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Previous results Results in this paperUndirected Graphs Digraphs Undirected Graphs Digraphsk-ECSS 2� [1=k] for k � 2 [K 96] 1.61 for k = 1 [KRY 96] 1 + [2=(k+ 1)] 1 + [4=pk]1.85 for k � 2 [KR 96] 2 for k � 2 improves for k � 3 improves for k � 171+pO(logn)=k [Ka 94]k-NCSS 1.5 for k = 2 [GSS 93] 1.61 for k = 1 [KRY 96] 1 + [1=k] 1 + [1=k]2 for k � 3 2 for k � 2 improves for k � 3 improves for k � 2Table 1: A summary of previous & new approximation guarantees for minimum-size k-edge con-nected spanning subgraphs (k-ECSS), and minimum-size k-node connected spanning subgraphs(k-NCSS).1 IntroductionGiven an undirected or directed simple graph G = (V;E), an e�cient approximation algorithm1 ispresented for the problem of �nding a k-connected spanning subgraph G0 = (V;E 0) that has theminimum number of edges (k � 1 is an integer). Let n and m denote jV j and jEj, respectively.There are four versions of the problem, depending on whether G is a graph (i.e., an undirectedgraph) or a digraph (i.e., a directed graph), and on whether the spanning subgraph G0 is requiredto be k-node connected or k-edge connected. All four versions of the problem are NP-hard: thetwo problems on graphs are NP-hard for k � 2, and the two problems on digraphs are NP-hard fork � 1, [GJ 79].1.1 Previous workResults of Mader [Ma 71, Ma 72] (also see [Bo 78]) imply that every minimal2 k-edge connectedgraph has at most kn edges, and every minimal k-node connected graph has at most kn edges.Clearly, a k-connected (i.e., k-node connected or k-edge connected) graph has at least kn=2 edges,since each node has degree � k. Similarly, every k-connected digraph has at least kn arcs (directededges) since each node has outdegree � k, and results of Edmonds [Ed 72] and Mader [Ma 85] implythat every minimal k-connected digraph has at most 2kn arcs. These facts immediately imply a 2-approximation algorithm for all four versions of the problem, since there is an easy polynomial-timealgorithm to �nd a minimal k-edge connected (or k-node connected) spanning subgraph of a givengraph or digraph. For graphs, recent algorithmic work gives another easy and e�cient method for�nding a k-connected spanning subgraph whose size (i.e., number of edges) is at most kn. A k-edgeconnected spanning subgraph (V;E 0) is obtained by takingE 0 = F1[F2[: : :[Fk , where Fi (1 � i �k) is the edge set of a maximal (but otherwise arbitrary) spanning forest of (V;En(F1[ : : :[Fi�1)),see [Th 89, NI 92], and a k-node connected spanning subgraph (V;E 0) is obtained similarly, butnow each Fi is a maximal scan-�rst-search spanning forest, see [NI 92, FIN 93, CKT 93].In the approximate solution of NP-hard combinatorial optimization problems, it often turns1An �-approximation algorithm for a combinatorial optimization problem runs in polynomial time and delivers asolution whose value is always within the factor � of the optimum value. The quantity � is called the approximationguarantee of the algorithm.2A graph H is called minimal with respect to a property P if H possesses P, but for every edge e in H, Hne doesnot possess P. 2



out that �nding a solution within a factor of two of optimum is almost trivial, but achieving(asymptotically) better approximation guarantees needs a deeper understanding of the problem.For example, consider the metric TSP, i.e., the Traveling Salesman Problem with edge weightssatisfying the triangle inequality. Finding a solution whose value is within a factor of two of optimumis trivial. The Christo�des heuristic [Ch 76] broke the 2-approximation barrier by employing apowerful idea: matching.Given a graph, consider the problem of �nding a minimum-size 2-edge connected spanning sub-graph (2-ECSS), or a minimum-size 2-node connected spanning subgraph (2-NCSS). Several recentpapers have focused on these two problems. Khuller & Vishkin [KV 94] achieved the �rst signi�-cant advance by obtaining approximation guarantees of 1.5 and 1.66 for the minimum-size 2-ECSSproblem and the minimum-size 2-NCSS problem. Garg et al [GSS 93] improved the approximationguarantee of the latter problem to 1:5. These algorithms are based on depth-�rst search (DFS),and they do not imply e�cient parallel algorithms for the PRAM model. Subsequently, Chong &Lam [CL 95, CL 96] gave (deterministic)NC algorithms on the PRAM model with approximationguarantees of (1:5+ �) and (1:66+ �) for the minimum-size 2-ECSS problem and the minimum-size2-NCSS problem.For graphs and the general minimum-size k-ECSS problem, �rst Karger [Ka 94] used random-ized rounding to improve the approximation guarantee (for k large w.r.t. logn) to 1+p[O(logn)=k];Karger's algorithm is not deterministic but Las Vegas. Then Khuller & Raghavachari [KR 96] im-proved the approximation guarantee (for all k) from 2 to (roughly) 1:85. They left open the problemof improving on the approximation guarantee of two for the minimum-size k-NCSS problem.For digraphs and the problem of �nding a minimum-size 1-connected (i.e., strongly connected)spanning subgraph, Khuller, Raghavachari and Young [KRY 96, KRY 95] gave a 1.61-approximationalgorithm. For digraphs and k � 2, there appears to have been no previous work on achieving ap-proximation guarantees better than two.1.2 An illustrative exampleHere is an example illustrating the di�culty in improving on the 2-approximation guarantee forthe minimum-size k-connected spanning subgraph problem. Let the given graph G have n nodes,where n is even. Suppose that the edge set of G, E(G), is the union of the edge set of the completebipartite graph Kk;(n�k) and the edge set Eopt of an n-node, k-regular, k-edge connected (or k-nodeconnected) graph. For example, for k = 2, E(G) is the union of E(K2;(n�2)) and the edge set ofa Hamiltonian cycle. A naive heuristic may return E(Kk;(n�k)) which has size k(n � k), roughlytwo times jEoptj. A heuristic that signi�cantly improves on the 2-approximation guarantee mustsomehow return many edges of Eopt.1.3 Results in this paperHeuristics and approximation guarantees. This paper �rst presents a simple heuristic for�nding an approximately minimum-size k-NCSS of a given graph or digraph. An approximationguarantee of 1+[1=k] is proved. A variant of the heuristic �nds a small-size k-ECSS of a given graphor digraph. For graphs and the minimum-size k-ECSS problem, the approximation guarantee is1+ [2=(k+1)]. For digraphs and the minimum-size k-ECSS problem, the approximation guaranteeis 1+ [4=pk]. Let G = (V;E) be the given graph. The heuristic has two steps. The �rst step �ndsa minimum-size subgraph (V;M) of minimum-degree k (or k � 1) via a subroutine for the degree-constrained subgraph (b-matching) problem. The second step adds an (inclusionwise) minimaledge set F � EnM such that the resulting graph (V;M [ F ) is either k-node connected or k-edge3



vn�1vn�2v1v2 v3 v4 v5 v6 v7 e� vn(a)(b)(c)Figure 1: Illustrating the 2-NCSS heuristic on a 2-node connected graph G = (V;E); n = jV j iseven, and k = 2. Adapted from Garg, Santosh & Singla [GSS 93, Figure 7].(a) A minimum-size 2-node connected spanning subgraph has n + 1 edges, and is indicated bythick lines (the path v1; v2; : : : ; vn and edges v1v7 and e� = v5vn).(b) The �rst step of the heuristic in Section 3.1 �nds a minimum-sizeM � E such that every nodeis incident to � (k � 1) = 1 edges of M . The thick lines indicate M ; it is a perfect matching. Thesecond step of the heuristic �nds an (inclusionwise) minimal edge set F � E such that (V;M [ F )is 2-node connected. F is indicated by dashed lines { the \key edge" e� is not chosen in F .jM [ F j = 1:5n� 5.(c) Another variant of the heuristic �rst �nds a minimum-size M � E such that every node isincident to � k = 2 edges ofM . The thick lines indicateM (M is the path v1; v2; : : : ; vn and edgesv1v3, vn�2vn). The second step of the heuristic �nds the edge set F � E indicated by dashed lines{ the \key edge" e� is not chosen in F . (V;M [ F ) is 2-node connected, and for every edge vw inF , (V;M [ F )nvw is not 2-node connected. jM [ F j = 1:5n� 3.connected, as required. Heuristics of this type have been considered by other researchers, but wewere not aware of this when the preliminary version of this paper (Proc. IEEE FOCS'96) appeared.Subsequently, S. Khuller (personal communication, October 1996) and T. Watanabe (personalcommunication, October 1996) informed that they had examined or implemented heuristics of thistype. One of the contributions of this paper is to re�ne the general heuristic to the four minimum-size k-CSS problems discussed above, and to give nearly tight analyses of the four approximationguarantees. The running time of the heuristic is O(kjEj2), and for graphs the running time improvesto O(k3jV j2 + jEj1:5(log jV j)2). The analyses on graphs/digraphs of the minimum-size k-NCSSheuristic are based on theorems of Mader [Ma 72, Ma 85]. In the context of augmenting the nodeconnectivity of graphs and digraphs, the �rst application of Mader's theorems is due to Jord�an[Jo 95, Jo 93]. Two key lemmas in our analyses, namely, Lemmas 3.3 and 3.18, are inspired bysimilar results of Jord�an, namely, [Jo 95, Lemma 3.3] and the following paragraph in [Jo 95] andLemma 2.6 and Corollary 2.7 in [Jo 93]. In the context of approximation algorithms for minimum-4



(a) (V;M [ F ) is 2-node connected, jF j = jV j � 4(V;M [ F ) is 2-edge connected, jF j � 2(jV j � 6)=3(b)(c) A laminar family F covering F
Figure 2: An illustration of Lemma 3.3 (a corollary of Mader's theorem, Theorem 3.2) and ofTheorem 4.3. An n-node graph of minimum degree k = 2, (V;M), is indicated by solid lines.(a) The dotted lines indicate an (inclusionwise) minimal edge set F such that (V;M [F ) is 2-nodeconnected. F has size n� 4, for n � 4. By Lemma 3.3, the maximum size of F over all possible Mis � n� 1.(b) The dotted lines indicate an (inclusionwise) minimal edge set F such that (V;M [F ) is 2-edgeconnected. F has size � 2(n� 6)=3, for n � 6. By Theorem 4.3, the maximum size of F over allpossible M is � 2(n� 1)=3.(c) The dashed lines indicate a laminar family of tight node sets F covering the F -edges of the2-edge connected graph in (b). The proof of Theorem 4.3 is based on examiningM , F and F .5



