
Approximation Algorithms for the
Matching Augmentation Problem

by Joseph Cheriyan, C&O Dept., U.Waterloo
(based on joint work with R.Cummings, J.Dippel, J.Zhu)

Approximation algorithms

Approximation algorithms

Approximation algorithms and Combinatorial optimization

Minimum cost network design (. . . in real life)

Given n towns and “connection-costs” between each
pair, find a cheapest subgraph that connects all pairs
of towns.

MST (minimum spanning tree) problem

Given n towns and “connection-costs” between each
pair, find a cheapest subgraph that connects all pairs
of towns even after the failure of one link.

2-Node connectivity

Graph (undirected) G = (V ,E) with |V | ≥ 3 is 2-node
connected:

⇐⇒ G − v is connected for all v ∈ V

⇐⇒ each neighborhood NG (S) has ≥ 2 nodes, where
1 ≤ |S | ≤ |V | − 2

⇐⇒ G has 2 openly-disjoint (internally node-disjoint) v ,w -paths,
∀v ,w ∈ V (v 6= w) (Menger’s theorem)

2-Edge connectivity

Graph (undirected) G = (V ,E) is 2-edge connected:

⇐⇒ G − e is connected for all e ∈ E

⇐⇒ each cut δ(S) = (S , S̄) has ≥ 2 edges, where ∅ 6= S (V

⇐⇒ G has 2 edge-disjoint v ,w -paths, ∀v ,w ∈ V (v 6= w)
(Menger’s theorem)

Min-cost 2-ECSS

Given an (undirected) graph G = (V ,E), and edge-costs
c : E → R+, design an algorithm to find a 2-edge connected
spanning subgraph (2-ECSS) of minimum cost.

This problem is NP-hard. (A polynomial-time algorithm for
finding an optimal solution would imply P=NP.)

Revised goal:
α-approximation algorithm (α ∈ R+):
Design & analyze an algorithm to find a 2-ECSS G alg = (V ,F)
s.t. cost(G alg) = c(F) ≤ α OPT(G).

Approximation algorithms for min-cost 2-ECSS (quick look)

Restrictions on edge costs Ap-
prox.Ratio

Authors & Journal

c ∈ R+ 2 Khuller & Vishkin,
JACM (1994)

c ∈ R+ 2 Jain, CCA (2001)
Iterative rounding

unit costs 4/3 Sebo & Vygen, CCA
(2014)

zero/one costs
Forest Augmentation (FAP) 2 (above)
Tree Augmentation (TAP) 3/2 Kortsarz & Nutov,

TALG (2016)
Matching Augmentation 7/4 C., Dippel, Grandoni,

Khan, Narayan
(MAP) Math.Prog. (2020)

An Improved Approximation Algorithm for the Matching

Augmentation Problem

https://arxiv.org/abs/2007.11559

Abstract: We present a 5
3
-approximation algorithm for the

matching augmentation problem (MAP): . . .

https://arxiv.org/abs/2007.11559

Warm-up: 2-approximation for unit-cost 2-ECSS

Design & analyze an algorithm to find a 2-ECSS G alg = (V ,F)
s.t. cost(G alg) = c(F) = |F | ≤ 2 ·OPT(G).
Key points:

I Lower-bound on OPT(G): n := |V (G)|.
I Ear decomposition of G = (V ,E): a partition of E into

paths or cycles, P0,P1, . . . ,Pk , such that P0 is the trivial
path with one node, and each Pi (1 ≤ i ≤ k) is either
(1) a path that has both end nodes in
Vi−1 = V (P0) ∪ V (P1) ∪ . . . ∪ V (Pi−1) but has no internal
nodes in Vi−1, or
(2) a cycle that has exactly one node in Vi−1.

Theorem: Graph G is 2EC (2-edge connected) iff G has an
ear-decomposition.

Ear-decomposition of G , where G has cut nodes (not 2NC)

v1 w1

B0

2EC graph G .

