
Approximation algorithms for feasible cut and multicutproblemsBo Yu and Joseph Cheriyan �yAbstractLet G = (V;E) be an undirected graph with a capacity function u : E!<+ andlet S1; S2; : : : ; Sk be k commodities, where each Si consists of a pair of nodes. A setX of nodes is called feasible if it contains no Si, and a cut (X;X) is called feasibleif X is feasible. Several optimization problems on feasible cuts are shown to be NP-hard. A 2-approximation algorithm for the minimum-capacity feasible v�-cut problemis presented. The multicut problem is to �nd a set of edges F � E of minimumcapacitysuch that no connected component of G nF contains a commodity Si. It is shown thatan ��approximation algorithm for the minimum-ratio feasible cut problem gives a2�(1 + lnT )-approximation algorithm for the multicut problem, where T denotes thecardinality of Si Si. A new approximation guarantee of O(t logT ) for the minimumcapacity-to-demand ratio Steiner cut problem is presented; here each commodity Si isa set of two or more nodes and t denotes the maximum cardinality of a commodity Si.Key words. feasible cut, multicut, 
ow, set covering problem, NP-hard problem, approximationalgorithmAMS(MOS) subject classi�cations. 90C27, 68Q25, 05C85, 90C35, 90B10�Department of Combinatorics & Optimization, University of Waterloo, Waterloo, Ontario, CanadaN2L 3G1. Supported in part by NSERC grant no. OGP0138432 (NSERC code OGPIN 007).yA preliminary version of this paper has appeared in: \Approximation algorithms for feasible cut andmulticut problems", Proc. Algorithms | ESA'95, 3rd Annual European Symposium, P. Spirakis (Ed.), LNCS979, Springer, New York, (1995), pp. 394{408. 1



Approximation algorithms for cut problems 21 IntroductionPolynomial-time approximation algorithms for solving various NP-hard problems on graphsinvolving cuts and multicuts have recently attracted a great deal of research. For example,Dahlhaus et al introduce and study the multiterminal cut problem [DJPSY 94], Leightonand Rao study the sparsest cut problem [LR 88], and Garg et al study the multicut prob-lem [GVY 93]; see also [KRAR 90, KPRT 94]. There are both practical and theoreticalreasons behind this increased research interest. Practical applications include minimizingcommunication costs in parallel computers, partitioning �les among the nodes of a network,deleting the minimum number of edges to get a bipartite graph, VLSI design, etc., see[DJPSY 94, LR 88, GVY 93]. Theoretical motivations include obtaining the best approxi-mation guarantees possible, designing and analyzing simple general-purpose algorithms suchas the greedy heuristic, and applying techniques from combinatorial optimization such aslinear programming relaxations and duality theory.Let G = (V;E) be an undirected graph, and let every edge e 2 E have a nonnegativecapacity u(e). In addition, there are k commodities S1; : : : ; Sk associated with G, whereeach commodity Si is a set of nodes. In Section 2, each Si is a pair of nodes, so we refer toeach commodity as a demand edge. We call a cut (X;X) feasible if no demand edge has bothits end nodes in X; possibly, every demand edge has both end nodes in X . The minimum-capacity feasible v�-cut problem is to �nd a feasible cut (X;X) such that X contains a givennode v� and the cut has minimum capacity u(X;X). The minimum node cover problemis the special case of the minimum-capacity feasible v�-cut problem in which every edge ofE(G) is incident to v�, i.e., G is the \star" of node v�; see Theorem 2.1. The minimum nodecover problem is NP-hard, and despite extensive research, the best approximation guaranteeknown, assuming that jV j ! 1, is 2. In Section 2, we give a 2-approximation algorithmfor the minimum-capacity feasible v�-cut problem, see Theorem 2.4. Our algorithm is basedon solving the dual of a linear programming (LP) relaxation. The dual LP is a single-commodity 
ow problem, and for the special case when there is exactly one demand edge,this 
ow problem corresponds to the so-called sharing problem, see [Br 79]. Brown [Br 79]and Gallo et al [GGT 89] give combinatorial algorithms for the sharing problem. This givescombinatorial algorithms for solving our dual LP when there is one demand edge.Another interesting problem on feasible cuts is to �nd a minimum-ratio feasible cut,see Section 2. Theorem 2.1 shows that this problem too is NP-hard. An approximationalgorithm for it may be used as a subroutine in approximately solving the multicut problem,a key NP-hard problem that is being intensively studied, see [GVY 93, GVY 94, KPRT 94,BTV 95]. In particular, we show that an �-approximation algorithm for the minimum-ratiofeasible cut problem gives an O(� log jV j)-approximation algorithm for the multicut problem,



