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Abstract

Let G = (V, E) be an undirected graph with a capacity function v : E—%, and
let S1,Ss,...,S5% be k commodities, where each S; consists of a pair of nodes. A set
X of nodes is called feasible if it contains no S;, and a cut (X, X) is called feasible
if X is feasible. Several optimization problems on feasible cuts are shown to be NP-
hard. A 2-approximation algorithm for the minimum-capacity feasible v*-cut problem
is presented. The multicut problem is to find a set of edges F' C E of minimum capacity
such that no connected component of G \ F contains a commodity S;. It is shown that
an a—approximation algorithm for the minimum-ratio feasible cut problem gives a
2a(1 + In T')-approximation algorithm for the multicut problem, where T' denotes the
cardinality of J; S;. A new approximation guarantee of O(tlogT') for the minimum
capacity-to-demand ratio Steiner cut problem is presented; here each commodity .S; is

a set of two or more nodes and ¢ denotes the maximum cardinality of a commodity S;.
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1 Introduction

Polynomial-time approximation algorithms for solving various NP-hard problems on graphs
involving cuts and multicuts have recently attracted a great deal of research. For example,
Dahlhaus et al introduce and study the multiterminal cut problem [DJPSY 94|, Leighton
and Rao study the sparsest cut problem [LR 88|, and Garg et al study the multicut prob-
lem [GVY 93]; see also [KRAR 90, KPRT 94]. There are both practical and theoretical
reasons behind this increased research interest. Practical applications include minimizing
communication costs in parallel computers, partitioning files among the nodes of a network,
deleting the minimum number of edges to get a bipartite graph, VLSI design, etc., see
[DJPSY 94, LR 88, GVY 93]. Theoretical motivations include obtaining the best approxi-
mation guarantees possible, designing and analyzing simple general-purpose algorithms such
as the greedy heuristic, and applying techniques from combinatorial optimization such as
linear programming relaxations and duality theory.

Let G = (V, E) be an undirected graph, and let every edge e € E have a nonnegative
capacity u(e). In addition, there are k commodities Si,...,S) associated with G, where
each commodity 5; is a set of nodes. In Section 2, each S; is a pair of nodes, so we refer to
each commodity as a demand edge. We call a cut (X, X) feasible if no demand edge has both
its end nodes in X; possibly, every demand edge has both end nodes in X. The minimum-
capacity feasible v™-cut problem is to find a feasible cut (X, X) such that X contains a given
node v* and the cut has minimum capacity u(X,X). The minimum node cover problem
1s the special case of the minimum-capacity feasible v*-cut problem in which every edge of
E(G) is incident to v*, i.e., G is the “star” of node v*; see Theorem 2.1. The minimum node
cover problem is NP-hard, and despite extensive research, the best approximation guarantee
known, assuming that |V| — oo, is 2. In Section 2, we give a 2-approximation algorithm
for the minimum-capacity feasible v*-cut problem, see Theorem 2.4. Our algorithm is based
on solving the dual of a linear programming (LP) relaxation. The dual LP is a single-
commodity flow problem, and for the special case when there is exactly one demand edge,
this flow problem corresponds to the so-called sharing problem, see [Br 79]. Brown [Br 79]
and Gallo et al [GGT 89] give combinatorial algorithms for the sharing problem. This gives
combinatorial algorithms for solving our dual LP when there is one demand edge.

Another interesting problem on feasible cuts is to find a minimum-ratio feasible cut,
see Section 2. Theorem 2.1 shows that this problem too is NP-hard. An approximation
algorithm for it may be used as a subroutine in approximately solving the multicut problem,
a key NP-hard problem that is being intensively studied, see [GVY 93, GVY 94, KPRT 94,
BTV 95]. In particular, we show that an a-approximation algorithm for the minimum-ratio

feasible cut problem gives an O(alog |V|)-approximation algorithm for the multicut problem,
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see Theorem 3.1. Our work here gives a simple, general scheme for analyzing greedy heuristics
for multicut problems. Our scheme may be used to replace ad hoc arguments used previously,
see e.g., [KRAR 90, Lemma 3.1] and [KPRT 94, Theorem 2.8].

We also study the Steiner multicut problem, and the minimum capacity-to-demand ratio
Steiner cut problem. Both problems are NP-hard. Klein et al [KPRT 94] introduced both
problems. In Section 4, we give a new approximation guarantee for the latter problem that
is independent of the number of commodities, k. Our approximation guarantee is O(tlog T')
compared to the O(log ktlog T') guarantee of [KPRT 94], where T' denotes the cardinality
of U; S;, and t denotes the maximum cardinality of a commodity S;. When ¢ is fixed, then
our guarantee is O(log T') versus O(log klog T'). Our analysis uses the method of Linial et al
[LLR 95] and is simpler than the one in [KPRT 94].

