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We present an O(k2n2+k3n1:5)-time (deterministic) algorithm for �nding all the k-shredders ofa k-node connected graph (Theorems 3.2, 3.4). This solves an open question raised by Jord�an [J 95]:e�ciently �nd a k-separator of a k-node connected graph whose removal maximizes the number ofconnected components. For k � 4, our running time is within a factor of k of the running timeof the fastest (deterministic) algorithm known for the problem of determining whether a graph isk-node connected. It may not be possible to �nd all the k-shredders within a time bound thatis less than the time bound for testing k-node connectivity, though we have no proof of such alower bound. For k � 3, linear-time algorithms are known for testing k-node connectivity, while fork � 4, the fastest algorithm runs in time O(min(kn2 + k4n; k2n2)) [HRG 96]. We also describe adynamic algorithm for maintaining the set of all the k-shredders of a graph over a sequence of edgeinsertions/deletions, provided the graph is k-node connected throughout (Theorem 3.6). The timeper edge update is O(jEj+ (min(k;pn) + logn)kn). (This is improved to O(jEj+min(k;pn)kn)in Section 6.)Counting the number of k-separators of a k-node connected graph is a fundamental problem.For example, the recent approximation scheme of Karger [Kar 95] for estimating network reliabilitywith respect to edge failures is based on counting (and generating) all the minimum-cardinality edgeseparators in polynomial time. Karger's work raised the question whether this method extendsto approximating network reliability w.r.t. node failures. We show that computing the numberof minimum-cardinality node separators is #P-complete(Theorem 4.1), thus resolving an openquestion in the area. However, we show that the number of k-shredders of a k-node connectedgraph is O(k2n + n2) (Corollary 3.5). (Subsequently, Jord�an [J 97b] has showed that this numberis at most n, see Section 6.) We present a key lemma on so-called meshing shredders in Section 4(Lemma 4.3).One application of shredders is to an important (and, as yet, partially solved) problem innetwork design. A basic goal in network design is: given a (nonnegative) cost for each edge of thecomplete graph, construct a subgraph of minimum cost satisfying certain edge/node connectivityrequirements. The edge costs may be either zero/one or not. Problems with zero/one costs onthe edges are usually regarded as augmentation problems: Given an initial graph (whose edgeshave zero cost) increase the edge/node connectivity by adding a minimum number of new edges(each new edge costs one). For instance, given a tree, one may want to add the minimum numberof new edges to achieve 3-node connectivity. Readers interested in network design with arbitraryedge costs are referred to [GW 95] and [RW 97], and readers interested in edge/node connectivityaugmentation problems for both graphs and directed graphs are referred to [F 94].Let us focus on node connectivity augmentation problems: given an (undirected) graph, increasethe node connectivity to k0 by adding the minimum number of new edges. The case k0 = 2 wassolved by Eswaran & Tarjan [ET 76], and later Hsu & Ramachandran [HR 93] gave a linear-timealgorithm. The case k0 = 3 was solved by Watanabe & Nakamura [WN 90], and a linear-timealgorithm was given by Hsu & Ramachandran [HR 91]. The case k0 = 4 was solved by Hsu [H 95]using anO(jEj+n logn)-time algorithm, and earlier Hsu [H 92] gave an almost linear-time algorithmto increase the node connectivity from three to four. Whether there is an e�cient algorithm forthe node connectivity augmentation problem for arbitrary k0 is an outstanding open question.Jord�an [J 95] recently presented an O(n5)-time approximation algorithm for the problem ofadding the minimum number of new edges to a k-node connected graph to make it (k + 1)-nodeconnected. The di�erence between the number of new edges added by Jord�an's algorithm anda lower bound on the number of new edges is at most k � 2. (Subsequently, Jord�an [J 97a] hasimproved on this slack, see Section 6.) We present an improved version of Jord�an's algorithm [J 95]that runs in time O(min(k;pn)k2n2 + (logn)kn2) and achieves the same performance guarantee(Theorem 5.10). (The running time is improved to O(min(k;pn)k2n2) in Section 6.) The proof of2



correctness of our algorithm is based on Jord�an's proof [J 95]. Both proofs are based on theorems forsplitting o� edges while preserving node connectivity, but our \splitting o�" theorem (Theorem 5.1)is weaker than the one in [J 95], and our proof is di�erent. Note that for k = 1 and k = 2,Jord�an's algorithm �nds the optimal augmentation (since k � 2 � 0), and hence it generalizes theresult of Eswaran & Tarjan [ET 76] and a part of the result of Watanabe & Nakamura [WN 90].(Remark: Several approximation heuristics (for various combinatorial optimization problems) havean appealing simplicity, but this does not hold for Jord�an's algorithm. A possible explanation isthat Jord�an's algorithm is designed to �nd the optimal augmentation, but unfortunately, the lowerbounds employed by the algorithm are \too weak" for several classes of graphs.)The rest of the paper is organized as follows. Section 2 has de�nitions, notation and basicresults. Section 3 describes our algorithm for �nding all the k-shredders of a k-node connectedgraph, and also describes a dynamic algorithm for maintaining the set of all the k-shredders overa sequence of edge updates. Section 4 has our results on counting the number of k-separators andk-shredders in a k-node connected graph. Section 5 describes our augmentation algorithm and itsproof of correctness. Section 6 discusses recent developments and states some open questions.2 De�nitions, notation and preliminariesFor a subset S 0 of a set S, SnS 0 denotes the set fx 2 S : x 62 S 0g. Let G = (V;E) be a �nite,undirected, simple graph. V (G) and E(G) stand for the node set and the edge set of G. (Sincethis paper studies node connectivity, multiedges play no role, and we consider only simple graphsin this paper. For example, if we add to G a copy of an existing edge, then E(G) stays the samebecause it is a set and not a multiset.) An edge incident to nodes v and w is denoted by vw. Anx$y path refers to a path whose end nodes are x and y. We call two paths openly disjoint if everynode common to both paths is an end node of both paths. Hence, two (distinct) openly disjointpaths have no edges in common, and possibly, have no nodes in common. A set of two or morepaths is called openly disjoint if the paths are pairwise openly disjoint. For a subset V 0 � V , theinduced subgraph of V 0, G[V 0], has node set V 0 and edge set fvw 2 E : v; w 2 V 0g. For a subsetS � V , GnS denotes G[V nS]. We abuse the notation for singleton sets, e.g., we use v for fvg.By a component (or connected component) of a graph, we mean a maximal connected subgraphas well as the node set of such a subgraph. Hopefully, this will not cause confusion. The numberof components of G is denoted by c(G). For a subset Q � V , NG(Q) or N(Q) denotes the set ofneighbors of Q in V nQ, fw 2 V nQ : wv 2 E; v 2 Qg. The function jN(Q)j on subsets Q of V issubmodular, i.e., for all Q1; Q2 � V ,jN(Q1)j+ jN(Q2)j � jN(Q1 \Q2)j+ jN(Q1 [ Q2)j:Recall that a separator S of a connected graph G is an (inclusionwise) minimal subset S � Vsuch that GnS has at least two components. S is said to separate nodes v and w if the two nodesare in di�erent components of GnS. Clearly, for each component D of GnS, N(D) = S, and eachv 2 S has a neighbor in each component of GnS. We call a separator S of G a shredder if GnShas at least three components. A pair of separators S; T is called nonmeshing if T has a nonemptyintersection with at most one component of GnS, otherwise, S and T are said to mesh. In otherwords, separators S and T mesh if T has nonempty intersections with at least two components ofGnS. A family (i.e., set) of separators is called nonmeshing if it is pairwise nonmeshing.Variants of the next lemma have appeared before; the proof is included for the convenience ofthe readers. See Diestel [D 87, Lemma 2.1], [D 97, Ch. 3, Problem 4], and Jord�an [J 95, Lemma 2.2].3



Lemma 2.1 If S and T are (not necessarily minimum) separators of a (not necessarily k-connected)graph G such that S and T mesh, then every component of GnT (or GnS) has a node of S (or T ).Hence, the meshing relation on pairs of separators is symmetric.Proof: The key point is this:every component of GnT contains a node of S.To see this, consider a node v 2 V n(S [ T ) and let its component in GnS be D1. (If V n(S [ T )is empty, then the proof is done.) Focus on a node t 2 T that belongs to another component, say,D2 of GnS. Such a node exists since S and T mesh. Now focus on the component, say, D0 ofGnT that contains v. Since T is (inclusionwise) minimal, t has a neighbor, say, t0 in D0, and D0contains a v$t0 path. Since S separates v from t, it is clear that this v$t0 path contains a node ofS (possibly, t0 2 S). Hence, D0 contains a node of S. Our claim follows. Now note that T and Smesh, since GnT has at least two components and each contains a node of S. The lemma follows.2Remark: The meshing relation on pairs of separators is not transitive. To see this consider thethree 2-separators S = fv1; v3g, T = fv2; v4g, and X = fv3; v5g of the 5-cycle v1; v2; v3; v4; v5; v1;note that S; T are meshing, and T;X are meshing, but S;X are nonmeshing.A separator (shredder) of a connected graph is called a k-separator (k-shredder) if it has exactlyk nodes. A connected graph G is said to be k-node connected (k-connected) if jV (G)j � k + 1, andG has no separators of cardinality � (k�1). An edge vw of a k-connected graph G is called critical(w.r.t. k-connectivity) if Gnvw is not k-connected (i.e., Gnvw has a (k � 1)-separator).A tight set of a k-node connected graph G = (V;E) is a node set Q such that jN(Q)j = kand jV nQj � (k + 1). In other words, a tight set is either a component of GnS or the union oftwo or more (but not all) components of GnS, where S is a k-separator of G. See Section 5.1 forexamples and an application. The next lemma on tight sets is from Jord�an, [J 95, Lemma 1.2], andis used often in Section 5. The proof follows from the submodularity of jN(Q)j over Q � V and anexamination of the case where the submodular inequality holds as an equation.Lemma 2.2 Given a k-connected graph G = (V;E), and tight sets X; Y with X \ Y 6= ; andjV n(X [ Y )j � k, the set X \ Y is tight, and there is no edge with one end in XnY (or Y nX) andthe other end in Y n(X [N(X \ Y )) (or Xn(Y [N(X \ Y ))). Moreover, if jV n(X [ Y )j � k + 1,then the set X [ Y is tight.3 Algorithms for k-shredders of a k-connected graph3.1 A fast algorithm for �nding all k-shreddersThis section presents an e�cient algorithm for �nding all the k-shredders of a k-connected graph.For ease of description, we assume that the input graph is k-connected, but it is straightforwardto modify the algorithm to include a test for k-connectivity. The algorithm is based on the nextresult. See Figure 1 for an illustration of the algorithm.Proposition 3.1 Let G be a k-connected graph and let v; r be a pair of nodes. The number ofk-shredders separating v and r is at most n, and the family of k-shredders separating v and r isnonmeshing. 4