size k-connected spanning subgraph problems, Chong & Lam [CL 95] appear to be the �rst to usematching.For graphs, the heuristic �nds a 2-node connected or 2-edge connected spanning subgraph whosesize is within a factor of 1.5 of the minimum size. A parallel (deterministic) version gives a (1:5+�)-approximation NC algorithm. Similarly, a sequential linear-time version gives an approximationguarantee of (1:5 + �).Table 1 summarizes the approximation guarantees obtained in this paper for the four versionsof the problem, and compares these with the previous best approximation guarantees. Figure 1illustrates the working of the heuristic on an example.Here is a summary of developments since September 1996. Fernandes [Fe 97, Theorem 5.1]showed that the minimum-size 2-ECSS problem on graphs is MAX SNP-hard; also see Czumaj andLingas [CL 99, Theorem 5.3]. Independently of this paper, and using di�erent methods, Chong andLam [CL 96b] have also obtained a parallel (deterministic) (1:5+ �)-approximationNC algorithmfor the minimum-size 2-NCSS problem on graphs. The approximation guarantee for the minimum-size 2-ECSS problem has been improved from 1.5 to 17=12 by [CSS 98] and then to 4=3 by [VV 99].Contributions to approximation algorithms for \uniform" network design. As dis-cussed above, the subarea of network design with uniform edge costs and uniform connectivityrequirements has attracted a fair amount of recent interest in theoretical computer science, e.g.,the references cite ten papers from this subarea. This paper takes up four central questions fromthis subarea, and settles them in the sense that reasonably good approximation guarantees arederived based on a simple heuristic. To achieve the approximation guarantees, the paper has torely on some deep areas of graph theory and combinatorial optimization.Combinatorial contributions. The paper has two combinatorial results that may be ofindependent interest. The �rst is Theorem 3.5 that gives a new lower bound on the size of a k-edgeconnected spanning subgraph. The proof relies on the Gallai-Edmonds decomposition theorem ofmatching theory. Theorem 3.5 is related to a result of R. P. Gupta: a bipartite graph of minimumdegree k has k edge-disjoint edge covers. The second combinatorial result of independent interest isTheorem 4.3. This theorem gives an asymptotically tight upper bound of kjV j=(k+ 1) on the sizeof an (inclusionwise) minimal edge set F such that (V;M[F ) is a k-edge connected (simple) graph,where (V;M) is a graph of minimum degree � k. The (long) proof makes use of a laminar familyof tight node sets that covers F . Theorem 4.3 is related to a theorem of Mader on \critical cycles"in a k-node connected graph, see Theorem 3.2. Apparently, Mader's theorem has no analogue fork-edge connected graphs; for k = 2, this can be seen from the example in Figure 5; the examplegeneralizes to all k � 2. However, there is one implication of Mader's theorem that is an analogueof Theorem 4.3: If (V;M) is as above, and F is an (inclusionwise) minimal edge set such that(V;M [ F ) is a k-node connected graph, then jF j � jV j � 1 (see Lemma 3.3). Both the bounds(kjV j=(k+1) in Theorem 4.3, and jV j�1 in Lemma 3.3) are tight up to an additive term of (k+1),for all k � 2. Figure 2 has relevant examples for k = 2, and these examples generalize for all k � 2.Although Theorem 4.3 and Lemma 3.3 are analogous, the two results seem to be focusing on twoessentially di�erent combinatorial structures, and neither result implies the other one.Organization of the paper. The rest of the paper is organized as follows. Section 2 hasde�nitions and notation. Section 3 presents the heuristic for approximating a minimum-size k-nodeconnected spanning subgraph of a graph or a digraph, and separately analyzes the approximationguarantees on graphs and digraphs. Section 4 describes and analyzes the heuristic for approximatinga minimum-size k-edge connected spanning subgraph of a graph or a digraph. Section 5 hasconclusions, including a discussion of the relationship to graph theory.6



2 De�nitions and notationFor a subset S 0 of a set S, SnS 0 denotes the set fx 2 S : x 62 S 0g.This paper considers �nite simple graphs and digraphs, i.e., the graphs/digraphs have no loopsnor multiedges. (But, Propositions 3.9 and 3.10 do allow multiedges.) Let G = (V;E) be a graphor a digraph. V (G) and E(G) stand for the node set and the edge set of G. By the size of G wemean jE(G)j. First, suppose that G is a graph. An edge incident to nodes v and w is denotedby vw. For a subset M of E and a node v, we use degM(v) to denote the number of edges of Mincident to v; deg(v) denotes degE(v).A node is said to be covered by an edge set M if the node is incident to at least one edge ofM ; otherwise, the node is uncovered by M . An edge cover is a set of edges that covers all thenodes. A matching of a graph G = (V;E) is an edge set M � E such that degM (v) � 1; 8v 2 V ;furthermore, if every node v 2 V has degM (v) = 1, then M is called a perfect matching. A graphG is called factor-critical if for every node v 2 V , there is a perfect matching in Gnv, see [LP 86].An x$y path refers to a path whose end nodes are x and y. We call two paths openly disjointif every node common to both paths is an end node of both paths. Hence, two (distinct) openlydisjoint paths have no edges in common, and possibly, have no nodes in common. A set of k � 2paths is called openly disjoint if the paths are pairwise openly disjoint. For a node set S � V (G),�G(S) denotes the set of all edges in E(G) that have one end node in S and the other end node inV (G)nS (when there is no danger of confusion, the notation is abbreviated to �(S)); �(S) is calleda cut, and by a k-cut we mean a cut that has exactly k edges.A graph G = (V;E) is said to be k-edge connected if jV j � k + 1 and the deletion of any setof < k edges leaves a connected graph. A graph G = (V;E) is said to be k-node connected ifjV j � k + 1, and the deletion of any set of < k nodes leaves a connected graph.Let G = (V;E) be a digraph. An arc (directed edge) with start node v and end node w isdenoted (v; w). For M � E and a node v, degM;out(v) (degM;in(v)) denotes the number of arcs ofM with start node v (end node v). For a node set S � V , �out(S) (�in(S)) denotes the set of arcswith start nodes in S and end nodes in V nS (end nodes in S and start nodes in V nS). The digraphis called strongly connected (1-connected) if for every (ordered) pair of nodes v,w, there exists adirected path from v to w. The digraph is called k-edge connected if jV j � k + 1, and the deletionof any set of < k arcs leaves a strongly-connected digraph. The digraph is called k-node connectedif jV j � k + 1, and the deletion of any set of < k nodes leaves a strongly-connected digraph.An edge vw (arc (v; w)) of a k-node connected graph G (digraph G) is called critical w.r.t.k-node connectivity if Gnvw (Gn(v; w)) is not k-node connected. Similarly, we have the notion ofcritical edges (arcs) w.r.t. k-edge connectivity.Let G = (V;E) be a graph, and let b : V ! Z+ assign a nonnegative integer bv to each node v 2V . The perfect b-matching (or perfect degree-constrained subgraph) problem is to �nd an edge setM � E such that each node v has degM (v) = bv. The maximum b-matching (or maximum degree-constrained subgraph) problem is to �nd a maximum-cardinalityM � E such that each node v hasdegM(v) � bv. The b-matching problem can be solved in time O(jEj1:5(log jV j)1:5p�(jEj; jEj)), see[GaTa 91, Section 11] (for our version of the problem, note that each edge has unit cost and unitcapacity, and each node v may be assumed to have 0 � bv � deg(v)). Also, see [Ge 95, Section 7.3]and [Ga 85]. 7



3 A (1 + 1k)-approximation algorithm for minimum-size k-nodeconnected spanning subgraphsThis section presents the heuristic for �nding an approximately minimum-size k-node connectedspanning subgraph (abbreviated k-NCSS), and proves an approximation guarantee of 1 + [1=k].First, we focus on graphs, and then turn to digraphs. The analysis of the heuristic for graphs hingeson a deep theorem of Mader [Ma 72, Theorem 1]. Given a graph G = (V;E), a straightforwardapplication of Mader's theorem shows that the number of edges in the k-NCSS returned by theheuristic is at most(jV j � 1) +minfjM j : M � E and degM (v) � (k� 1); 8v 2 V g;see Lemma 3.3 below. An approximation guarantee of 1+[2=k] on the heuristic follows, since thenumber of edges in a k-node connected graph is at least kjV j=2, by the \degree lower bound", seeProposition 3.4. Often, the key to proving improved approximation guarantees for (minimizing)heuristics is a nontrivial lower bound on the value of every solution. We improve the approximationguarantee from 1+[2=k] to 1+[1=k] by exploiting a new lower bound on the size of a k-edge connectedspanning subgraph, see Theorem 3.5:The number of edges in a k-edge connected spanning subgraph of a graph G = (V;E)is at least bjV j=2c+minfjM j : M � E and degM (v) � (k� 1); 8v 2 V g.The analysis of the heuristic for digraphs is similar, and hinges on another theorem of Mader[Ma 85, Theorem 1], which may be regarded as the generalization of [Ma 72, Theorem 1] to digraphs.An approximation guarantee of 1+ [1=k] is proved on the digraph heuristic by employing a simplerversion of Theorem 3.5, namely Proposition 3.8, to give a lower bound on the number of edges ina solution.Assume that the given graph or digraphG = (V;E) is k-node connected, otherwise, the heuristicwill detect this and report failure.3.1 Undirected graphsLet E� � E denote a minimum-cardinality edge-set such that the spanning subgraph (V;E�) is k-edge connected. Note that every k-node connected spanning subgraph (V;E 0) (such as the optimalsolution) is necessarily k-edge connected, and so has jE 0j � jE�j.The heuristic has two steps. The �rst �nds a minimum-size spanning subgraph (V;M),M � E,whose minimum degree is (k � 1), i.e., each node is incident to � (k� 1) edges of M . Clearly,jM j � jE�j, because (V;E�) has minimum degree k, i.e., every node is incident to � k edges ofE�. To �nd M e�ciently, we use the algorithm for the maximum degree-constrained subgraph(b-matching) problem. Our problem is:minfjM j : degM (v) � (k � 1); 8v 2 V; and M � Eg:To see that this is a b-matching problem, consider the equivalent problem of �nding the complementM of M w.r.t. E, where M = EnM :maxfjM j : degM(v) � deg(v) + 1� k; 8v 2 V; and M � Eg:The b-matching problem can be solved in time O(jEj1:5(log jV j)2) see [GaTa 91], hence this runningtime su�ces to �nd M . 8



The second step is equally simple. We �nd an (inclusionwise) minimal edge set F � EnM suchthat M [ F gives a k-node connected spanning subgraph, i.e., (V;M [ F ) is k-node connected andfor each edge vw 2 F , (V;M [ F )nvw is not k-node connected. Recall that an edge vw of a k-nodeconnected graph H is critical (w.r.t. k-node connectivity) if Hnvw is not k-node connected. Thenext result characterizes critical edges.Proposition 3.1 An edge vw of a k-node connected graph H is not critical i� there are at leastk + 1 openly disjoint v$w paths in H (including the path vw).To �nd F e�ciently, we start with F = ; and take the current subgraph to be G = (V;E)(which is k-node connected). We examine the edges of EnM in an arbitrary order, say, e1; e2; : : : ; e`(` = jEnM j). For each edge ei = viwi, we attempt to �nd (k + 1) openly disjoint vi$wi pathsin the current subgraph. If we succeed, then we remove the edge ei from the current subgraph(since ei is not critical), otherwise, we retain ei in the current subgraph and add ei to F (since eiis critical). At termination, the current subgraph with edge set M [ F is k-node connected, andevery edge vw 2 F is critical. The running time for the second step is O(kjEj2).The proof of the next lemma hinges on a theorem of Mader [Ma 72, Theorem 1]. For an Englishtranslation of the proof of Mader's theorem see Lemma I.4.4 and Theorem I.4.5 in [Bo 78].Theorem 3.2 (Mader [Ma 72, Theorem 1]) In a k-node connected graph, a cycle consistingof critical edges must be incident to at least one node of degree k.Lemma 3.3 jF j � jV j � 1.Proof: Consider the k-node connected subgraph returned by the heuristic, G0 = (V;E 0), whereE0 =M [F . Suppose that F contains a cycle C. Note that every edge in the cycle is critical, sinceevery edge in F is critical. Moreover, every node v incident to the cycle C has degree � (k+ 1) inG0, because v is incident to two edges of C, as well as to at least (k� 1) edges of M = E 0nF . Butthis contradicts Mader's theorem. We conclude that F is acyclic, and so has � jV j � 1 edges. Theproof is done. 2Proposition 3.4 Let G = (V;E) be a graph of node connectivity � k. The heuristic above �nds ak-node connected spanning subgraph (V;E 0) such that jE 0j � (1+ [2=k])jEoptj, where jEoptj denotesthe cardinality of an optimal solution. The running time is O(k3jV j2 + jEj1:5(log jV j)2).Proof: The approximation guarantee follows because jEoptj � (kjV j=2), sojM j+ jF jjEoptj = jM jjEoptj + jF jjEoptj � 1 + jV j(kjV j=2) = 1 + [2=k]:We have already seen thatM can be found in time O(jEj1:5(log jV j)2), and F can be found in timeO(kjEj2). The running time of the second step can be improved to O(k3jV j2) as follows: we run alinear-time preprocessing step to compute a sparse certi�cate eE of G for k-node connectivity, i.e.,eE � E, j eEj � kjV j, and for all nodes v; w, (V; eE) has k openly disjoint v$w paths i� G has kopenly disjoint v$w paths, see [NI 92, FIN 93, CKT 93]. We compute M as before, by runningthe �rst step on G. To �nd the set F � EnM , we run the second step on eE [M rather than onE, and for each edge viwi 2 eEnM , we attempt to �nd (k + 1) openly disjoint vi$wi paths in thecurrent subgraph of (V; eE [M). The second step runs in time O(kj eE [M j2) = O(k3jV j2), sincej eE [M j = O(kjV j). 29