1.1 Notation

We usually denote the graph under consideration by G = (V, E), and use n for |V(G)|. For
a node v € V, N(v) denotes the set of neighbors, {w : vw € E}. For a set of nodes S,
S denotes V' '\ S. We usually allow a nonnegative capacity u : E—R, on the edges, and
in some cases there is a nonnegative weight w : V—¥, on the nodes. For a set S C V or
F CE, w(S) and u(F) denote the sum of the weights of the nodes in .S and the sum of the
capacities of the edges in F', respectively. For § C V, §(S) denotes the set of edges that
have exactly one end in S. If ) # S # V, then 6(5) is called a cut and is also denoted by
(S,5); and u(8(S)) = u(9,S) is called the capacity of the cut.

2 Feasible cut problems

In this section, we focus on the special case where each commodity has precisely two nodes.
We first show that three variants of the feasible cut problem are NP-hard. Then we give
a 2-approximation algorithm for the minimum-capacity feasible v*-cut problem. A (2 — ¢)-
approximation algorithm (e an absolute constant) would be a major result, since it would
give a (2 — €)-approximation algorithm for the minimum node cover problem (Corollary 2.2).
Finally, we study approximation algorithms for a variant that has a fractional objective
function.

Let G = (V, E) be an undirected graph with a capacity function « : E—R, and a set
of commodities. In this section, each commodity is a pair of nodes, and so we call each

commodity a demand edge. We use k to denote the number of commodities, and @ to

k
denote the set of end nodes of demand edges, i.e., = U{si,ti}, where s1ty,... , sty are
1=1
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the demand edges. Every node in () is called a terminal node. A set of nodes is called feasible
if it contains no commodity, i.e., no demand edge has both end nodes in the set; possibly, no
demand edge has an end node in the set. A feasible cut (S, S) is one such that S is feasible.
We study three related problems on feasible cuts:

u(4(5))

such that S is a feasible set of
1SN Q|

(P1): (minimum-ratio feasible cut problem) minimize

nodes, 0 #£ S £ V.

(P2): Given nonnegative node weights w : V—R,, minimize u(6(S)) — w(S) such that S is
feasible, ) £ S £ V.

(P3): (minimum-capacity feasible v*-cut problem) Given a fixed node v*, minimize u(J(.5))

such that S is feasible and v* € S # V.

2.1 Hardness of feasible cut problems

Theorem 2.1 Problems (P1), (P2) and (P3) are NP-hard.

Proof

Problem (P1): We reduce the minimum node cover problem to (P1). Let G = (f/, E’) be an
instance of the minimum node cover problem. Clearly, G has a node cover of size < |Y~/| —1.
Assume that G has no isolated nodes. We construct an instance of (P1) from G as follows,

see Figure 1:
e take two copies of V, say V and V', and an extra node z;

o form a perfect matching between V and V' with each matching edge having unit

capacity;

e fix anode v in V' and add an edge between v’ and every other node in V' with capacity

+00; also, add the edge v’z with unit capacity;

o for each edge of G, we take the corresponding node pair of V' to be a demand edge;
also, we add the demand edges zw, for each w € V'. Note that Q = {z} UV UV".

We claim that if S is an optimal solution of (P1), then V'\S gives a minimum node cover of
the graph G, and that conversely, if C' is a minimum node cover of G, then (VAC)UV' is

an optimal solution of (P1). First, suppose that SV’ = 0. Then 11%‘2') = |5.|ng| = 1. Now,

suppose that SV’ # 0. Then S D V', since there is a path of infinite capacity between
u(d(9) _ u(d(S) _ 1+V\S]
1SN Q) 5] 2|V = [VAS]

Note that this ratio is

any two nodes of V', and so
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Figure 1: Reducing the minimum node cover problem to problems (P1) (left) and (P3)
(right). Dashed lines indicate demand edges.

minimum when |V\ S| is minimum, and if [V\S| < |V| =1 = |V| — 1, then the ratio is less
than 1. By the feasibility of S, every demand edge has at least one end in {2z} U (V'\S), so
V\S corresponds to a node cover of G. Hence the optimal solution § of (P1) must contain

V' with V\ S corresponding to a minimum node cover of G. Our claim follows easily.

Problem (P2): We reduce the maximum independent set problem to (P2). Taking an instance
G = (V, E) of the maximum independent set problem, we assign each vertex in G with unit
weight and each edge in G with zero capacity. Further we have a demand edge for each edge
in G. Then for any feasible set S in the instance of (P2), the objective function w(d(.5))—w(S)
equals —|S|. Therefore, by the feasibility condition, S is a maximum independent set of G
if and only if S is an optimal solution of the instance of (P2).

