
RANDOMIZED eO(M(jV j)) ALGORITHMS FOR PROBLEMS INMATCHING THEORYJOSEPH CHERIYAN �Abstract. A randomized (Las Vegas) algorithm is given for �nding the Gallai-Edmonds decompositionof a graph. Let n denote the number of vertices, and let M (n) denote the number of arithmetic operationsfor multiplying two n � n matrices. The sequential running time (i.e., number of bit operations) is withina poly-logarithmic factor of M (n). The parallel complexity is O((logn)2) parallel time using a number ofprocessors within a poly-logarithmic factor ofM (n). The same complexity bounds su�ce for solving severalother problems:(i) �nding a minimum vertex cover in a bipartite graph,(ii) �nding a minimumX!Y vertex separator in a directed graph, where X and Y are speci�ed setsof vertices,(iii) �nding the allowed edges (i.e., edges that occur in some maximummatching) of a graph, and(iv) �nding the canonical partition of the vertex set of an elementary graph.The sequential algorithms for problems (i), (ii), and (iv) are Las Vegas, and the algorithm for problem (iii)is Monte Carlo. The new complexity bounds are signi�cantly better than the best previous ones, e.g., usingthe best value of M (n) currently known, the new sequential running time is O(n2:38) versus the previousbest O(n2:5=(logn)) or more.Key words. randomized algorithms, matching theory, Gallai-Edmonds decomposition, allowed edges,canonical partition, bipartite minimum vertex covers, digraph minimum vertex separatorsAMS(MOS) subject classi�cations. 68R10, 05C85, 05C50, 05C40, 05C70, 90C271. Introduction. A matching of an undirected, possibly nonbipartite, graph G =(V;E) is a subset E 0 of the edges such that no two of the edges in E 0 have a vertex incommon. A perfect matching is one with cardinality jV j=2. Tutte [T 47] gave a good charac-terization of graphs that have perfect matchings, i.e., he showed that the perfect matchingdecision problem (decide whether or not a given graph has a perfect matching) is in NP \co-NP. One of Tutte's innovations was to introduce the skew symmetric adjacency matrixeB of the graph G, de�ned as follows: Associate each edge ij of G with a distinct variablexij. Then eB = eB(xij) is a jV j � jV j matrix whose entries are given byeBij = 8><>: xij if i > j and ij 2 E�xij if i < j and ij 2 E0 otherwise:Tutte observed that G has a perfect matching i� the determinant of eB(xij), det( eB(xij)), isnot identically zero; here, det( eB(xij)) is a polynomial in the variables xij. Lov�asz [Lo 79]� Department of Combinatorics & Optimization, University of Waterloo, Ontario, Canada N2L 3G1. Thisresearch has been supported by NSERC grant no. OGP0138432 (NSERC code OGPIN 007), by a Universityof Waterloo faculty research grant, and by the Lucille and David Packard Fellowship of �Eva Tardos.1



used this observation to give an e�cient randomized algorithm for the perfect matchingdecision problem: Choose a prime number q = jV jO(1), and substitute each variable xij in eBby an independent random number drawn from f1; 2; : : : ; q� 1g. Compute the determinantof the resulting random matrix B over the �eld of integers modulo q. With high probability(i.e., probability � 1 � 1=
(jV j), see Lemma 2.1), det(B) 6= 0 mod q i� det( eB(xij)) is notidentically zero i� G has a perfect matching. This algorithm has two especially attractivefeatures: it is simple, solving the decision problem by executing one \matrix operation",and it is e�cient, running in sequential time eO(M(jV j)) = O(jV j2:38) and in parallel timeO((log jV j)2) using eO(M(jV j)) processors. Here, M(n) denotes the number of arithmeticoperations for multiplying two n � n matrices, and is currently known to be O(n2:376), seeCoppersmith and Winograd [CW 90]. Throughout, the bounds on the sequential runningtime or on the number of parallel processors are stated for the arithmetic complexity model(uniform-cost RAM or PRAM), but they apply to the bit complexity model too, because foreach arithmetic operation, comparison, or data transfer, each operand has O(log jV j) bits,hence the number of bit operations is at most O((log jV j)2) times the number of arithmeticoperations; see the last paragraph of Section 2.The problem of �nding a perfect matching of a graph G in time polynomial in jV (G)jremained open till Edmonds [E 65] gave the �rst algorithm. Edmonds' algorithm solves aproblem that is more general: For every graph G, the algorithm �nds a matching of max-imum cardinality in time jV (G)jO(1). One consequence of the algorithm is a theorem thatwas discovered independently by Gallai [Ga 64], the so-called Gallai-Edmonds theorem. Ac-cording to this theorem, for every graph G, the vertex set can be partitioned in a uniqueway into three sets A(G); C(G);D(G) such that certain properties hold (see Theorem 3.1).The partition gives much useful information, e.g., the cardinality of a maximum matching,the vertices that are incident to every maximum matching, etc. Several algorithms for con-structing the partition are known. Edmonds' matching algorithm implicitly constructs thepartition. Lov�asz (see [Kf 86, Section 2]) developed a randomized algorithm for �nding theGallai-Edmonds decomposition that runs in time eO(jV jM(jV j)); though there are fasteralgorithms for �nding the decomposition, the algorithm of [Kf 86] is interesting for its sim-plicity. This paper (see Figure 1) presents a simple and e�cient randomized algorithm for�nding the Gallai-Edmonds decomposition: Lemma 3.3 shows that, with high probability,the partition A(G) [ C(G);D(G) for a given graph G can be found by computing a ba-sis for the null space of a random skew symmetric adjacency matrix B, i.e., executing one\matrix operation" on B yields this partition. Obtaining the partition A(G); C(G);D(G)from A(G) [ C(G);D(G) is trivial. The sequential running time is eO(M(jV j)) and the par-allel time is O((log jV j)2) using eO(M(jV j)) processors. Our algorithm is closely related toLov�asz's algorithm (in [Kf 86]) for the Gallai-Edmonds decomposition; also, the algorithmuses a technique due to Eberly [E 91]. The algorithm, its proof, and running time analysisare all quite simple. Due to the information provided by the Gallai-Edmonds decomposition,our algorithm can be used to �nd a minimum cardinality vertex cover of a bipartite graph2



within the same complexity bounds. The minimum cardinality bipartite vertex cover prob-lem is equivalent to the problem of �nding a minimum vertex separator for two given vertexsets X and Y in a directed graph (see Proposition 2.4), hence the directed graph problemcan be solved within the same complexity bounds.An edge of a graph G is called allowed if it occurs in at least one maximum cardinalitymatching. Consider the problem of �nding the allowed edges. If G has a perfect matching,then the Gallai-Edmonds decomposition gives no information about the allowed edges be-cause the partition A(G); C(G);D(G) is trivial with A(G) = ; = D(G). Rabin and Vazirani
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graph G (jV j = 14; jEj = 19) � for i = 1 : size(adj),for j = 1 : size(adj),B(i; j) = adj(i; j) � (i� j);endend� rank(B)ans = 12% compute basis for null space of B� N = null(B)ans = 0:1508 0:51610:1877 0:2578�0:3753 �0:51560:1877 0:25780:2983 �0:5170�0:8228 0:25990:0000 0:00000:0000 0:00000:0000 0:00000:0000 0:00000:0000 0:00000:0000 0:00000:0000 0:00000:0000 0:0000Fig. 1. Finding the Gallai-Edmonds decomposition of an example graph G, using Lemma 3.3. TheMATLAB code forms a pseudo-random skew symmetric adjacency matrix B from the adjacency matrix adjof G, by substituting (i � j) for each nonzero adjij. With high probability, a vertex j is noncritical i� rowj of the basis N of the null space of B is nonzero. The resulting partition, A = fv7; v8g, C = fv9; : : : ; v14g,D = fv1; : : : ; v6g, is shown. Note that each connected component of D has odd cardinality, and each connectedcomponent of C has even cardinality. Since rank(B) = 12 = jV j�(]components(D)�jAj), we have �(G) = 6.It follows that this partition gives the Gallai-Edmonds decomposition.3



