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Minimum cost network design (.. .in real life)

Given n towns and “connection-costs” between each
pair, find a cheapest subgraph that connects all pairs
of towns.

MST (minimum spanning tree) problem

Given n towns and ‘“connection-costs’ between each
pair, find a cheapest subgraph that connects all pairs
of towns even after the failure of one link.



2-Node connectivity

Graph (undirected) G = (V, E) with |V| > 3 is 2-node
connected:
<= G — v is connected for all v € V
<= each neighborhood N¢(S) has > 2 nodes, where
1<|S|< V|2
<= G has 2 openly-disjoint (internally node-disjoint) v, w-paths,
Vv, w € V(v # w) (Menger's theorem)



2-Edge connectivity

Graph (undirected) G = (V, E) is 2-edge connected:
<= G — e is connected for all e € E
<= each cut §(S) = (S, S) has > 2 edges, where ) # S C V

<= G has 2 edge-disjoint v, w-paths, Vv, w € V(v # w)
(Menger's theorem)



Min-cost 2-ECSS

Given an (undirected) graph G = (V/, E), and edge-costs
c: E — R, design an algorithm to find a 2-edge connected
spanning subgraph (2-ECSS) of minimum cost.

This problem is NP-hard. (A polynomial-time algorithm for
finding an optimal solution would imply P=NP.)

Revised goal:

a-approximation algorithm (a € Ry):

Design & analyze an algorithm to find a 2-ECSS G = (V, F)
s.t. cost(G¥8) = ¢(F) < a OPT(G).



Approximation algorithms for min-cost 2-ECSS (quick look)

Restrictions on edge costs Ap- Authors & Journal
prox.Ratio

ceR, 2 Khuller & Vishkin,
JACM (1994)

ceR; 2 | Jain, CCA (2001)
Iterative rounding

unit costs 4/3 | Sebo & Vygen, CCA
(2014)

zero/one costs

Forest Augmentation (FAP) 2 | (above)

Tree Augmentation (TAP) 3/2 | Kortsarz & Nutov,
TALG (2016)

Matching Augmentation 7/4 | C., Dippel, Grandoni,

Khan, Narayan
(MAP) Math.Prog. (2020)




An Improved Approximation Algorithm for the Matching
Augmentation Problem

https://arxiv.org/abs/2007.11559

Abstract: We present a g—approximation algorithm for the
matching augmentation problem (MAP): ...
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Warm-up: 2-approximation for unit-cost 2-ECSS

Design & analyze an algorithm to find a 2-ECSS G = (V, F)
s.t. cost(G¥8) = ¢(F) = |F| <2- OPT(G).
Key points:

» Lower-bound on OPT(G): n:=|V(G)|.

» Ear decomposition of G = (V/, E): a partition of E into
paths or cycles, Py, Py, ..., P, such that P; is the trivial
path with one node, and each P; (1 </ < k) is either
(1) a path that has both end nodes in
Vioi = V(Py) U V(Py)U...U V(P;i_1) but has no internal
nodes in V;_q, or
(2) a cycle that has exactly one node in V;_;.

Theorem: Graph G is 2EC (2-edge connected) iff G has an
ear-decomposition.



Ear-decomposition of G, where G has cut nodes (not 2NC)

Vi wg
2EC graph G.
By=FPyUP; Bo=FPyUP;
By =Py UP
ear P, car P, ear P,
------ . :
wq Vi wy

Figure: Ear decomposition of a 2EC graph G. Start with ear
decomposition Py U Py of By.



Warm-up: 2-approximation for unit-cost 2-ECSS

Design & analyze an algorithm to find a 2-ECSS G = (V, F)
s.t. cost(G?€) = ¢(F) = |F| <2- OPT(G).
Key points:

» Lower-bound on OPT(G): n:= |V(G).

» Ear decomposition of G = (V/, E): a partition of E into
paths or cycles, Py, Py, ..., P, such that ...

Credit scheme: Assign $2 to each node.

(Total credit = 2- (Lower bound).)

Algorithm & analysis: Construct ear decomposition of G, but
discard ears of length=1.

For each ear P; of length> 2, buy edges of P; using credit on
internal nodes of P;.



Next: 2-approximation for MAP (zero/one edge costs)

Given G = (V, E) and matching M C E;
edge-costs: c(e) =0 if e € M, and c(e) = 1 otherwise.

Design & analyze an algorithm to find a 2-ECSS G = (V, F)
s.t. cost(G?€) = ¢(F) <2- OPT(G).

Lower-bound on OPT(G): min cost of 2-edge cover of G.
2-edge cover of G: subgraph that has degree > 2 at each node.