Problem (P3): We reduce the minimum node cover problem to (P3). Given an instance
G = (V, E) of the minimum node cover problem, we construct an instance G' = (V', E') of
(P3) as follows, see Figure 1: (i) V' = VU{v*}, E' = {v*v|v € V} and each edge has unit
capacity. (ii) Each edge in G gives a demand edge in G'. Then for any feasible set S with
v* € § we have u(d(S)) = |[V\S|, and V\S is a node cover in G by the feasibility of S.
Hence (5, 5) is a minimum-capacity feasible v*-cut in G’ if and only if S is a minimum node
cover in G. O

From the above proof, we get two easy corollaries. The construction for Corollary 2.3 is

a variant of the construction for problem (P1) in Theorem 2.1.

Corollary 2.2 An a-approzimation algorithm for problem (P3) (minimum-capacity feasible

v*-cut) gives an a-approzimation algorithm for the minimum node cover problem.
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Corollary 2.3 The mazimum-capacity feasible cut problem (find a feasible cut (S,S) of
mazimum capacity) is NP-hard. An a-approzimation algorithm gives an a-approrimation

algorithm for the mazimum independent set problem.

2.2  Algorithms for the minimum-capacity feasible v*-cut problem

We focus on problem (P3): given a fixed node v*, find a feasible cut (5,5) of minimum
capacity with v* € §. In some special cases, the optimal solution can be found by network
flow techniques (see Proposition 2.5). For the general problem, we present a 2-approximation
algorithm.

Problem (P3) can be formulated as an integer program; relaxing the integrality con-
straints gives a linear program. There is a nonnegative length variable [, for every edge e.
Each node v is assigned with a potential d, such that the potential difference across each
edge 1s no more than the length of that edge. Furthermore, for each demand edge, the sum
of the potentials of its two end nodes is at least one. The following LP expresses this. We

constrain the special node v* to have zero potential.

Zpp = minimize Y., tcl,

subject to

dy <l + d,, for every edge vw
(LP1) < dy <l + dyy, for every edge vw

ds + dy > 1, for every demand edge st
dyx =0

l. > 0, for every edge e.

Theorem 2.4 Given an instance of (P3), there is a polynomial algorithm to find a feasible
set S with v* € § such that

ZLP S u((S(SOpt)) S u(5(5’)) S 2ZLP7
where S°P* denotes the optimal set.

We present two proofs of Theorem 2.4. The first proof was discovered earlier by R. Ravi
[R 95], improving on our approximation guarantee of (41n2) in a preliminary version of this
paper. The second proof was discovered independently by us. Our proof applies the standard

construction for proving the max-flow min-cut theorem to (LP1) and its dual.

Proof (R. Ravi) Let [, d be the optimal solution of (LP1). Let dist;(v,w) denote the length
of a shortest v-w path with respect to [. Starting at v*, we grow a shortest paths tree with

respect to [, but stop just before a node at distance > 1/2 is added. More precisely, let
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S = {w|disti(w,v*) < ¢}, where we take ¢ = 1/2 if there is no vertex w at distance 1/2
from v*, otherwise we take ¢ = 1/(24€) (e is a small positive number). The set S is feasible
since every demand edge st has either d, > 1/2 or d; > 1/2, and so every demand edge has
at least one end in V' \ S. Let vy = v*,v1,vs,...,9,, p = |S| — 1, be the order in which the
nodes of S are added to the shortest paths tree. Denote dist;(v;,v*) by d;, 4 =0,1,2,... ,p
and let d, 1 = ¢. Let S; = {vg,v1,... vl} for i =0,1,2,...,p, and let y(S;) = d;y1 — di;
s0 y(S,) = ¢ — disty(vy,v*). Let E' = Ui_; (S;). Then

ZLP = Z uele > Z Ue Z

ecE ecE' e€4(S5;)

= 20150 3 w) = (S0(80) mimcisutols)
= () minosicu(d(S).

Therefore, ming<;<,u(d(5;)) < %ZLP. Hence, the capacity of one of the cuts 6(5;),0 < i <p,

is at most (2 + €) times the minimum capacity of a feasible v*-cut. O

Proof (alternative proof of Theorem 2.4) To simplify the notation, and without loss of
k

generality, we assume that no demand edge is incident to v*. Recall that () denotes U {si,ti},

=1
where s;t;, ¢ = 1,...  k, are the demand edges. To obtain the dual linear program of (LP1),
first, rewrite (LP1) as follows. Remove the constraint d,« = 0, and for every demand edge
st, replace the constraint dy + d; > 1 by the constraint (d; — dy«) + (di — dp») > 1. Now, the
dual 1s:

Zrpp = Inaximize Zle 7;
subject to

Z f(v,w) Z flw,v) = 0, for each node v € V\({v*} U Q)
wEN (v) wEN (v)

Z flg,w Z flw,q) + Z r; = 0, for each node ¢ € @
wEN (v) wEN (v) “16{3, ti}

Z f(v™",w) Z flw,v™) — 227“1 = 0
wEN (v) wEN (v)
fv,w) + f(w,v) < u(vw), for each edge vw € E
fv,w), f(w,v) > 0, for each edge vw € E
o > 0, i=1,2,... k.