B0 = P0 ∪ P1

w1

B0 = P0 ∪ P1

ear P2

w1v1

B0 = P0 ∪ P1

ear P2ear P3

Figure: Ear decomposition of a 2EC graph G . Start with ear
decomposition P0 ∪ P1 of B0.

Warm-up: 2-approximation for unit-cost 2-ECSS

Design & analyze an algorithm to find a 2-ECSS G alg = (V ,F)
s.t. cost(G alg) = c(F) = |F | ≤ 2 ·OPT(G).
Key points:

I Lower-bound on OPT(G): n := |V (G)|.
I Ear decomposition of G = (V ,E): a partition of E into

paths or cycles, P0,P1, . . . ,Pk , such that . . .

Credit scheme: Assign $2 to each node.
(Total credit = 2· (Lower bound).)
Algorithm & analysis: Construct ear decomposition of G , but
discard ears of length=1.
For each ear Pi of length≥ 2, buy edges of Pi using credit on
internal nodes of Pi .

Next: 2-approximation for MAP (zero/one edge costs)

Given G = (V ,E) and matching M ⊂ E ;
edge-costs: c(e) = 0 if e ∈ M , and c(e) = 1 otherwise.

Design & analyze an algorithm to find a 2-ECSS G alg = (V ,F)
s.t. cost(G alg) = c(F) ≤ 2 ·OPT(G).

Lower-bound on OPT(G): min cost of 2-edge cover of G .
2-edge cover of G : subgraph that has degree ≥ 2 at each node.
D2(G): a subgraph of min cost that has degree ≥ 2 at each node.
• OPT(G) ≥ c(D2(G)).

Credit scheme: Assign $2 to each unit-edge of D2(G).
(Total credit = 2· (Lower bound).)

OPT(G) versus D2(G): G has cut nodes (not 2NC)

v1 w1 v2 w2 vk wk

B0

OPT(G) = c(B0) + 3k .

v1 w1 v2 w2 vk wk

B0

c(D2(G)) = c(B0) + k.

Figure: Edges of cost zero and one are illustrated by dashed and solid
lines, respectively. For k � c(B0),

OPT(G)
c(D2(G)) ≈ 3. Cut-nodes are an

“obstruction” for proving approximation factor 2.

2-approximation for MAP (zero/one edge costs)
Assume sub-instance Gi is 2NC and simple.
Lower-bound on OPT(Gi):

OPT(Gi) ≥ c(D2(Gi)).

Credit scheme: Assign $2 to each unit-edge of D2(Gi).
(Total credit = 2· (Lower bound).)

Each unit-edge of D2(Gi) pays $1, and this suffices to buy all edges
of D2(Gi).

Each unit-edge of D2(Gi) keeps $1 credit.

Algorithm :

I Preprocess: if G has cut nodes, decompose G into
sub-instances G1,G2, . . . ,Gk corresponding to blocks of G .
Each sub-instance is 2NC (hence, simple≡no parallel edges);
solve each sub-instance (separately).

I Return the union of the 2ECSSs H1,H2, . . . ,Hk of
G1,G2, . . . ,Gk .

2-approximation for MAP (zero/one edge costs)
Assume sub-instance Gi is 2NC and simple.
Lower-bound on OPT(Gi): OPT(Gi) ≥ c(D2(Gi)), where
D2(Gi) is a min-cost subgraph of Gi with minimum degree 2.
Credit scheme: Each unit-edge of D2(Gi) keeps $1 credit.

Algorithm :

I Preprocess: if G has cut nodes, decompose G into
sub-instances G1,G2, . . . ,Gk corresponding to blocks of G .
Each sub-instance is 2NC (hence, simple≡no parallel edges);
solve each sub-instance (separately).

I compute Hi := D2(Gi);
I apply Bridge-Covering to Hi : augment edges to each

connected component of Hi to make it 2EC;
I apply Gluing to Hi : augment edges to merge the connected

components of Hi to obtain a 2ECSS of Gi ;

I Return the union of the 2ECSSs H1,H2, . . . ,Hk of
G1,G2, . . . ,Gk .

