Approximation Algorithms for the
Matching Augmentation Problem

by Joseph Cheriyan, C&O Dept., U.Waterloo
(based on joint work with R.Cummings, J.Dippel, J.Zhu)



Approximation algorithms

VIJAY V. VAZIRANI

Approximation

Algorithms




Approximation algorithms

by David P. Williamson and David B. Shmoys

_ Thgls e
Algorithms by David P.

ebsite for the book The Design of Approximation
Download University Press.

lamson and David B. Shmoys, published by Cambridge

Interesting discrete optimization problems are
Order everywhere, from traditional operations research
planning problems, such as scheduling, facility
location, and network design, to computer
FAQs science problems in databases, to advertising

David P, Willamson - Daid B:Shmoys

issues in viral marketing. Yet most interesting
discrete optimization problems are NP-hard. Thus
unless P = NP, there are no efficient algorithms
to find optimal solutions to such problems. This
Contact book shows how to design approximation The DESIGN of

i i i APPROXIMATION
algorithms: efficient algorithms that find provably
near-optimal solutions. ALGORITHMS

The book is organized around several central

o
approximation algorithms, including greedy and
local search algorithms, dynamic programming,
linear and pr i and
randomization. Each chapter in the first part of
the book is devoted to a single algorithmic
technique, which is then applied to several different problems. The second part
revisits the techniques, but offers more sophisticated treatments of them. The book
also covers methods for proving that optimization problems are hard to
approximate.

Designed as a textbook for graduate-level algorithms courses, the book will also
serve as a reference for researchers who are interested in the heuristic solution of
discrete optimization problems.

An electronic-only edition of the book is provided in our Download section.

This website by DnA Design, Copyright 2010.




Approximation algorithms and Combinatorial optimization

EM

Iterative Methods
in Combinatorial
Optimization

Approximation
Algorithms




Minimum cost network design (.. .in real life)

Given n towns and “connection-costs” between each
pair, find a cheapest subgraph that connects all pairs
of towns.

MST (minimum spanning tree) problem

Given n towns and ‘“connection-costs’ between each
pair, find a cheapest subgraph that connects all pairs
of towns even after the failure of one link.



2-Node connectivity

Graph (undirected) G = (V, E) with |V| > 3 is 2-node
connected:
<= G — v is connected for all v € V
<= each neighborhood N¢(S) has > 2 nodes, where
1<|S|< V|2
<= G has 2 openly-disjoint (internally node-disjoint) v, w-paths,
Vv, w € V(v # w) (Menger's theorem)



2-Edge connectivity

Graph (undirected) G = (V, E) is 2-edge connected:
<= G — e is connected for all e € E
<= each cut §(S) = (S, S) has > 2 edges, where ) # S C V

<= G has 2 edge-disjoint v, w-paths, Vv, w € V(v # w)
(Menger's theorem)



Min-cost 2-ECSS

Given an (undirected) graph G = (V/, E), and edge-costs
c: E — R, design an algorithm to find a 2-edge connected
spanning subgraph (2-ECSS) of minimum cost.

This problem is NP-hard. (A polynomial-time algorithm for
finding an optimal solution would imply P=NP.)

Revised goal:

a-approximation algorithm (a € Ry):

Design & analyze an algorithm to find a 2-ECSS G = (V, F)
s.t. cost(G¥8) = ¢(F) < a OPT(G).



Approximation algorithms for min-cost 2-ECSS (quick look)

Restrictions on edge costs Ap- Authors & Journal
prox.Ratio

ceR, 2 Khuller & Vishkin,
JACM (1994)

ceR; 2 | Jain, CCA (2001)
Iterative rounding

unit costs 4/3 | Sebo & Vygen, CCA
(2014)

zero/one costs

Forest Augmentation (FAP) 2 | (above)

Tree Augmentation (TAP) 3/2 | Kortsarz & Nutov,
TALG (2016)

Matching Augmentation 7/4 | C., Dippel, Grandoni,

Khan, Narayan
(MAP) Math.Prog. (2020)




An Improved Approximation Algorithm for the Matching
Augmentation Problem

https://arxiv.org/abs/2007.11559

Abstract: We present a g—approximation algorithm for the
matching augmentation problem (MAP): ...

Help | Adva
Computer Science > Data Structures and Algorithms
[Submitted on 22 Jul 2020]
An Improved Approximation Algorithm for the Matching Augmentation Problem
J.Cheriyan, R.Cummings, J.Dippel, J.Zhu

We present a %»apprcxima(ian algorithm for the matching augmentation problem (MAP): given a multi-graph with edges of cost either zero or one such that the edges of cost
zero form a matching, find a 2-edge connected spanning subgraph (2-ECSS) of minimum cost.