A feasible solution to this LP is a flow f such that for each demand edge s;t;, the net inflow
to both end nodes is the same, namely r;, and such that v* has net outflow 2% . 7;. For

every other node, the flow conservation condition holds, and every edge satisfies the capacity
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constraint. Let f and r form an optimal solution to this LP. We may assume that at most
one direction of each edge vw has positive flow. Otherwise, if f(v,w) > f(w,v) > 0, we can
substitute f(v,w) by f(v,w) — f(w,v) and substitute f(w,v) by zero. It is easy to check
that the new flow is still optimal.

We find a feasible v*-cut (S, S) of small capacity by constructing the node set S by first
taking v* in S. Then, repeatedly, for each edge vw with v € S and w ¢ S, if either f(v,w) <
w(vw) or f(w,v) > 0, then we include w in S. We claim that S is feasible. Otherwise,
S contains both end nodes of some demand edge s;t;. Then there exists an augmenting
path from v* to s; and an augmenting path from v* to t;. Hence we can increase the net
inflow r; of ¢; and s; by a positive amount, contradicting the optimality of f. Furthermore,

ifveSwdgS and vw € E, then f(v,w) = u(vw) and f(w,v) = 0. Therefore,

u(S,?) = Z flv,w) — Z flw,v)

veSweS vweE weSweSvweE
= > (> flv,w)— > f(w,v)), by Lemma 11.1 [BM 78]
vES wEN(v) weN (v)

< 2 Zriv
=1

where the last inequality holds because the net outflow of v* is 2 Y%, r; and the net outflow of
every node in S\{v*} is non-positive. The cut (S, S) is a 2-approximation for the minimum-
capacity feasible v*-cut since u(S,S5) < 2% | r; = 2Z,p. O

The next result gives a polynomial algorithm for the minimum-capacity feasible v*-cut
for several special cases. For an instance of problem (P3), let H denote the set of demand

edges; the graph (V, H) is called the demand graph.

Proposition 2.5 If the number of mazimal independent sets in the demand graph (V, H)
s polynomaial in n, and all the mazimal independent sets can be found in polynomial time,

then a minimum-capacity feasible v*-cut can be found in polynomial time.

Proof For each maximal independent set [ C V of the demand graph, we find a cut of
minimum capacity separating {v*} from V' \ I = @ \ I by solving a single maximum flow
problem (the source is v* and the sinks are @ \ I). The best of these cuts is the required
output. U

Corollary 2.6 Ifthe demand graph (V, H) is one of the following, then a minimum-capacity

feasible v*-cut can be found in polynomial time:

(a) a graph with a bounded number of edges, i.e., |H| = O(1),
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(b) a clique,

(¢) a complete bipartite graph,

(d) the complement of a triangulated graph,
(e) the complement of a bipartite graph, or

(f) the complement of a line graph.

See p. 302 of [GLS 88] for similar results on the maximum independent set problem.
Unfortunately, problems (P1), (P2) and (P3) remain NP-hard for the special case when the
demand graph is bipartite. This follows because each of these problems can be transformed
into an “equivalent” problem such that no two demand edges have a node in common, i.e.,
the demand edges form a matching. To see this, repeatedly split a node incident with two

or more demand edges into two new nodes joined by a new edge with a huge capacity.

Proposition 2.7 Problems (P1), (P2) and (P3) remain NP-hard under the restriction that
the demand graph is bipartite.

Cousider solving (LP1) by a combinatorial algorithm. Since the dual of (LP1) is a single-
commodity flow problem, the question arises whether the optimal flow can be found using
standard techniques from network flows. If there is exactly one demand edge, then it can be
seen that the optimal flow can be found by computing several s-f maximum flows. Brown
[Br 79] gives an algorithm for the case of one demand edge that finds the optimal flow by
computing two maximum s-t flows. In fact, Brown gives a combinatorial algorithm for a
problem that is more general, the so-called sharing problem. Unfortunately, for the case of
two or more demand edges, we do not know of any combinatorial algorithm. Even for the
special case when every edge in G is incident to v* (i.e., G is the “star” of node v*) and
no demand edge is incident to v*, obtaining a combinatorial algorithm is nontrivial. In this
special case, note that an optimal solution to (LP1) has d,, = l,+, for each node w € V\{v*}.
Obtaining an optimal solution to (LP1) corresponds to solving an LP relaxation of the

minimum-weight node cover problem; there is a combinatorial algorithm for this problem

due to Nemhauser and Trotter [NT 75].