To improve the approximation guarantee to 1 + [1=k], we present an improved lower boundon jE�j, where E� denotes a minimum-cardinality edge set such that G� = (V;E�) is k-edgeconnected. Suppose that E� contains a perfect matching P0 (so jP0j = n=2). Then jE�j � (n=2) +minfjM�j : M� � E; degM�(v) � (k � 1); 8v 2 V g. To see this, focus on the edge set M 0 =E�nP0. Clearly, every node v 2 V is incident to at least (k� 1) edges of M 0, because degE�(v) � kand degP0(v) = 1. Since M� is a minimum-size edge set with degM�(v) � (k� 1), 8v 2 V , we havejM�j � jM 0j = jE�j � (n=2). The next theorem generalizes this lower bound to the case when E�has no perfect matching. The proof is given in the next subsection (Section 3.2), after developingsome preliminaries.Theorem 3.5 Let G� = (V;E�) be a graph of edge connectivity � k � 1, and let n denote jV j. LetM� � E� be a minimum-size edge set such that every node v 2 V is incident to � (k � 1) edges ofM�. Then jE�j � jM�j+ bn=2c.Theorem 3.6 Let G = (V;E) be a graph of node connectivity � k. The heuristic described above�nds a k-node connected spanning subgraph (V;E 0) such that jE 0j � (1 + [1=k])jEoptj, where jEoptjdenotes the cardinality of an optimal solution. The running time is O(k3jV j2 + jEj1:5(log jV j)2).Proof: The approximation guarantee of 1 + [1=k] follows easily from Theorem 3.5, using anargument similar to Proposition 3.4. We have E 0 = M [ F , where jF j � (n � 1). Moreover,since M is a minimum-size edge set with degM (v) � (k � 1); 8v 2 V , Theorem 3.5 implies thatjM j � jEoptj � bn=2c � jEoptj � (n� 1)=2. Hence,jM j+ jF jjEoptj � jEoptj � (n� 1)=2 + (n� 1)jEoptj � 1 + n=2jEoptj � 1 + [1=k];where the last inequality uses the \degree lower bound", jEoptj � kn=2.The running time analysis is the same as that in Proposition 3.4. 23.2 A lower bound for the size of a k-connected spanning subgraph and Gupta'stheorem on bipartite graphsThis subsection gives a proof of Theorem 3.5. This theorem is used in the previous subsection toprove an approximation guarantee of 1 + [1=k] for a minimum-size k-NCSS. Theorem 3.5 gives thefollowing new lower bound on the size of a k-ECSS:Let G� = (V;E�) be a k-edge connected graph (k � 1), and let n denote jV j. LetM� � E� be a minimum-size edge set such that every node v 2 V is incident to� (k� 1) edges of M�. Then jE�j � jM�j+ bn=2c.First, a theorem of R. P. Gupta on bipartite graphs is recalled. For the special case of bipartitegraphs, (a stronger form of) the lower bound in Theorem 3.5 follows easily from Gupta's theorem,see Proposition 3.8. This proposition is used in Section 3.4 to prove an approximation guaranteeof 1 + [1=k] for a minimum-size k-NCSS of a digraph. Gupta's theorem does not apply to non-bipartite graphs. The proof of Theorem 3.5 (for arbitrary graphs) relies on the Gallai-Edmondsdecomposition theorem of matching theory. When the Gallai-Edmonds decomposition of the graphis \nontrivial", one can de�ne a bipartite graph B that partially represents the decomposition.The proof of Theorem 3.5 is completed by examining B. One way is to prove a variant of Gupta'stheorem (see Proposition 3.9), and then apply it to B. This is described below. Readers interested10



in a detailed study of the proofs in this subsection may �nd it useful to review two results inmatching theory, namely, the Gallai-Edmonds decomposition theorem [LP 86, Theorem 3.2.1], andthe Hungarian method for bipartite matching [LP 86, Lemma 1.2.2].Theorem 3.7 (Gupta [Gu 67]) Let B = (X [ Y ;E) be a bipartite graph with minimum degreek. Then there exists a partition of the edge set of B, namely E, into k sets E1; E2; : : : ; Ek suchthat each node v 2 X [ Y is incident to at least one edge from each set Ei, 1 � i � k.For an elegant proof, see the solutions to Problems 10{12 in [L 93, Chapter 7]. Also, see [BM 76,Problem 6.1.6]. The next result strengthens Theorem 3.5 for bipartite graphs. The proof is viaGupta's theorem. Another brief proof follows from Proposition 3.10.Proposition 3.8 Let B� = (X [ Y ;E�) be a bipartite graph with minimum degree � k. LetM� � E� be a minimum-size edge set such that every node v 2 X [ Y is incident to � k � 1 edgesof M�. Then jE�j � jM�j+ (jX [ Y j=2).Proof: Apply Gupta's theorem to E�, and let E1; E2; : : : ; Ek be the partition of E�. Focus onthe set, say Ek, that has the maximum cardinality. Clearly, jEkj � jE�j=k � jX [ Y j=2. Now,consider M 0 = E�nEk, and observe that each node v 2 X [ Y is incident to � (k� 1) edges of M 0,because Gupta's result shows that v is incident to some edge from each of the remaining (k � 1)sets E1; E2; : : : ; Ek�1. The proof is done since jE�j � (jX [ Y j=2) � jM 0j and jM 0j � jM�j. 2Proposition 3.8 does not generalize to nonbipartite graphs B�, even if we strengthen the con-dition \B� has minimum degree � k" to \B� is k-edge connected". For example, let k = 2, andlet B� = K3, the complete graph on three nodes. Then M� is a minimum edge cover of K3, andhas size two. But then jE�j = jM�j + 1 < jM�j + (jV j=2). The generalization of Proposition 3.8fails because B� is a 2-edge connected, 2-regular graph such that for every edge cover M�, theedge-complement of M� in B�, (V;E��M�), has an isolated node, so it does not have an edgecover. For every even integer k � 2, there is an in�nite family of nonbipartite graphs such thatthe generalization of Proposition 3.8 fails. Take B� to be a k-edge connected, k-regular graph withan odd number of nodes n. Then M� has size at least (1 + (k � 1)n)=2, so (V;E��M�) has anisolated node, and hence has size < n=2. It can be seen that the examples in this paragraph arefactor-critical graphs.The next proposition may be regarded as a variant of Gupta's theorem. Note that the bipartitegraph B in the next proposition may have minimum degree one, and B may have multiple copiesof an edge.Proposition 3.9 Let B = (X [ Y ;E) be a bipartite (loopless) multigraph with node bipartitionX [ Y . Let each node y 2 Y have deg(y) � k,and let B have a matching of size jX j. Then B hasan edge cover J such that each node y 2 Y is incident to exactly one edge of J, and each nodex 2 X is incident to either exactly one edge of J or at least (k � 1) edges of EnJ.Proof: See Figure 3(b) for an illustration. Let J0 be a matching of size jX j. The edge coverJ is constructed iteratively, starting with J 0 = J0 and J 00 = ;. Throughout, J 0 is a matching ofthe current B, and at the end of the construction, J 0 [ J 00 is an edge cover of the original B thatsatis�es the proposition.If J 0[J 00 is an edge cover, i.e., if J 0 is a perfect matching, then the proof is completed by takingJ = J 0 [ J 00. Clearly, the degree requirements in the proposition hold. Otherwise, if J 0 [ J 00 is notan edge cover, the size of J 0 [J 00 is increased by one such that one more Y -node is covered and the11
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Figure 3: An illustration of the proofs of Theorem 3.5 and Propositions 3.9, 3.10.(a) G = (V;E) is a 2-edge connected graph (k = 2), and the Gallai-Edmonds decomposition isgiven by A = A(G) = fa1; a2; a3; a4g, and D = D(G) = V (D1)[V (D2)[V (D3)[V (D4)[V (D5)[V (D6). The odd (factor-critical) components of GnA are D1; : : : ; D6.(b) The bipartite multigraph B in the proofs of Propositions 3.9, 3.10. In Proposition 3.10, Bis obtained from G by deleting the nodes in V n(A [ D) and the edges in E(A), and shrinkingD1; : : : ; D6 into single nodes. In B, note that deg(D1); : : : ; deg(D6) � k = 2, and there is a match-ing J 0 of size jAj = 4. J 0 is indicated by dashed lines, J 0 = fa1D1; a2D2; a3D4; a4D5g.In the construction of Proposition 3.9, the 1st iteration chooses, say v = D3. Then T =fD3; a2; D2; a1; D1g, and x = a2 2 T \A has degree � k+1 = 3. The edge a2D2 is added to J 00, thenode D2 is deleted, and in J 0, a2D2 is replaced by a2D3. Finally, J 0 = fa1D1; a2D3; a3D6; a4D5g,J 00 = fa2D2; a3D4g, and J = J 0 [ J 00 is the required edge cover.(c) In G, J maps to an edge set eJ . eJ is extended to the required edge cover P of G by adding aperfect matching on the nodes of G not incident to eJ . P is indicated by dashed lines.12



degree requirements in the proposition are maintained. Let v 2 Y be a node that is not covered byJ 0 [ J 00. Let T be the node set of the maximal J 0-alternating tree that contains v. That is, a nodew is in T i� there exists a J 0-alternating path between v and w. (For a matching J 0, recall that aJ 0-alternating path means a path whose edges are alternately in J 0 and not in J 0.)Claim: There is a node x 2 T \X with deg(x) � k + 1.To prove this claim, note that (i) jT \ Y j = jT \X j+ 1 (since each node y 2 T \ Y except v isincident to an edge of J 0), and (ii) for every node y 2 T \ Y , every incident edge wy has the otherend node w in T \X (otherwise, w can be added to T , and so T is not maximal). By assumption,each node y 2 T \ Y has deg(y) � k, hence, (i), (ii), and the pigeon-hole principle guarantee thatthere is a node x 2 T \X with deg(x) > k. This proves the claim.Let xz be the J 0-edge incident to x, i.e., x is matched to z by J 0. This edge is (permanently)added to the edge cover J by taking J 00 = J 00 [ fxzg. The node z is deleted from B. Since x 2 T ,there exists a J 0-alternating path between v and x (by de�nition of T ). Let this path be P 0. Thematching J 0 is updated by switching alternate edges along P 0, i.e., J 0 is replaced by the symmetricdi�erence of J 0 and E(P 0). Note that the current B (with node z deleted) has a matching of sizejX j, namely J 0, and has deg(y) � k, for all nodes y 2 V (B)nX . Therefore, the hypothesis of theproposition continues to hold.The above step is repeated till J 0 [ J 00 covers all nodes of B. Finally, J is taken to be J 0 [ J 00.The construction guarantees that J satis�es the degree requirements in the proposition. 2Recall the Gallai-Edmonds decomposition theorem of matching theory, [LP 86, Theorem 3.2.1].For every graphH , there is a partition of V (H) into a set of (matching) noncritical nodes D(H) anda set of (matching) critical nodes V nD(H) (i.e., D(H) consists of all nodes that are left uncoveredby some maximummatching of H). The partition is \trivial" if either H has a perfect matching, orif H is factor-critical: in the �rst case, D(H) = ;, and in the second case, D(H) = V (H). Let A(H)be the set of critical nodes of H that are adjacent to one or more noncritical nodes of H . Possibly,A(H) is the empty set. When there is no danger of confusion, we use A and D instead of A(H)and D(H). Let def(H) denote the de�ciency of H , i.e., the number of nodes that are not coveredby a maximum matching of H . (So, def(H) = jV (H)j � 2jP0j, where P0 is a maximum matchingof H .) The Gallai-Edmonds decomposition theorem shows that in the graph HnA, the noncriticalnodes D form q = jA(H)j+def(H) odd components D1; D2; : : : ; Dq, i.e., each Di (i = 1; : : : ; q) is aconnected component of HnA with V (Di) � D(H) and jV (Di)j odd. Moreover, every one of theseodd components Di is factor-critical.The next result is a generalization of Proposition 3.9.Proposition 3.10 Let G be a graph, and let D = D(G) and A = A(G) be the node sets inthe Gallai-Edmonds decomposition. Let q = jA(G)j + def(G), and let D1; D2; : : : ; Dq be the oddcomponents of GnA. If every Di gives a cut containing at least k edges, i.e., if �(V (Di)) has size� k for i = 1; : : : ; q, then G has an edge cover P such that each node in V (G)nA is incident toexactly one edge of P , and each node in A is incident to either exactly one edge of P or at least(k � 1) edges of E(G)nP .Proof: See Figure 3 for an illustration. The proof follows easily by applying Proposition 3.9 to abipartite graph associated with the Gallai-Edmonds decomposition.If def(G) = 0, then the proof is done: take P to be a perfect matching of G. Otherwise,def(G) > 0, and so D 6= ;. Suppose that A = ;. Then every component Di of G is factor-critical, but this violates the condition on j�(V (Di))j. Hence, A is nonempty. Clearly, every edge in�(V (Di)) (i = 1; : : : ; q) has one end node in A and the other in Di. Let G[A[D] be the subgraph of13