Gluing step on current graph H

apply Gluing to H : augment edges to merge the connected com-
ponents of H to obtain a 2ECSS of G ;

assume each zero-edge is in D2(G), so each zero-edge is in H ;

Credit scheme: Assume that each connected component of H
has credit of ≥ $2.

Contract each connected component of H to obtain H̃ .

Apply algorithm for unit-cost 2-ECSS.

Recall: For each ear Pi of length≥ 2, buy edges of Pi using credit
on internal nodes of Pi .

Bridge-covering step on current graph H

apply bridge-covering to a connected component C0 of H : augment
edges to C0 obtain a 2EC connected component of H ;

Bridge-covering step on current graph H

apply bridge-covering to a connected component C0 of H : augment
edges to C0 obtain a 2EC connected component of H ;

Credit scheme: Re-assign credit of $1 on each unit-edge of H :

I each connected component of H has $1 c-credit;

I each 2EC-block (of any connected component) of H has $1
b-credit;

I each bridge (of any connected component) of H has $1
credit.

Bridge-covering step on current graph H : Informally

apply bridge-covering to a connected component C0 of H : augment
edges to C0 obtain a 2EC connected component of H ;

See figure on next slide.
Let C0 be a connected component of H := D2(G) that has a
sequence of bridges between two 2EC-blocks L (on left) and B
(on right).
Assume: all inter-component edges are incident to B , so any
edge incident to C0 − V (B) has both ends in C0.

Algorithm: pick an edge f ∈ E (G)− E (H) with one end in L and
the other end “farthest” from L.

I If f covers a unit-bridge e of C0, use $1 credit of e to buy f .

I Otherwise, neighbour v of L in C0 is a cut node of G .
Contradiction to: G is 2NC.

Bridge covering via pseudo-ears

rR
C0

r

f1

f2
f3

R
C0

C1

C2

A pseudo-ear of H w.r.t. C0 starting at R is a sequence
R, f1,C1, f2,C2, . . . , fk−1,Ck−1, fk , where C0,C1, . . . ,Ck−1 are
distinct connected components of H, f1, . . . , fk ∈ E (G)− E (H), each
fi , i ∈ [k − 1], has one end node in Ci−1 and the other end node in
Ci , f1 has an end node in R, and fk has one end node in Ck−1 and
one end node in C0 − V (R). The end node of fk in C0 − V (R) is
called the head node of the pseudo-ear.

An Improved Approximation Algorithm for the Matching

Augmentation Problem

https://arxiv.org/abs/2007.11559

Abstract: We present a 5
3
-approximation algorithm for the

matching augmentation problem (MAP): . . .

https://arxiv.org/abs/2007.11559

5/3-approximation for MAP (zero/one edge costs)

Given G = (V ,E) and matching M ⊂ E ;
edge-costs: c(e) = 0 if e ∈ M , and c(e) = 1 otherwise.

Design & analyze an algorithm to find a 2-ECSS G alg = (V ,F)
s.t. cost(G alg) = c(F) ≤ 5

3
·OPT(G).

Assume sub-instance Gi is a “well-structured” instance of MAP
(defined in a following slide).
Lower-bound on OPT(Gi):

OPT(Gi) ≥ c(D2(Gi)).

Credit scheme: Assign $5
3

to each unit-edge of D2(Gi).
(Total credit = 5

3
· (Lower bound).)

Preprocessing for 5/3-approximation for MAP
Definition: An instance of MAP? is an instance of MAP with
≥ 12 nodes that contains

- no cut nodes,
- no parallel edges,
- no “zero split”,
- no “unit split”,

- no “split cycle”,
- no R4 gadget, and
- no R8 gadget.