Approximation algorithms for cut problems 3see Theorem 3.1. Our work here gives a simple, general scheme for analyzing greedy heuristicsfor multicut problems. Our scheme may be used to replace ad hoc arguments used previously,see e.g., [KRAR 90, Lemma 3.1] and [KPRT 94, Theorem 2.8].We also study the Steiner multicut problem, and the minimum capacity-to-demand ratioSteiner cut problem. Both problems are NP-hard. Klein et al [KPRT 94] introduced bothproblems. In Section 4, we give a new approximation guarantee for the latter problem thatis independent of the number of commodities, k. Our approximation guarantee is O(t log T )compared to the O(log kt log T ) guarantee of [KPRT 94], where T denotes the cardinalityof Si Si, and t denotes the maximum cardinality of a commodity Si. When t is �xed, thenour guarantee is O(log T ) versus O(log k log T ). Our analysis uses the method of Linial et al[LLR 95] and is simpler than the one in [KPRT 94].1.1 NotationWe usually denote the graph under consideration by G = (V;E), and use n for jV (G)j. Fora node v 2 V , N(v) denotes the set of neighbors, fw : vw 2 Eg. For a set of nodes S,S denotes V n S. We usually allow a nonnegative capacity u : E!<+ on the edges, andin some cases there is a nonnegative weight w : V!<+ on the nodes. For a set S � V orF � E, w(S) and u(F ) denote the sum of the weights of the nodes in S and the sum of thecapacities of the edges in F , respectively. For S � V , �(S) denotes the set of edges thathave exactly one end in S. If ; 6= S 6= V , then �(S) is called a cut and is also denoted by(S; S); and u(�(S)) = u(S; S) is called the capacity of the cut.2 Feasible cut problemsIn this section, we focus on the special case where each commodity has precisely two nodes.We �rst show that three variants of the feasible cut problem are NP-hard. Then we givea 2-approximation algorithm for the minimum-capacity feasible v�-cut problem. A (2 � �)-approximation algorithm (� an absolute constant) would be a major result, since it wouldgive a (2��)-approximation algorithm for the minimum node cover problem (Corollary 2.2).Finally, we study approximation algorithms for a variant that has a fractional objectivefunction.Let G = (V;E) be an undirected graph with a capacity function u : E!<+ and a setof commodities. In this section, each commodity is a pair of nodes, and so we call eachcommodity a demand edge. We use k to denote the number of commodities, and Q todenote the set of end nodes of demand edges, i.e., Q = k[1=1fsi; tig, where s1t1; : : : ; sktk are



Approximation algorithms for cut problems 4the demand edges. Every node in Q is called a terminal node. A set of nodes is called feasibleif it contains no commodity, i.e., no demand edge has both end nodes in the set; possibly, nodemand edge has an end node in the set. A feasible cut (S; S) is one such that S is feasible.We study three related problems on feasible cuts:(P1): (minimum-ratio feasible cut problem) minimize u(�(S))jS \Qj such that S is a feasible set ofnodes, ; 6= S 6= V .(P2): Given nonnegative node weights w : V!<+, minimize u(�(S))� w(S) such that S isfeasible, ; 6= S 6= V .(P3): (minimum-capacity feasible v�-cut problem) Given a �xed node v�, minimize u(�(S))such that S is feasible and v� 2 S 6= V .2.1 Hardness of feasible cut problemsTheorem 2.1 Problems (P1), (P2) and (P3) are NP-hard.ProofProblem (P1): We reduce the minimum node cover problem to (P1). Let eG = ( eV ; eE) be aninstance of the minimum node cover problem. Clearly, eG has a node cover of size � j eV j � 1.Assume that eG has no isolated nodes. We construct an instance of (P1) from eG as follows,see Figure 1:� take two copies of eV , say V and V 0, and an extra node z;� form a perfect matching between V and V 0 with each matching edge having unitcapacity;� �x a node v0 in V 0 and add an edge between v0 and every other node in V 0 with capacity+1; also, add the edge v0z with unit capacity;� for each edge of eG, we take the corresponding node pair of V to be a demand edge;also, we add the demand edges zw, for each w 2 V 0. Note that Q = fzg [ V [ V 0.We claim that if S is an optimal solution of (P1), then V nS gives a minimum node cover ofthe graph eG, and that conversely, if C is a minimum node cover of eG, then (V nC)SV 0 isan optimal solution of (P1). First, suppose that S TV 0 = ;. Then u(�(S))jS\Qj = jSjjS\Qj = 1. Now,suppose that S TV 0 6= ;. Then S � V 0, since there is a path of in�nite capacity betweenany two nodes of V 0, and so u(�(S))jS \Qj = u(�(S))jSj = 1 + jV nSj2jV j � jV nSj. Note that this ratio is
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Figure 1: Reducing the minimum node cover problem to problems (P1) (left) and (P3)(right). Dashed lines indicate demand edges.minimum when jV nSj is minimum, and if jV nSj � jV j � 1 = j eV j � 1, then the ratio is lessthan 1. By the feasibility of S, every demand edge has at least one end in fzg [ (V nS), soV nS corresponds to a node cover of eG. Hence the optimal solution S of (P1) must containV 0 with V nS corresponding to a minimum node cover of eG. Our claim follows easily.Problem (P2): We reduce the maximum independent set problem to (P2). Taking an instanceG = (V;E) of the maximum independent set problem, we assign each vertex in G with unitweight and each edge in G with zero capacity. Further we have a demand edge for each edgein G. Then for any feasible set S in the instance of (P2), the objective function u(�(S))�w(S)equals �jSj. Therefore, by the feasibility condition, S is a maximum independent set of Gif and only if S is an optimal solution of the instance of (P2).Problem (P3): We reduce the minimum node cover problem to (P3). Given an instanceG = (V;E) of the minimum node cover problem, we construct an instance G0 = (V 0; E 0) of(P3) as follows, see Figure 1: (i) V 0 = V Sfv�g, E 0 = fv�vjv 2 V g and each edge has unitcapacity. (ii) Each edge in G gives a demand edge in G0. Then for any feasible set S withv� 2 S we have u(�(S)) = jV nSj, and V nS is a node cover in G by the feasibility of S.Hence (S; S) is a minimum-capacity feasible v�-cut in G0 if and only if S is a minimum nodecover in G. 2From the above proof, we get two easy corollaries. The construction for Corollary 2.3 isa variant of the construction for problem (P1) in Theorem 2.1.Corollary 2.2 An �-approximation algorithm for problem (P3) (minimum-capacity feasiblev�-cut) gives an �-approximation algorithm for the minimum node cover problem.