G induced by A[D. Let B = (X [ Y ;E 0), X = A, be the bipartite (loopless) multigraph obtainedfrom G[A [ D] by deleting all edges with both end nodes in A and by shrinking the componentsD1; D2; : : : ; Dq of G[A[D]nA to single nodes. The shrunk nodes are also calledD1; D2; : : : ; Dq, andso Y = fD1; D2; : : : ; Dqg. B has � k edges incident to each of the shrunk nodes D1; D2; : : : ; Dq,since in G each of the cuts �(V (Di)) (i = 1; : : : ; q) has � k edges. Moreover, B has a matching ofsize jX j = jAj, by the Gallai-Edmonds decomposition theorem. Therefore, B satis�es the conditionsin Proposition 3.9. By the proposition, B has an edge cover J satisfying the degree requirementsin the proposition; note that each node Di 2 Y is incident to exactly one edge of J . Let eJ denotea set edges of G that corresponds to J , i.e., for each edge ahDi 2 J with ah 2 X = A, Di 2 Y ,there is an edge ahwi 2 eJ such that (in G) wi is a node in Di and wi is adjacent to ah. Let V ( eJ)be the set of nodes of G incident to edges in eJ , i.e., V ( eJ) = A [ fwi 2 V (Di) : i = 1; : : : ; qg. Bythe Gallai-Edmonds decomposition theorem, GnV ( eJ) has a perfect matching eP . To see this, notethat each component of GnV ( eJ) is either an even component of GnA or is obtained by deleting onenode from an odd (factor-critical) component of GnA; in either case, the component has a perfectmatching.Take P = eJ [ eP . Clearly, P is an edge cover of G such that each node v 2 V nA is incident toexactly one edge of P . Moreover, by Proposition 3.9, every node in A is incident to either exactlyone edge of P or to � (k� 1) edges of EnP . 2Proof: (Theorem 3.5) See Figure 3 for an illustration. We construct an appropriate edge setP � such that jP �j � bn=2c and every node v 2 V is incident to � (k � 1) edges of E�nP �. Inthe statement of Theorem 3.5, note that M� is a minimum-size edge set such that (V;M�) hasminimum degree (k � 1). Hence, jE�nP �j � jM�j. The theorem follows immediately from theexistence of the edge set P �, because jE�j = jE�nP �j+ jP �j � jE�nP �j+ bn=2c � jM�j+ bn=2c.If the size of a maximum matching of G� is � (n � 1)=2, i.e., if G� has a matching that leavesat most one node uncovered, then we take P � to be a maximum matching. (This handles the casewhen G� is a factor-critical graph.)To handle the case when def(G�) � 2, we apply Proposition 3.10 to G�, noting that G� satis�esthe conditions in the proposition. (Since G� is k-edge connected, deg(v) � k, 8v 2 V , and everynode set S � V , ; 6= S 6= V , has j�(S)j � k.) We take P � to be the edge cover P guaranteed bythe proposition. Since P � is an edge cover of G�, jP �j � n=2. Moreover, (V;E�nP �) has minimumdegree � k � 1 by the proposition and the fact that G� has minimum degree � k. The theoremfollows. 2We mention a corollary of Theorem 3.5, though this is not relevant to the main theme of thepaper.Corollary 3.11 (Petersen's Theorem) A 3-regular graph without cut edges has a perfect match-ing.Proof: Let G� = (V;E�) be the graph, and let n = jV j. Clearly, n is even, and jE�j = 3n=2. Thekey point is that every node set S of odd cardinality (i.e., S � V and jSj odd) has j�(S)j � 3 sincej�(S)j is odd (since 3jSj � 2jE(S)j is odd) and is � 2. Suppose that G� has no perfect matching.Then def(G�) > 0, and so in the Gallai-Edmonds decomposition we have D(G�) 6= ;; moreover, G�is not factor-critical (n is even) so A(G�) 6= ;. Applying Proposition 3.10 with k = 3 shows thatG� has an edge cover P such that every node is incident to � (k � 1) = 2 edges of M = E�nP .Clearly, jP j � n=2, since P is an edge cover, and jM j = jE�nP j � n, since (V;M) has minimumdegree 2. Since jE�j = jP j+ jM j = 3n=2, we have jP j = n=2 and jM j = n. Therefore, P is a perfectmatching of G�. 214



3.3 Minimum-size 2-connected spanning subgraphs of undirected graphs:a parallel (1:5 + �)-approximation algorithmThis subsection focuses on the design of an e�cient parallel algorithm and a linear-time sequentialalgorithm for the problem of �nding a minimum-size 2-node connected (2-edge connected) spanningsubgraph of a graph. Let � > 0 be a constant, independent of jV (G)j. A deterministic parallelversion of the main heuristic runs in NC and achieves an approximation guarantee of (1:5 + �),whereas a randomizedNC version achieves an approximation guarantee of 1.5. A sequential linear-time version of the main heuristic achieves an approximation guarantee of (1:5+�). The proof of the1.5 approximation guarantee in this subsection again hinges on Mader's theorem (Theorem 3.2),but instead of employing the lower bound in Theorem 3.5, we employ a nice lower bound resultdue to Chong and Lam (Proposition 3.13).The heuristic for a minimum-size 2-NCSS described below can be used to �nd a 1.5-approximationof a minimum-size 2-ECSS. For this, we run a preprocessing step on the given graph G = (V;E),which is assumed to be 2-edge connected, to partition the edge set into blocks (maximal 2-nodeconnected subgraphs). Then separately for each block, we run our heuristic for a minimum-size2-NCSS. For a block, the optimal 2-ECSS may not be 2-node connected, nevertheless, the lowerbound used by the 2-NCSS heuristic applies to 2-ECSS too, so the edge set found by our algorithmwill have size within 1.5 times the minimum size of a 2-ECSS.Consider the problem of approximating a minimum-size 2-NCSS. Assume that the given graphG = (V;E) is 2-node connected. The heuristic consists of two steps. The �rst �nds a minimumedge cover M � E of G, i.e., a minimum-cardinality edge set such that every node is incident toat least one edge of M . One way of �nding M is to start with a maximum matching fM of G, andthen to add one edge incident to each node that is not matched by fM . Recall that def(G) denotesthe number of nodes not matched by a maximum matching of G, i.e., def(G) = jV j � 2jfM j. Thenwe have jM j = jfM j + def(G). (It is easily seen that no edge cover of G has smaller cardinalitythan jfM j + def(G).) The second step of the heuristic �nds an (inclusionwise) minimal edge setF � EnM such that M [ F gives a 2-NCSS. In other words, (V;M [ F ) is 2-node connected, butfor each edge vw 2 F , (V;M [ F )nvw is not 2-node connected. Let E 0 denote M [ F , and letEopt � E denote a minimum-cardinality edge set such that (V;Eopt) is 2-edge connected.Lemma 3.12 jE 0j = jM j+ jF j � 1:5jV j+ def(G)� 1.Proof: By Mader's theorem (Theorem 3.2), F is acyclic, so jF j � jV j � 1. A minimum edgecover M of G has size jM j = jfM j + def(G), where fM is a maximum matching of G. Obviously,jfM j � jV j=2. The result follows. 2The next result, due to Chong and Lam, gives a lower bound on the size of a 2-ECSS. Propo-sition 3.14 generalizes Chong and Lam's lower bound to k-edge connected spanning subgraphs,k � 1.Proposition 3.13 (Chong & Lam [CL 95, Lemma 3]) Let G = (V;E) be a graph of edgeconnectivity � 2, and let jEoptj denote the minimum size of a 2-edge connected spanning subgraph.Then jEoptj �max(jV j+ def(G)� 1; jV j).Proposition 3.14 Let G = (V;E) be a graph of edge connectivity � k � 1, and let jEoptj denotethe minimum size of a k-edge connected spanning subgraph. If G is not factor-critical, then jEoptj �k2(jV j+ def(G)). In general, jEoptj � k2 max(jV j+ def(G)� 1; jV j):15



Proof: Suppose that G is not factor-critical and def(G) is � 1. Then, by the Gallai-Edmondsdecomposition theorem of matching theory [LP 86, Theorem 3.2.1], there is a nonempty node setA such that GnA has jAj+ def(G) odd components (GnA may have some even components too).Focus on an (odd or even) component Di of GnA. The number of edges of Eopt such that eitherone or both end nodes are in Di is at least (jV (Di)j + 1)k=2, because every node v 2 V (Di) isincident to � k edges of Eopt, and moreover, �(V (Di)) has at least k edges of Eopt. Summing overall components Di of GnA proves the proposition. 2Theorem 3.15 Let G = (V;E) be a graph of node (edge) connectivity � 2. Let � > 0 be a constant.The heuristic described above �nds a 2-node connected (2-edge connected) spanning subgraph (V;E 0)such that jE 0j � 1:5jEoptj, where jEoptj denotes the minimum size of a 2-ECSS.A randomized parallel version of the heuristic runs in RNC and achieves an approximationguarantee of 1:5. A deterministic parallel version of the heuristic runs in NC and achieves anapproximation guarantee of (1:5 + �).The sequential running time is O(pjV jjEj). A sequential linear-time version of the heuristicachieves an approximation guarantee of (1:5 + �).Proof: The approximation guarantee follows from Lemma 3.12 and Proposition 3.13, sincejE 0jjEoptj � 1:5jV j+ def(G)� 1max(jV j+ def(G)� 1; jV j) � 1 + 0:5jV jjV j � 1:5:Consider the deterministic parallel version of the heuristic. Let fM denote a maximum matchingof G. For Step 1, we �nd an approximately maximum matching in NC using the algorithm of[FGHP 93]: for a constant �, 0 < � < 0:5, the algorithm�nds a matchingM 0 with jM 0j � (1�2�)jfMjin parallel time O(��4(log jV j)3) using O(��1jV j2+(2=�)) processors. We obtain an (inclusionwise)minimal edge cover M of size � (1 + 2�)jfM j + def(G) by adding to M 0 one edge incident toevery node that is not matched by M 0. For Step 2, we use a variant of the NC algorithm of[HKe+ 95, KeR 95], see Algorithm 2 and Lemma 2 in Kelsen & Ramachandran [KeR 95]. Let G0be a 2-node connected spanning subgraph of G such that E(G0) contains the minimal edge coverM . Call an edge vw of G0 essential if either vw is in M or G0nvw is not 2-node connected (i.e., anedge of G0 is nonessential if it is not inM and it is not critical w.r.t. the 2-node connectivity of G0).Algorithm 2 of [KeR 95] starts by taking the current subgraph G0 to be G, and repeatedly �nds aspanning tree T of G0 that has the minimum number of nonessential edges, minimally augments Tto obtain a 2-node connected spanning subgraph G00 of G0, and then replaces the current subgraphG0 by G00. Finding the spanning tree T is easy: we compute a minimum spanning tree of G0 wherethe cost of each edge in M is taken to be (�1), the cost of each remaining essential edge of G0is zero, and the cost of each nonessential edge of G0 is one. The parallel complexity of the wholealgorithm is in NC, see [HKe+ 95, KeR 95]. Now, the approximation guarantee is (1:5 + �).For the sequential linear-time version of the heuristic, note that a matching M 0 with jM 0j �(1� 2�)jfM j can be found in time O((jV j+ jEj)=�). Moreover, in linear time, we can �nd a minimal2-node connected spanning subgraph whose edge set contains the minimal edge cover M � Eobtained by adding edges to M 0, see [HKe+ 95]. 23.4 Directed graphsThe main heuristic extends to digraphs. The key tool in the analysis of the approximation guaranteeis another theorem of Mader, [Ma 85, Theorem 1]. Given a digraph G = (V;E) that is assumed to16