Proof: Let P1; : : : ; Pk be an arbitrary set of k openly disjoint v$r paths. Every k-separator Sseparating v and r has exactly one (distinct) node from each of the paths P1; : : : ; Pk. Let Q denoteV (P1)[ : : :[ V (Pk). If S is a k-shredder, then GnS has at least three components D1; D2; D3; : : :.Suppose that v 2 V (D1) and r 2 V (D2). The key point is:D3 stays connected, even after removing all nodes of P1; : : : ; Pk (i.e., D3 is a componentof GnQ), because D3 has no node of Q.The bound on the number of k-shredders separating v and r follows, since there is a distinctcomponent in GnQ for each distinct k-shredder separating v and r. Suppose that two of thek-shredders separating v and r, say, S and T , mesh. Then, by Lemma 2.1, every componentD1; D2; D3; : : : of GnS contains a node of T . Hence, Q has at most (k � 1) nodes of T . We havethe desired contradiction, since at least one of the v$r paths P1; : : : ; Pk \survives" in GnT . 2P1
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Figure 1: Illustrating algorithm Shredders(r,v), using k = 2. P1 and P2 are two openly disjoint r$vpaths. The components of Gn(V (P1)[V (P2)) are D1 = feg, D2 = fdg, D3 = fcg, D4 = fb1; b2; b3g,and D5 = fag. The candidate shredders are N(D1) = fp1; q3g, N(D2) = fp3; q3g, N(D3) = fp3; q4g,and N(D4) = fp2; q6g. Step 5 �nds that N(D2) and N(D4) are incomparable, and discards both. Theremaining candidate shredders are lexicographically ordered as S1 = N(D1) and S2 = N(D3). Thereare 5 bridges of P1[P2, given by D1; : : : ; D5 and their open intervals are: (1; 1); (1; 2); (2; 2); (1; 3);and (2; 3). The union of the open intervals is (1; 3). Step 6 discards S2 = N(D3), since the index ofS2 is in (1; 3). There is only one 2-shredder separating r and v: S1 = N(D1) = fp1; q3g.Algorithm All-k-shredders (see Algorithm 1 in the box on page 6) outputs all the k-shreddersof a k-connected graph. The main subroutine Shredders(r,v) �nds all the k-shredders separatingtwo speci�ed nodes v and r. Let y1; : : : ; yk be k arbitrary nodes. A k-shredder S 6= fy1; : : : ; ykgeither separates some yi from some yj , 1 � i 6= j � k, or separates fy1; : : : ; ykgnS from some nodev 2 V nfy1; : : : ; ykg. To handle the second possibility, our algorithm adds a new root node z andthe edges zy1; : : : ; zyk (cf. [G 80]), and then �nds all the k-shredders separating z and v, for eachnode v 2 V nfz; y1; : : : ; ykg.Focus on subroutine Shredders(r,v) (see Algorithm 2 in the box on page 6). We construct kopenly disjoint v$r paths P1; : : : ; Pk. For 1 � i � k, by an r!v path Pi we mean the path Pioriented from r to v. Let Q denote the set of nodes of the paths P1; : : : ; Pk, and let D1; : : : ; Dcdenote the components of GnQ. By a candidate shredder we mean the neighbor set N(Dg) of a5



Algorithm 1 All-k-shreddersInput: A k-connected graph G = (V;E).Output: The family of k-shredders of G, stored in L.(1) L = ;.(2) Choose (arbitrarily) k nodes y1; : : : ; yk.(3) For each pair yi; yj , 1 � i < j � k doL0 =Shredders(yi, yj);L = L0SL.(4) Add a new node z, and add the edges zy1; : : : ; zyk.(5) For each v 2 V nfz; y1; : : : ; ykg doL0 = Shredders(z, v);L = L0SL.(6) If fy1; : : : ; ykg 2 L, then remove fy1; : : : ; ykg from L if Gnfz; y1; : : : ; ykg has two compo-nents.EndAlgorithm 2 Shredders(r, v)Input: A k-connected graph G and a node pair r; v 2 V (G).Output: The family of k-shredders of G that separate r and v.(1) Find k openly disjoint r$v paths P1; : : : ; Pk in G. Let Q denote the set of nodes of thepaths P1; : : : ; Pk.(2) For each path Pj , 1 � j � k, number the nodes 0; 1; 2; : : : ; (jPjj � 1);1, where num(r) = 0and num(v) =1.(3) Find the components D1; D2; : : : ; Dc of GnQ.(4) Examine the components of GnQ to obtain a list of candidate shredders. Represent eachcandidate shredderN(Dg) = fu1; u2; : : : ; ukg by a k-tuple hnum(u1); num(u2); : : : ; num(uk)i,where we assume that ui 2 Pi, 1 � i � k.(5) Repeatedly discard incomparable pairs of k-tuples, until no incomparable pair remains.(k-tuples hnum(u1); num(u2); : : : ; num(uk)i and hnum(w1); num(w2); : : : ; num(wk)i areincomparable if there exist i and j, 1 � i; j � k, such that num(ui) < num(wi) andnum(uj) > num(wj).)Lexicographically order the remaining k-tuples. Let the list in ascending order beS1; S2; : : : ; Sf .(6) Examine all the bridges of P1 [ P2 [ : : : [ Pk, and discard every candidate shredder Sg,1 � g � f , such that Sg is \straddled" by some bridge.(A candidate shredder Sg with k-tuple hnum(u1); num(u2); : : : ; num(uk)i is straddledby a bridge B if there exist i and j, 1 � i; j � k, such that B has attachments w 2 Piand x 2 Pj such that num(w) < num(ui) and num(x) > num(uj).)The remaining candidate shredders are all the k-shredders separating r and v.End 6



component Dg of GnQ (1 � g � c) such that jN(Dg)j = k, N(Dg) has exactly one node from eachpath P1; : : : ; Pk, and neither r nor v is in N(Dg). We take each candidate shredder S = N(Dg)to be a k-tuple by ordering the nodes in S according to their occurrence in P1; : : : ; Pk. A k-tuplehu1; u2; : : : ; uki is said to precede another k-tuple hw1; w2; : : : ; wki if for each i, 1 � i � k, ui precedeswi on the r!v path Pi. If two k-tuples are incomparable (i.e., neither k-tuple precedes the other),then neither of the two corresponding candidate shredders is a k-shredder separating r and v. Inmore detail, if the k-tuple hu1; u2; : : : ; uki for S = N(Ds) and the k-tuple hw1; w2; : : : ; wki forT = N(Dt) are incomparable, then there exist i and j, 1 � i; j � k, such that ui strictly precedeswi on the r!v path Pi but uj strictly follows wj on the r!v path Pj . Hence, in GnT , there is anr$v path via node ui, Ds and node uj . Similarly, in GnS there is an r$v path via wj , Dt andwi. Consequently, whenever Shredders(r,v) �nds a pair of candidate shredders whose k-tuples areincomparable, it discards both candidate shredders. After this round of elimination, we are leftwith a totally ordered list of candidate shredders S1; S2; : : : ; Sf (Ss occurs before St i� the k-tuplefor Ss precedes the k-tuple for St).Suppose that one of the remaining candidate shredders Sg, 1 � g � f , with k-tuple hu1; u2; : : : ; uki,is not a k-shredder separating r and v. (Recall that a bridge of a subgraph H means either anedge of G that is not in H but has both end nodes in H , or a component of GnV (H) togetherwith all edges incident to the component. An attachment of a bridge B is a node of H that isincident to an edge in B.) Then there exists a bridge B of P1 [ P2 [ : : :[ Pk that \straddles" Sg,i.e., there exist i and j, 1 � i; j � k, such that B has an attachment in the r!v path Pi thatstrictly precedes ui, and B has an attachment in the r!v path Pj that strictly follows uj . The laststep of Shredders(r,v) searches for all candidate shredders that are \straddled" by some bridge ofP1 [ P2 [ : : :[ Pk, and discards all such candidate shredders. The remaining candidate shreddersform the set of all k-shredders separating r and v.Observe that algorithm All-k-shredders �nds a k-shredder S that maximizes the number ofcomponents of GnS, since it �nds all the k-shredders of G.Theorem 3.2 The algorithm All-k-shredders correctly �nds all k-shredders of G. Shredders(r,v)runs in O(min(k;pn)m) time, and algorithm All-k-shredders runs in O((k2+n) �min(k;pn)m) =O(knm+ k2pnm) time.Proof: First consider the correctness of subroutine Shredders(r,v). Clearly, the set of candidateshredders contains the set of k-shredders separating r and v. If a candidate shredder S is a k-shredder separating r and v, then no bridge of P1 [ P2 [ : : :[ Pk \straddles" S. Therefore, S willnot be discarded by the last two steps of Shredders(r,v). On the other hand, if candidate shredderS is not a k-shredder separating r and v, then there must be a bridge B of P1 [ P2 [ : : :[ Pk that\straddles" S. This will be detected by either the last step or the second last step of Shredders(r,v),and so S will be discarded.Next, consider the correctness of Algorithm All-k-shredders. Focus on an arbitrary k-shredderS of the input graph G. Either S separates some pair of nodes yi; yj , 1 � i < j � k, or not. Inthe former case, S will be found by Step (3) of Algorithm All-k-shredders. Otherwise, either thereis one component of GnS that contains all nodes of fy1; : : : ; ykgnS, i.e., S separates fy1; : : : ; ykgnSfrom some node v 2 V n(S [ fy1; : : : ; ykg), or, S = fy1; : : : ; ykg. In this case S will be found byStep (5) of Algorithm All-k-shredders.AlgorithmAll-k-shredders invokes Shredders(r,v)O(k2+n) times. We will show that Shredders(r,v)runs in O(min(k;pn)m) time. The running time claimed in the theorem for Algorithm All-k-shredders will follow immediately. The rest of the proof shows how to implement Shredders(r,v)to run in O(min(k;pn)m) time. Step 1 can be implemented in time O(min(k;pn)m) [G 80], and7