Approximation algorithms for cut problems 6Corollary 2.3 The maximum-capacity feasible cut problem (�nd a feasible cut (S; S) ofmaximum capacity) is NP-hard. An �-approximation algorithm gives an �-approximationalgorithm for the maximum independent set problem.2.2 Algorithms for the minimum-capacity feasible v�-cut problemWe focus on problem (P3): given a �xed node v�, �nd a feasible cut (S; S) of minimumcapacity with v� 2 S. In some special cases, the optimal solution can be found by network
ow techniques (see Proposition 2.5). For the general problem, we present a 2-approximationalgorithm.Problem (P3) can be formulated as an integer program; relaxing the integrality con-straints gives a linear program. There is a nonnegative length variable le for every edge e.Each node v is assigned with a potential dv such that the potential di�erence across eachedge is no more than the length of that edge. Furthermore, for each demand edge, the sumof the potentials of its two end nodes is at least one. The following LP expresses this. Weconstrain the special node v� to have zero potential.(LP1)8>>>>>>>>>>>><>>>>>>>>>>>>: ZLP = minimize Pe uelesubject todw � lvw + dv; for every edge vwdv � lvw + dw; for every edge vwds + dt � 1; for every demand edge stdv� = 0le � 0; for every edge e:Theorem 2.4 Given an instance of (P3), there is a polynomial algorithm to �nd a feasibleset S with v� 2 S such thatZLP � u(�(Sopt)) � u(�(S)) � 2ZLP ;where Sopt denotes the optimal set.We present two proofs of Theorem 2.4. The �rst proof was discovered earlier by R. Ravi[R 95], improving on our approximation guarantee of (4 ln 2) in a preliminary version of thispaper. The second proof was discovered independently by us. Our proof applies the standardconstruction for proving the max-
ow min-cut theorem to (LP1) and its dual.Proof (R. Ravi) Let l; d be the optimal solution of (LP1). Let dist l(v;w) denote the lengthof a shortest v-w path with respect to l. Starting at v�, we grow a shortest paths tree withrespect to l, but stop just before a node at distance � 1=2 is added. More precisely, let



Approximation algorithms for cut problems 7S = fwjdist l(w; v�) � �g; where we take � = 1=2 if there is no vertex w at distance 1/2from v�, otherwise we take � = 1=(2+ �) (� is a small positive number). The set S is feasiblesince every demand edge st has either ds � 1=2 or dt � 1=2, and so every demand edge hasat least one end in V n S. Let v0 = v�; v1; v2; : : : ; vp, p = jSj � 1, be the order in which thenodes of S are added to the shortest paths tree. Denote dist l(vi; v�) by di, i = 0; 1; 2; : : : ; pand let dp+1 = �. Let Si = fv0; v1; : : : ; vig, for i = 0; 1; 2; : : : ; p, and let y(Si) = di+1 � di;so y(Sp) = �� dist l(vp; v�). Let E 0 = Spi=0 �(Si). ThenZLP = Xe2E uele � Xe2E0 ue Xe2�(Si)i:0�i�p y(Si)= pXi=0 �y(Si) Xe2�(Si)ue� � � pXi=0 y(Si)� min0�i�pu(�(Si))= (�) min0�i�pu(�(Si)):Therefore, min0�i�pu(�(Si)) � 1�ZLP . Hence, the capacity of one of the cuts �(Si); 0 � i � p;is at most (2 + �) times the minimum capacity of a feasible v�-cut. 2Proof (alternative proof of Theorem 2.4) To simplify the notation, and without loss ofgenerality, we assume that no demand edge is incident to v�. Recall that Q denotes k[i=1fsi; tig,where siti, i = 1; : : : ; k, are the demand edges. To obtain the dual linear program of (LP1),�rst, rewrite (LP1) as follows. Remove the constraint dv� = 0, and for every demand edgest, replace the constraint ds + dt � 1 by the constraint (ds � dv�) + (dt � dv�) � 1. Now, thedual is:8>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>:
ZLP = maximize Pki=1 risubject toXw2N(v) f(v;w)� Xw2N(v) f(w; v) = 0; for each node v 2 V n(fv�g [ Q)Xw2N(v) f(q; w)� Xw2N(v) f(w; q) + Xi:q2fsi;tig ri = 0; for each node q 2 QXw2N(v) f(v�; w)� Xw2N(v)f(w; v�)� 2 kXi=1 ri = 0f(v;w) + f(w; v) � u(vw); for each edge vw 2 Ef(v;w); f(w; v) � 0; for each edge vw 2 Eri � 0; i = 1; 2; : : : ; k:A feasible solution to this LP is a 
ow f such that for each demand edge siti, the net in
owto both end nodes is the same, namely ri, and such that v� has net out
ow 2Pki=1 ri. Forevery other node, the 
ow conservation condition holds, and every edge satis�es the capacity



