single ear relative to H , then Theorem 3.5 gives a linear-time pro
edure for �ndingan edge e that is a member of a double ear relative to H . We then add e toH , update the 
anoni
alpartition, and then sear
h for any edge f 2 F � feg with ends in distin
t 
lasses of the 
anoni
alpartition. By Lemma 3.1, fe; fg is a double ear relative to H . Edge f 
an be found in time O(m).We now add f to H + e, and then update the 
anoni
al partition. Thus, the time for �nding adouble ear is O(m) (ignoring the time for updates to P(H) whi
h is handled in Lemma 4.2).The number of 
lasses of the 
anoni
al partition in
reases by at least two whenever we add adouble ear. (For every double ear P � = fP 0; P 00g, re
all that adding either P 0 or P 00 as a single eargives a graph that is not mat
hing 
overed.) It follows that the number of double ear addition stepsis at most jV j=2 = O(n). Thus, over the whole 
omputation, the running time 
ontributed by thisstep is O(nm).Proof: (of Lemma 4.2) For the sake of exposition, let us 
onsider updating the 
anoni
al partitionP(H) = fS1; : : : ; Skg of H when the ear added to H is a single edge, say e (the pro
edure isanalogous if a set F 0 of two or more single ears is added). By Proposition 2.4 the new 
anoni
alpartition, P(H+e), is a re�nement of the old one P(H), that is, for ea
h 
lass S 0j of P(H+e) thereexists a 
lass Si of P(H) su
h that S 0j � Si. A 
lass Si of P(H) is not a maximal barrier of H + e10



if and only if the ends of e are in distin
t 
omponents of H � Si. For ea
h 
lass Si of P(H), wemaintain the node sets of the 
omponents of H �Si; this enables us to verify in time O(1) whetherSi is a maximal barrier of H + e. Hen
e, verifying whether every 
lass Si of P(H) is a maximalbarrier of H + e takes time O(jP(H)j) = O(n), given the above information. Note that the totaltime for su
h veri�
ation (over the whole 
omputation) is O(nm), be
ause we add O(m) ears, andea
h ear requires O(n) time for the veri�
ation.If Si is a maximal barrier of H + e, then Si is a 
lass of P(H + e), otherwise, Si has \split"into two or more 
lasses of P(H + e). In the latter 
ase, we repeatedly apply the algorithm ofProposition 2.9 to partition Si into 
lasses of P(H+ e): we take an arbitrary node v1 2 Si and �ndthe 
lass S0(v1) of P(H+e) 
ontaining v1, by applying the algorithm of Proposition 2.9 to (H+e),v1, and the restri
tion of M to H ; if Si � S 0(v1) has another node v2, then we apply the algorithmto (H + e), v2, and the restri
tion of M to H , to �nd the 
lass S 0(v2) of P(H + e) 
ontaining v2,and so on.The next 
laim provides the main tool for bounding the total number of 
hanges to the 
anoni
alpartition. De�ne the \
lass splits" tree T as follows. (This tree represents all of the splits of the
lasses of the 
anoni
al partition, over the whole 
omputation.) Ea
h 
lass of the 
anoni
al partitionduring the exe
ution 
orresponds to a node in T . Also, to make T 
onne
ted, we introdu
e a rootnode that 
orresponds to the set fx; yg, where xy 2M is the �rst edge added to H . An edge (S 0; S)is present in T if and only if S 0 is a 
lass resulting from the splitting of 
lass S in the exe
ution,i.e., S0 � S. In the exe
ution, if a 
lass S 0 is obtained by adding some of the internal nodes of anear Pi to a previous 
lass S (via Proposition 2.5), then the same node of T 
orresponds to both S 0and S.Claim: Over the whole 
omputation, the total number of \
lass splits" is O(n), where ea
h \
lasssplit" 
orresponds to a 
lass of the new 
anoni
al partition that is properly 
ontained in a 
lass ofthe old 
anoni
al partition.To prove this 
laim, fo
us on the \
lass split" tree T . Ea
h nonleaf node of T has at least two
hildren, and T has at most n leaf nodes. Hen
e, T has at most n� 1 nonleaf nodes and at most2n edges. The 
laim follows sin
e ea
h \
lass split" in the exe
ution 
orresponds to a distin
t edgeof T .Over the whole algorithm, the total time for updating the 
anoni
al partition, and the 
ompo-nents of H � Si; Si 2 P(H), is O(nm) by the above 
laim. The lemma follows.A
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