D2(G): a subgraph of min cost that has degree > 2 at each node.
e OPT(G) > ¢(D2(G)).

Credit scheme: Assign $2 to each unit-edge of D2(G).
(Total credit = 2 (Lower bound).)



OPT(G) versus D2(G): G has

Vi wg Vo wp Vik  wy

OPT(G) = ¢(By) + 3k.

cut nodes (not 2NC)

BO
./\_\/. O .......... ./\_\/.
Vi wy Vo w» Vik Wy

c(D2(G)) = ¢(By) + k.

Figure: Edges of cost zero and one are illustrated by dashed and solid

lines, respectively. For k > c(Byp),

%((GG))) ~ 3. Cut-nodes are an

“obstruction” for proving approximation factor 2.



2-approximation for MAP (zero/one edge costs)

Assume sub-instance G; is 2NC and simple.

Lower-bound on OPT(G;):

Credit scheme: Assign $2 to each unit-edge of D2(G;).

(Total credit = 2- (Lower bound).)

Each unit-edge of D2(G;) pays $1, and this suffices to buy all edges
of D2(G;).

Each unit-edge of D2(G;) keeps $1 credit.

Algorithm :

» Preprocess: if G has cut nodes, decompose G into
sub-instances Gy, Go, ..., Gx corresponding to blocks of G.
Each sub-instance is 2NC (hence, simple=no parallel edges);
solve each sub-instance (separately).

» Return the union of the 2ECSSs Hy, H,, ..., Hy of
Gl,Gz,...,Gk.



2-approximation for MAP (zero/one edge costs)

Assume sub-instance G; is 2NC and simple.

Lower-bound on OPT(G;): OPT(G;)) > ¢(D2(G;)), where
D2(G;) is a min-cost subgraph of G; with minimum degree 2.
Credit scheme: Each unit-edge of D2(G;) keeps $1 credit.

Algorithm :

» Preprocess: if G has cut nodes, decompose G into
sub-instances Gi, G, ..., G, corresponding to blocks of G.
Each sub-instance is 2NC (hence, simple=no parallel edges);
solve each sub-instance (separately).

» compute H; := D2(G;);

» apply Bridge-Covering to H;: augment edges to each
connected component of H; to make it 2EC;

» apply Gluing to H;: augment edges to merge the connected
components of H; to obtain a 2ECSS of G;;

» Return the union of the 2ECSSs Hy, H,, ..., Hy of
Gl,Gz,...,Gk.



Gluing step on current graph H

apply Gluing to H: augment edges to merge the connected com-
ponents of H to obtain a 2ECSS of G;

assume each zero-edge is in D2(G), so each zero-edge is in H;

Credit scheme: Assume that each connected component of H
has credit of > $2.

Contract each connected component of H to obtain H.
Apply algorithm for unit-cost 2-ECSS.

Recall: For each ear P; of length> 2, buy edges of P; using credit
on internal nodes of P;.



Bridge-covering step on current graph H

apply bridge-covering to a connected component C; of H: augment
edges to Cy obtain a 2EC connected component of H;




Bridge-covering step on current graph H

apply bridge-covering to a connected component C; of H: augment
edges to (o obtain a 2EC connected component of H;

Credit scheme: Re-assign credit of $1 on each unit-edge of H:
» each connected component of H has $1 c-credit;

» each 2EC-block (of any connected component) of H has $1
b-credit;

» each bridge (of any connected component) of H has $1
credit.




Bridge-covering step on current graph H: Informally

apply bridge-covering to a connected component Cy of H: augment
edges to (o obtain a 2EC connected component of H;

See figure on next slide.

Let Co be a connected component of H := D2(G) that has a
sequence of bridges between two 2EC-blocks L (on left) and B
(on right).

Assume: all inter-component edges are incident to B, so any
edge incident to Gy — V/(B) has both ends in .

Algorithm: pick an edge f € E(G) — E(H) with one end in L and
the other end “farthest” from L.

» If f covers a unit-bridge e of Cy, use $1 credit of e to buy f.

» Otherwise, neighbour v of L in Cy is a cut node of G.
Contradiction to: G is 2NC.
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Bridge covering via pseudo-ears

r CO b
A pseudo-ear of H w.r.t. Cy starting at R is a sequence
R, fl, Cl, fz, C2, ey fk—l; Ck—l, fk, where Co, Cl, ey Ck—l are
distinct connected components of H, f1,...,fx € E(G) — E(H), each
fi, i € [k — 1], has one end node in C;_; and the other end node in
C;, f1 has an end node in R, and f; has one end node in Cx_; and
one end node in Gy — V(R). The end node of fx in Gy — V(R) is
called the head node of the pseudo-ear.