Proposition 2.8 [Br 79] In the special case when there is one demand edge, an optimal

solution to the dual of (LP1) can be found by computing two mazimum s-t flows.
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2.3 Approximating minimum-ratio feasible cuts

We focus on finding a minimum-ratio feasible cut. It is well known that an optimization
problem with a rational objective function f(z)/g(z) can be solved in polynomial time
if the associated problem with objective function f(z) — Ag(z), where X is a real-valued
parameter, can be solved in polynomial time [GM 84, Appendix 5]. For the minimum-ratio
feasible cut problem, the associated problem can be solved by solving at most » minimum-
capacity feasible v*-cut problems; see the first paragraph in the proof of Proposition 2.9.
Consequently, we can efficiently solve the minimum-ratio feasible cut problem for the special
cases in Corollary 2.6. In general, an approximation algorithm for an optimization problem
with a rational objective function does not follow from an approximation algorithm for the
associated problem. The main result of this subsection is an O(1)-approximation algorithm
for the minimum-ratio feasible cut problem for the special case when the feasible shore B
of a minimum-capacity feasible cut (B, B) has > (0.5 + €)|Q| of the terminals. For related
work, see [HFKI 87]. Recall that @) denotes the set of end nodes of demand edges.

Proposition 2.9 Suppose that an a-approximation algorithm for the minimum-capacity fea-
stble v*-cut problem is available. Let € be a number such that1 > 1/a > € > 0. If the instance
G=(V,E), u: E=R,, sity,. .., sitx has a minimum-capacity feasible cut (B, B) such that

1
|BNQ| > (14+e——)|Q|, then there is a (1/€)-approzimation algorithm for the minimum-ratio
a

feasible cut problem.

Proof Assume every cut has positive capacity and @ # 0 (i.e., there is a demand edge).
Let the feasible set S* achieve the optimal ratio A*, i.e.,
u(d(S7)  _ ulé(S))

o= )

———= VS feasible, 0 # S.
snQ = 18nq| 7

Here is the method for solving the minimum-ratio feasible cut problem, given an algorithm
for the minimum-capacity feasible v*-cut problem: We “linearize” the minimum-ratio feasible

cut problem to an instance of problem (P2)
minimize {u(d(S)) — A[SNQ| : S feasible,d # S N Q},

where X is a nonnegative parameter. The optimal value of the linearized problem is zero
iff we fix A = A*; also, A is less (greater) than A* iff the optimal value of the linearized
problem is positive (negative). Note that \* > 4/n and A* < U, where & = min, u. and
U=3%,u. Tofind \*, we execute a binary search over the interval [@/n, U]. Each iteration
of the binary search solves the linearized problem with the current value of A. To solve the

linearized problem, we transform it to a variant of the minimum-capacity feasible v*-cut
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problem. We add a new node v* and all the edges v*w, w € (), and fix the capacity of each
new edge at A. The goal of our variant is to find a cut (S’,.S) of minimum capacity such
that S’ = {v*} U S, S is feasible and ) # S Q, i.e., the feasible shore S’ should contain
v* as well as a terminal node of the original problem. This can be achieved as follows: for
each terminal node w € @), construct an instance of the minimum capacity feasible v*-cut
problem by “contracting” nodes v* and w into a new node v*. The best of the |@| feasible
v*-cuts gives the desired cut ($’,S’). In terms of the v*-cut problem, the capacity of (S5, 5")
is u(8(S)) + A|S N Q|. Subtracting A\|Q|, we get the optimal value of the linearized problem.

Q]
AlQ]
a-g(X)

[}
=
3
=
[}
2
2 g(A)
e
e}

! : A

° ® ®

)\1 A% )\2

Figure 2: An illustration of the parametrized objective function g(A), and of Ay, A*, A,.

The rest of the proof focuses on the solution of the linearized problem for a fixed value
of the parameter A, however, we keep the notation of the original minimum-ratio feasible
cut problem, i.e., S, 5%, Sy denote a feasible shore without the new node v*. The objective
function for the feasible v*-cut problem as a function of A is

min

9= ¢ asibie. 0 £ 5010 {w(d(8) + AS N Q[} =u(d(SH) + ASxn Q,

where Sy denotes the optimal set when the parameter is fixed at A. The function g(A) is the
“lower envelope” of the linear functions u(d(S5)) + XS N Q| (VS feasible, § # SN Q), each of
which has positive slope, and so g(\) is a piece-wise linear, concave function with positive
slope, see Figure 2. Note that g(A*) = w(5(5*)) + A*|S*N Q| = X*|Q|. Let A\; and X, denote