have node connectivity at least k, the �rst step of the heuristic �nds an arc setM � E of minimumcardinality such that for every node v, there are � (k � 1) arcs of M going out of v and � (k � 1)arcs ofM coming into v. Clearly, jM j � jEoptj, where Eopt � E denotes a minimum-cardinality arcset such that (V;Eopt) is k-node connected. The second step of the heuristic is as in Section 3.1:we �nd an (inclusionwise) minimal arc set F � EnM such that M [ F is the arc set of a k-nodeconnected spanning subgraph. The key point is that jF j � 2jV j � 1, by Mader's digraph theorem(Theorem 3.16).Consider the �rst step in more detail. To �nd the arc setM , we transform the digraph problemto a b-matching problem on the bipartite graph B(G) associated with G. For each node v 2 V (G),there is a pair of nodes v�; v+ in the bipartite graph B(G), and for each arc (v; w) of G, thereis one edge v+w� in the bipartite graph. Our problem of �nding a minimum-cardinality M � Ewith degM;in(v) � (k� 1), degM;out(v) � (k � 1), 8v 2 V , corresponds to the problem of �nding aminimum-cardinality edge set M 0 of the bipartite graph such that each node of the bipartite graphis incident to � (k � 1) edges of M 0. As in Section 3.1, this is a b-matching problem.An alternating cycle of a digraph is a nonempty, even-length sequence of distinct arcs C =e1; e2; : : : ; e2`�1; e2`, ` � 1, such that (using indices modulo 2`) for each i = 0; 1; : : :, the arcs e2iand e2i+1 have the same start node, and the arcs e2i+1 and e2i+2 have the same end node. In otherwords, the set of undirected edges corresponding to an alternating cycle C is a union of cycles,and moreover, alternate occurrences of nodes have two C-arcs coming out or two C-arcs going in.See Figure 4 for an illustration. For an alternating cycle C, a C-out node is a node having twooutgoing arcs of C, and a C-in node is a node having two incoming arcs of C. Recall that an arc eof a k-node connected digraph H is called critical if Hne is not k-node connected. Here is Mader'stheorem on the critical arcs of a k-node connected digraph; see Figure 4 for an illustration.Theorem 3.16 (Mader [Ma 85, Theorem 1]) In a k-node connected digraph, if there is analternating cycle C each of whose arcs is critical, then there is either a C-out node of outdegree kor a C-in node of indegree k.Fact 3.17 (Mader [Ma 85, Lemma 2]) Let H be a digraph, and let B(H) be the associatedbipartite graph. There is a cycle in B(H) i� there is an alternating cycle in H.Remarks: Mader [Ma 85] states the theorem for minimal k-node connected digraphs, but in fact,his proof needs only the fact that every arc in the alternating cycle is critical. Now, consider adigraph H0 that is obtained from an arbitrary strongly connected digraph by subdividing every arcat least once (i.e., an arc is replaced by � 1 new nodes and a directed path of � 2 arcs). Note thatH0 contains no alternating cycle. Mader [Ma 85, p. 104] shows that there exists a minimal k-nodeconnected digraph G such that H0 is contained in the subgraph of G induced by arcs whose startnodes have outdegrees > k and whose end nodes have indegrees > k.Lemma 3.18 Let F � EnM be the set of critical arcs found by the second step of the heuristic.Then jF j � 2jV j � 1.Proof: Let G0 = (V;E 0), where E 0 =M [ F . We claim that F contains no alternating cycle. Byway of contradiction, suppose that C � F is an alternating cycle. Observe that every C-out nodev has � (k + 1) outgoing arcs of E 0, since there are � (k � 1) arcs of M outgoing from v, andthere are two arcs of C outgoing from v. Similarly, every C-in node has � (k + 1) incoming arcsof E 0. This contradicts Mader's digraph theorem. Hence, F contains no alternating cycle. ThenjF j � 2jV j � 1, because the bipartite graph associated with (V; F ) is acyclic. 217



(a) Alternating cycle C1Bipartite graph B(C1) Alternating cycle C2
Bipartite graph B(C2)

(b) v6 v4v1 v3v2v5

(c) An alternating cycle in a strongly connected digraphFigure 4: An illustration of an alternating cycle in a digraph, and of Mader's theorem on criticalalternating cycles in a k-node connected digraph, see Theorem 3.16.(a) An alternating cycle C1, and its bipartite graph B(C1).(b) Another alternating cycle C2 = (v1; v2); (v3; v2); (v3; v4); (v5; v4); (v5; v6); (v1; v6) and its bipar-tite graph B(C2). For an alternating cycle, the undirected version may not be a cycle, but thebipartite graph has at least one cycle.(c) An alternating cycle C of a 1-connected (strongly connected) digraph is indicated by dashedlines. Every C-out node has outdegree > k = 1, and every C-in node has indegree > k = 1. Noneof the arcs in the alternating cycle is critical for 1-connectivity. This example is modi�ed from anexample of Mader [Ma 85]. 18



The previous lemma immediately gives an approximation guarantee of 1+[2=k] for a minimum-size k-NCSS of a digraph, because the \degree lower bound" implies that a digraph k-NCSS has� kjV j arcs. The approximation guarantee can be improved to 1 + [1=k] via the lower bound onthe size of a digraph k-NCSS implied by Proposition 3.8.Proposition 3.19 Let G = (V;E) be a digraph of node connectivity � k. The heuristic above�nds a k-node connected spanning subgraph (V;E 0) such that jE 0j � (1 + [2=k])jEoptj, where jEoptjdenotes the cardinality of an optimal solution.Theorem 3.20 Let G = (V;E) be a digraph of node connectivity � k. The heuristic describedabove �nds a k-node connected spanning subgraph (V;E 0) such that jE 0j �(1 + [1=k])jEoptj, whereEopt � E denotes a minimum-cardinality arc set such that (V;Eopt) is k-node connected. Therunning time is O(kjEj2).Proof: The proof of the approximation guarantee is similar to the proof for undirected graphsin Theorem 3.6. Let Gopt = (V;Eopt) be a k-node connected spanning subgraph of minimum size.Apply Proposition 3.8 to the bipartite graph B(Gopt) of Gopt to deduce that jM�j � jE(B(Gopt))j�jV (B(Gopt))j=2, where M� � E(B(Gopt)) is a minimum-size edge set such that every node ofB(Gopt) is incident to � k � 1 edges of M�. Since the arc set M � E(G) found by the heuristichas jM j � jM�j (since M comes from a supergraph of Eopt), it follows that jM j � jE(B(Gopt))j �jV (B(Gopt))j=2 = jEoptj � jV (G)j. Consequently, since jE 0j = jM j+ jF j and jF j � 2jV (G)j � 1,jE 0jjEoptj � jEoptj � jV (G)j+ (2jV (G)j � 1)jEoptj � 1 + 1k ;where the last inequality uses the \degree lower bound", jEoptj � kjV (G)j. The running timeanalysis is similar to that for the heuristic for graphs, see Section 3.1. 24 Approximating minimum-size k-edge connected spanning sub-graphsThe heuristic can be modi�ed to �nd an approximately minimum-size k-edge connected spanningsubgraph (abbreviated k-ECSS) of a graph or a digraph. First, we focus on graphs, and prove a(1+ [2=(k+1)])-approximation guarantee for �nding a minimum-size k-ECSS. The analysis hingeson Theorem 4.3 which may be regarded as an analogue of Mader's theorem [Ma 72, Theorem 1]for k-edge connected graphs. Then we turn to digraphs, and prove an approximation guarantee of1 + [4=pk] for the k-ECSS heuristic.In this section, an edge e (arc e) of a k-edge connected graph (digraph) H is called criticalif Hne is not k-edge connected. Assume that the given graph or digraph G = (V;E) is k-edgeconnected, otherwise, the heuristic will detect this and report failure.4.1 Undirected graphsIn this subsection, G = (V;E) is a graph. The �rst step of the heuristic �nds an edge setM � E ofminimum cardinality such that every node in V is incident to� k edges ofM . Clearly, jM j � jEoptj,where Eopt � E denotes a minimum-cardinality edge set such that (V;Eopt) is k-edge connected.The second step of the heuristic �nds an (inclusionwise) minimal edge set F � EnM such thatM [ F is the edge set of a k-edge connected spanning subgraph. In detail, the second step starts19



with F = ; and E 0 = E. Note that G0 = (V;E 0) is k-edge connected at the start. We examine theedges of EnM in an arbitrary order e1; e2; : : :. For each edge ei = viwi (where 1 � i � jEnM j), wedetermine whether or not viwi is critical for the current graph by �nding the maximum number ofedge-disjoint vi$wi paths in G0.Proposition 4.1 An edge viwi of a k-edge connected graph is not critical i� there exist at leastk + 1 edge-disjoint vi$wi paths (including the path viwi).If viwi is noncritical, then we delete it from E 0 and G0, otherwise, we retain it in E 0 and G0,and also, we add it to F . At termination of the heuristic, G0 = (V;E 0), E 0 = M [ F , is k-edgeconnected and every edge vw 2 F is critical, i.e., G0nvw is not k-edge connected. Theorem 4.3below shows that jF j � kjV j=(k+ 1) for k � 1. Since jEoptj � kjV j=2, the minimum-size k-ECSSheuristic achieves an approximation guarantee of 1 + [2=(k+ 1)] for k � 1.The next lemma turns out to be quite useful. A straightforward counting argument gives theproof, see Mader [Ma 71, Lemma 1], or Cai [Ca 93, Claim 3].Lemma 4.2 Let G = (V;M) be a simple graph of minimum degree k � 1.(i) Then for every node set S � V with 1 � jSj � k, the number of edges with exactly one endnode in S, j�(S)j, is at least k.(ii) If a node set S � V with 1 � jSj � k contains at least one node of degree � (k + 1), thenj�(S)j is at least k + 1.The goal of Theorem 4.3 is to give an upper bound on the number of critical edges in theedge-complement of a spanning subgraph of minimum degree k in an arbitrary k-edge connectedgraph H . Clearly, every critical edge e 2 E(H) is in some k-cut �(Ae), Ae � V (H). By a tightnode set S of a k-edge connected graph H we mean a set S � V (H) with j�H(S)j = k, i.e., a nodeset S such that �H(S) is a k-cut. As usual, a family of sets fSig is called laminar if for any two setsin the family, either the two sets are disjoint, or one set is contained in the other. For an arbitrarysubset F 0 of the critical edges of H , it is well known that there exists a laminar family F of tightnode sets covering F 0, i.e., there exists F = fA1; A2; : : : ; A`g, where Ai � V (H) and �(Ai) is ak-cut, for 1 � i � `, such that each edge e 2 F 0 is in some �(Ai), 1 � i � `. (For details, see [Fr 93,Section 5] or [Ca 93, Lemma 3].) It is convenient to de�ne a tree T corresponding to F [ fV (H)g:there is a T -node corresponding to each set Ai 2 F and to V (H), and there is a T -edge AiAj (orV (H)Aj) i� Aj � Ai and no other node set in F contains Aj and is contained in Ai. Note thatthe T -node corresponding to the node set Ai of the laminar family F is denoted by Ai, and theT -node corresponding to the node set V (H) is denoted by V (H). Each T -edge corresponds to ak-cut of H . Suppose that the tree T is rooted at the T -node V (H). We associate another node set�i � V (H) with each node set Ai of F :�i = Ain[fA 2 F : A � Ai; A 6= Aig:In other words, a T -node Ai 2 F that is a leaf node of T has �i = Ai, otherwise, �i consists ofthose H-nodes of Ai that are not in the node sets A0; A00; : : :, where A0; A00; : : : 2 F correspond tothe children of Ai in the tree T . For distinct T -nodes Ai and Aj , note that �i and �j are disjoint.See Figure 5 for an illustration of F = fAig, the family of node sets f�ig, and the tree T for aparticular graph.The proof of Theorem 4.3 is long and nontrivial. Readers interested in a detailed study ofthe proof may be helped by: an examination of the examples in Figure 2(c) and Figure 5, theillustration of the proof in Figure 6(a){(d), and a study of the proof of Theorem 4.8, which is ananalogous but weaker result for k-edge connected digraphs.20
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Figure 5: Two laminar families of tight node sets for a 2-edge connected graph H (k = 2).(a) The laminar family F covers all critical edges of H . F consists of the node sets A1; : : : ; A8,where each Ai is tight since j�(Ai)j = 2 = k. For a node set Ai, �i is the node set AinSfAj 2F : Aj � Ai; Aj 6= Aig. Note that �i = Ai for the inclusionwise minimalAi, i.e., for i = 1; 4; 5; 7; 8.Also, the tree T corresponding to F [ fV (H)g is illustrated.(b) The laminar family F 0 covers all critical edges of E(H)nM , where M � E(H) is such thatevery node is incident to at least k = 2 edges of M . M is indicated by dotted lines. All edgesof E(H)nM are critical. F 0 consists of the tight node sets A1; A2. Also, the node sets �1; �2 areindicated (�1 = A1), and the tree T 0 representing F 0 [ fV (H)g is illustrated.21