[RV 89], in an elegant study of the random skew symmetric adjacency matrix B, observedthat if det(B) 6= 0 and the (i; j) minor of B (i.e., the determinant of the submatrix obtainedfrom B by removing row i and column j) is nonzero, then the edge ij (if present) must beallowed. Moreover, all the (i; j) minors of B can be computed simultaneously by computingthe inverse B�1; the (j; i) entry of B�1 equals (�1)i+j=det(B) times the (i; j) minor of B.Combining Rabin and Vazirani's method with our algorithm for the Gallai-Edmonds decom-position gives a randomized algorithm for �nding the allowed edges of arbitrary graphs (seeSection 3.3); the sequential running time is eO(M(jV j)) and the parallel time is O((log jV j)2)using eO(M(jV j)) processors. We also give a randomized algorithm with the same complexitybounds for �nding the canonical partition of an elementary graph, where a graph is calledelementary if it has a perfect matching, and its allowed edges form a connected spanningsubgraph (see Section 3.4).Both Lov�asz's algorithm for the perfect matching decision problem and our algorithm forthe Gallai-Edmonds decomposition are Monte Carlo, however, using results from matchingtheory, we show how to make both algorithms Las Vegas while achieving the same sequentialand parallel complexity bounds. While analyzing our randomized algorithms, we assumethat the random bits drawn by the execution have no e�ect on the sequential or parallelcomplexity; this assumption may not be appropriate in other contexts. More precisely,for the execution of a randomized algorithm on a �xed input, let us take the sequentialrunning time (or parallel running time, or number of parallel processors) to be the maximumsequential running time (or maximum parallel running time, or maximum number of parallelprocessors) over all possible choices of the random bits. A randomized algorithm is said tobe Monte Carlo if for a �xed input, an execution may give incorrect results with smallprobability. For a randomized algorithm and a problem instance of size n, an event is saidto occur with small probability if the probability is � 1=
(n). A randomized algorithm issaid to be Las Vegas if, for a �xed input, an execution either returns an output guaranteedto be correct, or reports failure, the latter with small probability. A Las Vegas algorithmmay be trivially converted into a Monte Carlo algorithm without changing the complexity.To convert a Monte Carlo algorithm into a Las Vegas algorithm, we need a subroutine forverifying whether the output of the Monte Carlo algorithm is correct. If the complexityof the verifying subroutine is bounded by that of the Monte Carlo algorithm, then the LasVegas and Monte Carlo algorithms have the same order of complexity. This raises a di�cultyfor our randomized algorithms: we need to verify the correctness of results for problems inmatching theory within a complexity bound that is signi�cantly less than that of the bestalgorithms known for �nding a maximum cardinality matching (see the next paragraph).Fortunately, the partition of V (G) computed by our randomized algorithm for the Gallai-Edmonds decomposition can be veri�ed in sequential time eO(jEj+ jV j) (or in parallel timeO((log jV j)2) using eO(jEj+ jV j) parallel processors). As a consequence, our algorithms forthe Gallai-Edmonds decomposition, a minimum vertex cover of a bipartite graph, and aminimum vertex separator of a directed graph all can be made Las Vegas without a�ecting4



the complexity. If the graph is bipartite, then our algorithm for �nding the allowed edgescan be made Las Vegas without a�ecting the complexity, but for nonbipartite graphs, wedo not have a su�ciently e�cient subroutine for verifying the allowed edges. Given anelementary graph, there is a sequential eO(jEj + jV j)-time algorithm for verifying whetherthe partition computed by our Monte Carlo algorithm is a canonical partition, [L 95], so oursequential algorithm for the canonical partition can be made Las Vegas without a�ectingthe complexity.We brie
y discuss the best sequential and parallel complexities known for computinga maximum cardinality (or, a perfect) matching. The fastest known sequential algorithmsfor �nding a maximum matching due to Micali and Vazirani, Blum, and Gabow and Tar-jan [MV 80, B 90, GT 91] (also see [V 94]) run in time O(jEjqjV j); for dense graphs this isO(jV j2:5) time; these algorithms are deterministic, however, they are signi�cantly slower thanLov�asz's randomized algorithm for the perfect matching decision problem. At present, alle�cient (i.e., poly-logarithmic time) parallel algorithms for matching problems use random-ization. The best parallel algorithms for �nding a maximum matching are the Monte Carloalgorithms of Mulmuley, Vazirani and Vazirani [MVV 87] and Galil and Pan, and Karp,Upfal and Wigderson [GP 88, KUW 86]; the parallel complexities are O((log jV j)2) timeusing eO(jV j jEjM(jV j)) processors, and O((log jV j)3) time using eO(jV jM(jV j)) processors,respectively. Our parallel complexity bounds are stated for the Exclusive Read ExclusiveWrite (EREW) PRAMmodel. E�cient parallel Las Vegas algorithms for matching problemshave been designed by Karlo� [Kf 86] and Wein [W 91].It turns out that our algorithm for �nding a minimum vertex separator for two givenvertex sets X and Y in a directed graph can be developed independently of matching theory,and this is done in Section 4, building on the work by Linial, Lov�asz and Wigderson, andCheriyan and Reif [LLW 88, CR 94]. Preliminary versions of the results on computing theGallai-Edmonds decomposition and directed graph X!Y separators have appeared in [C 94]and [C 93], respectively.Section 2 has notation, de�nitions, and preliminary results. Section 3 develops thealgorithms for problems in matching theory. Section 4 is independent of Section 3, anddevelops an algorithm for a minimum X!Y separator in a directed graph. Finally, Section 5has conclusions. The appendix contains some proofs.2. Preliminaries. For the given graph G = (V;E), we use n and m to denote thenumber of vertices and edges, i.e., n = jV j and m = jEj. For a subset X of V , X denotesV �X. For a matrix A with row and column indices from V and two subsets X; Y of V ,A(X;Y ) denotes the submatrix of A formed by the X-rows and the Y -columns. The vectorwith a one in position j and zeros elsewhere is denoted by ej, and [ Aej ] denotes the (n+1)�nmatrix formed by adding the (n+ 1)th row ej to an n � n matrix A.A few standard de�nitions from matching theory are needed, see [LP 86]. An odd (even)component of a graph is a connected component whose vertex set has odd (even) cardinality.5