A 1 -approximation algorithm for the same problem was presented recently, see Cheriyan, et al., "The matching
Math. Program.}, 182(1):315--354, 2020; arXiv:1810.07816.

Our improvement is based on new algorithmic techniques, and some of these may lead to advances on related problems.

problem: a algorithm,” {\em

Comments: 23 pages

Subjects:  Data Structures and Algorithms (cs.DS); Discrete Mathematics (cs.DM)
MSC classes: 68W25, 90C59, 90C27, 68R10, 05C85
Cite as: arXiv:2007.11559 [cs.DS]

(or arXiv:2007.11559v1 [¢s.DS] for this version)


https://arxiv.org/abs/2007.11559

Warm-up: 2-approximation for unit-cost 2-ECSS

Design & analyze an algorithm to find a 2-ECSS G = (V, F)
s.t. cost(G¥8) = ¢(F) = |F| <2- OPT(G).
Key points:

» Lower-bound on OPT(G): n:=|V(G)|.

» Ear decomposition of G = (V/, E): a partition of E into
paths or cycles, Py, Py, ..., P, such that P; is the trivial
path with one node, and each P; (1 </ < k) is either
(1) a path that has both end nodes in
Vioi = V(Py) U V(Py)U...U V(P;i_1) but has no internal
nodes in V;_q, or
(2) a cycle that has exactly one node in V;_;.

Theorem: Graph G is 2EC (2-edge connected) iff G has an
ear-decomposition.



Ear-decomposition of G, where G has cut nodes (not 2NC)

Vi wg
2EC graph G.
By=FPyUP; Bo=FPyUP;
By =Py UP
ear P, car P, ear P,
------ . :
wq Vi wy

Figure: Ear decomposition of a 2EC graph G. Start with ear
decomposition Py U Py of By.



Warm-up: 2-approximation for unit-cost 2-ECSS

Design & analyze an algorithm to find a 2-ECSS G = (V, F)
s.t. cost(G?€) = ¢(F) = |F| <2- OPT(G).
Key points:

» Lower-bound on OPT(G): n:= |V(G).

» Ear decomposition of G = (V/, E): a partition of E into
paths or cycles, Py, Py, ..., P, such that ...

Credit scheme: Assign $2 to each node.

(Total credit = 2- (Lower bound).)

Algorithm & analysis: Construct ear decomposition of G, but
discard ears of length=1.

For each ear P; of length> 2, buy edges of P; using credit on
internal nodes of P;.



Next: 2-approximation for MAP (zero/one edge costs)

Given G = (V, E) and matching M C E;
edge-costs: c(e) =0 if e € M, and c(e) = 1 otherwise.

Design & analyze an algorithm to find a 2-ECSS G = (V, F)
s.t. cost(G?€) = ¢(F) <2- OPT(G).

Lower-bound on OPT(G): min cost of 2-edge cover of G.
2-edge cover of G: subgraph that has degree > 2 at each node.

D2(G): a subgraph of min cost that has degree > 2 at each node.
e OPT(G) > ¢(D2(G)).

Credit scheme: Assign $2 to each unit-edge of D2(G).
(Total credit = 2 (Lower bound).)



OPT(G) versus D2(G): G has

Vi wg Vo wp Vik  wy

OPT(G) = ¢(By) + 3k.

cut nodes (not 2NC)

BO
./\_\/. O .......... ./\_\/.
Vi wy Vo w» Vik Wy

c(D2(G)) = ¢(By) + k.

Figure: Edges of cost zero and one are illustrated by dashed and solid

lines, respectively. For k > c(Byp),

%((GG))) ~ 3. Cut-nodes are an

“obstruction” for proving approximation factor 2.



2-approximation for MAP (zero/one edge costs)

Assume sub-instance G; is 2NC and simple.

Lower-bound on OPT(G;):

Credit scheme: Assign $2 to each unit-edge of D2(G;).

(Total credit = 2- (Lower bound).)

Each unit-edge of D2(G;) pays $1, and this suffices to buy all edges
of D2(G;).

Each unit-edge of D2(G;) keeps $1 credit.

Algorithm :

» Preprocess: if G has cut nodes, decompose G into
sub-instances Gy, Go, ..., Gx corresponding to blocks of G.
Each sub-instance is 2NC (hence, simple=no parallel edges);
solve each sub-instance (separately).

» Return the union of the 2ECSSs Hy, H,, ..., Hy of
Gl,Gz,...,Gk.



2-approximation for MAP (zero/one edge costs)

Assume sub-instance G; is 2NC and simple.