Theorem 4.3 Let H = (V;E) be a k-edge connected, n-node graph (k � 1). Let M � E be an edgeset such that the spanning subgraph (V;M) has minimum degree � k. Let F be the set consistingof edges of EnM that are in some k-cut of H. Let F = fA1; : : : ; A`g be a laminar family of tightnode sets that covers F , i.e., for each e 2 F , there is an Ai 2 F such that e 2 �(Ai). ThenjF j � kk + 1 �����[̀i=1Ai����� � kk + 1(n� 1): (1)Some key preliminaries are discussed, before delving into the proof. The upper bound on jF j isasymptotically tight. Consider the k-edge connected graph G obtained as follows: take `+1 copiesof the (k+1)-clique, C0; C1; : : : ; C`, and for each i = 1; : : : ; `, choose an arbitrary node vi in Ci andadd k (nonparallel) edges between vi and C0. Take M = Sì=0E(Ci), and F = E(G)nM . Observethat jF j = k(n� (k + 1))=(k+ 1).Fact 4.4 For a laminar family of tight node sets F = fA1; : : : ; A`g, [̀i=1 �(Ai) = [̀i=1 �(�i).Proof: For each i = 1; : : : ; `, an edge in �(�i) is either in �(Ai) or in �(A0); �(A00); : : :, whereA0; A00; : : : 2 F correspond to the children of Ai in the tree T . Hence, the set on the left sidecontains the set on the right side.To see that the set on the left side is contained in the set on the right side, note that forevery edge e in the left side set, there is an (inclusionwise) minimal tight node set Ai(e) such thate 2 �(Ai(e)), and the associated node set �i(e) has e 2 �(�i(e)). 2Fact 4.5 Let H;M; F and F = fA1; : : : ; A`g be as in Theorem 4.3. The inequality in the theoremjF j � kk + 1 �����[̀i=1Ai�����is implied by the inequality�����[̀i=1 �(Ai)����� � kk + 1 X̀i=1 j�ij+ 12 X̀i=1 jM \ �(�i)j:Proof: Let Mc �M denote the set of M -edges that are covered by the laminar family F , i.e.,Mc = [̀i=1 [M \ �(Ai)] =M \ "[̀i=1 �(Ai)# =M \ "[̀i=1 �(�i)# = [̀i=1 [M \ �(�i)] :Consider an arbitrary edge e = vw that is in Mc. If e 2 �(�i) (i = 1; : : : ; `), then either v 2 �i; w 62�i or w 2 �i; v 62 �i. Since the node sets �i (i = 1; : : : ; `) are mutually disjoint, there are at mosttwo tight node sets Ai 2 F such that e 2 �(�i). (E.g., if there are tight node sets Ag; Ah 2 F ,g 6= h, with v 2 �g; w 2 �h, then e 2 �(�g); e 2 �(�h); and e 62 �(�i) for i = 1; : : : ; `; i 6= g; i 6= h.)Then jMcj = ����� [̀i=1 [M \ �(�i)]����� � 12 X̀i=1 jM \ �(�i)j; (2)22



since we are counting the cardinality of a union of sets such that each element occurs in at mosttwo of these sets.Now note that [̀i=1 �(Ai) = F [Mc, hence����� [̀i=1 �(Ai)����� = jF j+ jMcj: (3)Also, [̀i=1Ai = [̀i=1�i, hencekk + 1 �����[̀i=1Ai����� = kk + 1 �����[̀i=1�i����� = kk + 1 X̀i=1 j�ij: (4)Substituting inequalities (2), (3) and (4) into the second inequality in the fact givesjF j+ jMcj � kk + 1 �����[̀i=1Ai�����+ jMcj;which is the inequality in Theorem 4.3. 2Most of the complications in the proof of Theorem 4.3 seem to be caused by the presence oftight node sets Ai 2 F such that j�ij = 1. To illustrate the main ideas in the proof, we �rst prove aweaker version of Theorem 4.3. In the weaker version, the required upper bound of k(n�1)=(k+1)is relaxed to (n� 1), and the laminar family of tight node sets F = fA1; : : : ; A`g is restricted suchthat every Ai 2 F has j�ij � 2. (The motivation for putting the restriction on F is expository.Such restricted laminar families F do not seem to be of mathematical interest.)Proposition 4.6 Let H;M; F and F be as in Theorem 4.3, and moreover, suppose that each tightnode set Ai 2 F has j�ij � 2. Then jF j � �����[̀i=1Ai����� � n � 1:Proof: For an arbitrary i = 1; : : : ; `, consider Ai; �i, and let p denote j�ij. By assumption, p � 2.Suppose that p � k (the other case p � k + 1 turns out to be easy). ThenjM \ �(�i)j � p(k � (p� 1)); (5)since for every node v 2 �i, there are at most (p � 1) incident edges vw 2 E(H) with w 2 �i.Adding 2j�ij to both sides of inequality (5) gives2j�ij+ jM \ �(�i)j � 2p+ p(k � (p� 1)) � �p2 + (k + 2)p: (6)Subtracting 2k from both sides of inequality (6) gives2j�ij+ jM \ �(�i)j � 2k � �p2 + (k + 2)p� 2k = �(p� k)(p� 2) � 0; (7)where the last inequality �(p� k)(p� 2) � 0 holds because 2 � p � k. Inequality (7) impliesj�ij+ 12 jM \ �(�i)j � k = j�(Ai)j: (8)23



If j�ij � (k + 1), then obviously inequality (8) holds.Summing up inequality (8) over i = 1; : : : ; ` gives�����[̀i=1 �(Ai)����� � X̀i=1 j�(Ai)j = k � ` � X̀i=1 j�ij+ 12 X̀i=1 jM \ �(�i)j: (9)The proof of Fact 4.5 shows that inequality (9) implies the inequality in the proposition, jF j ������[̀i=1Ai����� � n � 1. 2Proof: (Theorem 4.3)W.l.o.g. assume that F is minimal, i.e., for every Ai 2 F there is an edge ei 2 F such thatei 2 �(Ai) and ei 62 �(A) for all A 2 F ; A 6= Ai. Since F is minimal, every Ai 2 F has j�ij � 1.Let T be the tree representing F [ fV (H)g. The proof examines the node sets Ai 2 F , �i, but thenode set V (H)nSfAi : Ai 2 Fg is not relevant for the proof. Every inclusionwise minimal Ai 2 Fhas jAij � (k + 1), since �(Ai) \ F 6= ; implies that Ai contains a node v with degH(v) � (k + 1),so Lemma 4.2 implies this bound on jAij. Hence, every Ai 2 F with j�ij = 1 has at least one childin the tree T .Two key assumptions are needed to complete the proof.Assumption 1: For 1 � i � `, every �i induces a complete subgraph of H , and moreover, everyedge of this complete subgraph is in M , i.e., for i = 1; : : : ; `, 8v; w 2 �i; vw 2 E(H) and vw 2M .Assumption 2: For every Ai 2 F with j�ij = 1, there is an Aj 2 F such that j�j j � k and Aj isa child of Ai in the tree T .Claim 1: Assumption 1 causes no loss of generality.Here is the proof of Claim 1. For an arbitrary i = 1; : : : ; `, consider �i and E(�i), the set ofedges of H with both end nodes in �i. Clearly, an edge vw 2 E(�i) is not in F , since vw is in noneof the k-cuts �(Aj) (j = 1; : : : ; `). Therefore, all the missing edges vw with v 2 �i; w 2 �i can beadded to H (say, vw is �rst added to En(M [ F )) such that �i induces a clique, and this will keepM;F and F unchanged. Moreover, every edge vw 2 E(�i) can be placed in M , and the minimumdegree requirement on (V;M) will continue to hold. By repeating this for each i = 1; : : : ; `, weobtain H 0;M 0; F 0 = F and F 0 = F that satisfy Assumption 1 and the conditions in the theorem.Clearly, if the inequality in the theorem holds for H 0;M 0; F 0;F 0, then it also holds for H;M; F;F .Claim 2: Assumption 2 causes no loss of generality.Here is the proof of Claim 2. Consider an Ai 2 F (i = 1; : : : ; `) such that j�ij = 1 and in thetree T every child Aj 2 F of Ai has j�j j � (k + 1). Let �i = fv�g. Let Aj 2 F be an arbitraryT -child of Ai with j�j j � (k + 1). Clearly, by Assumption 1, the subgraph of H induced by �j is aclique, and every edge in the clique is inM . Suppose that H has an edge wv� such that w 2 Ajn�j ,i.e., wv� 2 �(Aj)n�(�j). (Figure 6(c) illustrates this.) Then we replace wv� by a pair of new edgeswx; yv� with x 2 �j ; y 2 �j (possibly, x = y) such that the resulting graph H 0 is simple (i.e., H 0has no multiedges); this can be done always, since j�j j � (k + 1) and both �(Aj) and �(Aq) arek-cuts, where Aq 2 F is the T -child of Aj containing node w. The resulting graph H 0 is k-edgeconnected. To see this, note that H is k-edge connected, and H 0 is obtained from H by replacingone edge wv� by two edges wx; yv�, where the nodes x and y are contained in the (k + 1)-cliqueinduced by �j . The formal proof of the k-edge connectivity of H 0 is easy, and is left to the reader.24
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Figure 6: An illustration of the proof of Theorem 4.3.(a) Every edge in �(Ai) \ �(�i) contributes � 1 to the l.h.s. of inequality (�), and every edge in�(Ai)n�(�i) contributes � 12 .(b) The tight node set Ai is shown, together with two tight node sets Aj , Aq contained in Ai. Thenode sets �i and �j are also shown. The three kinds of edges arising in the proof are illustrated.(c) In Claim 2, �i = fv�g and j�j j � (k + 1). An edge wv� with w 2 Ajn�j is replaced by a pairof new edges wx and yv�, where x 2 �j , y 2 �j .(d) In Claim 2, �i = fv�g. If an edge v�x with x 62 Ai is in F (so v�x 62M), then there is an edgev�w in M with w 2 �j , where �j � Aj � Ai and j�j j � (k + 1). Edges v�x and v�w are swappedbetween M and F . 25