Approximation algorithms for cut problems 8constraint. Let f and r form an optimal solution to this LP. We may assume that at mostone direction of each edge vw has positive 
ow. Otherwise, if f(v;w) � f(w; v) > 0, we cansubstitute f(v;w) by f(v;w) � f(w; v) and substitute f(w; v) by zero. It is easy to checkthat the new 
ow is still optimal.We �nd a feasible v�-cut (S; S) of small capacity by constructing the node set S by �rsttaking v� in S. Then, repeatedly, for each edge vw with v 2 S and w 62 S, if either f(v;w) <u(vw) or f(w; v) > 0, then we include w in S. We claim that S is feasible. Otherwise,S contains both end nodes of some demand edge siti. Then there exists an augmentingpath from v� to si and an augmenting path from v� to ti. Hence we can increase the netin
ow ri of ti and si by a positive amount, contradicting the optimality of f . Furthermore,if v 2 S;w 62 S and vw 2 E, then f(v;w) = u(vw) and f(w; v) = 0. Therefore,u(S; S) = Xv2S;w2S;vw2E f(v;w)� Xw2S;v2S;vw2E f(w; v)= Xv2S( Xw2N(v)f(v;w)� Xw2N(v)f(w; v)); by Lemma 11.1 [BM 78]� 2 kXi=1 ri;where the last inequality holds because the net out
ow of v� is 2Pki=1 ri and the net out
ow ofevery node in Snfv�g is non-positive. The cut (S; S) is a 2-approximation for the minimum-capacity feasible v�-cut since u(S; S) � 2Pki=1 ri = 2ZLP : 2The next result gives a polynomial algorithm for the minimum-capacity feasible v�-cutfor several special cases. For an instance of problem (P3), let H denote the set of demandedges; the graph (V;H) is called the demand graph.Proposition 2.5 If the number of maximal independent sets in the demand graph (V;H)is polynomial in n, and all the maximal independent sets can be found in polynomial time,then a minimum-capacity feasible v�-cut can be found in polynomial time.Proof For each maximal independent set I � V of the demand graph, we �nd a cut ofminimum capacity separating fv�g from V n I = Q n I by solving a single maximum 
owproblem (the source is v� and the sinks are Q n I). The best of these cuts is the requiredoutput. 2Corollary 2.6 If the demand graph (V;H) is one of the following, then a minimum-capacityfeasible v�-cut can be found in polynomial time:(a) a graph with a bounded number of edges, i.e., jHj = O(1),



Approximation algorithms for cut problems 9(b) a clique,(c) a complete bipartite graph,(d) the complement of a triangulated graph,(e) the complement of a bipartite graph, or(f) the complement of a line graph.See p. 302 of [GLS 88] for similar results on the maximum independent set problem.Unfortunately, problems (P1), (P2) and (P3) remain NP-hard for the special case when thedemand graph is bipartite. This follows because each of these problems can be transformedinto an \equivalent" problem such that no two demand edges have a node in common, i.e.,the demand edges form a matching. To see this, repeatedly split a node incident with twoor more demand edges into two new nodes joined by a new edge with a huge capacity.Proposition 2.7 Problems (P1), (P2) and (P3) remain NP-hard under the restriction thatthe demand graph is bipartite.Consider solving (LP1) by a combinatorial algorithm. Since the dual of (LP1) is a single-commodity 
ow problem, the question arises whether the optimal 
ow can be found usingstandard techniques from network 
ows. If there is exactly one demand edge, then it can beseen that the optimal 
ow can be found by computing several s-t maximum 
ows. Brown[Br 79] gives an algorithm for the case of one demand edge that �nds the optimal 
ow bycomputing two maximum s-t 
ows. In fact, Brown gives a combinatorial algorithm for aproblem that is more general, the so-called sharing problem. Unfortunately, for the case oftwo or more demand edges, we do not know of any combinatorial algorithm. Even for thespecial case when every edge in G is incident to v� (i.e., G is the \star" of node v�) andno demand edge is incident to v�, obtaining a combinatorial algorithm is nontrivial. In thisspecial case, note that an optimal solution to (LP1) has dw = lv�w for each node w 2 V nfv�g.Obtaining an optimal solution to (LP1) corresponds to solving an LP relaxation of theminimum-weight node cover problem; there is a combinatorial algorithm for this problemdue to Nemhauser and Trotter [NT 75].Proposition 2.8 [Br 79] In the special case when there is one demand edge, an optimalsolution to the dual of (LP1) can be found by computing two maximum s-t 
ows.