A vertex cover of a graph G = (V;E) is a vertex set C � V such that each edge is incidentwith some vertex of C. Given a graph G = (V;E) and a matching E 0, a vertex is calledmatched if it is incident to an edge of E 0, and is called exposed otherwise. A near perfectmatching is one with exactly one exposed vertex. For a graph G, �(G) denotes the numberof edges of a maximum matching. The de�ciency of G is the number of vertices exposedin a maximum matching, n � 2�(G). A vertex x is called noncritical if it is exposed in atleast one maximum matching, otherwise x is called critical. Equivalently, x is noncritical if�(G � x) = �(G), and is critical if �(G � x) < �(G). A graph H is called factor critical iffor each of its vertices x, H � x has a perfect matching.The following lemma due to Zippel and Schwartz [Z 79, Sc 80], see also [Ko 91, Corol-lary 40.2], is useful for estimating the failure probability of a whole class of randomizedalgorithms.Lemma 2.1 (Zippel-Schwartz). If p(x1; x2; : : : ; xm) is a nonzero polynomial of de-gree d with coe�cients in a �eld and S is a subset of the �eld, then the probability that pevaluates to zero on a random element (s1; s2; : : : ; sm) 2 Sm is at most d=jSj.Recall from Section 1 the de�nition of the skew symmetric adjacency matrix eB = eB(xij)of a graph G and Tutte's observation that det( eB) is not identically zero i� G has a perfectmatching. Lov�asz generalized this observation; for a proof, see [RV 89].Proposition 2.2 (Lov�asz). Let eB = eB(xij) be the skew symmetric adjacency matrixof a graph G. Then rank( eB) = 2�(G).A random skew symmetric adjacency matrix B is obtained by substituting the variablesxij in eB(xij) by independent random numbers wij from a subset f1; : : : ;Wg of a �eld. Thenext result is due to Lov�asz [Lo 79], and follows from the previous one by applying theZippel-Schwartz Lemma.Proposition 2.3 (Lov�asz). Let B = eB(wij) be a random skew symmetric adjacencymatrix of a graph G, where the wij are independent random numbers from f1; : : : ;Wg. Thenrank(B) � 2�(G), and with probability at least 1� (n=W ), rank(B) = 2�(G).Given a digraph (directed graph) G = (V;E) and a pair of subsets X and Y of thevertices, an X!Y (vertex) separator is a set of vertices S such that G�S has no path froma vertex in X�S to a vertex in Y �S. For a pair of subsets X and Y of the vertices, p(X;Y )denotes the maximum number of vertex disjoint paths from X to Y (any two of these pathshave no vertices in common, not even the terminal vertices). Clearly, every X!Y separatorhas cardinality at least p(X;Y ). Menger's theorem states that for every pair of subsets Xand Y of the vertices, there exists an X!Y separator with cardinality p(X;Y ). We call an6



X!Y separator minimum if its cardinality is minimum, namely, p(X;Y ).Let us call two problems linear-time equivalent if there is a linear-time algorithm totransform an instance of the �rst problem to an instance of the second such that a solutionto the second instance can be transformed in linear time to a solution of the �rst instance,and vice versa. Part (i) of the next proposition is well known. The novel point of part (ii) isthat a digraph minimum vertex separator can be obtained in linear time from an arbitraryminimum vertex cover of an appropriately constructed bipartite graph. The appendix has aproof of the proposition.Proposition 2.4.(i) The problem of �nding a maximum cardinality matching in a bipartite graph islinear-time equivalent to the problem of �nding a maximum cardinality set of vertex-disjoint X!Y paths in a digraph.(ii) The problem of �nding a minimum vertex cover in a bipartite graph is linear-timeequivalent to the problem of �nding a minimum X!Y separator in a digraph.We use the soft-Oh notation to denote the complexity of algorithms. The soft-Oh nota-tion drops poly-logarithmic factors: for functions f and g, f is eO(g) i� there are constantsn0; k � 0 such that f(n) � g(n)(log n)k, for all n � n0. Note that eO(M(n)) = O(n2:38),since M(n) is known to be O(n2:376) (see Section 1). All computations of the algorithmspresented below are over the �eld Zq of integers modulo a prime number q. When choos-ing random numbers w, we assume that they are drawn from the uniform distribution overf1; : : : ;Wg, where W is an integer and W < q. Throughout, we take q = jV (G)jO(1), i.e.,q is polynomially bounded in the number of vertices of the graph G. Consider the numberof bit operations for multiplying two jV j � jV j matrices over the �eld of integers moduloq. Since an integer modulo q can be represented using O(log q) = O(log jV j) bits, it followsthat the number of bit operations is eO(M(jV j)).3. Randomized algorithms for problems in matching theory. This section devel-ops randomized eO(M(jV j))-time algorithms for the following problems in matching theory:�nding a Gallai-Edmonds decomposition, �nding a minimum vertex cover in a bipartitegraph, �nding the allowed edges of a graph, and �nding the canonical partition of an ele-mentary graph.3.1. A randomized algorithm for the Gallai-Edmonds decomposition. Recallthat a vertex x is called noncritical if it is exposed in at least one maximum matching,otherwise x is called critical. We use D(G) to denote the set of noncritical vertices, andA(G) to denote the set of vertices in V (G)�D(G) adjacent to vertices of D(G). The set ofremaining vertices, V (G)� (D(G) [A(G)), is denoted by C(G). For ease of notation, D(G)and C(G) are also used to denote the subgraphs of G induced by the respective vertex sets.7



See [LP 86, Theorem 3.2.1] for a proof of the next theorem.Theorem 3.1 (Gallai-Edmonds theorem). Let G be a graph, and let D(G), A(G)and C(G) be as de�ned above. Then(i) each component of the subgraph induced by C(G) has a perfect matching;(ii) each component of the subgraph induced by D(G) is factor critical;(iii) the de�ciency of G equals ]components(D(G)) � jA(G)j;where ]components(D(G)) denotes the number of connected components in the sub-graph induced by D(G);(iv) every maximum matching of G contains a perfect matching of each component ofC(G), a near perfect matching of each component of D(G), and matches all thevertices of A(G) with vertices in distinct components of D(G).The key result for our algorithm follows. Recall the notation [Bej ] from Section 2.Lemma 3.2. Let B = eB(wij) be a random skew symmetric adjacency matrix of a graphG, where the wij are independent random numbers from f1; : : : ;Wg. Consider any vertexx, and let j be its index in B.(i) If x is noncritical, then with probability at least 1� (2n=W ), the rank of the matrix[Bej ] is greater than that of B.(ii) If x is critical, then with probability at least 1 � (n=W ), the rank of the matrix [Bej ]equals that of B.Proof. Consider the augmented graph G0 and its random skew symmetric adjacencymatrix B0, where G0 is obtained from G by adding a new vertex z (with index n + 1) andthe edge xz, and B 0 is obtained from B by adding a row r � ej and corresponding column,where r is a random number independent of the entries of B, i.e.,B0 = 2666666664 B 0...�r...0 : : : r : : : 0 3777777775 :Consider the cardinality of a maximum matching of G0. If there exists a maximum matchingof G with x exposed, then �(G0) is greater than �(G) because the new edge xz of G0 maybe added to the maximum matching of G. However, if x is matched in every maximummatching of G, then �(G0) equals �(G). In other words, x is noncritical in G i� �(G0) is8