If wv� 2 M , then we take M 0 = (Mnfwv�g) [ fwx; yv�g, F 0 = F , otherwise, we take M 0 = M ,F 0 = (Fnfwv�g) [ fwx; yv�g. In either case F covers F 0. By repeating this manoeuvre for allrelevant i = 1; : : : ; `, we obtain H 0;M 0; F 0 and F 0 = F with jF 0j � jF j that satisfy the conditionsin the theorem. Clearly, if the inequality in the theorem holds for H 0;M 0; F 0;F 0, then it also holdsfor H;M; F;F . Moreover, the following condition (�) holds:for every Ai 2 F with j�ij = 1, for every T -child Aj 2 F of Ai with j�j j � (k + 1), (�)every edge in �(Aj) \ �(�i) is in �(�j).Now w.l.o.g. suppose that H;M; F and F satisfy condition (�). Call an Ai 2 F bad if j�ij = 1and every T -child Aj 2 F of Ai has j�j j � (k + 1). Suppose that there is a bad Ai 2 F with�i = fv�g such that one of the edges v�x 2 �(Ai)\ �(�i) is not in M . (Figure 6(d) illustrates this.)Then since j�(Ai)j = k, j�(Ai) \ F j � 1, and jM \ �(�i)j � k, there must be an M -edge wv� in�(�i)n�(Ai). Let Aj 2 F be the T -child of Ai such that w 2 Aj . Since Ai is bad, j�j j � (k + 1),therefore condition (�) applies and ensures that the node w is in �j . Moreover, by Assumption 1,w is incident to � k edges of M that have both end nodes in �j . Take M 0 = (Mnfwv�g) [ fv�xg,F 0 = (Fnfv�xg)[fwv�g, and observe that jM j = jM 0j, jF j = jF 0j, every node v 2 V (H) is incidentto � k edges of M 0, F 0 consists of critical edges in E(H)nM 0, and F covers F 0. By repeating thismanoeuvre for all relevant i = 1; : : : ; `, we obtain H;M 0; F 0 and F that satisfy the conditions inthe theorem such that jF 0j = jF j, and for every bad Ai 2 F , no edge in �(Ai) \ �(�i) is in F 0.Then we can start with F , and remove each bad Ai from F to obtain another laminar family F 0covering F 0 such that j [A2F 0Aj � j [A2F Aj, and F 0 satis�es Assumption 2. Clearly, if the inequalityin the theorem holds for H 0;M 0; F 0;F 0, then it also holds for H;M; F;F . This completes the proofof Claim 2.Instead of proving that F;F satisfy inequality (1), we prove that under Assumption 2, M , Fand F = fA1; : : : ; A`g satisfy the following sharper inequality (see Fact 4.5):����� [̀i=1 �(Ai)����� � kk + 1 X̀i=1 j�ij+ 12 X̀i=1 jM \ �(�i)j: (10)Clearly, every Ai 2 F with j�ij � (k + 1) satis�es the inequalityj�(Ai)j � kk + 1 j�ij: (11)From the proof of Proposition 4.6 (see inequalities (5), (6), (7), (8)), it follows that every Ai 2 Fwith 2 � j�ij � k satis�es the inequalityj�(Ai)j+ k � 12(k + 1) j�ij � kk + 1 j�ij+ 12 jM \ �(�i)j; (12)where the surplus term on the left hand side (l.h.s.) is the di�erence between kj�ij=(k + 1) andj�ij=2. Every Ai 2 F with j�ij = 1 satis�es the inequalityj�(Ai) \ �(�i)j+ 12 j�(Ai)n�(�i)j+ kk + 1 � 12 j�(Ai) \ �(�i)j � kk + 1 j�ij+ 12 jM \ �(�i)j; (13)because j�(Ai)\ �(�i)j+ j�(Ai)n�(�i)j = j�(Ai)j = k � jM \ �(�i)j.Claim 3: Under Assumption 2, the inequality (�) obtained by summing up over all Ai 2 F theappropriate one of inequalities (11), (12), (13) implies inequality (10), i.e., the l.h.s. of inequality (�)26



is � the l.h.s. of inequality (10), and the r.h.s. of inequality (�) is � the r.h.s. of inequality (10).Here is the proof of Claim 3. Clearly, inequality (�) will imply inequality (10) if for everyAi 2 F , every edge in �(Ai) \ �(�i) contributes � 1 to the l.h.s. of inequality (�). This propertyholds for Ai 2 F with j�ij � 2 by inequalities (11),(12), but for Ai 2 F with j�ij = 1 the propertyfails to hold (see inequality (13)). Fortunately, there is a way around this di�culty. ForAi 2 F withj�ij = 1, we allowAi; �i to contribute a de�cit of 12 j�(Ai)\�(�i)j on the l.h.s. of inequality (�); usingthis de�cit, we can ensure that every edge in �(Ai)\ �(�i) (in �(Ai)n�(�i)) contributes � 1 (� 1=2)to the l.h.s. of inequality (�), see inequality (13). (Figure 6(a) illustrates the general scheme.) Foreach Ai 2 F with j�ij = 1, let Ac(i) 2 F be an arbitrary T -child of Ai such that 1 � j�c(i)j � k;Ac(i) exists by Assumption 2. Inequality (�) implies inequality (10) because the de�cit contributedby each Ai 2 F with j�ij = 1 is compensated by the surplus contributed by Ac(i); �c(i). To seethis, focus on an arbitrary Ai 2 F with j�ij = 1, and let j = c(i). First observe that if an edgevw 2 �(Aj) with v 2 Aj is not in �(Ai), then there are three possibilities: (i) v 2 �j ; w 2 �i, (ii)v 62 �j ; w 2 �i, i.e., v 2 Ag, where Ag 2 F corresponds to a child of Aj in the tree T , and (iii)v 2 Aj ; w 2 Ain[Aj [ �i], i.e., w 2 Aq, where Aq 2 F corresponds to a sibling of Aj in the tree T .(Figure 6(b) illustrates the three possibilities.) Second, observe thatj�(Ai) \ �(�i)j � j�(Aj)n�(Ai)j = j�(Ajn�j) \ �(�i)j+ j�(Aj) \ �(Ain[Aj [ �i])j+ j�(�j) \ �(�i)j:For each of the �rst two terms t on the right hand side, Aj ; �j contributes a surplus of at least t=2to the l.h.s. of inequality (�), because (i) every edge in two distinct k-cuts �(Ag) and �(Aj), Ag 2 F ,Aj 2 F , Ag � Aj , contributes a surplus of 1=2 or more, since Ah 2 F such that �(�h) \ �(Ah)contains the edge contributes one for the edge, and every other A 2 F such that �(A) contains theedge contributes � 1=2 for the edge; (ii) every edge in two distinct k-cuts �(Aq) and �(Aj), Aq 2 Fdisjoint from Aj 2 F , contributes a surplus of one or more.Focus on the third term j�(�j)\ �(�i)j, and note that its value is � j�j j, since j�ij = 1 and thegraph is simple. If j�j j = 1, then the de�cit contributed by Ai; �i (to the l.h.s. of inequality (�)) iscompensated, because the surplus of kk+1 (on the l.h.s. of Ai's inequality) is � 12 (for k � 1), hence12 j�(Ai)\ �(�i)j � 12 j�(Ajn�j)\ �(�i)j+ 12 j�(Aj) \ �(Ain[Aj [ �i])j+ kk + 1 :If 2 � j�j j � k, then the de�cit contributed by Ai; �i (to the l.h.s. of inequality (�)) is compensated,because the surplus of k�12(k+1) j�j j+ kk+1 (on the l.h.s. of Aj 's and Ai's inequalities) is � j�j j=2 (fork � j�j j � 1), hence12 j�(Ai) \ �(�i)j � 12 j�(Ajn�j) \ �(�i)j+ 12 j�(Aj) \ �(Ain[Aj [ �i])j+ k � 12(k+ 1) j�j j+ kk + 1 :This completes the proof of Claim 3 and the proof of the theorem. 2Theorem 4.7 Let G = (V;E) be a graph of edge connectivity � k � 1. The heuristic describedabove �nds a k-edge connected spanning subgraph (V;E 0) such that jE 0j � (1 + [2=(k+ 1)])jEoptj,where jEoptj denotes the cardinality of an optimal solution. The running time is O(k3jV j2 +jEj1:5(log jV j)2). 27