Steps 2, 3, and 4 take linear time. Step 5 can be implemented by applying a radix sort to orderthe k-tuples (of the candidate shredders) according to the total order described above. Wheneverthe radix sort encounters a pair of incomparable k-tuples, it discards both. Since the number ofcandidate shredders is � n, the running time for the radix sort is O(kn).Finally, consider Step 6 of Shredders(r,v). Since the candidate shredders remaining at the startof Step 6 are totally ordered, we may view the collection of candidate shredders as a grid with frows (recall that f is the number of remaining candidate shredders) and k columns.In this setting, Step 6 checks whether for every row S and for every bridge B of P1[P2[ : : :[Pk ,all the attachments of B are either \above" or \below" S.Here is a more formal description of Step 6. Consider a bridge B of P1 [ P2 [ : : : [ Pk . Wesay that a candidate shredder S with k-tuple hu1; u2; : : : ; uki is above (respectively, below) B if forevery attachment w of B, say, w 2 Pi, 1 � i � k, ui follows w on the r!v path Pi (respectively,ui precedes w on the r!v path Pi). For each bridge B of P1 [ P2 [ : : :[ Pk , we compute an openinterval (`B; hB), 0 � `B � hB � f + 1, by examining the attachments of B: Take `B (respectively,hB) to be the highest (respectively, lowest) index of a candidate shredder (from among S1; : : : ; Sf)that is below (respectively, above) B, and if there is no candidate shredder below (respectively,above) B, then take `B = 0 (respectively, hB = f + 1). The open intervals (`B; hB) for all thebridges B of P1 [ P2 [ : : :[Pk can be found in linear time. The computation of the `B values is asfollows (the computation of the hB values is similar). Sequentially, for each i = 1; : : : ; k, we scanthe nodes of the r!v path Pi, keeping track of the highest index of a candidate shredder seen sofar, and whenever an attachment of a bridge B is encountered, then we update `B (initially, `B = ffor every bridge B). Once we have the open intervals (`B; hB) for all the bridges B, we can deleteall candidate shredders Sg, 1 � g � f , such that there is a bridge B with `B < g < hB. As theintervals may overlap, this process can be made more e�cient by �rst computing the union of allthe open intervals, and then deleting candidate shredders whose indices lie in the union. The unionof a set of open intervals f(`B; hB)g can be computed in linear time, by �rst sorting the tuples(`B; hB) in lexicographic order, because there are at most (n � 1) tuples (`B; hB) and the `B; hBvalues are integers in the interval [0; n]. Thus, Step 6 can be implemented in linear time. 2The time bound in the above theorem can be improved by precomputing a sparse certi�cate for(k+1)-connectivity and local (k+1)-node connectivities, G0 = (V;E 0); E 0 � E, see [NI 92, CKT 93,FIN 93]. The number of edges in G0, jE 0j, is � (k + 1)(n� 1) = O(kn). If G is (k + 1)-connected,then G0 is (k+1)-connected, and moreover, �G0(v; w)� min(k+1; �G(v; w)) for all node pairs v; w,where �H(v; w) denotes the maximum number of openly disjoint v$w paths in the graph H . Alinear-time algorithm for computingG0 is known, see [NI 92]. In detail, we construct a legal orderingv1; v2; : : : ; vn of V , and retain an edge vivj , i < j, in E 0 i� jfv` : v`vj 2 E; ` � igj � k + 1. (Anordering v1; v2; : : : ; vn of the nodes of G is called legal if d(Vi�1; vi) � (Vi�1; vj) 81 < i < j � n,where V` = fv1; v2; : : : ; v`g, and d(Q; v) denotes the number of edges between v and Q � V .) Also,we need an extension of [CKT 93, Corollary 2.17] and [FIN 93, Corollary 2.3].Proposition 3.3 (1) S � V with jSj � k is a shredder (or separator) of G i� S is a shredder (orseparator) of G0.(2) If G is k-connected, then Q � V is a tight set of G i� Q is a tight set of G0.Proof: We prove part (1) for shredders. Suppose that S is a shredder of G0 but not of G. Thenthere is an edge vw in EnE 0 such that v and w are in di�erent components of G0nS. In the legalordering for �nding G0, let v = vi and w = vj , i < j, and note that jfv` : v`vj 2 E; ` � igj > k + 1.But then [FIN 93, Lemma 1] gives the desired contradiction, jS\fv1; : : : ; vi�1gj � jfv`vj 2 E 0 : ` =1; : : : ; i� 1gj � k + 1. 28



Thus an improvement on the previous theorem is obtained by precomputing a sparse certi�cateG0 = (V;E 0) for local (k+1)-node connectivity, and running the algorithm for �nding all k-shredderson G0.Theorem 3.4 All the k-shredders of a k-connected graph can be found in O(k2n2 + k3n1:5) time.The same time bound su�ces to �nd a k-separator S that maximizes c(GnS).Proposition 3.1 gives an O(n3) bound on the number of k-shredders. This bound can beimproved somewhat.Corollary 3.5 The number of k-shredders in a k-connected graph is O(k2n+ n2)Proof: This follows from Proposition 3.1 and the correctness of Algorithm All-k-shredders (seeAlgorithm 1 in the box on page 6). The algorithm �nds all the k-shredders separating p distinctpairs of nodes, where p = �k2� + (n � k), and there are no other k-shredders. The number of k-shredders contributed by each pair of nodes is � n, by Proposition 3.1. Hence, the total numberof k-shredders is � pn = O(k2n + n2). 23.2 A dynamic algorithm for maintaining the set of all k-shredders over edgeinsertions/deletionsGiven a k-connected graph G, b(G) denotes the maximum number of components obtained bydeleting a k-separator from G, where we take b(G) = 2 if G has no k-separators, i.e., b(G) =maxf2; fc(GnS) : S � V; jSj = kgg. In this subsection, we sketch an algorithm for maintainingb(G) over a sequence of edge insertions/deletions, assuming that G stays k-connected throughout.At the start, we run our algorithm for �nding all k-shredders of G (if there are no k-shredders, thenb(G) = 2). Next, using the lexicographically sorted list L of all k-shredders, we insert each S 2 Linto a (max) heap, see [CLR 90], using the value c(GnS) as the key. (Our heap is organized bymaximum key values, and each insertion or deletion takes O(log jLj) = O(logn) time.) Wheneveran edge xy is added to (or deleted from) G, we update the list L and the heap as follows. First, werun our algorithm Shredders(x,y) on the graph Gnxy (here, G is the graph after the edge update),to �nd all the k-shredders separating x and y. This takes time O(jEj+min(k;pn)kn), and returnsa set of at most n k-shredders Lxy . For each shredder S in Lxy , we search for S in our list L,and if successful, we also obtain a pointer to S in the heap. If S 2 L, then we decrement (orincrement) the key of S by one, since inserting (or deleting) edge xy decreases (or increases) thenumber of components of GnS by one. If c(GnS) becomes two (after an edge insertion), then wedelete S from L as well as from the heap. If we do not �nd S in L (after an edge deletion), thenwe insert S in L as well as in the heap. Thus the overall time per edge insertion or edge deletionis O(jEj+ (min(k;pn) + logn)kn), and the time per query of b(G) is O(1).Theorem 3.6 Given a k-connected graph G, b(G) and the set of all the k-shredders can bemaintained over a sequence of edge insertions/deletions such that the time per edge update isO(jEj+ (min(k;pn) + logn)kn), the time per query of b(G) is O(1), and the preprocessing timeis O((k + logn)kn2 + k3n1:5). The graph must stay k-connected throughout the sequence of edgeinsertions/deletions. 9



4 Counting the number of k-separators and k-shreddersOur �rst result in this section settles the open question of counting the number of k-separators ina k-connected graph: this problem is #P-complete. Our remaining results focus on k-shredders ina k-connected graph. The algorithm in Section 3 and Proposition 3.1 straightaway give a boundof O((k2 + n)n) on the number of k-shredders in a k-connected graph. We derive tighter boundsfor some special cases. Lemma 4.3 provides the key tool for handling meshing k-shredders andk-separators. Recall that a separator T is said to mesh with a separator S if T has nodes from atleast two components of GnS.Theorem 4.1 The problem of counting the number of k-separators in a k-connected graph is#P-complete.Proof: Clearly, the problem is in #P since minimum-cardinality separators can be recognized inpolynomial time. We give a reduction to our problem from the problem of counting the numberof minimum node covers in a bipartite graph H such that H has a perfect matching. The latterproblem is well known to be #P-complete, see [PB 83, Problem 4, page 783] (note that the bipartitegraph there has a perfect matching). Let the bipartition of V (H) be given by P;Q (so V (H) =P [ Q), and let k = jP j = jQj. Since H has a perfect matching (of cardinality k), it is clear thatthe minimum cardinality of a node cover is k. We construct a k-connected graph G by adding allpossible edges between nodes of P , and similarly adding all possible edges between nodes of Q, i.e.,we set up a k-clique on each of P and Q. The proof is completed using two claims.Claim 1: G is k-connected.Let S � V (G) have cardinality< k. Consider GnS. The nodes in PnS induce a connected subgraph(by the k-clique on P ), and similarly the nodes in QnS induce a connected subgraph. G must haveat least one edge between PnS and QnS, otherwise every edge of H is covered by S, and this isnot possible since every node cover of H has cardinality � k. Then GnS is connected. Since G hasno separator of cardinality < k and has � k + 1 nodes, it is k-connected.Claim 2: S � P [ Q with S 6= P , S 6= Q is a k-separator of G i� S is a minimum node cover of H .This follows directly from the proof of Claim 1. 2Remarks: (1) The above reduction is not parsimonious because P and Q are minimumnode coversof H but are not minimum separators of G. A parsimonious reduction is obtained by modifying theconstruction of G: we add two new nodes, one adjacent to all nodes in P and the other adjacentto all nodes in Q.(2) Consider the number of k-separators in a k-connected graph. An upper bound of O(2kn2=k) isreported in [Kan 93, p. 534]. For k � 2 and even, and n an integer multiple of k+1, the number ofk-separators in the following k-connected graph is � 2k n=(k + 1)2 !: take a cycle C with n=(k+1)nodes, replace each node of C by a (k+1)-clique, and replace each edge of C by a matching of sizek=2 such that the jE(C)j matchings have no nodes in common.Before presenting Lemma 4.3, we give a few examples to convince the reader that simplerversions of the lemma are not valid. The next result focuses on 2-connected/3-connected graphs.Proposition 4.2 (1) The 2-shredders of a 2-connected graph form a nonmeshing family. In fact,no 2-separator meshes with a 2-shredder.(2) Except for the complete bipartite graph K3;3, in every 3-connected graph, the 3-shredders forma nonmeshing family. In a 3-connected graph G = (V;E), G 6= K3;3, there may be 3-separators10