the values of the parameter such that

)\1|Q| = 9()\1)/04 and )\2|Q| = 04‘9()\2)3
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recall that « is the approximation guarantee for the minimum-capacity feasible v*-cut prob-
lem. Observe that if the parameter A does not lie in the interval [A;, Az], then the current
iteration of the binary search (in the standard method for the minimum-ratio problem) gives
the correct decision: if A < Ay, then the smallest possible objective value found by the ap-
proximation algorithm for the feasible v*-cut problem is g()), and since 1/« of this value
is > A|Q|, we decide correctly that A* > A; the other case, A > Ay, is similar. On the
other hand, if A is in the interval [A1, A;], then we cannot make the correct decision. In this
case, our approximation algorithm for the minimum-ratio problem terminates, and returns
the current value of A and the associated feasible set S, § # S Q, as the approximately
optimal solution.

We claim that under the hypothesis of the proposition A; > eX* and Ay, < A*/e. The
proposition follows from this claim. Now, we prove the claim. For the feasible shore B of
the minimum-capacity feasible cut in the hypothesis, i.e., B = Sy for A = 0, let § denote
|IBNQ|/|Q]|, and note that for all A >0, |SxNQ|/|Q| > 5.

Since ad|Q| = g(M) = u(8(Sx,)) + Mi/Bx 1 Q).

QI u(é(Sy)

[Sn @l [SyNQ)
1

A" > e)”, since by the hypothesis 8 > e+ 1— — > Be +
a

1 >
——— >
1+ (a=1)/8 ~

(Oé—]_))\l —)\12)\*—)\1

—1
Hence, A\; > a

1
1+(a-1)/p
(since B < 1) > Pe+ (a — 1)e (since € < l), hence

a
For A, we have,

A2| Q)

= 9(n)
< u(8(S5)) + X2|S* N Q|, by definition of g(Az)
= VQI+ (A = A)S N Q|
Hence,
al§ N Q a[Q| i X
Ay < _ < il < y<
TTQI-alSNQL T T Q- alST QL T T A (a) -1 T T e

where the last inequality follows from the hypothesis: 3> 1+ € — i a

3 An approximate greedy method for multicut prob-

lems

We present a greedy method for approximately solving NP-hard Steiner/simple multicut
problems. In the Steiner multicut problem introduced by Klein et al [KPRT 94|, the input
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consists of G = (V, E),u : E—%R,, and k commodities S1,Ss,. .. , Sk, where each S; is a set
of two or more nodes (|S;| > 2, ¢ =1,... ,k). The problem is to find a set of edges F' C FE of
minimum capacity such that no connected component of G\ F' contains a commodity S;, i.e.,
F should separate each commodity S;(1 < ¢ < k) in the sense that there exist two nodes v, w
in S; such that every v-w path uses an edge of F'. A node is called a terminal if it belongs
to some commodity S;. We use T to denote the number of terminals, ' = |J; S;|, and ¢
to denote the maximum cardinality of a commodity, ¢ = max; |S;|. Klein et al [KPRT 94],
gave an O(log T'log klog kt)-approximation algorithm for the Steiner multicut problem. In
the simple multicut problem, each commodity has precisely two nodes. This problem was
studied by Klein et al and Garg et al [KRAR 90], [GVY 93]; they proved approximation
guarantees of O(log® T') and 4In(T + 1), respectively.

First, we formulate a variant of the multicut problem as a set covering problem with
an exponential (in n) number of sets. This follows Bertsimas and Vohra [BV 94]; however,
Bertsimas and Vohra never gave a polynomial-time approximation algorithm for this for-
mulation. We directly apply an approximate greedy heuristic to the set covering problem:
each iteration of this heuristic solves a minimum-ratio feasible cut subproblem. The sub-
problem turns out to be NP-hard too. However, if we can find an a-approximation for the
subproblem, then our iterative method finds an O(alog n)-approximation to the multicut
problem.

Recall that a set S C V is feasible if it contains no commodity S;, 1 <2 < k. Let F
denote the family of all feasible sets. The goal is to “cover” all the terminals using feasible
sets. For each feasible set S chosen in the covering, all edges in 6(S) are deleted from G, i.e.,
the multicut corresponding to this formulation is the union of §(S) over all S in the covering.
The following integer program (SC) for the set covering formulation has a 0-1 variable zg
for each feasible set S. The optimal value of (SC) is at least half and at most twice the

capacity of an optimal multicut.

(SC) minimize Z w(8(5))zs
seF
subject to dooows > 1, Vo e =U;5;
SEJIT:UES
zs € {0,1}, VS e F.