greater than �(G). Applying Proposition 2.3 to G0 and B 0, we see that if x is noncritical inG, then with probability at least 1� (2n=W ),rank(B 0) = 2�(G0) = 2�(G) + 2 = rank(B) + 2:Consider the matrix [Bej ] obtained from B 0 by removing the last column, and then dividingthe last row by r. Part (i) of the lemma follows since rank([Bej ]) � rank(B 0)� 1.For part (ii), we have seen that �(G0) equals �(G) if x is critical. Hence, with prob-ability at least 1�(n=W ), rank(B) = 2�(G) = 2�(G0) � rank(B 0) � rank([Bej ]) � rank(B).Algorithm 1. Monte Carlo Gallai-Edmonds DecompositionInput: Graph G = (V;E).Output: With high probability, the Gallai-Edmonds decomposition of G.Step 0:Order the vertices, and number them 1; 2; : : : ; n.Fix the number W = nO(1), and choose a prime q, W < q = nO(1).For each edge ij, choose a random weight w(ij) 2 f1; 2; : : : ;Wg.Construct a random skew symmetric adjacency matrix B of G,where for each edge ij, i > j,Bij = w(ij) and Bji = �w(ij) (Bij = 0 if ij is not an edge).Step 1:Compute the rank r of B over the �eld Zq.Step 2:For each of the vectors ej , j = 1; : : : ; n;compute the rank rj of the matrix [Bej ] over the �eld Zq.Let D be the set of vertices j with rj > r.Step 3:Let A be the subset of V �D adjacent to D, and let C be the setof vertices neither in D nor in A.With high probability, the Gallai-Edmonds decomposition of Gis given by A;C;D. Fig. 2.The algorithm for �nding the Gallai-Edmonds decomposition follows straightaway fromthe previous lemma and Theorem 3.1. Find the set D(G) of noncritical vertices with highprobability by comparing the rank of each [Bej ], j = 1; : : : ; n; with the rank of B. The prob-ability that the set D(G) is correctly computed is at least 1 � (2n2=W ). Knowing D(G),the sets A(G) and C(G) can be found in eO(n + m) time. See Algorithm 1 in Figure 2 fora full description. The working of the algorithm on an example is illustrated in Figure 1.A straightforward implementation of Algorithm 1 runs in eO(n �M(n)) = O(n � n2:38) time:9



for each j = 1; : : : ; n; use the algorithm of [IMH 82] to �nd the rank of [Bej ] in eO(M(n))time. We now improve the running time from eO(n � M(n)) to eO(M(n)). The eO(M(n))bound holds even for the number of bit operations; to see this, recall the remarks at theend of Section 2. To obtain a faster implementation, observe that rank([Bej ]) is greater thanrank(B) i� ej is not in the row space of B, i.e., i� ej is not a linear combination of the rowvectors of B. We can \simultaneously" compute the ranks of all the [Bej ]'s by computing amatrix N such that for any row vector v, v �N = 0 i� v is a linear combination of the rowvectors of B. Once N is computed, we simply �nd the product of the n� n identity matrixIn with N . The nonzero rows of N correspond exactly to the vectors ej having rank([Bej ])greater than rank(B). Coming to the computation of N , we take N to be a basis for thenull space (i.e., kernel) of B. Note that for any subspace U (e.g., the row space of B) ofa �nite-dimensional vector space W over a �nite �eld (e.g., the n-dimensional vector spaceover Zq), dimU + dimU? = dimW , and so (U?)? = U [Lo, Exercise 5.31]. Hence, even forthe n-dimensional vector space over Zq, we can check whether a vector v is in the row spaceof B by checking whether v �N is zero. It is well known that for any n�n matrix B, a basisfor the null space can be computed in sequential time eO(M(n)), see [IMH 82, pp. 53{54],and in randomized parallel time O((log n)2) using eO(M(n)) processors, see [KP 91, p. 190].Lemma 3.3. Let B = eB(wij), wij 2 f1; : : : ;Wg, be a random skew symmetric adjacencymatrix of a graph, and let the n� (n� rank(B)) matrix N be a basis for the null space of B.Let v be an arbitrary vertex, and let j be its index in B. If v is critical (noncritical), thenwith probability at least 1 � (2n=W ), the jth row of N is zero (nonzero).Let A;C;D denote the partition of V computed by an execution of the Monte Carloalgorithm. To make the algorithm Las Vegas, we need to verify whether A;C;D is theGallai-Edmonds decomposition. We �rst verify whether �(G) is computed correctly, andthen verify whether the set D equals the set of noncritical vertices, D(G). By Proposi-tion 2.3, �(G) is at least rank(B)=2, where B is the random skew symmetric adjacencymatrix. Suppose that each component of D is odd and each component of C is even. Then�(G) is at most (jV j � (]components(D) � jAj))=2, because every matching E 0 of G leavesat least ]components(D)� jAj exposed vertices: to see this, observe that for each odd com-ponent of G � A, either the odd component contains an exposed vertex, or an edge of E 0matches a vertex of the odd component to a vertex of A. Our veri�cation subroutine (inthe Las Vegas algorithm) determines the odd and even components of G�A, and comparesrank(B) with jV j � (]components(D) � jAj). If equality fails to hold in the comparison, orone of the components of D is even, or one of the components of C is odd, then the Las Vegasalgorithm reports failure. Otherwise, �(G) is guaranteed to equal rank(B)=2, and moreover,the set A is guaranteed to be a barrier. A set X � V (G) is called a barrier if jV j � 2�(G)(i.e., the de�ciency of G) equals the di�erence of the number of odd components of G �X10



and jXj. We claim that if A is a barrier and �(G) = rank(B)=2, then the computed partitionA;C;D is the Gallai-Edmonds decomposition. To see this, note that if a vertex with indexj has rank([Bej ]) greater than rank(B) = 2�(G), then the vertex is noncritical; hence, everyvertex in the computed set D is noncritical. Also, every noncritical vertex is contained in Dby the following theorem (see [LP 86, Theorem 3.3.17]): if X � V (G) is a barrier, then everynoncritical vertex is contained in the union of the odd components of G�X. Consequently,D = D(G), and so, by construction, A = A(G) and C = C(G).Theorem 3.4. There is a Las Vegas algorithm with a sequential running time ofeO(M(n)) for �nding the Gallai-Edmonds decomposition and the cardinality of a maximummatching of a graph. A parallel version of the algorithm uses eO(M(n)) processors and takesparallel time O((log n)2).3.2. Finding a minimum vertex cover in a bipartite graph. Due to the infor-mation provided by the Gallai-Edmonds decomposition, the above Las Vegas algorithm maybe applied to solve other problems in matching theory within the same complexity bounds.In this subsection, we show how the algorithm may be used to �nd a minimum vertex coverof a bipartite graph. Moreover, by the equivalence of the bipartite minimum vertex coverproblem and the digraph minimum X!Y separator problem, see Proposition 2.4, we canalso �nd a minimum X!Y separator in a digraph. We need a theorem from matching the-ory, see [LP 86, Theorem 3.2.4].Theorem 3.5 (Dulmage and Mendelsohn). Let G = (V1; V2; E) be a bipartitegraph, where V1 and V2 are the sets of the vertex bipartition. For i = 1; 2 let Ai = A(G)\Vi,Ci = C(G) \ Vi, and Di = D(G) \ Vi, where A(G), C(G), and D(G) are the three sets ofthe Gallai-Edmonds decomposition of G. Then C1 [A1 [A2 and C2 [A1 [A2 are minimumvertex covers.The above theorem combined with the Las Vegas algorithm for the Gallai-Edmondsdecomposition immediately yields an e�cient Las Vegas algorithm for a minimum vertexcover of a bipartite graph G = (V1; V2; E). The algorithm may be simpli�ed by focusingon just one of the sets Vi, i = 1; 2, of the vertex bipartition, and for each vertex in thatset computing whether it is critical or not. Also, instead of the skew symmetric adjacencymatrix, we use the bipartite adjacency matrix H, which has a row for each vertex in V1, anda column for each vertex in V2; an entry Hij is nonzero i� G has the edge ij, i 2 V1; j 2 V2.See Algorithm 2 in Figure 3.Theorem 3.6. There is a Las Vegas algorithm with a sequential running time ofeO(M(n)) for �nding a minimum cardinality vertex cover of a bipartite graph. A parallelversion of the algorithm uses eO(M(n)) processors and takes parallel time O((log n)2). The11