meshing with a 3-shredder, but the removal of each such 3-separator results in a single node andanother component.Proof: Part (1) follows by Lemma 2.1, since every 2-separator meshing with a 2-shredder hascardinality � 3. To see part (2), let S be a 3-shredder and let T be a 3-separator meshing withS. By Lemma 2.1, GnS has exactly three components D1; D2; D3; and T has exactly one node ineach of these components. For jV (G)j � 6, it is clear that K3;3 is the unique graph having a pairof meshing 3-shredders. The graph K3;3 + e obtained by adding an edge to K3;3 has a 3-separatorthat meshes with a 3-shredder. If jV (G)j > 6, then V n(S [ T ) 6= ;. For each node v 2 V n(S [ T ),say, v is in D1, the induced subgraph G[V (D1) [ S] has three openly disjoint paths from v to S(these paths have only node v in common), so at least two of these paths survive in GnT . Hence,all nodes of V n(S [ T ) are in one component of GnT , and also this component has at least twonodes of S. Part (2) follows. 2For higher k, there may be �(k) k-shredders such that every pair is meshing. Let k = 3k0, wherek0 is a positive integer. Take G to be the graph obtained from the clique Kk+3 by removing the3(k0+1) edges of (k0+1) node-disjoint triangles (K3's) T1; : : : ; Tk0+1. It is easily checked that G is k-connected, each of the k-sets V nTi, 1 � i � k0 + 1, is a k-shredder, and for 1 � i < j � k0 + 1, V nTiand V nTj mesh. For each k � 4 and each n � 2k+1, there exists a k-connected n-node graph thathas a pair of meshing shredders (this can be seen by modifying the next construction). Finally,consider some meshing k-shredders on graphs obtained from the complete bipartite graph Kk;k,k � 5, as follows. Let the node sets of the bipartition be S = fs1; : : : ; skg and T = ft1; : : : ; tkg. Taketwo new nodes v and w, and join v to Kk;k by the edges vs1; vs2; vt3; : : : ; vtk, and similarly join wto Kk;k by the edges ws3; ws4; wt3; : : : ; wtk. The resulting graph G is easily seen to be k-connected.Now, S is a k-shredder since GnS has components ft1g; ft2g; ft3; : : : ; tk; v; wg, and T is a k-shreddermeshing with S, where the components of GnT are fs1; s2; vg; fs3; s4; wg; fs5g; : : : ; fskg. Note thatGnS has a component containing V n(S[T ), but no component of GnT contains V n(S[T ). In thisexample, jV (G)j = 2k + 2, but this construction easily extends to any number of nodes � 2k + 2.Lemma 4.3 Let G be a k-connected graph, k � 1, and let S be a k-shredder of G. If there is ak-separator T that meshes with S, then there is a component Q of either GnT or of GnS such thatQ contains every node of V n(S [ T ).Proof: First, note that the lemmaholds trivially if V n(S[T ) = ;. Now assume that V n(S[T ) 6= ;.Let D1; D2; : : : ; Dh denote the components of GnS, where h � 3. W.l.o.g. suppose that Dh is acomponent of GnS having at least one node from V nT , and let z be any node in V (Dh)nT . ByLemma 2.1, the components D1 and D2 of GnS each have one or more nodes of T .Claim: Every node v 2 V n(S [ T ) in one of the components D1; : : : ; Dh�1 of GnS has a path toz in GnT .To prove the claim, consider v 2 V (Di)nT , 1 � i � h � 1. There are k openly disjoint v$z pathsin G, since G is k-connected. It can be seen that each of these paths is contained in the subgraphof G induced by V (Di)[ S [ V (Dh), i.e., no path uses a node of (V (D1)[ : : :[ V (Dh�1))nV (Di).Since T has at least one node in each of V (D1) and V (D2), it has < k nodes in V (Di)[S[V (Dh).Hence, at least one of the k openly disjoint v$z paths survives in GnT . This proves the claim.If GnT has a component that contains V (Dh)nT , then the lemma follows since every nodein V n(S [ T ) has a path to V (Dh)nT in GnT (by the claim). Otherwise (i.e., if V (Dh)nT isdisconnected in GnT ), then T contains all nodes of the other components D1; : : : ; Dh�1 of GnS.To see this, suppose that there is a node v 2 (V (D1)[ : : :[V (Dh�1))nT . By the claim, every node11



z 2 V (Dh)nT has a path to v in GnT , hence V (Dh)nT is contained in a component of GnT . Thelemma follows by taking Q = Dh, since T � V (D1) [ : : :[ V (Dh�1). 2We can obtain another proof of Proposition 3.1, namely, the family of k-shredders separating agiven pair of nodes v; z in a k-connected graph is nonmeshing.Proposition 4.4 Let G be a k-connected graph, and let v; z be nodes of G. Let S and T be twok-shredders that separate v and z. Then S and T are nonmeshing.Proof: Clearly, both v and z are in V n(S [ T ). By way of contradiction, suppose that S and Tmesh. Then by Lemma 4.3, there is a component either of GnS or of GnT that contains both vand z. Contradiction. 25 Augmenting node connectivity by oneOur algorithm for augmenting the node connectivity of a graph by one is a variant of Jord�an'salgorithm [J 95] but is signi�cantly faster. First, we describe a lower bound on the number ofnew edges required to increase the node connectivity from k to (k + 1). Several recent algorithmsfor edge/node connectivity augmentation problems are based on splitting-o� theorems, see thesurvey paper [F 94]. In particular, Jord�an's algorithm is based on a key theorem for splitting o�edges while preserving node connectivity. We state and prove a weaker version of this theorem inSection 5.2 (Theorem 5.1). In Section 5.3, we present the augmentation algorithm, prove it correct,and analyze its running time.Readers interested in algorithmic aspects may prefer to skip Section 5.2 after reading theoverview of the augmentation algorithm given there, and to refer back when required to Theo-rem 5.1 and Lemmas 5.6{5.8.See Figure 2 for an illustration of the algorithm.5.1 A lower bound on the number of augmented edgesLet G be a k-connected graph. Recall from Section 2 that a tight set is a node set Q such thatjN(Q)j = k and jV nQj � (k + 1). The maximum number of pairwise disjoint tight sets in G isdenoted by t(G), i.e., t(G) is the maximum integer ` � 0 such that D1; : : : ; D` are tight sets andDi \Dj = ;; 1 � i < j � `. Recall from Section 3.2 that b(G) denotes the maximum number ofcomponents obtained by deleting a k-separator (assuming there is one) from G.Examples: Suppose G is a tree with � 3 nodes. Then t(G) is the number of degree-one nodes,and b(G) is the maximum degree of a node. If G is the complete bipartite graph Kk;k, thent(G) = jV (G)j = 2k and b(G) = k. Lastly, for the graph G in Figure 2(1), t(G) = 4 and b(G) = 2.Consider our problem of adding some edges to augment the connectivity of G from k to k + 1.Let G0 be the augmented graph. An obvious lower bound on the minimum number of edgesrequired is max(b(G)� 1; dt(G)=2e). To see this, �rst consider a k-separator S such that GnS hasb(G) components, and note that we must add � b(G)� 1 edges to ensure that G0nS is connected.Secondly, for every tight set D, G0 must have an edge with one end in D and the other in V n(D [N(D)). Since G has t(G) pairwise disjoint tight sets, we must add � dt(G)=2e edges. Unfortunately,the lower bound is not tight and there may be a slack of (k�2), as shown by the following exampledue to Jord�an [J 95]: consider the complete bipartite graph Kk;k, and note that the minimumnumber of new edges required is 2k�2, but our lower bound is k, since b(Kk;k) = k and t(Kk;k) = 2k.Hence, an algorithm based on the above lower bound, such as the algorithm in this section, willnot �nd the optimal augmentation on all graphs.12
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Figure 2: Illustrating algorithm augment node connectivity.(1) G is 2-connected, b(G) = 2, and t(G) = 4. The leafs are Di = faig; 1 � i � 4, and thesuperleafs are Qi = fai; bi; cig; 1 � i � 4. Suppose the algorithm (Lemma 5.6) chooses Qi = Q1(so N(Qi) = fd; eg is not a shredder) and takes Qj = Q2, Qp = Q4. Adding edge xy = a1a2 fails(G+a1a2 has a new leaf Qi[Qj [feg), similarly, adding edge xz = a1a4 fails. Adding edge yz = a2a4is guaranteed to succeed.(2) G is a tree, b(G) = 3 and t(G) = 5. Suppose the algorithm (Lemma 5.7) chooses Qi = Q1 (soN(Qi) is a shredder) and takes Qj = Q2. Adding the edge between the degree-one nodes in Qi andQj succeeds.5.2 A splitting-o� theorem for node connectivityLet s be a distinguished node of a graph. Splitting o� a pair of edges vs and sw incident to smeans removing edges vs and sw, and adding the edge vw. The algorithm for augmenting nodeconnectivity is based on a subroutine for �nding and splitting o� a pair of edges incident to s suchthat the node connectivity of the resulting graph does not decrease. Here is an overview of theaugmentation algorithm that skips some important points:Let G be a k-connected graph that is not (k+1)-connected. We �rst construct a (k+1)-connected graph eG by adding a new node s and new edges between s and each nodev 2 V (G). ( eG is (k + 1)-connected because every separator of eG contains the nodes as well as a separator of G.) Then for each node v 2 V (G), in an arbitrary order,we remove the edge sv from eG if doing so preserves the (k + 1)-connectivity of theresulting graph (also denoted eG). For each tight set D of G, note that eG has an edgebetween some node of D and s (otherwise, NG(D) is a k-separator of eG). We attemptto pair up the edges incident to s and split o� all these edge pairs, while preserving(k + 1)-connectivity. If we succeed, then the resulting graph G0 (without node s) willbe a (k + 1)-connected augmentation of G.The earliest splitting-o� theorem is due to Lov�asz [Lo 74] and concerns the edge connectivityof multigraphs: If s is a node of even degree in a multigraph eG, and there are at least k � 213