4.2 Directed graphsThe heuristic for �nding an approximately minimum-size k-edge connected spanning subgraph ofa digraph has two steps. Similarly to Section 3.4, the �rst step �nds a minimum-cardinality arcset M � E such that for every node v, there are � k arcs of M going out of v and � k arcs ofM coming into v. Clearly, jM j � jEoptj, where Eopt � E denotes a minimum-cardinality arc setsuch that (V;Eopt) is k-edge connected. The second step of the heuristic �nds an (inclusionwise)minimal arc set F � EnM such that E 0 = M [ F is the arc set of a k-edge connected spanningsubgraph. To prove the approximation guarantee, we need to estimate jF j. We use the notion ofspecial arcs to estimate jF j. Call an arc (v; w) of a k-edge connected digraph special if the arc iscritical, and in addition, degout(v) � (k + 1) and degin(w) � (k + 1). Clearly, every arc in F is aspecial arc of the digraph G0 = (V;E 0), E 0 = M [ F , returned by the heuristic. We can deducea bound of O(pkjV j) on the number of special arcs in G0 by examining chains of tight node setsS1 � S2 � : : : � Sq, where a node set Si is called tight if G0 has exactly k arcs in �out(Si).Theorem 4.8 Let k � 1 be an integer, and let H be a k-edge connected, n-node digraph. Thenumber of special arcs in H is at most 4pk � n.Proof: Let V denote V (H) for this proof. Each special arc e is in a k-dicut �out(Ae) = �in(V nAe),where 2 � jAej � n � 2. As in Section 4.1, we obtain two laminar families of tight node setsFout and Fin that cover all the special arcs: that is, for each Ai 2 Fout (Ai 2 Fin), Ai is a setof H-nodes, �out(Ai) (�in(Ai)) has k arcs including at least one special arc, and each special arcis in some �out(Ai), Ai 2 Fout, or is in some �in(Ai), Ai 2 Fin. Focus on Fout; the analysis issymmetric for Fin. Let Fout = fA1; A2; : : : ; A`g. To estimate the number of special arcs, we needto examine the tree T corresponding to Fout [ fV (H)g. For i = 1; : : : ; `, recall that the T -nodecorresponding to a node set Ai 2 Fout is also denoted Ai (the T -node corresponding to V (H) isdenoted by V ), and recall that �i denotes Ain[fA 2 Fout : A � Ai; A 6= Aig: Partition the setfA1; : : : ; A`g of T -nodes into two sets R1 and R2, where R2 consists of the T -nodes incident toprecisely two T -edges, and R1 = fA1; : : : ; A`gnR2. Note that V 62 R1 and V 62 R2.Claim 1: jR1j � 2jV1j=(k+ 1), where V1 denotes the set of H-nodes in Sf�i : Ai 2 R1g.Here is the proof of Claim 1. Let T1 be the tree obtained from the tree T by \unsubdividing"all the T -nodes in R2, i.e., by repeatedly replacing a degree-two T -node in R2 and its two incidentedges by an edge between the two neighbours. Then T1 is a tree whose nonleaf T -nodes in R1 haveT1-degree � 3, whereas the T -node V may have T1-degree 1; 2 or � 3. Let `1 be the number of leafnodes (degree-1 nodes) of T1 in R1. Then, jR1j � `1 + (`1 + 1) � 2 � 2`1. Now, Claim 1 followsbecause `1 � jV1j=(k + 1), because for each (inclusionwise) minimal Ai 2 Fout, the set �i = Ai ofH-nodes has cardinality at least (k + 1) by the digraph version of Lemma 4.2(ii). (Ai contains anode v with degout(v) � (k + 1) since �out(Ai) contains a special arc.)Now focus on a maximal path P = A0; A1; : : : ; Aq+1 of T such that every T -node Ai with1 � i � q is in R2. In H , the node sets A0; A1; : : : ; Aq+1 satisfy A0 � A1 � : : : � Aq+1, and fori = 1; : : : ; q, if A0 2 Fout is contained in Ai, then either A0 = Ai�1 or A0 � Ai�1. Let VP denote theset of H-nodes �1 [ �2 [ : : :[ �q. Also, note that for i = 1; 2; : : : ; q, Ai = A0 [ �1 [ �2 [ : : :[ �i.Claim 2: The number of arcs (v; w) such that v 2 VP and (v; w) 2 Sf�out(Ai) : 1 � i � qg is atmost k + 2pk � jVP j.Here is the proof of the Claim 2; see Figure 7 for an illustration. The additional term of k inthe upper bound accounts for the arcs with start nodes in Aq and end nodes in V nAq; there are atmost k such arcs, since each such arc is in �out(Aq). Now ignore the arcs in �out(Aq). Linearly orderthe H-nodes in VP such that for each i, 1 � i < q, the H-nodes in �i precede the H-nodes in �i+1.28
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Figure 7: An illustration of Claim 2 in the proof of Theorem 4.8.(a) A subfamily of the laminar family of tight node sets Fout that covers (some of) the special arcs.(b) The subtree corresponding to the subfamily of Fout in (a). Each of the T -nodes A1; A2; : : : ; Aqis incident to exactly two edges of T , where T is the tree corresponding to Fout.
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Let v be an arbitrary node in VP . Let �v � VP denote the set of end nodes wj of the arcs (v; wj)outgoing from v such that wj 2 VP and (v; wj) 2 Sf�out(Ai) : 1 � i � qg. Let the linear orderingof the nodes in �v be w1; w2; : : : ; wj�vj. Call an arc (v; wj) short if j � pk, otherwise, call the arclong. We \charge" each long arc (v; wj) to the �rst pk nodes w1; w2; : : : ; wpk in �v , i.e., each ofthese nodes is charged 1=pk for each arc (v; wj), wj 2 �v and j > pk. Now consider the totalcharge on an arbitrary node wa 2 VP due to all long arcs (x; y) 2 Sf�out(Ai) : 1 � i � qg withx 2 VP and y 2 VP . The key fact is this: the total charge on wa is at most pk. To see this supposethat wa 2 �i, where 1 � i � q. Then for every arc (v; wj) charged to wa, (v; wj) 2 �out(Ai�1),because v 2 Ain�i (if v 2 V nAi or v 2 �i, then clearly �v does not contain a node of �i such aswa). Furthermore, by the linear ordering of �v , wj 2 �i [ �i+1 [ : : :[ �q, i.e., wj 62 Ai�1. Since�out(Ai�1) has k arcs, the total charge to wa is at most k � (1=pk) = pk. Finally, consider the totalnumber,mP , of short arcs (x; y) 2 Sf�out(Ai) : 1 � i � qg with x 2 VP and y 2 VP . Obviously, mPis at most pkjVP j. Claim 2 is completed by summing up the three terms: k (for arcs in �out(Aq)),pkjVP j (for the total charge on nodes w 2 VP ), and pkjVP j (for mP ).We account for the special arcs in �out(Aq) by \charging" the additional term of k to the\unsubdivided edge" A0Aq+1 of the tree T1 in the proof of Claim 1. Thus each edge AiAi+q+1, Ai �Ai+q+1, of T1 is \charged" for � 2k special arcs (these are the special arcs in �out(Ai)[ �out(Ai+q)).Since the number of edges in T1 is � jR1j, the number of special arcs contributed by the T -nodesin R1 is � 2kjR1j. We \charge" 2pk to each H-node v such that v 2 �i for a T -node Ai 2 R2.Combining the contributions of special arcs from the T -nodes in R1 and R2 and applying Claim 1,we see that the number of special arcs is at most2kjR1j+ 2pk � n2 � 4kn1(k+ 1) + 2pk � n2where n1 and n2 denote the cardinalities of V1 = Sf�i : Ai 2 R1g and V2 = Sf�i : Ai 2 R2g,respectively. For k � 1, the number of special arcs is maximized when n2 is maximum possible andn1 is minimum possible. Since the tree T has at least two leafs, n2 is at most n� (2k+ 2). Hence,the number of special arcs contributed by Fout is at most 4k(2k+ 2)=(k+ 1) + 2pk(n� (2k+ 2)).The total number of special arcs in H is at most 16k + 4pk(n� (2k+ 2)) � 4pkn. 2The heuristic clearly runs in time O(kjEj2). This can be improved by implementing the secondstep to run in time O(k3jV j2). We run Gabow's algorithm [Ga 95] as a preprocessing step tocompute a sparse certi�cate eE of G for k-edge connectivity, i.e., eE � E, j eEj � 2kjV j, and for allnodes v; w, (V; eE) has k arc-disjoint v!w directed paths i� G has k arc-disjoint v!w directedpaths. In detail, we �x a node a 2 V (G) and take eE = eEout [ eEin, where eEout ( eEin) is the union ofk arc-disjoint out-branchings (in-branchings) rooted at a. Gabow's algorithm [Ga 95] runs in timeO(kjV j2), and the second step runs in time O(kj eE [M j2) = O(k3jV j2).Theorem 4.9 Let G = (V;E) be a digraph of edge connectivity � k. The heuristic described above�nds a k-edge connected spanning subgraph (V;E 0) such that jE 0j � (1 + [4=pk])jEoptj, where jEoptjdenotes the cardinality of an optimal solution. The running time is O(k3jV j2 + jEj1:5(log jV j)2).The upper bound on the number of special arcs in Theorem 4.8 is not tight, but is within afactor of (roughly) three of the tight bound for n� k. To see this, take n � 3k+2 and consider thefollowing k-edge connected, n-node digraph Ĝ with at least �n�2�(k+1)+k special arcs, where �is the maximum integer such that �(�+1)=2 � k, i.e., � = bp2k + 0:25� 0:5c. See Figure 8 for anillustration of Ĝ. Ĝ has a \left" (k+1)-directed clique KL and a \right" (k+1)-directed clique KR.Let v1; v2; : : : ; v` be a linear ordering of the remaining nodes, where ` = n � 2(k + 1) � k. There30
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Figure 8: The digraph Ĝ described in the last paragraph of Section 4.2. Ĝ has n � 3k + 2 nodes,and has � �(n� 2(k+ 1)) + k special arcs, pk � � < p2k, showing that the upper bound on thenumber of special arcs in Theorem 4.8 is within a small constant factor of being tight for n� k.31



is one arc from vi (1 � i � `) to each of the next � nodes vi+1; : : : ; vi+� ; hence, each node vi hasone arc coming in from each of the previous � nodes vi�1; : : : ; vi�� . (Take v0; v�1; v�2 : : : ; v��+1 tomean nodes in KL, and take v`+1; v`+2; : : : ; v`+� to mean nodes in KR.) These � left-to-right arcsstarting from vi will turn out to be special arcs. Additionally, there are (k+1��) arcs fromKR toeach of the nodes v1; v2; : : : ; v`, and there are (k + 1� �) arcs from each of the nodes v1; v2; : : : ; v`to KL. Finally, there are (k � �(� + 1)=2) arcs from KL to KR. This completes the constructionof Ĝ. It can be checked that Ĝ is k-edge connected. (Note that besides the (k � �(� + 1)=2) arcsfrom KL to KR, there are �(� + 1)=2 arc-disjoint directed paths from KL to KR, such that thereis one \one-hop" directed path, two \two-hop" directed paths, . . . , � \�-hop" directed paths). Foreach node set A in the laminar family of node sets fKL; (KL [ fv1g); : : : ; (KL [ fv1; v2; : : : ; v`g)g,the out-directed cut �out(A) has cardinality k, and every arc in �out(A) is a special arc.5 ConclusionsOur analyses of the heuristics exploit results from graph theory, such as Mader's remarkable theorem[Ma 72, Theorem 1], and raise new problems in the areas of approximation algorithms and graphtheory.For a graph G and an integer k � 1, let �(k;G) denote the minimum number of edges ina spanning subgraph of minimum degree k. For a digraph G and integer k � 1, de�ne �(k;G)similarly. For a graph (or digraph) G and integer k � 1, let �0(k;G) denote the minimum numberof edges (arcs) in a k-edge connected spanning subgraph (k-ECSS), and let �00(k;G) denote theminimumnumber of edges (arcs) in a k-node connected spanning subgraph (k-NCSS). While �(k;G)can be computed e�ciently via b-matchings, computing either �0(k;G) or �00(k;G) is NP-hard. Thispaper shows that (i) by computing �(k� 1; G), we can e�ciently approximate �00(k;G) to within afactor of 1 + [1=k] for both graphs and digraphs, and (ii) by computing �(k;G), we can e�cientlyapproximate �0(k;G) to within a factor of 1 + [2=(k + 1)] for graphs, and a factor of 1 + [4=pk]for digraphs. Theorem 3.6 shows that for a k-node connected graph G, �00(k;G)�0(k;G) � k + 1k , andTheorem 3.20 shows that for a k-node connected digraph G, �00(k;G)�(k;G) � k + 1k . Propositions 3.4and 3.19 show that for a k-node connected graph or digraph G, �00(k;G)�(k � 1; G) � k + 1k � 1. Theorem 4.7shows that for a k-edge connected graph G, �0(k;G)�(k;G) � k + 3k + 1.For minimum-size k-ECSS (k-NCSS) problems, there appears to be a di�culty in achievingapproximation guarantees of 1 + !(1)k2 . A graph theoretic function g is said to satisfy the edgeLipschitz condition if whenever graphs H and H 0 di�er in only one edge, then jg(H)� g(H 0)j � 1,see [AS 92, p. 86]. Observe that �(k;G) satis�es the edge Lipschitz condition. In contrast, both�0(k;G) and �00(k;G) violate this condition. First, focus on �0(k;G) for graphs G and k � 2. Let Gbe the minimal k-edge connected graph obtained by \stringing" ` copies of the (k + 1)-clique, i.e.,take ` copies of the (k+ 1)-clique, and for each copy i, 1 � i � `, designate a pair of distinct nodesas si and ti, and then identify ti and si+1 for i = 1; 2; : : : ; `� 1. Adding the edge s1t` decreases �0by ` = (jV (G)j�1)=k, since removing all the edges siti, 1 � i � `, leaves a k-edge connected graph.Now consider �00(k;G) for graphs G and k � 2. For each k � 2, there exists a k-node connectedgraph G such that adding a particular new edge decreases �00 by jV (G)j � 3k + 12k � 2 ; see Figure 9 foran illustration. For k = 2 and the graph in Figure 1, observe that �00 decreases from 1:5jV j � 5 to32



s Kk�1 Kk�1 tKk�1Kk�1Figure 9: A k-node connected graph G = (V;E) (with k � 2) such that the minimum size �00 of ak-node connected spanning subgraph decreases by (n� 3k + 1)=(2k� 2) on adding one edge.G consists of nodes s, t, and ` copies of the (k � 1)-clique, and has k � 1 openly disjoint s$tpaths such that each path uses exactly one node from each (k � 1)-clique; also, G has (` � 1)=2dashed edges. Every edge in G is critical w.r.t. k-node connectivity. Adding the edge st to G, andthen removing all the dashed edges leaves a k-node connected graph, so �00 decreases from jEj tojEj+ 1� (`� 1)=2.A k-edge connected (and k-node connected) graph eG such that the minimum size �0 of a k-edgeconnected spanning subgraph decreases by jV ( eG)j � 4k + 23k � 3 on adding one edge can be obtainedby modifying G as follows: \split" every (k � 1)-clique incident with a dashed edge into a pair of(k � 1)-cliques connected by a matching of size (k � 1).jV j + 1 upon adding the edge e�. A k-edge connected (and k-node connected) graph eG such thatadding a particular new edge decreases �0 by jV ( eG)j � 4k + 23k � 3 can be obtained by modifying thegraph in Figure 9 as indicated in the �gure caption. Garg et al [GSS 93] discuss similar issues forthe minimum-size 2-NCSS problem on graphs.Another drawback of the analysis of the k-NCSS heuristic for graphs in Section 3.1 is that thesize of the edge set E 0 =M[F returned by the heuristic is compared against �0(k;G), the minimumsize of a k-ECSS. Given an integer k � 2, for each integer n = 2k(i+ k) + k, where i = 0; 1; 2; : : :,there exists a k-node connected, n-node graph Ĝ such that�00(k; Ĝ)�0(k; Ĝ) = 1 + (k � 2)(2k2 + k) :In view of this, for large k, a sharper lower bound will have to be employed for proving approxi-mation guarantees substantially better than 1+ [1=2k] for the minimum-size k-NCSS problem. Fork = 2 or k = 3, larger values of �00(k;G)=�0(k;G) are given by the graph G in Figure 9 with theparameter k �xed at 2 or 3 and with jV (G)j � k: for k = 2, the ratio approaches 6=5, and fork = 3, the ratio approaches 14=13.Here is another consequence of R. P. Gupta's result, see the proof of Proposition 3.8: For abipartite graph G with minimum degree � k,�(k � 1; G)�(k;G) � (k � 1)k :This inequality does not hold for nonbipartite graphs, since for G = K(k+1), �(k � 1; G)=�(k;G)equals (k� 1)=k for k odd, and equals k=(k+ 1) for k even. Another result of Gupta, see [BM 76,33
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