Recall that the greedy heuristic for solving the set covering problem repeatedly chooses
a set S minimizing the ratio cs/N§, where ¢g is the coeflicient of S in the objective function,
and Nj is the number of nonzero coefficients in S’s column in the current constraints matrix
[Ch 79]. The greedy heuristic is guaranteed to produce a set covering with objective value
< (1 4+ 1n Nyaz)z, where Npge is the maximum over all columns of the number of nonzero

coeflicients and z is the optimal value (actually, z is the optimal value of the LP relaxation).
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For the multicut problem, the greedy heuristic applied to (SC) gives an approximation
guarantee of 2(1 + InT) = O(log T); recall that T denotes |UF_, S;|. Each iteration of
the greedy heuristic applied to (SC) has to solve the NP-hard minimum-ratio feasible cut
problem, since we have to find a feasible set S minimizing u(4(5))/|S N Q. Our next result
shows that if we can find an a-approximation to the minimum-ratio feasible cut problem,

then by iterating this we can find a 2a(1 4 In T')-approximation to the multicut problem via

(SC).

Theorem 3.1 Consider an approzimate greedy heuristic for the set covering problem that
in each iteration finds a set S such that
3 . Cs
5 <o o5
o S o min N
s
where cg is the coefficient of S in the objective function, and Ng denotes the number of
nonzero coefficients in S’s column in the current constraints matriz (after deleting rows of
points already covered). Then the final set covering found by the heuristic has objective value

at most a(1 +1n Nyez) times the optimal value.

Proof The proof is similar to Chvatal’s analysis of the greedy heuristic [Ch 79]. See also
Lemma 3.2.1 in [RV 93].
Consider the LP relaxation of the set covering problem and its dual
min » g ¢sxs maxy.; y;
subject to subject to
(D) 3 ; < f h S
scs Yi S Cs, Ior eac

(P)

YsiesTs > 1, for each ¢

x>0 y > 0.
We show that the heuristic constructs a feasible dual solution y such that its objective
Z
value is > il , where Zp is the objective value of the set covering found by the

a(l+1n Nyay)

heuristic. The theorem follows because for every feasible dual solution y, and an optimal
solution z of (P),

Sy < esws < 77,
: S

where Z* is the optimal value of the set covering problem.
Let S1,55,55,... be the sequence in which the heuristic chooses sets, and let gf(i) be
the first set chosen by the heuristic that contains element i. For each element ¢, let w; =
@)
1St \(S1U- ..U Si)-1)]-
Now we claim that for each set S, Y ,csw; < ¢s- a(l +1nl|S|). We prove the claim

as follows. Order the elements in S in the reverse order in which they were first covered:

Clearly, >, w; = Zg.
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i1,%2,... ,1g]. Consider 7;. When i; is first covered, say by gp, S has at least | uncovered

elements, so |S\(§1 U...U gp_1)| > [. Hence, by our assumption,

s, cs Qacg

— = <a- = = <
[Sp\(S1 U - U Spa) [S\(S1U- - USp-a)| T

Y

50 w;, < Oé_;s‘ The claim follows since Z w;, < acg Z % < acs(1+1nS]). To get the dual
‘ ' ies €S

solution y, let y; = m O

The above theorem applies to another set covering formulation of a variant of the multicut
problem. Instead of covering by feasible sets, we allow arbitrary node sets. We have a 0-1
variable g for every set S C V. The objective function is similar to the one in (SC), but
the constraints are different. For each commodity S; C V, 1 < ¢ < k, we require that at
least one of the sets S chosen in the covering “separates” 5;, i.e., S includes some node of
S; and does not include some other node of S;. The optimal value of (SC’) is at least half

and at most twice the capacity of an optimal multicut.

(SC')  minimize Z w(8(5))zs
scv
subject to Z rs > 1, Vi=1,... .k
SCV0#£SNS;i#£S;
rs € {0,1}, VS CV.

Now, the greedy heuristic iteratively finds a set S minimizing ﬁ%, where dem (S, S)

denotes the number of commodities separated by (S,S). (This agrees with our notation
in Sections 4 since each commodity here has unit demand.) The problem of finding a cut
minimizing the capacity-to-demand ratio is NP-hard [MS 90], however, extensive research
has been devoted to designing approximation algorithms. For the case of |S;| =2, 1 <i <k,
thereis an O(log T') = O(log k) approximation algorithm due to Linial et al [LLR 95], see also
[KRAR 90, PT 95]. For the general case, approximation guarantees of O(log ktlogT) and
O(tlog T') can be achieved in polynomial time; these results are due to Klein et al [KPRT 94],
and Section 4 of this paper, respectively. We obtain approximation guarantees of O(log? k)
and O(min(¢,log kt) log T'log k) for the simple and Steiner multicut problems, respectively,
by directly applying Theorem 3.1. However, this does not improve on the approximation

guarantees of [GVY 93] and [KPRT 94], respectively.
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4 A new approximation guarantee for minimum-ratio