Lower-bound on OPT(G;): OPT(G;)) > ¢(D2(G;)), where
D2(G;) is a min-cost subgraph of G; with minimum degree 2.
Credit scheme: Each unit-edge of D2(G;) keeps $1 credit.

Algorithm :

» Preprocess: if G has cut nodes, decompose G into
sub-instances Gi, G, ..., G, corresponding to blocks of G.
Each sub-instance is 2NC (hence, simple=no parallel edges);
solve each sub-instance (separately).

» compute H; := D2(G;);

» apply Bridge-Covering to H;: augment edges to each
connected component of H; to make it 2EC;

» apply Gluing to H;: augment edges to merge the connected
components of H; to obtain a 2ECSS of G;;

» Return the union of the 2ECSSs Hy, H,, ..., Hy of
Gl,Gz,...,Gk.



Gluing step on current graph H

apply Gluing to H: augment edges to merge the connected com-
ponents of H to obtain a 2ECSS of G;

assume each zero-edge is in D2(G), so each zero-edge is in H;

Credit scheme: Assume that each connected component of H
has credit of > $2.

Contract each connected component of H to obtain H.
Apply algorithm for unit-cost 2-ECSS.

Recall: For each ear P; of length> 2, buy edges of P; using credit
on internal nodes of P;.



Bridge-covering step on current graph H

apply bridge-covering to a connected component C; of H: augment
edges to Cy obtain a 2EC connected component of H;




Bridge-covering step on current graph H

apply bridge-covering to a connected component C; of H: augment
edges to (o obtain a 2EC connected component of H;

Credit scheme: Re-assign credit of $1 on each unit-edge of H:
» each connected component of H has $1 c-credit;

» each 2EC-block (of any connected component) of H has $1
b-credit;

» each bridge (of any connected component) of H has $1
credit.




Bridge-covering step on current graph H: Informally

apply bridge-covering to a connected component Cy of H: augment
edges to (o obtain a 2EC connected component of H;

See figure on next slide.

Let Co be a connected component of H := D2(G) that has a
sequence of bridges between two 2EC-blocks L (on left) and B
(on right).

Assume: all inter-component edges are incident to B, so any
edge incident to Gy — V/(B) has both ends in .

Algorithm: pick an edge f € E(G) — E(H) with one end in L and
the other end “farthest” from L.

» If f covers a unit-bridge e of Cy, use $1 credit of e to buy f.

» Otherwise, neighbour v of L in Cy is a cut node of G.
Contradiction to: G is 2NC.



G WWV\)C ot 1 c-cvedik
) Q/Q‘t/\(\ lgc—\o\oc[g l\@*ﬁ 1 [‘9* C/\"ﬁﬁl\%
) e/%\/\ U\Y\isﬁ /\Q‘FIA% \/\(}& R CNA/L]C



Bridge covering via pseudo-ears

r CO b
A pseudo-ear of H w.r.t. Cy starting at R is a sequence
R, fl, Cl, fz, C2, ey fk—l; Ck—l, fk, where Co, Cl, ey Ck—l are
distinct connected components of H, f1,...,fx € E(G) — E(H), each
fi, i € [k — 1], has one end node in C;_; and the other end node in
C;, f1 has an end node in R, and f; has one end node in Cx_; and
one end node in Gy — V(R). The end node of fx in Gy — V(R) is
called the head node of the pseudo-ear.



An Improved Approximation Algorithm for the Matching
Augmentation Problem

https://arxiv.org/abs/2007.11559

Abstract: We present a g—approximation algorithm for the
matching augmentation problem (MAP): ...

Help | Adva
Computer Science > Data Structures and Algorithms
[Submitted on 22 Jul 2020]
An Improved Approximation Algorithm for the Matching Augmentation Problem
J.Cheriyan, R.Cummings, J.Dippel, J.Zhu

We present a %»apprcxima(ian algorithm for the matching augmentation problem (MAP): given a multi-graph with edges of cost either zero or one such that the edges of cost
zero form a matching, find a 2-edge connected spanning subgraph (2-ECSS) of minimum cost.

A 1 -approximation algorithm for the same problem was presented recently, see Cheriyan, et al., "The matching
Math. Program.}, 182(1):315--354, 2020; arXiv:1810.07816.

Our improvement is based on new algorithmic techniques, and some of these may lead to advances on related problems.

problem: a algorithm,” {\em

Comments: 23 pages

Subjects:  Data Structures and Algorithms (cs.DS); Discrete Mathematics (cs.DM)
MSC classes: 68W25, 90C59, 90C27, 68R10, 05C85
Cite as: arXiv:2007.11559 [cs.DS]

(or arXiv:2007.11559v1 [¢s.DS] for this version)


https://arxiv.org/abs/2007.11559

5/3-approximation for MAP (zero/one edge costs)

Given G = (V, E) and matching M C E;
edge-costs: c(e) =0 if e € M, and c(e) = 1 otherwise.