An Improved Approximation Algorithm for the Matching
Augmentation Problem

https://arxiv.org/abs/2007.11559

Abstract: We present a g—approximation algorithm for the
matching augmentation problem (MAP): ...
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5/3-approximation for MAP (zero/one edge costs)

Given G = (V, E) and matching M C E;
edge-costs: c(e) =0 if e € M, and c(e) = 1 otherwise.

Design & analyze an algorithm to find a 2-ECSS G = (V,F)
s.t. cost(G¥) = ¢(F) < 2- OPT(G).

Assume sub-instance G; is a “well-structured” instance of MAP
(defined in a following slide).
Lower-bound on OPT(G)):

OPT(G;) > c(D2(G;)).

Credit scheme: Assign $2 to each unit-edge of D2(G;).
(Total credit = 2- (Lower bound).)



Preprocessing for 5/3-approximation for MAP
Definition: An instance of MAPx is an instance of MAP with
> 12 nodes that contains

- no cut nodes, - no “split cycle”,

- no parallel edges, - no R4 gadget, and

- no “zero split”, - no R8 gadget.
- no “unit split”,

A MAP-instance G with |V/(G)| > 12 can be efficiently
(poly-time) decomposed into a collection of MAP-instances
G]_,...,Gk s.t.
(a) either |V(G;)| < 12 or G; is an instance of MAPx, Vi € [k],
(b) the edge sets E(Gi), ..., E(Gk) are pairwise disjoint, and
(c) a2-ECSS H of G can be obtained by computing 2-ECSSes
Hl,...,Hk of Gl,...,Gk.
(d) Moreover, the approximation guarantee is preserved,
meaning that c(H) < 20PT(G) — 2 provided
c(H;) < max(OPT(G;), SOPT(G;) — 2),Vi € [k].



Preprocessmg for 5/3 apprOX|mat|on for MAP

Figure: lllustration of a “zero split” uv, and its contraction. The
contracted node Vv is a cut node.

i Bie Y Vi eB i

Figure: Illustration of a “split cycle”, and its contraction. The
subgraph C induced by {vi, v, v3, va} is the “split cycle”. The
contracted node V is a cut node.



Preprocessing for 5/3-approximation for MAP.
By

R4: is a four-cycle C of cost 2
such that two of the nonadja-
cent nodes of C have degree two g
in G. Several instances of R4 !

are shown on the right.

......

Figure: lllustrationof two instances of R8. In both instances, the R8
is the subgraph € induced by {u1, u2, u3, ug, vi, va, v3, va }; C contains
two 4-cycles Gy = uyg, up, u3, ug, up and Co = vi, vo, v3, va, vy; € has
exactly two attachments up and vj.



5/3-approximation for MAP (zero/one edge costs)

Assume sub-instance G; is an instance of MAPx.
Lower-bound on OPT(G;): OPT(G;) > c(D2(G;)).
Credit scheme: Each unit-edge of D2(G;) keeps $2 credit.

Algorithm :

» Preprocess: decompose G into “well-structured
sub-instances” (of MAPx) Gi, G, ..., Gy.
Each sub-instance satisfies the requirements of MAPx; solve
each sub-instance (separately).

» compute H; := D2(G;);

» apply Bridge-Covering to H;: augment edges to each
connected component of H; to make it 2EC;

» apply Gluing to H;: augment edges to merge the connected
components of H; to obtain a 2ECSS of G;;

» Output a 2-ECSS H of G from the 2ECSSs Hi, Ha, ..., Hy
of Gi, Gy, ..., G, by undoing the “preprocessing
transformations” .



Bridge covering via pseudo-ears

Please look up the paper on arXiv and read Section 5.2 (Analysis
of a pseudo-ear augmentation), less than 3 pages!

Previous slides gave an informal explanation of the bridge
covering step using credits of $1 per unit-edge of D2.

More work is needed to to extend the bridge covering step to the
setting of $% credits per unit-edge of D2, but it takes up less
than 3 pages.



Gluing step on current graph H

apply Gluing to H: augment edges to merge the connected com-
ponents of H (that have no bridges) to obtain a 2ECSS of G;

assume each zero-edge is in D2(G), so each zero-edge is in H;

Credit scheme:

A connected component of H is called small if it has 2 unit-edges,
and is called large if it has > 3 unit-edges.

Assume that each large connected component has credit of > $2,
and each small connected component has credits of $§.

Merge small connected components with other connected
components while preserving the credit invariant, until there are
no small connected components.

Contract each connected component of H to obtain H.
Apply algorithm for unit-cost 2-ECSS.

Recall: For each ear P; of length> 2, buy edges of P; using credit
on internal nodes of P:.