edge-disjoint paths between any two nodes of V ( eG)ns, then all edges incident to s can be pairedup and split o� such that the resulting multigraph (without node s) has at least k edge-disjointpaths between any two nodes. Mader [Ma 78] generalized this result to obtain a theorem forsplitting o� edges while preserving local edge connectivity. Mader [Ma 82] also gave a splitting-o�theorem for the edge connectivity of directed multigraphs. Other expositions of these three resultsmay be found in [F 92a], [F 92b] and [F 93, FJ 95a], respectively. To the best of our knowledge,the earliest splitting-o� theorem for node connectivity is due to Bienstock, Brickell and Monma[BBM 90, Theorem 3]. A di�erent proof of a variant of this theorem is given by Jord�an [J 95,Theorem 3.1]. Jord�an gave a splitting-o� theorem for the node connectivity of directed graphs[J 93, Theorem 2]. Another proof appears in [FJ 95b].Splitting-o� theorems for node connectivity hold only under appropriate conditions. Here arethree examples (violating the appropriate conditions) such that splitting o� any (or all) edge pair(s)incident to s decreases the connectivity. These examples are due to Bienstock et al [BBM 90, p. 324],and to Hsu [H 92].Example (1): Start with the complete bipartite graph G = K3;3, and obtain the 4-connectedgraph eG by adding a new node s and all the edges fsv : v 2 V (G)g. Splitting o� any edge pairincident to s results in a 3-connected graph. This example generalizes to all Kk;k; k � 3.Example (2): For another example, start with the complete bipartite graph G = K1;p, p � 4,and obtain the 2-connected graph eG by adding a new node s and p new edges sv where v 2 V (G)is in the larger part of the bipartition of K1;p. Splitting o� any edge pair incident to s resultsin a 1-connected graph. This example generalizes to all Kk;p; k � 1; p � k + 3. Moreover, we canreplace one or more nodes v in the larger part of the bipartition of Kk;p by (k+1)-connected graphsHv (or (k + 1)-cliques Hv) provided we replace the k edges incident to v by k edges incident todistinct nodes of Hv .Example (3): For the last example, take three copies of the complete graph K4 on the nodesets fai; bi; ci; dig; 1 � i � 3. Identify the nodes b1 and a2, i.e., replace b1 and a2 by a new nodethat is incident to all edges incident to b1 or a2. Similarly, identify the nodes b2 and a3, and thenodes b3 and a1. Also, add a new node f and the edges fci; 1 � i � 3. The resulting graph G is3-connected. Obtain the 4-connected graph eG from G by adding a new node s and the edges sfand sdi; 1 � i � 3. For every pairing of the edges incident to s, splitting o� all the edge pairs (andignoring the node s) results in a 3-connected graph. This example generalizes to all odd k � 3: takethree copies of the complete graph Kk+1, \join" them as above, then add a copy of Kk�1, and foreach copy of Kk+1 add the edge set of a matching between the degree-k nodes and the copy ofKk�1. Take s to be one of the nodes of the copy of Kk�1.Our version of the splitting-o� theorem is weaker than the splitting-o� theorem in [J 95, The-orem 3.1]: we add the condition degeG(s) � 2k. This allows us to simplify the proof. For the mainproblem of augmenting the connectivity from k to (k + 1), even our weaker theorem implies thesame slack of (k � 2) between the number of new edges and the lower bound. Also, our theoremomits the condition jV ( eG)j � 2(k+ 1), consequently it has to allow the possibility that eGns = G isthe complete bipartite graph Kk;k. The di�erence between our version of the splitting-o� theoremand Bienstock et al's splitting-o� theorem [BBM 90, Theorem 3] is that a new condition (see (3)in Theorem 5.1) has been added. This guarantees that the connectivity can be preserved by asingle splitting-o� operation, whereas in [BBM 90, Theorem 3] one or two splitting-o� operationsare required to preserve the connectivity. Our proof hinges on the notions of superleafs and themaximal tight setsWij (de�ned below), and follows immediately from Lemmas 5.6{5.8. Recall thatan edge vw of a graph H is called critical if the node connectivity of Hnvw is less than that of H .14



Theorem 5.1 Let eG be a (k+1)-node connected graph (k � 1), and let s be a node of eG. Supposethat s is incident to t � max(2k; k+ 3) edges each of which is critical. Then either(1) there is a pair of edges incident to s such that splitting o� this pair results in a (k + 1)-nodeconnected graph, or(2) eGns = Kk;k, or(3) there is a (k + 1)-separator X of eG such that s 2 X and eGnX has degeG(s) components.The necessity of conditions (2) and (3) in the theorem can be seen from Examples (1) and (2),respectively.Suppose that splitting o� an edge pair vis; svj in a (k+1)-connected graph eG results in a grapheGij that is not (k + 1)-connected. Then eGij has a k-separator X .Fact 5.2 Let X be a k-separator of eGij. Then (1) s 62 X, (2) either vi 62 X or vj 62 X, and (3) ineGijnX the component containing s contains neither vi nor vj.Proof: First, note that eGijns = ( eGns) + (vivj), since the edges vis and svj \vanish" when s isremoved. Hence, a k-separator X of eGij with s 2 X is also a k-separator of eG. Since eG has nok-separator, part (1) follows. Similarly, for part (2), eGijnfvi; vjg = eGnfvi; vjg, so a k-separator Xof eGij with vi 2 X; vj 2 X is also a k-separator of eG. See Figure 3 for an illustration.To see that s and fvi; vjgnX are contained in di�erent components of eGijnX , �rst suppose thatneither vi nor vj is in X . Then vi and vj are in the same component of eGijnX , since there isa new edge vivj . If s is also in this component, then X is a k-separator of eG, contradicting the(k + 1)-connectivity of eG. Similarly, if vi 2 X (vj 2 X), then s and vj (vi) must be in di�erentcomponents of eGijnX . 2splitting o� vis; svjk-separator X (2)(1)
s s

vj vjviviFigure 3: Illustrating the de�nition of Wij . (1) Case (i). (2) Case (ii).eGij has a tight set (w.r.t. k-connectivity) that contains vi or vj (or both) but not s, by theprevious fact. Let Wij denote such a tight set that is (inclusionwise) maximal, i.e., no proper15



superset of Wij is tight. (The maximality of Wij will be exploited in Fact 5.5.) Clearly, Wijcontains no neighbor of s in eG other than vi and vj (i.e., Wij is disjoint from NeG(s)nfvi; vjg),otherwise the k-separator NeGij (Wij) of eGij will contain s, and this will contradict the previousfact. There are three cases:(i) Wij contains both vi and vj ;(ii) Wij contains vi but not vj , and so vj 2 NeGij (Wij);(iii) Wij contains vj but not vi, and so vi 2 NeGij (Wij).(Possibly, there are two di�erent maximal tight sets, one satisfying (ii) and the other satisfying (iii),but then we takeWij to be either of these two sets.) Case (i) is crucial for our proof of the splitting-o� theorem; we will avoid cases (ii) and (iii) altogether. (These three cases correspond to cases(�), (�) and (
) in [J 95, p. 13].)Let G be a k-connected graph. We call an (inclusionwise) minimal tight set of G a leaf, anddenote the leafs by Di; i = 1; 2; : : :. For example: (1) if G is a tree with � 3 nodes, then everydegree-one node is a leaf, (2) if G = Kk;k, then every node is a leaf (in both graphs, there areno other leafs), and (3) the graph in Figure 2(1) has four leafs, faig, 1 � i � 4. For k = 1 andk = 2, it can be seen that the leafs are pairwise disjoint. In general, the leafs need not be disjoint.(Example: Take a complete graph K5 having nodes a; b; c; d; e; and add two more nodes f and g,where f has edges to a; b; g and g has edges to c; d; f . The resulting graph is 3-connected. Considerthe 3-separators that isolate f and g, fa; b; gg and fc; d; fg, and note that the leafs fa; b; eg andfc; d; eg intersect.) The next result is from [J 95]. Recall from Section 5.1 that t(G) denotes themaximum number of pairwise disjoint tight sets in G.Fact 5.3 (Lemma 2.1 [J 95]) If a k-connected graph H has t(H) � k + 1, then all the leafs arepairwise disjoint, and the number of leafs is t(H).Fact 5.4 Let eG be a (k + 1)-connected graph, and let s be a node of eG. Every tight set (w.r.t.k-connectivity) of G = eGns contains a neighbor of s in eG. If eG has ` � (k + 2) critical edgesincident to s, then G has � ` leafs, all the leafs are pairwise disjoint, and t(G) � `.An (inclusionwise) maximal tight set that contains exactly one leaf is called a superleaf, andis denoted by Qi; i = 1; 2; : : :. (This de�nition allows a superleaf to have a nonempty intersectionwith several leafs. A superleaf may be a leaf.) For example, if G is a tree, a superleaf is a maximalpath starting at a degree-one node such that all other nodes are degree-two nodes. For anotherexample, the graph G in Figure 2(1) has four superleafs fai; bi; cig; 1 � i � 4. The notion ofsuperleafs is used in the proofs of all the splitting-o� theorems for node connectivity cited above.The next result is essentially from [J 95] (see Claim I in Theorem 3.1) and summarizes some usefulproperties of superleafs.Fact 5.5 Let G be a k-connected graph with t = t(G) � k + 3. Let D1; : : : ; Dt be the (pairwisedisjoint) leafs of G. Then:(0) For every leaf, as well as every superleaf, the induced subgraph is connected.(1) For every leaf Di, 1 � i � t, there is a unique superleaf Qi containing it.(2) All the superleafs are pairwise disjoint. Hence, except for the leaf contained in it, a superleafis disjoint from all other leafs. 16