Algorithm 2. Monte Carlo Bipartite Minimum Vertex CoverInput: Bipartite graph G = (V1; V2; E).Output: With high probability, a minimum vertex cover of G.Step 0:Order the vertices of V1 and V2, and number them 1; 2; : : :Fix the number W = nO(1), and choose a prime q, W < q = nO(1).For each edge ij, i 2 V1; j 2 V2, choose a random weight w(ij) 2 f1; 2; : : : ;Wg.Construct a random bipartite adjacency matrix H of G,where for each edge ij, i 2 V1; j 2 V2, Hij = w(ij) (Hij = 0 if ij is not an edge).Step 1:Compute the rank r of H over the �eld Zq.Step 2:For each of the vectors ej , j = 1; : : : ; jV2j;compute the rank rj of the matrix [Hej ] over the �eld Zq.Let D2 � V2 be the set of vertices j 2 V2 with rj > r.Step 3:Let A1 be the subset of V1 adjacent to D2, i.e.,A1 = fi 2 V1 : ij 2 E and j 2 D2g.With high probability, a minimum vertex cover of G is given byA1 [ (V2 �D2). Fig. 3.same complexity bounds apply for �nding a minimum cardinality X!Y separator of a di-graph.In Section 4, an algorithm for �nding minimum X!Y separators in digraphs (and for�nding bipartite minimum vertex covers) is designed using di�erent methods than those usedin this section. Yet, it turns out that the two algorithms for bipartite minimum vertex coversare identical.3.3. Finding the allowed edges. Recall from Section 1 that an edge of a graphG = (V;E) is called allowed if it is contained in at least one maximum matching. The notionof an allowed edge is important in matching theory, see [LP 86, Chapter 5]. We developa Monte Carlo algorithm for �nding the set of allowed edges of an arbitrary graph; thesequential and parallel complexities are the same as those of our algorithm in Theorem 3.4.The best previous sequential or parallel algorithms for �nding the set of allowed edges ofa graph take at least as much sequential time (or, parallel time and parallel processors) asneeded for computing a maximum matching.Our method for �nding the set of allowed edges �rst constructs the Gallai-Edmonds de-composition A(G); C(G);D(G) using the algorithm of Theorem 3.4. Now, observe that everyedge incident to a noncritical vertex v is allowed: consider a maximum matching such that12



v is exposed, and switch the matching by adding any edge vw and removing the matchededge incident to w. Secondly, every edge with one end vertex in A(G) and the other in eitherA(G) or C(G) is not allowed, by Theorem 3.1. Finally, we are left with the edges with bothend vertices in C(G). Since every component of C(G) has a perfect matching, we apply thefollowing result of Rabin and Vazirani, see [RV 89, Lemma 4], to �nd (with high probability)the allowed edges of components of C(G).Lemma 3.7 (Rabin and Vazirani). Let G be a graph with a perfect matching, andlet B be a random skew symmetric adjacency matrix of G. If det(B) 6= 0, then for eachindex i, 1 � i � n, there is an index j, 1 � j � n, such that Bij 6= 0 and (B�1)ji 6= 0;moreover, for each pair i; j satisfying this condition, the corresponding edge vivj is in someperfect matching of G.Theorem 3.8. With probability at least 1 � (1=n�(1)), the set of allowed edges of agraph can be computed in sequential time eO(M(n)), and in parallel time O((log n)2) usingeO(M(n)) processors.The above algorithm is Monte Carlo, but not Las Vegas: if the algorithm reports thatan edge with both end vertices in C(G) is not allowed, then there is a small probabilitythat the edge is actually allowed. In all other cases, the algorithm's output is correct. Forthe special case of bipartite graphs, we give a Las Vegas algorithm that achieves the samecomplexity bounds. Focus on a component H = (V1; V2; E) of C(G), where V1 and V2 arethe sets of the vertex bipartition. We construct the connected subgraphs H1; : : : ;Hk of Hformed by the computed set of allowed edges. For each connected subgraph Hi, 1 � i � k,jV (Hi) \ V1j must equal jV (Hi) \ V2j, and each edge with both end vertices in Hi mustbe allowed, see [LP 86, Theorem 4.1.1], otherwise, the algorithm reports failure. Next, weconstruct a bipartite graph H 0 by contracting to a distinct single vertex each of the two setsin the vertex bipartition of each of the connected subgraphs H1; : : : ;Hk, i.e., each V (Hi)\Vj ,1 � i � k, j = 1; 2, is contracted to a distinct vertex. Also, we replace any parallel edges bysingle edges. Thus, each Hi, 1 � i � k, is contracted to a distinct edge; observe that these\contracted edges" form a perfect matching of the contracted graph H 0. If the contractedgraph H 0 has a unique perfect matching, then the computed set of allowed edges of H is cor-rect; otherwise, the algorithm reports failure; see [LP 86, Lemma 4.3.1]. To test for a uniqueperfect matching in H 0, we start with the perfect matching consisting of the edges formedby contracting H1; : : : ;Hk, and check whether there exists an alternating cycle with respectto this matching. The claimed complexity bounds su�ce for testing for an alternating cycle.Theorem 3.9. There is a Las Vegas algorithm with a sequential running time ofeO(M(n)) for �nding the set of allowed edges of a bipartite graph. A parallel version ofthe algorithm uses eO(M(n)) processors and takes parallel time O((log n)2).13



3.4. Finding the canonical partition of an elementary graph. Recall from Sec-tion 1 that a graph G = (V;E) is called elementary if it has a perfect matching and itsallowed edges form a connected spanning subgraph. Also, recall that a set X of vertices iscalled a barrier if the de�ciency of G, jV j�2�(G), equals the di�erence of the number of oddcomponents of G �X and jXj. For an elementary graph, the de�ciency is zero, so X � Vis a barrier i� jXj equals the number of odd components of G�X. If G is elementary, thenthe (inclusionwise) maximal barriers of G form a partition S1; S2; : : : ; Sk of the vertex setV (G); this partition is called the canonical partition [LP 86, Section 5.2]. Here, we developan e�cient randomized algorithm for �nding the canonical partition of an elementary graph.The Monte Carlo algorithm for the canonical partition was discovered jointly with K. Pa-dayachee. The sequential eO(m + n)-time algorithm for verifying the canonical partition isdue to J. A. La Poutr�e, [L 95].The key result underlying our algorithm is this, see [LP 86, Theorem 5.2.2]: Two (dis-tinct) vertices x and y are in the same set Si of the canonical partition i� G � fx; yg hasno perfect matching. Based on this result and [RV 89, Lemma 3], we �nd the canonicalpartition as follows: Assume that the given graph G is elementary. We construct a randomskew symmetric adjacency matrix B of G. If det(B) = 0, then we stop and report failure.Otherwise, we compute the inverse of B, B�1. To compute the canonical partition of V (G),we attempt to construct an equivalence relation 	 on the vertex pairs such that vertices xand y are related i� the (x; y) entry of B�1, (B�1)xy, is zero. If 	 is indeed an equivalencerelation, then the algorithm outputs the equivalence classes of 	 as the computed partition(with high probability, this is the canonical partition); otherwise, if 	 is not an equivalencerelation, then we stop and report failure. Verifying that 	 is an equivalence relation andcomputing its equivalence classes takes sequential time eO(n2) and parallel time O((log n)2)using eO(n2) processors: �rst, observe that 	 is re
exive ((x; x) 2 	;8x 2 V ) and symmetric((x; y) 2 	 i� (y; x) 2 	) since B is skew symmetric and n is even; 	 is transitive i� eachconnected component of the graph (V;	) is a clique.Theorem 3.10 (with K. Padayachee). With probability at least 1 � (1=n�(1)), thecanonical partition of an elementary graph can be computed in sequential time eO(M(n)), andin parallel time O((log n)2) using eO(M(n)) processors.The above algorithm is Monte Carlo, but not Las Vegas. For this paragraph, letS1; : : : ; Sk denote the partition computed by the Monte Carlo algorithm; the canonical par-tition may di�er from S1; : : : ; Sk. If each set Si, 1 � i � k, is a barrier, then the computedpartition is the canonical partition. To see this, observe that for any two vertices x and yin two di�erent sets of the computed partition, the (x; y) entry of B�1 is nonzero, hence, by[RV 89, Lemma 3], the graph G � fx; yg has a perfect matching. Consequently, by the keyresult on canonical partitions quoted above, x and y must be in di�erent sets of the canonicalpartition. Hence, the canonical partition is a re�nement of the partition S1; : : : ; Sk, and if14