Approximation algorithms for cut problems 102.3 Approximating minimum-ratio feasible cutsWe focus on �nding a minimum-ratio feasible cut. It is well known that an optimizationproblem with a rational objective function f(x)=g(x) can be solved in polynomial timeif the associated problem with objective function f(x) � �g(x), where � is a real-valuedparameter, can be solved in polynomial time [GM 84, Appendix 5]. For the minimum-ratiofeasible cut problem, the associated problem can be solved by solving at most n minimum-capacity feasible v�-cut problems; see the �rst paragraph in the proof of Proposition 2.9.Consequently, we can e�ciently solve the minimum-ratio feasible cut problem for the specialcases in Corollary 2.6. In general, an approximation algorithm for an optimization problemwith a rational objective function does not follow from an approximation algorithm for theassociated problem. The main result of this subsection is an O(1)-approximation algorithmfor the minimum-ratio feasible cut problem for the special case when the feasible shore Bof a minimum-capacity feasible cut (B;B) has � (0:5 + �)jQj of the terminals. For relatedwork, see [HFKI 87]. Recall that Q denotes the set of end nodes of demand edges.Proposition 2.9 Suppose that an �-approximation algorithm for the minimum-capacity fea-sible v�-cut problem is available. Let � be a number such that 1 > 1=� � � > 0. If the instanceG = (V;E); u : E!<+; s1t1; : : : ; sktk has a minimum-capacity feasible cut (B;B) such thatjB\Qj � (1+�� 1� )jQj, then there is a (1=�)-approximation algorithm for the minimum-ratiofeasible cut problem.Proof Assume every cut has positive capacity and Q 6= ; (i.e., there is a demand edge).Let the feasible set S� achieve the optimal ratio ��, i.e.,�� = u(�(S�))jS� \Qj � u(�(S))jS \Qj ; 8S feasible; ; 6= S:Here is the method for solving the minimum-ratio feasible cut problem, given an algorithmfor the minimum-capacity feasible v�-cut problem: We \linearize" the minimum-ratio feasiblecut problem to an instance of problem (P2)minimize fu(�(S))� �jS \Qj : S feasible; ; 6= S \Qg;where � is a nonnegative parameter. The optimal value of the linearized problem is zeroi� we �x � = ��; also, � is less (greater) than �� i� the optimal value of the linearizedproblem is positive (negative). Note that �� � û=n and �� � U , where û = mine ue andU =Pe ue. To �nd ��, we execute a binary search over the interval [û=n; U ]. Each iterationof the binary search solves the linearized problem with the current value of �. To solve thelinearized problem, we transform it to a variant of the minimum-capacity feasible v�-cut



Approximation algorithms for cut problems 11problem. We add a new node v� and all the edges v�w, w 2 Q, and �x the capacity of eachnew edge at �. The goal of our variant is to �nd a cut (S 0; S 0) of minimum capacity suchthat S0 = fv�g [ S, S is feasible and ; 6= S TQ, i.e., the feasible shore S 0 should containv� as well as a terminal node of the original problem. This can be achieved as follows: foreach terminal node w 2 Q, construct an instance of the minimum capacity feasible v�-cutproblem by \contracting" nodes v� and w into a new node v�. The best of the jQj feasiblev�-cuts gives the desired cut (S 0; S 0). In terms of the v�-cut problem, the capacity of (S 0; S 0)is u(�(S))+ �jS \Qj. Subtracting �jQj, we get the optimal value of the linearized problem.
�1 �� g(�)� � g(�)�jQj��jQjobjectivevalue ��2Figure 2: An illustration of the parametrized objective function g(�), and of �1; ��; �2.The rest of the proof focuses on the solution of the linearized problem for a �xed valueof the parameter �, however, we keep the notation of the original minimum-ratio feasiblecut problem, i.e., S; S�; S� denote a feasible shore without the new node v�. The objectivefunction for the feasible v�-cut problem as a function of � isg(�) = minS feasible; ; 6= S \Q nu(�(S)) + �jS \ Qjo = u(�(S�)) + �jS� \ Qj;where S� denotes the optimal set when the parameter is �xed at �. The function g(�) is the\lower envelope" of the linear functions u(�(S))+�jS \Qj (8S feasible, ; 6= S TQ), each ofwhich has positive slope, and so g(�) is a piece-wise linear, concave function with positiveslope, see Figure 2. Note that g(��) = u(�(S�)) + ��jS� \Qj = ��jQj. Let �1 and �2 denotethe values of the parameter such that�1jQj = g(�1)=� and �2jQj = � � g(�2);