Let the (k + 1)-connected graph eG be obtained from G by adding a new node s, and a new edgebetween s and one node vi in Di, for each i = 1; : : : ; t. Suppose that (in eG) splitting o� the edgepair vis; svj, 1 � i < j � t, decreases the connectivity. Let Wij be the node set de�ned above. Then:(3) Wij is disjoint from all superleafs Q`, 1 � ` � t, i 6= ` 6= j.(4) Either Wij contains both the superleafs Qi and Qj (case (i)), or Wij = Qi and Dj\N(Qi) 6= ;(case (ii)), or Wij = Qj and Di \N(Qj) 6= ; (case (iii)).(5) If Qj is disjoint from N(Qi) (this implies that Qi is disjoint from N(Qj)), then Wij containsboth the superleafs Qi and Qj (case (i) for Wij).Let G be a k-connected graph with t = t(G) � k + 3, and let D1; : : : ; Dt be the leafs of G. Anode pair fvi; vjg of G is called a saturating pair if adding the edge vivj decreases the number ofleafs by two, i.e., if t(G + vivj) = t(G) � 2. Alternatively, fvi; vjg is a saturating pair if there areleafs, say, Di and Dj , 1 � i 6= j � t, with vi 2 Di and vj 2 Dj such that splitting o� the edge pairvis; svj in the (k+1)-connected graph eG preserves the connectivity, where eG is obtained from G bychoosing an arbitrary node v` 2 D`, for each `, 1 � i 6= ` 6= j � t, adding a new node s, and addingthe new edges sv`, 1 � ` � t. If fvi; vjg is not saturating, then G has a tight set Wij containing vior vj (or both) and satisfying case (i), (ii) or (iii) above.The proof of Lemma 5.6 follows the proof of Step 3.4, Theorem 3 of [BBM 90] and the proofof Claim II(a)!(b), Theorem 3.1 of [J 95]. For the sake of completeness, a proof is included in theappendix.Lemma 5.6 Let G = (V;E) be a k-connected graph (k � 1) with t(G) � k + 3. Let Qi, Qjand Qp be three distinct superleafs such that N(Qi) is disjoint from each of Qj and Qp. Let Di,Dj and Dp be the leafs contained in Qi, Qj and Qp respectively. Then for every three nodesx 2 Di, y 2 Dj and z 2 Dp, either one of the node pairs fx; yg, fx; zg or fy; zg is saturating, orN(Qi) = N(Qj) = N(Qp), i.e., N(Qi) is a k-shredder.Lemma 5.7 Let G = (V;E) be a k-connected graph (k � 1) with t(G) � max(2k; k + 3). LetQi � V be an arbitrary superleaf such that GnN(Qi) has at least three components (so N(Qi) is ak-shredder).(1) If one of the components of GnN(Qi) contains two or more leafs, then that component containsa superleaf Qj, i 6= j.(2) If a component of GnN(Qi) contains a superleaf Qj as well as another (disjoint) leaf Dp, thenfor every node x 2 Di, and for every node y 2 Dj, the node pair fx; yg is saturating, where Di isthe leaf contained in Qi and Dj is the leaf contained in Qj .Proof: Since t(G) � k + 3, G has t(G) (pairwise disjoint) leafs and t(G) (pairwise disjoint)superleafs (Facts 5.3{5.5). Let the component C of GnN(Qi) contain leafs Dh and Dg, h 6= g.Consider the superleaf Qh, Qh � Dh, and let X = N(Qh). If Qh \ N(Qi) = ;, then the proofof part (1) is done since Qh � C. Otherwise, if Qh \ N(Qi) is nonempty (i.e., there is an edgewith one end in Qi and the other end in Qh), then X meshes with N(Qi) since X has nodes intwo components of GnN(Qi), namely, Qi and C. (To see that X has a node in C, note thatC contains a path from Dh to Dg but there is no such path in GnX .) By Lemma 4.3, thereare two possibilities: (I) except for one component of GnN(Qi), every component of GnN(Qi) iscontained in X . Clearly, the exceptional component is C. (II) There is a component C 0 of GnXthat contains V n(X [ N(Qi)). In Case (I), jV n(C [N(Qi))j � k � 1 because X \ C 6= ;. Hence,from among the � 2k superleafs of G at least 2k � (k � 1) = k + 1 superleafs are contained in17



C [ N(Qi), and one of these (say, Qj) is disjoint from N(Qi). In Case (II), since C 0 = Qh, theremaining superleafs are contained in X[N(Qi). Since X[N(Qi) contains � 2k�1 superleafs andj(X [N(Qi))nQhj � 2k� 1 (Qh has at least one node of N(Qi)), we see that every superleaf otherthan Qh is a single node, so the superleaf Qg of Dg is a single node and is disjoint from N(Qi).This completes the proof of part (1), and shows that if a component of GnN(Qi) contains at leasttwo leafs, then the component contains a superleaf as well as another (disjoint) leaf.Now consider part (2). Clearly, Qj is disjoint fromN(Qi), since Qj is contained in a componentof GnN(Qi). Suppose that fx; yg is not saturating. Then G has a maximal tight set Wij suchthat Wij � Qi [Qj . (Cases (ii) and (iii) for Wij cannot occur by Fact 5.5 since N(Qi) \Qj = ;.)Focus on the k-separator N(Wij) = X . Since Wij contains Qi, X has no nodes from Qi. Then byLemma 2.1,X cannot mesh with N(Qi), i.e., all nodes of XnN(Qi) are contained in one componentof GnN(Qi). Take H to be a component of GnN(Qi) that contains neither Qi nor Qj . We nowhave the desired contradiction. Either XnN(Qi) is contained in H , or XnN(Qi) is contained inthe component of GnN(Qi) which contains Dj and Dp. In the �rst case, Wij must contain threeleafs Di, Dj and Dp. In the second case, Wij must contain H (and at least one leaf contained inH), because Wij contains all nodes in N(Qi)nX , and each such node has a neighbour in H . But,by Fact 5.5, Wij contains no leafs besides Di and Dj . 2By a J-graph we mean a k-connected graph G such that there is a k-shredder S such that everynode in S has degree k, no two nodes in S are adjacent, GnS has exactly k components, and each ofthese components contains exactly one leaf. Clearly, k is � 3. The next lemma and Proposition 5.9show that a J-graph is either the complete bipartite graph Kk;k, or is obtained from Kk;k by �xingone of the two parts of the bipartition, replacing one or more nodes v in this part by appropriatesubgraphs Hv on � (k + 1) nodes, and replacing the k edges incident to v by k edges incident todistinct nodes of Hv .Lemma 5.8 Let G = (V;E) be a k-connected graph (k � 1) with t(G) � max(2k; k + 3). LetQi � V be an arbitrary superleaf such that GnN(Qi) has b � 3 components (so N(Qi) is a k-shredder). Suppose that each of the b components of GnN(Qi) contains exactly one leaf. Then:(1) Either b � k + 1 and b = t(G), or b = k and G is a J-graph.(2) For a J-graph G, the minimum number of edges required to augment the connectivity to (k+1)is (2k � 2) if G = Kk;k, and k + dk=2e � 1 otherwise.Proof: Let S denote the shredder N(Qi). Let C1; C2; : : : ; Cb be the components of GnN(Qi).Since t(G) � k + 3, t(G) equals the number of leafs, and the leafs are pairwise disjoint (Fact 5.3).We will call a leaf bad if it contains one or more nodes of S. Similarly, we call a superleaf bad if itcontains one or more nodes of S. The proof of part (1) follows from three (easy) claims.Claim 1: If b � k + 1, then there are no bad leafs, and no bad superleafs.This claim follows from Lemma 2.1, since no k-separator of G meshes with S when b � k + 1, sofor every tight set Q, either Q is contained in a component of GnS or Q contains two or morecomponents of GnS.From Claim 1, it is clear that if b � k + 1, then b = t(G).Claim 2: If b � k, then there are k bad leafs, b = k � 3, and t(G) = 2k.There are at most k bad leafs (since each contains a distinct node of S), and exactly b � k nonbadleafs (since each component of GnS contains exactly one leaf). So the number of leafs, t(G), is� b+ k � 2k. Since t(G) � 2k, the claim follows.Claim 3: If b � k, then every bad leaf consists of exactly one node.Clearly, every bad leaf has exactly one node of S, since there are k bad leafs. Let D be a tight set18



such that (I) exactly one node of S is in D, (II) some component, say, Ck of GnS, has a node in D,and (III) for j = 1; : : : ; k, at least one node xj of Cj is not in D. Clearly, jV n(Ck [D)j � 2k � 2 �k + 1, because jSn(Ck [D)j = jSnDj = k � 1, and there are (k � 1) other nodes x1; : : : ; x(k�1) notin Ck [D (the last inequality holds since k � 3). Applying Lemma 2.2 to the tight sets Ck and D,we see that Ck \D is a tight set. Hence, D is not a leaf. This proves the claim.Suppose that b � k. Claim 3 implies that every node in S has degree k. No two nodes in Sare adjacent, since each node z 2 S must have a neighbor in each of the k components of GnS.Part (1) of the lemma is done: If b � k, then b = k and G is a J-graph.Part 2: Now consider a minimum-cardinality set of new edges whose addition to the J-graph Gaugments the connectivity to k + 1. If G = Kk;k, then it is clear that (2k � 2) edges are necessaryand su�cient.Claim 4: If G is a J-graph and G 6= Kk;k, then k+ dk=2e� 1 edges are necessary and su�cient toaugment the connectivity to (k + 1).To see the lower bound, note that GnS has k components, so we need to add � (k� 1) new edgesincident to nodes of GnS. Moreover, S contains k pairwise disjoint tight sets, so we need to add� dk=2e new edges incident to nodes of S. The lower bound follows since the two augmentingedge sets are disjoint. To construct the optimal augmentation, �rst choose one node in each leaf ofeach component of GnS, and add the edge set of an arbitrary tree that spans these nodes. Thenadd dk=2e new edges incident to S such that every node of S is incident to a new edge (i.e., adda maximum matching on S, and if jSj is odd, then add one more new edge). Let G0 denote theaugmented graph. The proof of this claim and part (2) of the lemma follows from the next claim.Claim 5: G0 is (k + 1)-connected.The proof is by contradiction. If G0 is not (k + 1)-connected, then G0 has a k-separator X . Weexamine three mutually exclusive cases.Case (I): X = S. By the augmented tree on the leafs in GnS, G0nX is connected.Case (II): X 6= S and X is nonmeshing w.r.t. S. Again, by the augmented tree on the leafs in GnS,G0nX is connected.Case (III): X meshes with S. By Lemma 2.1, X has a node in each of the k components ofGnS. Clearly, X and S are disjoint, and every component of GnS has exactly one node of X .Let Cj be an arbitrary component of GnS with jCj j > 1 (Cj exists since G 6= Kk;k). For eachv 2 CjnX , G[Cj [ S] has k openly disjoint paths from v to S, so at least (k � 1) � 2 of thesepaths survive in G0nX . Hence, all nodes of (Cj [ S)nX , except possibly one node, say, z 2 S, arein the same component of G0nX . Because of the dk=2e augmented edges incident to S, there mustbe an augmented edge from z to some node of Snz, and so all nodes of S are connected in G0nX .Then G0nX is connected. The lemma is proved. 2Proof: (Theorem 5.1) The splitting-o� theorem follows straightaway from Lemmas 5.6{5.8. LeteG be the graph in the theorem, and let G = eGns. Since t � (k + 3), G has t (pairwise disjoint)leafs, and t (pairwise disjoint) superleafs, by Facts 5.3{5.5. Take an arbitrary superleaf Qi andfocus on the k-separator S = N(Qi). At most k superleafs can intersect N(Qi), so there must betwo superleafs (besides Qi) that are disjoint fromN(Qi). Take these superleafs to be Qj and Qp. IfS is not a shredder, then Lemma 5.6 guarantees a saturating node pair fv; wg, i.e., in the graph eG,the connectivity is preserved on splitting o� the edge pair vs; sw. If S is a shredder, then dependingon whether there is a component of GnS that contains two leafs, either Lemma 5.7 guarantees asaturating node pair fvi; vjg, or Lemma 5.8 guarantees that GnS has t(G) = degeG(s) components,or Lemma 5.8 guarantees that G is a J-graph. In the �rst and second cases, we are done (by the�rst and third items in the consequent of the theorem). If G is a J-graph, then either G = Kk;k ornot. In the �rst case, we are done, since the theorem allows G = Kk;k. In the second case, let S19