the two partitions di�er, then one of the sets Si is the union of two or more maximal barri-ers. To obtain a Las Vegas algorithm we do the following: For each set Si in the computedpartition, we determine whether it is a barrier by comparing the number of odd componentsof G � Si with jSij. If every set Si is a barrier, then we output S1; : : : ; Sk as the canonicalpartition, otherwise, we report failure. There is a su�ciently e�cient sequential algorithmdue to La Poutr�e, [L 95], for the key computation in verifying the partition computed byour Monte Carlo algorithm; this algorithm uses Sleator and Tarjan's [ST 83] dynamic treesdata structure to maintain the connected components of the current subgraph, and worksby appropriately deleting and inserting all edges incident to vertices in the set Si, 1 � i � k;also, see La Poutr�e and Westbrook [LW 94].Theorem 3.11 (J. A. La Poutr�e). Given a graph G = (V;E) and a collection ofpairwise disjoint vertex sets S1; : : : ; Sk, the number of odd components in G � Si for all i,1 � i � k, can be determined in (deterministic) sequential time eO(m+ n).Alternatively, the sequential eO(m+n) time bound can be achieved by a randomized LasVegas algorithm using dynamic data structures recently developed by Rauch-Henzinger andKing, [HK 95].Theorem 3.12. Given an elementary graph as input, there is a sequential Las Vegasalgorithm with a running time of eO(M(n)) for �nding the canonical partition.4. An algorithm for digraph minimum X!Y separators. Using methods di�er-ent from the ones employed in the previous section, this section develops a randomized MonteCarlo algorithm for �nding a minimumX!Y separator of a given digraph G = (V;E), whereX and Y are speci�ed sets of vertices. On every instance, the algorithm outputs a correctsolution with high probability, but it may output an incorrect result with small probability.The complexity bounds of this Monte Carlo algorithm su�ce for verifying that the computedsolution is indeed a minimum X!Y separator, thus giving a Las Vegas algorithm with thesame complexity bounds.For an X!Y separator S with jSj = p(X;Y ), let T (S) denote the set of vertices suchthat G� S has a path from each vertex in T (S) to at least one vertex in Y � S (note thatT (S) is empty i� S = Y ). Informally, T (S) forms the \Y -side" of the separator S.First, consider the simple case when the digraph has a unique minimum X!Y separatorS, i.e., any other set of vertices whose removal from G leaves no X!Y paths has cardinalityat least jSj + 1. See Figure 4. Then the set T = T (S) has the key property that a vertexv is in T if and only if p(fvg [ X;Y ) is greater than p(X;Y ). To see this, deduce fromMenger's theorem that G must have a separator S 0 of cardinality p(fvg [ X;Y ) whoseremoval from G leaves no path from (fvg [X) to Y . Clearly, S 0 is an X!Y separator too,so p(fvg [ X;Y ) � p(X;Y ). If v 62 T , take the separator S 0 to be S, since G � S has no15
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Fig. 4. A digraph with a unique minimum X!Y separator S, where X = fx1; x2; x3; x4g and Y =fy1; y2; y3; y4g. Vertex w1 is in T (S) since p(fw1g [X;Y ) = 3 > jSj, but vertex w2 is not in T (S) sincep(fw2g [X;Y ) = 2 = jSj.path from a vertex in fvg [ X to a vertex in Y . Otherwise, if the vertex v is in T , then vis a witness to the fact that S 6= S 0 and hence, by the uniqueness of S, jS 0j > jSj. Supposethat there is an e�cient method of computing p(X;Y ) for any speci�ed pair of sets X andY of the vertices, i.e., suppose that a fast \black box" subroutine for computing p(X;Y )is available. (Such a method is described below.) Then the separator S may be found asfollows. For each vertex v 2 V , check whether p(fvg [X;Y ) is greater than p(X;Y ). Thenconstruct the set T of vertices v that satisfy the inequality. The required separator S consistsof the predecessors of T together with the Y -vertices not in T , i.e.,S = fs 2 V � T j (s; v) 2 E and v 2 Tg [ (Y � T ):In general, a digraph may have many minimum X!Y separators. Fortunately, one of theseseparators satis�es the key property of the separator S and the vertex set T (S) used above.This is proved in the next lemma. Though a full proof is given, the �rst part of the lemmais well known.Lemma 4.1. Let S? be an X!Y separator with cardinality p(X;Y ) = k such that T (S?)is (inclusionwise) minimal over all X!Y separators with cardinality k. Then(i) S? is unique, and(ii) for each vertex v of G,v 2 T (S?) i� p(fvg [X;Y ) > k:16



Proof. For a subset A of G's vertices, de�ne �(A) to be the set of verticesfu 2 V �A j (u; v) 2 E and v 2 Ag [ (Y �A);i.e., �(A) consists of the predecessors of A as well as the Y -vertices not in A. Note thatif A is the empty set, then �(A) = Y . For every A � V , Y is a subset of A [ �(A), andmoreover, if A is a subset of V �X, then note that �(A) is an X!Y separator (since everypath from a vertex in X to a vertex in A [�(A) must contain a vertex in �(A)). Let �(A)denote the cardinality of �(A). The proof hinges on the fact that the function � : 2V �! Zis submodular, i.e., for any two subsets A and B of G's vertices,�(A \ B) + �(A [ B) � �(A) + �(B):(1)To see this, observe that if a vertex u contributes two to the left-hand side (i.e., u 2 �(A \B) \�(A [B)), then either u 2 Y � (A [B) or u 2 V � (A [B [ Y ) and there is an edgeuv, v 2 A \ B, so u contributes two to the right-hand side; otherwise, if u contributes oneto the left-hand side, then u contributes at least one to the right-hand side.To prove the �rst part of the lemma, by way of contradiction, assume that there are twominimum X!Y separators S1 and S2 such that T1 = T (S1) is minimal and T2 = T (S2) isminimal. Then note that T1 \ T2 is both a proper subset of T1 and a proper subset of T2(possibly, T1 \ T2 is the empty set). Consider the vertex sets T1 \ T2 and T1 [ T2. NeitherT1 \ T2 nor T1 [ T2 has any X-vertices since T1 has no X-vertices and T2 has no X-vertices.Hence, �(T1 \ T2) is an X!Y separator, and �(T1 [ T2) is an X!Y separator. Since theminimum cardinality of an X!Y separator is p(X;Y ) = k, it is clear that �(T1 \ T2) � kand �(T1 [ T2) � k. Now, using the submodularity of � (equation (1)), it follows that�(T1 \T2) = k and �(T1[ T2) = k. Let S 0 denote �(T1\ T2). Observe that T (S 0) is a subsetof T1\T2, because for each vertex v 62 (T1\T2), every path from v to a vertex in Y containsa vertex of �(T1 \ T2). This gives the desired contradiction and completes the �rst part ofthe lemma, since neither T1 = T (S1) nor T2 = T (S2) is minimal.For the second part of the lemma, consider any vertex v 2 T (S?). The maximum num-ber of vertex disjoint paths from (fvg [ X) to Y is either exactly k = p(X;Y ) or greaterthan k. Suppose that the number is k. Then, by Menger's theorem, there exists a separatorS0 of cardinality k whose removal from G leaves no path from (fvg [X) to Y . Clearly, S 0 isalso a minimum X!Y separator. Now, consider a minimum X!Y separator S such thatT (S) is a subset of T (S 0) and T (S) is (inclusionwise) minimal over all such separators; sinceS0 exists, S must exist. By the �rst part of the lemma, the separators S and S? are thesame. This gives the desired contradiction, since v 2 T (S?) � T (S). We conclude that themaximum number of vertex disjoint paths from (fvg [X) to Y is greater than k.Two results are needed to develop a fast, probabilistic method for computing p(X;Y ).The �rst result is attributed to Ingleton and Pi� [IP 73]; for completeness, a proof that17