Approximation algorithms for cut problems 12recall that � is the approximation guarantee for the minimum-capacity feasible v�-cut prob-lem. Observe that if the parameter � does not lie in the interval [�1; �2], then the currentiteration of the binary search (in the standard method for the minimum-ratio problem) givesthe correct decision: if � < �1, then the smallest possible objective value found by the ap-proximation algorithm for the feasible v�-cut problem is g(�), and since 1=� of this valueis > �jQj, we decide correctly that �� > �; the other case, � > �2, is similar. On theother hand, if � is in the interval [�1; �2], then we cannot make the correct decision. In thiscase, our approximation algorithm for the minimum-ratio problem terminates, and returnsthe current value of � and the associated feasible set S, ; 6= S TQ, as the approximatelyoptimal solution.We claim that under the hypothesis of the proposition �1 � ��� and �2 � ��=�. Theproposition follows from this claim. Now, we prove the claim. For the feasible shore B ofthe minimum-capacity feasible cut in the hypothesis, i.e., B = S� for � = 0, let � denotejB TQj=jQj, and note that for all � � 0, jS�TQj=jQj � �.Since ��1jQj = g(�1) = u(�(S�1)) + �1jS�1 \ Qj,(�� 1)�1 jQjjS�1 \ Qj = u(�(S�1))jS�1 \ Qj � �1 � �� � �1:Hence, �1 � 11 + (� � 1)=� �� � ���, since by the hypothesis � � �+ 1 � 1� � ��+ �� 1�(since � � 1) � ��+ (�� 1)� (since � � 1�), hence 11 + (�� 1)=� � �.For �2 we have,�2jQj� = g(�2)� u(�(S�)) + �2jS� \ Qj; by de�nition of g(�2)= ��jQj+ (�2 � ��)jS� \Qj:Hence, �2 � �jS� \ QjjQj � �jS� \Qj �� � �jQjjQj � �jS� \Qj �� � 1� + (1=�) � 1 �� � ��� ;where the last inequality follows from the hypothesis: � � 1 + �� 1� . 23 An approximate greedy method for multicut prob-lemsWe present a greedy method for approximately solving NP-hard Steiner/simple multicutproblems. In the Steiner multicut problem introduced by Klein et al [KPRT 94], the input



Approximation algorithms for cut problems 13consists of G = (V;E); u : E!<+; and k commodities S1; S2; : : : ; Sk, where each Si is a setof two or more nodes (jSij � 2; i = 1; : : : ; k). The problem is to �nd a set of edges F � E ofminimum capacity such that no connected component of GnF contains a commodity Si, i.e.,F should separate each commodity Si(1 � i � k) in the sense that there exist two nodes v;win Si such that every v-w path uses an edge of F . A node is called a terminal if it belongsto some commodity Si. We use T to denote the number of terminals, T = jSi Sij, and tto denote the maximum cardinality of a commodity, t = maxi jSij. Klein et al [KPRT 94],gave an O(log T log k log kt)-approximation algorithm for the Steiner multicut problem. Inthe simple multicut problem, each commodity has precisely two nodes. This problem wasstudied by Klein et al and Garg et al [KRAR 90], [GVY 93]; they proved approximationguarantees of O(log3 T ) and 4 ln(T + 1), respectively.First, we formulate a variant of the multicut problem as a set covering problem withan exponential (in n) number of sets. This follows Bertsimas and Vohra [BV 94]; however,Bertsimas and Vohra never gave a polynomial-time approximation algorithm for this for-mulation. We directly apply an approximate greedy heuristic to the set covering problem:each iteration of this heuristic solves a minimum-ratio feasible cut subproblem. The sub-problem turns out to be NP-hard too. However, if we can �nd an �-approximation for thesubproblem, then our iterative method �nds an O(� log n)-approximation to the multicutproblem.Recall that a set S � V is feasible if it contains no commodity Si, 1 � i � k. Let Fdenote the family of all feasible sets. The goal is to \cover" all the terminals using feasiblesets. For each feasible set S chosen in the covering, all edges in �(S) are deleted from G, i.e.,the multicut corresponding to this formulation is the union of �(S) over all S in the covering.The following integer program (SC) for the set covering formulation has a 0{1 variable xSfor each feasible set S. The optimal value of (SC) is at least half and at most twice thecapacity of an optimal multicut.(SC) minimize XS2F u(�(S))xSsubject to XS2F :v2S xS � 1; 8v 2 Q = Si SixS 2 f0; 1g; 8S 2 F :Recall that the greedy heuristic for solving the set covering problem repeatedly choosesa set S minimizing the ratio cS=N 0S , where cS is the coe�cient of S in the objective function,and N 0S is the number of nonzero coe�cients in S's column in the current constraints matrix[Ch 79]. The greedy heuristic is guaranteed to produce a set covering with objective value� (1 + lnNmax)z, where Nmax is the maximum over all columns of the number of nonzerocoe�cients and z is the optimal value (actually, z is the optimal value of the LP relaxation).