be a k-shredder of G as in the de�nition of J-graph. For each node z 2 S, z is a leaf of G, and soeG has the edge zs. By Lemma 5.8, part (2), splitting o� an arbitrary edge pair of eG of the formzis; szj , i 6= j, zi 2 S, zj 2 S results in a graph eGij that is (k + 1)-connected. 2Remark: Note that in the last case of the above proof, the graph eGij resulting from the splitting-o�operation will not satisfy the conditions of the theorem, since t( eGij) = 2k� 2.The next result helps to characterize J-graphs.Proposition 5.9 If G is a J-graph, G 6= Kk;k, and S is a k-shredder of G as in the de�nition ofa J-graph, then the number of nodes in a component of GnS is either one or � k + 1.Proof: Let C be an arbitrary component of GnS, and let p denote the number of nodes in C. Weget lower and upper bounds on the sum of the degrees of the nodes in C since (I) every node in Chas degree � k and at most one node in C has degree k, (II) there are � �p2� edges with both endsin C, and (III) there are exactly k edges with one end but not the other in C:k + (k + 1)(p� 1) � Xv2C deg(v) � p(p� 1) + k:Then (p� 1)(p� (k + 1)) � 0, implying that p = 1 or p � k + 1. This proves the claim. 25.3 The augmentation algorithmWe �rst sketch the augmentation algorithm, and then give the running time analysis. Given ak-connected graph G = (V;E), an augmenting set means a set F of node pairs (i.e., edges ofthe complete graph on V ) such that the augmented graph (V;E [ F ) is (k + 1)-connected andE\F = ;. The slack of an augmenting set F is the di�erence between the cardinality, jF j, and thelower bound on the number of new edges required for augmenting the connectivity of G by one,namely, max(b(G)� 1; dt(G)=2e). Throughout this subsection, we use N 0(:) for NG0(:), and eN(:)for NeG(:).Observe that the algorithm may terminate in three di�erent ways (see Algorithm 3 in the boxon page 21): when b > dt=2e, or when the current graph G0 is a J-graph, or when t < 2k. In the�rst case, the augmentation is optimal, but the augmentation may not be optimal in the other twocases. In particular, if G0 is J-graph, then Lemma 5.8 gives the optimal augmentation for G0, butthe overall augmentation for G may not be optimal.Theorem 5.10 Given a k-node connected graph with n � (k + 2), the augmentation algorithm(Algorithm 3) correctly increases the connectivity to k + 1, and the number of new edges added isat most k � 2 plus the lower bound of max(b(G)� 1; dt(G)=2e).The running time is O(min(k;pn)k2n2 + (logn)kn2).The proof is given in two parts. The �rst part proves the correctness and the performanceguarantee, and the second part analyzes the running time. The �rst part follows from similarresults for Jord�an's algorithm [J 95], but for the sake of completeness, we include the proof in theappendix.Proof: (Running time analysis) Our improvement of Jord�an's O(n5) running time mainlycomes from (1) replacing the input graph G by a sparse certi�cate, and (2) using our fast dynamicalgorithm for maintaining b(G0). At the start of the algorithm, we replace the k-connected inputgraph G = (V;E) by (V; Ê), where Ê � E is a sparse certi�cate for the (k + 1)-connectivity of G,20



Algorithm 3 Augment node connectivity by oneInput: Graph G = (V;E), integer k � 1. G is k-connected and jV j � k + 2.Output: (k+ 1)-connected graph G0 and augmenting set E(G0)nE with slack � (k � 2).Let E 0 = E, and G0 = (V;E 0) (initially, G0 = G).If G0 is (k + 1)-connected, then stop else use Algorithm 1 (Section 3, page 6) to computeb = b(G0) = maxS�V;jSj=k c(G0nS).Obtain a (k + 1)-connected graph eG = (V + s; eE) from G0 by adding a new node s and an(inclusionwise) minimal subset of the edge set fsv : v 2 V g.Throughout the algorithm G0 denotes eGns. Let t = degeG(s) = j eN(s)j.While t � 2k do (main loop)If b > dt=2e thenuse Jord�an's Theorem 2.4 [J 95] to augment the connectivity of G0 to (k + 1) byadding a minimum-cardinality edge set, and stop.End (If).Let Qi be an arbitrary superleaf of G0.If either N 0(Qi) is not a shredder of G0 (Lemma 5.6) or N 0(Qi) is a shredder of G0 andone component of G0nN 0(Qi) contains two leafs (Lemma 5.7) then�nd and split o� an edge pair incident to s such that eG stays (k + 1)-connected;else G0 is a J-graph, so use Lemma 5.8 to (suboptimally) augment the connectivity ofG0 to (k + 1), and stop.End (If).Decrease t by 2 (since we want t = degeG(s)), and use the dynamic algorithm(Section 3.2,page 9) to update b = b(G0).End (While).Augment G0 (suboptimally) using Phase 5 of Jord�an's algorithm [J 95] and stop.End
21



see [NI 92, CKT 93, FIN 93]. The cardinality of Ê is < (k+1)n = O(kn), and Ê can be computedin linear time by �nding a so-called legal ordering of the nodes. The key point is that for everynode set Q � V , Q is a tight set (or a k-separator, or a k-shredder) of (V;E) i� Q is a tight set(or a k-separator, or a k-shredder, respectively) of (V; Ê), see Proposition 3.3. For the rest of theanalysis, assume that the input graph G has jE(G)j = O(kn). Let eG and G0 = eGns be as in thealgorithm.There are four basic steps in the algorithm: (I) determine whether an edge vs of eG is critical,(II) given v 2 eN(s), �nd the leaf and (III) the superleaf of G0 = eGns containing v, and (IV) deter-mine whether splitting o� the edge pair vs; sw in eG preserves the (k + 1)-connectivity. The basicsteps can be implemented to run in time O(min(k;pn)jE( eG)j) = O(min(k;pn)kn) using standardnetwork 
ow techniques, see [Ev 79].Focus on the overall algorithm. The initial computation of b(G0) takes time O(k2n2 + k3n1:5),by Theorem 3.4. While constructing eG, for each node vi adjacent to s in eG, we also �nd a leaf Dicontaining vi. This takes timeO(min(k;pn)kn2), since we need O(n) maximum
ow computations.Consider an iteration of the while loop. If b(G0) > dt=2e � k, then we use the construction inTheorem 2.4 of [J 95]. This takes linear time. Otherwise, we take an arbitrary neighbor vi of s in eG,and compute the superleaf Qi containing vi. If N 0(Qi) is not a shredder, then we apply Lemma 5.6.We step through the other neighbors of s in eG and compute the corresponding superleafs till we �ndtwo superleafs Qj and Qp that are each disjoint from N 0(Qi). Let vj (vp) be the node of eN(s) in Qj(Qp). We update eG by splitting o� either one of the two edge pairs vis; svj or vis; svp (if one of thesetwo preserves the connectivity), or the edge pair vjs; svp (otherwise). Applying Lemma 5.6 takestime O(min(k;pn)k2n), since there are O(k) maximum 
ow computations. If N 0(Qi) is a shredder,then we �rst determine whether G0nN 0(Qi) has a component containing two leafs of G0. This takestime O(n), since all the leafs of the current G0 are available (we computed all the leafs of the initialG0, and the surviving leafs stay the same throughout the execution). If there is a component, say, Cof G0nN 0(Qi) that contains two leafs, then for each leaf contained in C we construct the superleaf,till we �nd a superleaf Qj disjoint fromN 0(Qi). Then we split o� the edge pair vis; svj in eG (here, vjis the node in Qj\ eN(s)). As before, there are O(k) maximum
ow computations, and it takes timeO(min(k;pn)k2n) to apply Lemma 5.7. If no component of G0nN 0(Qi) contains two leafs of G0,then Lemma 5.8 applies, and gives the optimal augmenting set for the current graph G0. Updatingb(G0) takes time O((min(k;pn) + logn)kn), by Theorem 3.6. Summarizing, the O(n) iterations ofthe while loop take time O(min(k;pn)k2n2+(logn)kn2) altogether. Phase 5 of Jord�an's algorithm[J 95] takes time O(min(k;pn)k3n), since it essentially consists of �t2� = O(k2) maximum 
owcomputations. Totaling up, the running time of the algorithm is O(min(k;pn)k2n2 + (logn)kn2).26 ConclusionsA major open question in graph connectivity is whether the node connectivity augmentation prob-lem is NP-hard. A polynomial-time algorithm for this problem may require major advances sinceit will have to generalize (among others) the results of Eswaran & Tarjan [ET 76], Watanabe &Nakamura [WN 90], Hsu [H 92, H 95], as well as Edmonds' (nonbipartite) maximum matching al-gorithm (by an observation of Geelen [Ge 96]). The complexity of the problem of augmenting thenode connectivity from k to k + 1 is also open. Let T (n; k) denote the running time for testing ann-node graph for k-connectivity. Is it possible to �nd all the k-shredders of a k-connected graph ino(T (n; k)) running time?Recently, Jord�an showed that a k-connected graph G = (V;E) has at most jV j k-shredders,22