follows [LLW 88, Theorem 3.1] is included in the appendix. Associate a variable x(i; i) witheach vertex i, and a variable x(i; j) with each edge (i; j) (all variables are distinct). The freeadjacency matrix eF = eF (x(i; j)) of G is an n� n matrix whose entries are given byeFij = 8><>: x(i; i) if i = jx(i; j) if i 6= j and (i; j) 2 E0 otherwise:Theorem 4.2 (Ingleton and Piff). Let G be a digraph, and let eF be its freeadjacency matrix. Then for any k-vertex set X and any k-vertex set Y ,p(X;Y ) = k i� det eF (Y ;X) is not identically zero:We also need a matrix identity of Jacobi, see [BR 91, Lemma 9.2.10]:Fact (Jacobi). If a matrix F is nonsingular, then a square submatrix F (Y ;X) isnonsingular i� the complementary submatrix F�1(X;Y ) is nonsingular. More precisely,det(F�1(X;Y )) = det(F (Y ;X))=det(F ):To apply the above theorem to the algorithm, the variables are substituted by randomvalues. This is motivated by the Zippel-Schwartz lemma, Lemma 2.1.Theorem 4.3. Let G = (V;E) be a digraph, and let F = eF (w(i; j)) be obtained fromG's free adjacency matrix by randomly and independently assigning each variable x(i; j) arandom number w(i; j) from f1; : : : ;Wg. Then with probability at least 1 � (n=W ), F isnonsingular. If F is nonsingular, then for every pair of sets X and Y of the vertices,p(X;Y ) � rank(F�1(X;Y ));and with probability at least 1 � (n2=W ), p(X;Y ) equals rank(F�1(X;Y )).Proof. View the determinant of the free adjacency matrix eF as a polynomial of degreen in the variables x(i; j), 1 � i; j � n, and notice that it is not identically zero becausethe diagonal term �ni=1x(i; i) is nonzero and no two nonzero terms cancel out. Hence, byLemma 2.1, F is nonsingular with probability at least 1� (n=W ).Consider a maximum-cardinality set of vertex disjoint paths from X to Y . Let A bethe set of start vertices of these X!Y paths, and let B be the set of end vertices. Obvi-ously, A � X, B � Y , and jAj = jBj = p(X;Y ) = p(A;B). Let fH = fH(x(i; j)) denote18



(det eF ) eF�1, i.e., fH is the n � n matrix whose (k; `) entry is (�1)k+` times the (`; k) mi-nor of eF (x(i; j)); every entry of fH is a polynomial of degree n � 1 in the variables x(i; j).By Jacobi's identity and Theorem 4.2, detfH(A;B) is not identically zero, while for everyinteger q > p(X;Y ), the determinant of every q � q submatrix of fH(X;Y ) is identicallyzero. The second part of the theorem follows by observing that if F is nonsingular, thenF�1 = eF (w(i; j))�1 = fH(w(i; j))=det eF (w(i; j)); now apply Lemma 2.1 to detfH(A;B).The algorithm can now be sketched. Fix a number W = nO(1), and let q be a primesuch that W < q = nO(1). All computations are over the �eld Zq of integers modulo q. Thematrix F is constructed, and with high probability it is nonsingular. Inverting F gives thematrix F�1. If r = rank(F�1(X;Y )) equals jY j, then by Theorem 4.3, p(X;Y ) equals jY j,therefore Y is a minimum X!Y separator. Otherwise, consider the unique minimum X!Yseparator S? with T (S?) minimal. The algorithm attempts to compute the vertex set T (S?)by �nding the set T of vertices v such that rank(F�1(fvg [X;Y )) is greater than r. Withprobability at least 1 � �(n3)=W , T equals T (S?). Hence, with high probability, the setS = �(T ) (i.e., the set of the predecessors of T and the Y -vertices not in T ) is the minimumX!Y separator S?.To e�ciently compute for each vertex v whether rank(F�1(fvg [X;Y )) > r, the algo-rithm needs to check that v's row vector F�1(fvg; Y ) is not a linear combination of the rowvectors of F�1(X;Y ). As in Section 3, we \simultaneously" compute the ranks of all thematrices F�1(fvg[X;Y ), v 2 V , by computing a matrix N such that for any row vector w,w � N = 0 i� w is a linear combination of the row vectors of F�1(X;Y ). The matrix N iseasily obtained by computing a basis for the null space of F�1(X;Y ). Once N is computed,we simply �nd the product of the matrix F�1(V; Y ) with N .To check that the computed set S is indeed a minimum X!Y separator, observe thatthe cardinality of everyX!Y separator is at least p(X;Y ) � r. Consequently, if the removalof S from G leaves no path from X � S to Y � S, and jSj = r, then jSj = p(X;Y ) = r, andhence S is a minimum X!Y separator. Also, using Proposition 2.4, this algorithm may beapplied to �nd a minimum vertex cover in a bipartite graph.Consider the sequential complexity of the above algorithm. Inverting F takes eO(M(n))bit operations [AHU 74, Theorem 6.5]. Finding a basis for the null space of F�1(X;Y )takes eO(M(n)) bit operations [IMH 82, pp. 53{54]. The remaining computations are easy toexecute within this bound. Consider the randomized parallel complexity of the algorithm.Inverting F takes parallel time O((log n)2) using eO(M(n)) processors, [KP 91, Theorem 6],and these complexity bounds su�ce for �nding a basis for the null space of F�1(X;Y )[KP 91, p. 190] (both computations are randomized, and on a given matrix, the computedresults may be incorrect with small probability). The remaining steps are easy to implementwithin these complexity bounds. 19