Design & analyze an algorithm to find a 2-ECSS G = (V,F)
s.t. cost(G¥) = ¢(F) < 2- OPT(G).

Assume sub-instance G; is a “well-structured” instance of MAP
(defined in a following slide).
Lower-bound on OPT(G)):

OPT(G;) > c(D2(G;)).

Credit scheme: Assign $2 to each unit-edge of D2(G;).
(Total credit = 2- (Lower bound).)



Preprocessing for 5/3-approximation for MAP
Definition: An instance of MAPx is an instance of MAP with
> 12 nodes that contains

- no cut nodes, - no “split cycle”,

- no parallel edges, - no R4 gadget, and

- no “zero split”, - no R8 gadget.
- no “unit split”,

A MAP-instance G with |V/(G)| > 12 can be efficiently
(poly-time) decomposed into a collection of MAP-instances
G]_,...,Gk s.t.
(a) either |V(G;)| < 12 or G; is an instance of MAPx, Vi € [k],
(b) the edge sets E(Gi), ..., E(Gk) are pairwise disjoint, and
(c) a2-ECSS H of G can be obtained by computing 2-ECSSes
Hl,...,Hk of Gl,...,Gk.
(d) Moreover, the approximation guarantee is preserved,
meaning that c(H) < 20PT(G) — 2 provided
c(H;) < max(OPT(G;), SOPT(G;) — 2),Vi € [k].



Preprocessmg for 5/3 apprOX|mat|on for MAP

Figure: lllustration of a “zero split” uv, and its contraction. The
contracted node Vv is a cut node.

i Bie Y Vi eB i

Figure: Illustration of a “split cycle”, and its contraction. The
subgraph C induced by {vi, v, v3, va} is the “split cycle”. The
contracted node V is a cut node.



Preprocessing for 5/3-approximation for MAP.
By

R4: is a four-cycle C of cost 2
such that two of the nonadja-
cent nodes of C have degree two g
in G. Several instances of R4 !

are shown on the right.

......

Figure: lllustrationof two instances of R8. In both instances, the R8
is the subgraph € induced by {u1, u2, u3, ug, vi, va, v3, va }; C contains
two 4-cycles Gy = uyg, up, u3, ug, up and Co = vi, vo, v3, va, vy; € has
exactly two attachments up and vj.



5/3-approximation for MAP (zero/one edge costs)

Assume sub-instance G; is an instance of MAPx.
Lower-bound on OPT(G;): OPT(G;) > c(D2(G;)).
Credit scheme: Each unit-edge of D2(G;) keeps $2 credit.

Algorithm :

» Preprocess: decompose G into “well-structured
sub-instances” (of MAPx) Gi, G, ..., Gy.
Each sub-instance satisfies the requirements of MAPx; solve
each sub-instance (separately).

» compute H; := D2(G;);

» apply Bridge-Covering to H;: augment edges to each
connected component of H; to make it 2EC;

» apply Gluing to H;: augment edges to merge the connected
components of H; to obtain a 2ECSS of G;;

» Output a 2-ECSS H of G from the 2ECSSs Hi, Ha, ..., Hy
of Gi, Gy, ..., G, by undoing the “preprocessing
transformations” .



Bridge covering via pseudo-ears

Please look up the paper on arXiv and read Section 5.2 (Analysis
of a pseudo-ear augmentation), less than 3 pages!

Previous slides gave an informal explanation of the bridge
covering step using credits of $1 per unit-edge of D2.

More work is needed to to extend the bridge covering step to the
setting of $% credits per unit-edge of D2, but it takes up less
than 3 pages.



Gluing step on current graph H

apply Gluing to H: augment edges to merge the connected com-
ponents of H (that have no bridges) to obtain a 2ECSS of G;

assume each zero-edge is in D2(G), so each zero-edge is in H;

Credit scheme:

A connected component of H is called small if it has 2 unit-edges,
and is called large if it has > 3 unit-edges.

Assume that each large connected component has credit of > $2,
and each small connected component has credits of $§.

Merge small connected components with other connected
components while preserving the credit invariant, until there are
no small connected components.

Contract each connected component of H to obtain H.
Apply algorithm for unit-cost 2-ECSS.

Recall: For each ear P; of length> 2, buy edges of P; using credit
on internal nodes of P:.