Approximation algorithms for cut problems 14For the multicut problem, the greedy heuristic applied to (SC) gives an approximationguarantee of 2(1 + ln T ) = O(log T ); recall that T denotes jSki=1 Sij. Each iteration ofthe greedy heuristic applied to (SC) has to solve the NP-hard minimum-ratio feasible cutproblem, since we have to �nd a feasible set S minimizing u(�(S))=jS \Qj. Our next resultshows that if we can �nd an �-approximation to the minimum-ratio feasible cut problem,then by iterating this we can �nd a 2�(1 + ln T )-approximation to the multicut problem via(SC).Theorem 3.1 Consider an approximate greedy heuristic for the set covering problem thatin each iteration �nds a set eS such thatceSN 0eS � � �minS cSN 0Swhere cS is the coe�cient of S in the objective function, and N 0S denotes the number ofnonzero coe�cients in S's column in the current constraints matrix (after deleting rows ofpoints already covered). Then the �nal set covering found by the heuristic has objective valueat most �(1 + lnNmax) times the optimal value.Proof The proof is similar to Chvatal's analysis of the greedy heuristic [Ch 79]. See alsoLemma 3.2.1 in [RV 93].Consider the LP relaxation of the set covering problem and its dual(P )8>>>><>>>>: minPS cSxSsubject toPS:i2S xS � 1; for each ix � 0 (D)8>>>><>>>>: maxPi yisubject toPi2S yi � cS; for each Sy � 0:We show that the heuristic constructs a feasible dual solution y such that its objectivevalue is � ZH�(1 + lnNmax) , where ZH is the objective value of the set covering found by theheuristic. The theorem follows because for every feasible dual solution y, and an optimalsolution x of (P), Xi yi �XS cSxS � Z�;where Z� is the optimal value of the set covering problem.Let eS1; eS2; eS3; : : : be the sequence in which the heuristic chooses sets, and let eSf(i) bethe �rst set chosen by the heuristic that contains element i. For each element i, let wi =c( eSf(i))j eSf(i)n( eS1S : : :S eSf(i)�1)j: Clearly, Pi wi = ZH .Now we claim that for each set S, Pi2S wi � cS � �(1 + ln jSj). We prove the claimas follows. Order the elements in S in the reverse order in which they were �rst covered:



Approximation algorithms for cut problems 15i1; i2; : : : ; ijSj. Consider il. When il is �rst covered, say by eSp, S has at least l uncoveredelements, so jSn( eS1S : : :S eSp�1)j � l: Hence, by our assumption,c eSpjfSpn( eS1S : : :S eSp�1)j � � � cSjSn( eS1S : : :S eSp�1)j � �cSl ;so wil � �cSl . The claim follows since Xil2Swil � �cS Xil2S 1l � �cS(1 + ln jSj). To get the dualsolution y, let yi = wi�(1+ln jNmaxj) . 2The above theorem applies to another set covering formulation of a variant of the multicutproblem. Instead of covering by feasible sets, we allow arbitrary node sets. We have a 0{1variable xS for every set S � V . The objective function is similar to the one in (SC), butthe constraints are di�erent. For each commodity Si � V , 1 � i � k, we require that atleast one of the sets S chosen in the covering \separates" Si, i.e., S includes some node ofSi and does not include some other node of Si. The optimal value of (SC0) is at least halfand at most twice the capacity of an optimal multicut.(SC 0) minimize XS�V u(�(S))xSsubject to XS�V :;6=S\Si 6=Si xS � 1; 8i = 1; : : : ; kxS 2 f0; 1g; 8S � V:Now, the greedy heuristic iteratively �nds a set S minimizing u(S;S)dem(S;S) , where dem(S; S)denotes the number of commodities separated by (S; S). (This agrees with our notationin Sections 4 since each commodity here has unit demand.) The problem of �nding a cutminimizing the capacity-to-demand ratio is NP-hard [MS 90], however, extensive researchhas been devoted to designing approximation algorithms. For the case of jSij = 2; 1 � i � k,there is an O(log T ) = O(log k) approximation algorithm due to Linial et al [LLR 95], see also[KRAR 90, PT 95]. For the general case, approximation guarantees of O(log kt log T ) andO(t log T ) can be achieved in polynomial time; these results are due to Klein et al [KPRT 94],and Section 4 of this paper, respectively. We obtain approximation guarantees of O(log2 k)and O(min(t; log kt) log T log k) for the simple and Steiner multicut problems, respectively,by directly applying Theorem 3.1. However, this does not improve on the approximationguarantees of [GVY 93] and [KPRT 94], respectively.