[J 97b]. This solves one of the open questions in a preliminary version of this paper. Moreover,this gives improved running times for the algorithms in Theorems 3.6 and 5.10. Let n = jV j.First, consider the dynamic algorithm for maintaining the set of the k-shredders over a sequence ofedge insertions/deletions, assuming that the graph stays k-connected throughout, see Section 3.2.Since the number of k-shredders is � n and we allow at least O(kn) time per edge update, we donot need a heap for querying b(G). Instead, we maintain b(G) by means of the lexicographicallysorted lists of k-shredders L and Lxy . Maintaining these lists takes time O(kn) per edge update.Consequently, in Theorem 3.6, the time per edge update improves to O(jEj + min(k;pn)kn),since we drop the term (logn)kn that accounts for heap operations; the time per query of b(G)stays O(1) and the preprocessing time does not change. This immediately improves the runningtime of the augmentation algorithm (in Theorem 5.10) to O(min(k;pn)k2n2), since we drop theterm (logn)kn2 that partially accounts for � n edge updates (insertions) by the subroutine formaintaining b(G0). For 4 � k � 3pn, our running time is within a factor of k2 of the running timefor testing k-connectivity, and for larger k, our running time is within a factor of max(n=k; pn) ofthe running time for testing k-connectivity.Jord�an [J 97a] has improved the analysis of his algorithm in [J 95] to prove a slack of d(k�1)=2eby using an improved lower bound and by appropriately modifying the earlier algorithm. That is,the di�erence between the number of augmented edges and the improved lower bound is always� d(k � 1)=2e. The methods in this paper apply also to Jord�an's new result, see [J 97a, p. 300],and give the same running time of O(min(k;pn)k2n2).The algorithmAll-k-shredders in Section 3 has been implemented by T. Yip at the University ofWaterloo as part of an undergraduate research project. As expected, the most time consuming partof the program is to �nd the k openly disjoint v$r paths in Step (1) of Algorithm Shredders(r,v).7 AppendixThe proofs of some of the known results are given here, for the sake of completeness.See Figures 2(1) and 4 for illustrations of the next lemma.Lemma 5.6 Let G = (V;E) be a k-connected graph (k � 1) with t(G) � k + 3. Let Qi, Qjand Qp be three distinct superleafs such that N(Qi) is disjoint from each of Qj and Qp. Let Di,Dj and Dp be the leafs contained in Qi, Qj and Qp respectively. Then for every three nodesx 2 Di, y 2 Dj and z 2 Dp, either one of the node pairs fx; yg, fx; zg or fy; zg is saturating, orN(Qi) = N(Qj) = N(Qp), i.e., N(Qi) is a k-shredder.Proof: Since t(G) � k + 3, G has t(G) leafs, these are pairwise disjoint, and also, the superleafsare pairwise disjoint (Facts 5.3{5.5). Suppose that fx; yg and fx; zg are not saturating. Then Ghas maximal tight sets Wij and Wip such that Wij � Qi [Qj and Wip � Qi [Qp. (Cases (ii)and (iii) for Wij and Wip cannot occur by Fact 5.5 since Qj and Qp are disjoint from N(Qi).)Since Wij � Qi, Wip � Qi, both Wij and Wip are tight sets, and there are at least k nodes not inWij [Wip (from the other t(G)� 3 � k leafs), Lemma 2.2 shows that Wij \Wip is a tight set andN(WijnWip) is disjoint fromWipn(Wij [N(Wij \Wip)). Since Wij\Wip satis�es all the conditionsfor the superleaf containing Di, the maximality of Qi implies that Qi = Wij \Wip. Then Qp isdisjoint from N(Wij \Wip) = N(Qi), and hence Qp is disjoint from N(Qj), since Qj � WijnWipand Qp � Wipn(Wij [N(Qi)). If fy; zg is saturating, then the proof is done. Otherwise, G hasanother maximal tight set Wjp such that Wjp � Qj [Qp (Cases (ii) and (iii) for Wjp cannot occurby Fact 5.5 since Qp is disjoint from N(Qj)). As above, we can show that Wij \ Wjp = Qj andWip \Wjp = Qp. Finally, we examine the two sets (Wip[Wjp) and Wij . Since jN(Wip[Wjp)j = k(this holds since either Wip[Wjp is a tight set or there are exactly k nodes not in this set), Wij is a23
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Wip WjpN(Qp)
N(Qi) N(Qj)Figure 4: An illustration of the proof of Lemma 5.6.tight set, and jN(Wip[Wjp [Wij)j � k, the submodularity of jN(Q)j implies that the intersection(Wip [ Wjp) \ Wij = (Wip \ Wij) [ (Wjp \ Wij) = Qi [ Qj must have jN(Qi [ Qj)j = k. Theproof is done since jN(Qi [ Qj)j = k implies that N(Qi) = N(Qj). Similarly, it follows thatN(Qi) = N(Qp). Clearly, N(Qi) is a k-shredder. 2Theorem 5.10 (Part 1) The augmentation algorithm correctly increases the connectivity of a graphG from k to k + 1, and the number of edges added is at most k � 2 plus the lower bound ofmax(b(G)� 1; dt(G)=2e).Proof: (Correctness and performance guarantee) Let G0 denote eGns throughout the proof.The initial graph eG has at least (k + 1) edges incident to s since eG is (k + 1)-connected. If eG hast � (k + 2) edges incident to s each of which is critical, then t(G0) = t, and G0 has t (pairwisedisjoint) leafs and t (pairwise disjoint) superleafs, by Facts 5.3{5.5. (If either k = 1 or k = 2, thenit can be seen that the leafs of G0 are always pairwise disjoint.) For k > 1, if the initial graph eG hasexactly (k + 1) edges incident to s, then the leafs of G0 may not be pairwise disjoint, and possiblyt(G0) is less than degeG(s). Nevertheless, every leaf of G0 must contain at least one of the neighborsof s in eG, since eG is (k + 1)-connected.First, consider a nonterminal iteration of the while loop. Then we have t = degeG(s) � 2k, andb(G0) � dt=2e. If t � (k+3), then by Theorem 5.1 and Lemmas 5.6{5.7, we add a new edge vivj toG0 such that t(G0) decreases by two. In terms of eG, we split o� an edge pair vis; svj that preservesthe (k + 1)-connectivity. (For k = 1; 2, t � 2k does not imply t � (k + 3). But then we have oneof the special cases k = 1; t = 2, k = 1; t = 3, or k = 2; t = 4; for these cases, we can modifythe algorithm to compute the optimal augmentation and stop.) Thus every nonterminal iterationof the while loop satis�es a key property:the cardinality of the augmenting set increases by one, and the lower bound decreasesby one.At the terminating steps of the algorithm, if we can prove that the slack for the current graph G024



is at most (k � 2), then this key property guarantees that the slack for the original graph G is atmost (k � 2).To complete the proof, we examine each of the cases in which the algorithm terminates, andshow that the slack for the current graph G0 is at most (k � 2). If the current graph G0 in anexecution of the while loop has b(G0) > dt(G0)=2e � k, then a minimum-cardinality augmenting setfor G0 is found by Theorem 2.4 of [J 95]:Suppose that a k-connected graph G has b(G) � k + 1 and b(G) > dt(G)=2e. Thenthere is an augmenting set of cardinality b(G)� 1.In this case, the overall augmenting set for the original graph G is optimal. If the current graphG0 in an execution of the while loop is a J-graph, then a minimum-cardinality augmenting set F 0for G0 is found by Lemma 5.8. In this case, the overall augmenting set F for the original graph Gmay not be optimal, because jF 0j exceeds the lower bound for the current graph G0. However, theslack of F for the original graph is at most k � 2, because the slack of F 0 for the current graph isat most k � 2.If t = degeG(s) < 2k, either initially or after several iterations of the while loop, then the algo-rithm executes the last step (Phase 5 of Jord�an's algorithm). This step increases the connectivityof the current graph G0 to (k + 1) by adding an (inclusionwise) minimal subset F 0 of the edgesfvivj : 1 � i < j � tg, where v1; : : : ; vt are the neighbors of s in eG. As shown in [J 95], a result ofMader implies that F 0 contains no cycles.Mader's result is: In a (k+1)-connected graph, a cycle consisting of critical edges mustbe incident to at least one node of degree k + 1.Hence, jF 0j � (t � 1). If t � (k + 2), then since t = t(G0), the lower bound is � dt(G0)=2e = dt=2e,and so the slack is � (t � 1)� dt=2e � (k � 2), since t � (2k � 1). Otherwise, if t � (k + 1), thenpossibly t(G0) < t, but we may assume t(G0) � 3, so the slack is � (k) � d3=2e � (k � 2). (Thealgorithm can recognize the special case t(G0) = 2, and �nd a one-edge augmenting set by [J 95,Lemma 3.2].) 2Acknowledgments. We thank Tibor Jord�an for many comments, and we thank Zeev Nutov forshowing that [J 97b] implies an improved running time for the augmentation algorithm (Theo-rem 5.10).References[BBM 90] D. Bienstock, E. F. Brickell and C. L. Monma, \On the structure of minimum-weight k-connectedspanning networks," SIAM J. Discrete Math. 3 (1990), 320{329.[CKT 93] J. Cheriyan, M. Y. Kao and R. Thurimella, \Scan-�rst search and sparse certi�cates: An improvedparallel algorithm for k-vertex connectivity," SIAM J. Computing 22 (1993), 157{174.[CLR 90] T. H. Cormen, C. E. Leiserson and R. L. Rivest, Introduction to Algorithms, The MIT Press,Cambridge, MA, 1990.[D 87] R. Diestel, \A separation property of planar triangulations," J. Graph Theory 11 (1987), 43{52.[D 97] R. Diestel, Graph Theory, Graduate Texts in Mathematics, Volume 173, Springer-Verlag, NewYork, 1997. 25
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