A MAP-instance G with |V (G)| ≥ 12 can be efficiently
(poly-time) decomposed into a collection of MAP-instances
G1, . . . ,Gk s.t.
(a) either |V (Gi)| < 12 or Gi is an instance of MAP?, ∀i ∈ [k],
(b) the edge sets E (G1), . . . ,E (Gk) are pairwise disjoint, and
(c) a 2-ECSS H of G can be obtained by computing 2-ECSSes

H1, . . . ,Hk of G1, . . . ,Gk .
(d) Moreover, the approximation guarantee is preserved,

meaning that c(H) ≤ 5
3
OPT(G)− 2 provided

c(Hi) ≤ max(OPT(Gi),
5
3
OPT(Gi)− 2),∀i ∈ [k].

Preprocessing for 5/3-approximation for MAP

B1 B2

u

v

B1 B2
v̂

Figure: Illustration of a “zero split” uv , and its contraction. The
contracted node v̂ is a cut node.

B1 B2

v1

v2

v3

v4 B1 B2
v̂

Figure: Illustration of a “split cycle”, and its contraction. The
subgraph C induced by {v1, v2, v3, v4} is the “split cycle”. The
contracted node v̂ is a cut node.

Preprocessing for 5/3-approximation for MAP

R4: is a four-cycle C of cost 2

such that two of the nonadja-

cent nodes of C have degree two

in G . Several instances of R4

are shown on the right.

u1
u2

u3
u4

u
(`)
1

u
(`)
2

u
(`)
3

u
(`)
4

B0

u1 u2

u3u4

v1 v2

v3v4

B0

u1 u2

u3u4

v1 v2

v3v4

B0

Figure: Illustration of two instances of R8. In both instances, the R8
is the subgraph Ĉ induced by {u1, u2, u3, u4, v1, v2, v3, v4}; Ĉ contains
two 4-cycles C1 = u1, u2, u3, u4, u1 and C2 = v1, v2, v3, v4, v1; Ĉ has
exactly two attachments u2 and v1.

5/3-approximation for MAP (zero/one edge costs)
Assume sub-instance Gi is an instance of MAP?.
Lower-bound on OPT(Gi): OPT(Gi) ≥ c(D2(Gi)).
Credit scheme: Each unit-edge of D2(Gi) keeps $2

3
credit.

Algorithm :

I Preprocess: decompose G into “well-structured
sub-instances” (of MAP?) G1,G2, . . . ,Gk .
Each sub-instance satisfies the requirements of MAP?; solve
each sub-instance (separately).

I compute Hi := D2(Gi);
I apply Bridge-Covering to Hi : augment edges to each

connected component of Hi to make it 2EC;
I apply Gluing to Hi : augment edges to merge the connected

components of Hi to obtain a 2ECSS of Gi ;
I Output a 2-ECSS H of G from the 2ECSSs H1,H2, . . . ,Hk

of G1,G2, . . . ,Gk by undoing the “preprocessing
transformations”.

Bridge covering via pseudo-ears

Please look up the paper on arXiv and read Section 5.2 (Analysis
of a pseudo-ear augmentation), less than 3 pages!

Previous slides gave an informal explanation of the bridge
covering step using credits of $1 per unit-edge of D2 .

More work is needed to to extend the bridge covering step to the
setting of $2

3
credits per unit-edge of D2 , but it takes up less

than 3 pages.

Gluing step on current graph H
apply Gluing to H : augment edges to merge the connected com-
ponents of H (that have no bridges) to obtain a 2ECSS of G ;

assume each zero-edge is in D2(G), so each zero-edge is in H ;

Credit scheme:
A connected component of H is called small if it has 2 unit-edges,
and is called large if it has ≥ 3 unit-edges.
Assume that each large connected component has credit of ≥ $2,
and each small connected component has credits of $4

3
.

Merge small connected components with other connected
components while preserving the credit invariant, until there are
no small connected components.

Contract each connected component of H to obtain H̃ .

Apply algorithm for unit-cost 2-ECSS.

Recall: For each ear Pi of length≥ 2, buy edges of Pi using credit
on internal nodes of Pi .