Approximation algorithms for cut problems 164 A new approximation guarantee for minimum-ratioSteiner cutsIn the minimum capacity-to-demand ratio Steiner cut problem introduced by Klein et al[KPRT 94], the input consists of G = (V;E); u : E!<+; and k commodities S1; S2; : : : ; Skwhere each Si is a set of nodes (possibly, jSij > 2). There is an additional input, namely, anonnegative real-valued demand demi for each commodity Si, 1 � i � k. We say that a cut(X;X) separates commodity Si if ; 6= X \ Si 6= Si. The demand dem(X;X) across a cut(X;X) is the sum of the demands of the separated commodities. The minimum capacity-to-demand ratio Steiner cut problem is to �nd a cut that minimizes the ratio of the capacityof the cut and the demand across the cut, u(X;X)=[P(i:;6=Si\X 6=Si) dem i].Theorem 4.1 Given an instance of the minimum capacity-to-demand ratio Steiner cut prob-lem, there is a (deterministic) polynomial algorithm to �nd a cut (X;X) such thatz� � min; 6= Y 6= V ( u(Y; Y )dem(Y; Y )) � u(X;X)dem(X;X) � O(t log T )z�:Here, z� denotes the optimal value of the LP relaxation (LP2) (see below) of the problem, tdenotes maxi jSij, and T denotes jSi Sij.We will use the following result due to Linial et al, see [LLR 95, Corollary 3.4]. For agraph G and length function l : E!<+, let dist l(v;w) denote the length of a shortest v-wpath with respect to l.Proposition 4.2 Given a graph G, a length le on each edge e, and a set of nodes Q, thereis a deterministic polynomial algorithm that constructs an l1-metric � : V �V!<+ such that1. for every pair of nodes fv;wg in Q, dist l(v;w)O(log jQj) � �(v;w) � dist l(v;w);2. for every pair of nodes fv;wg in V , �(v;w) � dist l(v;w).The next fact is well known [AD 91].Fact 4.3 Every l1-metric on node set V can be written as a nonnegative linear combinationof incidence vectors of cuts of the complete graph on V .Proof (Theorem 4.1) Let l : E!<+ be an optimal solution for the following LP relaxationof our problem. This LP relaxation is due to Klein et al [KPRT 94].



Approximation algorithms for cut problems 17(LP2)8>>>><>>>>: z� = minimize Pe uelesubject toPki=1 dem i � l(Si) = 1le � 0; 8e 2 E;where l(Si) denotes the minimum length of a spanning tree of the distance network DG(Si)[HRW 92]. In more detail, given G, l : E ! <+ and Si � V;DG(Si) consists of the completegraph on the node set Si and edge lengths dist l, i.e., the length of an edge vw, v;w 2 Si,equals the length dist l(v;w) of a shortest v-w path in G with respect to l. We use Fi todenote the set of edges of a minimum spanning tree of DG(Si), so l(Si) = Xvw2Fi dist l(v;w).Then, z� =Xe uele = Pe uelePki=1 dem i � l(Si)� Pvw2E uvwdist l(v;w)Pki=1 dem i(Pvw2Fi dist l(v;w))� 1O(log T ) Pvw2E uvw�(v;w)Pki=1 dem i(Pvw2Fi �(v;w)) ;where � is an l1-metric satisfying the two properties in Proposition 4.2, and we take the setQ in the proposition to be Ski=1 Si. By Fact 4.3, there exists a cut (X;X) such that thisquantity is � 1O(log T ) Pvw2(X;X) uvwPki=1 dem i � j(X;X)TFij� 1O(log T ) u(X;X)P(i:;6=Si\X 6=Si) dem i � (jSij � 1)� 1(t� 1)O(log T ) � u(X;X)dem(X;X) :Given the l1 metric � in the form of an embedding of (V; �) into a real space with l1 norm,the cut (X;X) can be found in polynomial time, see [LLR 95, Theorem 4.1]. 25 ConclusionsWe conclude with two open problems. Is the problem of �nding a feasible cut of minimumcapacity NP-hard? Note that this is a variant of problem (P3) where we drop the constraint



Approximation algorithms for cut problems 18on the node v�. Is there an O(1) approximation algorithm for the minimum-ratio feasiblecut problem? Our algorithm in Section 2.3 needs a \strong" assumption to give an O(1)approximation guarantee, namely, there exists a minimum-capacity feasible cut (B;B) suchthat B contains a large fraction of the terminal nodes. Note that such a cut (B;B), if present,is an O(1) approximation to the minimum-ratio feasible cut. The problem of �nding such acut (B;B) is a bicriteria optimization problem, but unfortunately, we do not know how tosolve it in polynomial time.Acknowledgment: We thank Bill Cunningham for helpful discussions.References[AD 91] D. Avis and M. Deza, The cut cone, L1 embeddability, complexity, and multicom-modity 
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