Algorithm 3. Monte Carlo Minimum X!Y SeparatorInput: Graph G = (V;E).Output: With high probability, a minimum X!Y separator of G.Order the vertices, and number them 1; 2; : : : ; n.Fix the number W = nO(1), and choose a prime q, W < q = nO(1).Construct the matrix F by replacing each nonzero entry in the free adjacency matrixof G by an independent random number from f1; 2; : : : ;Wg.Invert F over the �eld Zq to obtain the matrix F�1.(If F is singular, the algorithm stops and reports failure.)Compute the rank r of the submatrix F�1(X; Y ) over Zq .If r = jY j, then the required separator is S = Y . Stop.Otherwise, compute a basis fN1; : : : ; NjY j�rg for the null space of the submatrixF�1(X; Y ) over Zq (each Ni is a vector of dimension jY j).Compute the matrix Z = F�1(V; Y ) �N over Zq,where N is the matrix whose ith column is Ni.Let Zv denote the row of Z given by F�1(fvg; Y ) �N .Construct the set of vertices T = fv j Zv is a nonzero vector g.With high probability, the required separator S consists of the predecessors of Ttogether with the Y -vertices not in T , i.e.,S = �(T ) = fs 2 V � T j (s; v) 2 E and v 2 Tg [ (Y � T ):Making the algorithm Las Vegas:If G� S has no path from X � S to Y � S, and jSj = r,then guarantee that S is a minimumX!Y separator, otherwise, report failure.Fig. 5.Theorem 4.4. Given a digraph G and a pair of sets X; Y of G's vertices, a minimumX!Y separator can be computed by a Las Vegas algorithm. The sequential running time iseO(M(n)). The parallel complexity is O((log n)2) time using eO(M(n)) processors. The samecomplexity bounds apply for �nding a minimum vertex cover of a bipartite graph.5. Conclusions. The most important problem left open is whether a maximum match-ing can be computed in deterministic or randomized timeO(n2:5��), � > 0. The same problem20



specialized to bipartite graphs, or equivalently (by Proposition 2.4), the problem of �ndinga maximum-cardinality set of vertex disjoint X!Y paths in a digraph in (randomized)time O(n2:5��), is also open. Another interesting open problem pertains to graphs with 0{1weights on the edges: can the maximum weight of a perfect matching, but not necessarily theedge-set of the matching, be computed in (randomized) time O(n2:5��)? Can the algorithmof Theorem 3.8 for �nding the allowed edges be made Las Vegas without a�ecting the com-plexity bounds? The algorithm for �nding a minimum bipartite vertex cover may be derivedstarting either from the Gallai-Edmonds theorem (Theorem 3.1) or from the theorem on thefree adjacency matrix (Theorem 4.2). Do these two theorems have other connections?
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6. Appendix: Proofs of Proposition 2.4 and Theorem 4.2.Proof. (Proposition 2.4) First, we show how to transform instances and recover solutionsof the two bipartite graph problems, using the corresponding digraph problems. Let H =(V1; V2; E) be a bipartite graph, where V1 and V2 are the sets of the vertex bipartition.Construct a digraph G = (V1 [ V2; F ) from H by orienting all edges from V1 to V2. Everymatching of H corresponds to a set of vertex disjoint V1!V2 paths in G. Hence, a maximummatching of H can be found by computing a maximum cardinality set of vertex disjointV1!V2 paths in G. Consider the bipartite graph minimum vertex cover problem. A subsetof V1 [ V2 is a vertex cover of H i� it is a V1!V2 separator of the digraph G. Therefore, aminimum vertex cover of H can be found by computing a minimum V1!V2 separator of G.Next, consider the transformation of the two digraph problems to the correspondingbipartite graph problems, and the transformation of the solutions. Let G = (V; F ) be thegiven digraph, and let X and Y be speci�ed subsets of V . Without loss of generality, assumethat X \ Y = ;; the method here easily extends to the case when X \ Y 6= ;. Let n denotejV (G)�X �Y j. We construct a bipartite graph H = (V1; V2; E) starting from G;X; Y . Foreach vertex v 2 V (G)�X � Y , H has a pair of vertices v1; v2 with v1 2 V1 and v2 2 V2;also, H has the edge v1v2; for each vertex x 2 X, H has a vertex x1 2 V1; and for eachvertex y 2 Y , H has a vertex y2 2 V2. For every vertex v of G, let v1 and v2 denote thecorresponding vertices in V1 and V2 (if they exist); let X1 denote the set of vertices of H thatcorresponds to X. For each edge (v;w) of G, v 62 Y and w 62 X, there is an edge v1w2 in H.A set of vertex disjoint X!Y paths of G of maximum cardinality (namely, p(X;Y )) givesa matching E 0 of H with jE 0j = p(X;Y )+n : start with E 0 = fv1v2 : v 2 V (G) �X � Y g,and then sequentially for each of the X!Y paths of G in the set mentioned above, augmentE0 using the corresponding alternating path of H. Moreover, we claim that a matchingE0 of H gives a set of at least jE 0j � n vertex disjoint X!Y paths of G: starting fromthe vertices in X1 in H, use the matching E 0 and the edges v1v2, v 2 V (G) � X � Y , toconstruct a set of vertex disjoint paths in G; each of these paths ends either at a vertex in Yor at a vertex v 62 Y such that in H the corresponding vertex v1 is exposed; hence, at mostjV1j � jE 0j = jX1j+ n� jE 0j of these paths in G have their end vertices in V � Y ; our claimfollows since the number of these paths in G is jX1j. Consequently, �(H) = p(X;Y )+n, andevery maximum matching of H yields a set of p(X;Y ) vertex disjoint X!Y paths of G.Now, consider the problem of �nding a minimum X!Y separator S of G. We �nda minimum vertex cover C of H, and then construct S as follows: S contains a vertexx 2 X i� C contains the vertex x1; S contains a vertex y 2 Y i� C contains the vertexy2; and S contains a vertex v 2 V (G)�X � Y i� C contains both the vertices v1 andv2. Since jCj = �(H) = p(X;Y ) + n, and since either v1 2 C or v2 2 C for each vertexv 2 V (G)�X � Y , we see that jSj = p(X;Y ). We claim that S is an X!Y separator of G.By way of contradiction, suppose that there is a path P in G�S with start vertex x 2 X andend vertex y 2 Y . Focus on the subgraph H(P ) of H formed by the edges that correspond22



to the edges of P , together with the edges v1v2 of H that correspond to the internal verticesv of P (i.e., v 2 V (P )� fx; yg). Since C is a vertex cover of H, every edge of H(P ) mustbe incident with some vertex of C. Consequently, either x 2 C or y 2 C or there is aninternal vertex v of P such that v1 2 C and v2 2 C. We have the desired contradiction sinceS intersects P . 0digraph GRX S TY R S TX YX
YRST
free adjacency matrix

Fig. 6. An illustration of the proof of Theorem 4.2. The submatrix eF (Y ;X) is indicated by dashed lines.Proof. (Theorem 4.2) First, consider the case when p(X;Y ) is less than k = jY j. Let Sbe an X!Y separator of cardinality p(X;Y ), and let T denote the set of vertices that havepaths to Y � S in G � S. Let R denote V � (S [ T ). Note that X is a subset of R [ Sand Y is a subset of S [ T . Since G has no edges of the form (r; t), r 2 R, t 2 T , eachentry of the submatrix eF (R;T ) is zero. (See Figure 6.) A line denotes either a row or acolumn of a matrix. Focus on the number of lines needed to cover all the nonzero entries ofeF (Y ;X), and consider the columns corresponding to the vertex set (R [ S) �X, and therows corresponding to the vertex set (S [T )�Y . Each entry of eF (Y ;X) that is not coveredby these lines is in an R-row and a T -column, hence the entry is zero. Thus the number oflines needed is at most((n � jT j)� k) + ((n� jRj) � k) � (n� k � 1);since n = jRj+jSj+jT j � (k�1)+jRj+jT j. Now, use the fact that for a bipartite graph, thecardinality of every matching is less than or equal to the cardinality of every vertex cover.It follows that there are at most (n� k� 1) nonzero entries in eF (Y ;X) with no two of theseentries on a line. Hence, det eF (Y ;X) is identically zero since each term in the standardexpansion of the determinant is zero. 23
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