Steiner cuts

In the minimum capacity-to-demand ratio Steiner cut problem introduced by Klein et al
[KPRT 94], the input counsists of G = (V, E),u : E—®,, and k commodities S1,S5,,..., Sk
where each S; is a set of nodes (possibly, |.S;| > 2). There is an additional input, namely, a
nonnegative real-valued demand dem,; for each commodity S5;, 1 <1 < k. We say that a cut
(X, X) separates commodity S; if 0 # X N S; # S;. The demand dem (X, X) across a cut
(X, X) is the sum of the demands of the separated commodities. The minimum capacity-to-
demand ratio Steiner cut problem is to find a cut that minimizes the ratio of the capacity
of the cut and the demand across the cut, u(X, 7)/[2(@':0;&SmX7&Si) dem;].

Theorem 4.1 Given an instance of the minimum capacity-to-demand ratio Steiner cut prob-
lem, there is a (deterministic) polynomial algorithm to find a cut (X, X) such that

< O(tlog T)z".

min {M}g%_

TS g4y £V | dem(v,Y)

Here, z* denotes the optimal value of the LP relaxation (LP2) (see below) of the problem, t
denotes max; |S;|, and T denotes |J; S;|.

We will use the following result due to Linial et al, see [LLR 95, Corollary 3.4]. For a
graph G and length function [ : E—R,, let dist;(v,w) denote the length of a shortest v-w
path with respect to [.

Proposition 4.2 Given a graph G, a length I, on each edge e, and a set of nodes Q, there

is a deterministic polynomial algorithm that constructs an ly-metric p : V x V—=Ry such that

dist;(v,w)
O(log |Q])

2. for every pair of nodes {v,w} in V, p(v,w) < disti(v,w).

1. for every pair of nodes {v,w} in Q, < plv,w) < disty(v, w);

The next fact is well known [AD 91].

Fact 4.3 FEvery l;-metric on node set V can be written as a nonnegative linear combination

of incidence vectors of cuts of the complete graph on V.

Proof (Theorem 4.1) Let [ : E—R, be an optimal solution for the following LP relaxation
of our problem. This LP relaxation is due to Klein et al [KPRT 94].
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Z* = minimize Y., t.l,

subject to
(LP2) S dem; - 1(5) = 1
l.>0,Vee E,

where [(S;) denotes the minimum length of a spanning tree of the distance network Dg(.S;)
[HRW 92]. In more detail, given G, [ : E — R, and S; C V, Dg(S;) consists of the complete
graph on the node set S; and edge lengths dist;, i.e., the length of an edge vw, v,w € S,
equals the length dist;(v,w) of a shortest v-w path in G with respect to I. We use F; to

denote the set of edges of a minimum spanning tree of Dg(S;), so I(.S;) = Z dist;(v, w).
vwEF;

Then,

Ze uele
* = ele =
i ze:u Zle dem; - 1(S;)

S > vwer Yow disti(v, w)
- vk, dem; (X pwer, disti(v, w))
1 Y vweE uva(v, w)
O(log T') Zf:l dem;(Xower; p(v, w)) 7

where p is an [;-metric satisfying the two properties in Proposition 4.2, and we take the set
Q in the proposition to be [J}_, S;. By Fact 4.3, there exists a cut (X, X) such that this
quantity is

1 vaE(X,Y) Uy
O(log T) £ty dem; - [(X,X) N |
1 (X, X)
O(log T) D (104 5:0X4S;) dem; - (|Si| — 1)
1 (X, X)
> . —.
~ (t—=1)0(ogT) dem(X,X)

Given the [; metric p in the form of an embedding of (V p) into a real space with /; norm,
the cut (X, X) can be found in polynomial time, see [LLR 95, Theorem 4.1]. O

5 Conclusions

We conclude with two open problems. Is the problem of finding a feasible cut of minimum
capacity NP-hard? Note that this is a variant of problem (P3) where we drop the constraint
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on the node v*. Is there an O(1) approximation algorithm for the minimum-ratio feasible
cut problem? Our algorithm in Section 2.3 needs a “strong” assumption to give an O(1)
approximation guarantee, namely, there exists a minimum-capacity feasible cut (B, B) such
that B contains a large fraction of the terminal nodes. Note that such a cut (B, B), if present,
is an O(1) approximation to the minimum-ratio feasible cut. The problem of finding such a
cut (B, B) is a bicriteria optimization problem, but unfortunately, we do not know how to

solve it in polynomial time.

Acknowledgment: We thank Bill Cunningham for helpful discussions.
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