An Analysis of the Highest-Level Selection Rule in the
Preflow-Push Max-Flow Algorithm

Joseph Cheriyan * Kurt Mehlhorn

August 20, 1998

Abstract

Consider the problem of finding a maximum flow in a network. Goldberg and Tarjan in-
troduced the preflow-push method for solving this problem. When this method is implemented
with the highest-level selection rule, then both the running time and the number of pushes are
known to be O(n?y/m), where n is the number of nodes and m is the number of edges. We
give a new proof based on a potential function argument. Potential function arguments may be
preferable for analysing preflow-push algorithms, since they are simple and generic.

1 Introduction

Consider the problem of finding a maximum flow in a network. This is one of the most intensively
studied combinatorial problems, and finds applications in transportation, communication networks,
VLSI design, etc., see [AMO93]. Goldberg and Tarjan [GT88] introduced the preflow-push method
for solving this problem. The complexity of this method depends mainly on the number of push
operations, and this in turn depends mainly on the selection rule used in every iteration for choosing
an active node.

The highest-level selection rule guarantees that the number of pushes is O(n?y/m), where n is
the number of nodes and m is the number of edges. This bound was first proved by Cheriyan and
Maheshwari [CM89] for a particular implementation of the algorithm that uses so-called “current
edges”. Tungel [Tun94] gave a more general proof that applies to the standard algorithm, i.e.,
the algorithm need not follow the “current edges implementation”. Both proofs use the concepts
of “flow atom” and “flow path”; a flow atom is flow excess that is moved by a sequence of non-
saturating pushes and a flow path is the path traced by a flow atom. The exact definition of both
concepts is non-trivial and is different in the two mentioned papers. For many other selection rules,
e.g., the arbitrary rule, the LIFO-rule, or the FIFO-rule, a potential function argument can be used
to bound the number of pushes. Potential function arguments are simpler and more generic than
flow atom and flow path arguments. Ahuja et al [AMO93] gave a potential argument proof for the
“current edges implementation” of the highest-level selection rule.

We give a potential argument proof that applies to the standard algorithm. Our proof uses a new
potential function that may be regarded as a simplification of the potential function in [AMO93].
Our potential function is “similar in spirit” to the potential functions used by Goldberg and Tarjan
for analyzing the LIFO and FIFO selection rules. The running time of the algorithm is determined
by the number of pushes and is also O(n?/m).

*Department of Combinatorics and Optimization, University of Waterloo, Canada
fMax-Planck-Institute for Computer Science, Saarbriicken, Germany

For general information, we mention that there are max-flow algorithms that run much faster
than the O(n?/m) time bound. However, such algorithms either (i) use the dynamic trees (or
similar) data structures that allow flow to be sent across a path of ¢ edges in O(log®™M) n) time
rather than O(¢) time, or (ii) they apply to the restricted problem where the capacities are integers
rather than reals, or (iii) they apply to the restricted problem where the graph underlying the
network is undirected rather than directed. Several computational studies have been conducted to
compare among algorithms predating the preflow-push method as well as different algorithms arising
from the preflow-push method. On almost all of the 20-40 network families used as inputs in these
computational studies, the preflow-push algorithm using the highest-level selection rule turned out
to be the fastest or the second fastest. (Implementations of the preflow-push method use additional
heuristics to quickly solve the given instance of the problem, see [CG97, AKMO97, MN99].)

Section 2 states the max-flow problem and describes the preflow-push method. Readers familiar
with this may prefer to skip Section 2. Section 3 has the main result.

2 The Max-Flow Problem and the Preflow-Push Method

The problem

Let G = (V,E) be a directed graph, and let n and m denote the number of nodes and edges,
respectively. Let s and ¢ be distinct nodes in G, and let cap : E — R be a non-negative function
on the edges of G. For an edge e, we call cap(e) the capacity of e. We use V* to denote V\{s,t}.
An (s,t)-flow or simply flow is a function f : E — R satisfying the capacity constraints (1) and
the flow conservation constraints (2):

(1) 0 < f(e) < cap(e) for every edge e € £
(2) S fle) = > f(e) forevery nodeve V*
e:source(e)=v e:target(e)=v

For a function f: F — R and a node v

excess(v) = Z fle) — Z f(e)

e:target(e)=v e:source(e)=v

is called the excess of v. The value of a flow is the net flow into ¢ (equivalently, the net flow out of
s), namely, excess(t). A flow is maximum if its value is at least as large as the value of any other
flow. The max-flow problem asks for the computation of a maximum flow.

The method

Goldberg and Tarjan [GT88] introduced the preflow-push method for solving the maximum-flow
problem. It manipulates a preflow that gradually evolves into a flow. We review the method to the
extent that is needed for this paper.

A preflow f is a function f: F — R with

(1) 0< f(e) < cap(e) for every edge e € E and
(2) excess(v) >0 for every node v € VT

i.e., the flow conservation constraint is replaced by the weaker constraint that no node in V' has
negative excess. A node v € V7T is called active if its excess is positive.

The residual network Gy with respect to a preflow f has the same node set as G. Every edge of
G is induced by an edge of G and has a so-called residual capacity. Let e = (v, w) be an arbitrary
edge of G. Let €™ denote the reverse edge (w,v). If f(e) < cap(e), then e is also an edge of Gy.
Moreover, if f(e) > 0, then e™" is an edge of Gy. Note that if e is an edge of Gf, then either e or
e’ is an edge of G. The residual capacity of an edge e in Gy is 7(e) = cap(e) — f(e) + f(e™),
where we take cap(e) = f(e) =0 if e is not in G, and similarly we take f(e™") = 0 if €™ is not in
G.

The basic operation to manipulate a preflow is a push. Let v be an active node, let e = (v, w)
be a residual edge out of v, and let § = min(ezcess(v),r(e)). Informally, a push of § across (v, w)
sends § units of flow from node v to node w by increasing f(e) and/or decreasing f(e"") by a total
of §. A push of § across e has the following effect on the residual network: r(e) decreases by ¢ and
r(e™) increases by §. Moreover, if r(e) becomes zero, then e is removed from G, and if r(e™)
increases from zero to d, then ™" is added to Gy. A push is called saturating if § = r(e) and
is called nonsaturating otherwise. Note that a saturating push removes one edge from Gy, and a
nonsaturating push deactivates one node. Either kind of push adds an edge €™" to the residual
network (if it is not already there). A push of § across e = (v, w) increases excess(w) by 0 and
decreases ezcess(v) by 4.

/* initialization */

set f(e) = cap(e) for all edges e with source(e) = s;
set f(e) = 0 for all other edges e;

set d(s) = n and d(v) = 0 for all other nodes v;

/* main loop */
while there is an active node
{ let v be any active node;
if there is an eligible edge e = (v, w)
{ push § across e where 6 = min(ezcess(v),r(e)); }
else
{ relabel v; }

Table 1: The preflow-push method.

Goldberg and Tarjan suggested to partition the node set of G (and hence Gy) into layers with
t on the bottom-most (zero) layer and to perform only pushes that move excess to a lower layer.
Let each node v be assigned an integer label d(v). Informally, d(v) is the (number of the) layer
containing v. More precisely, d(t) = 0, d(s) = n, and d : V — Z must satisfy the inequality
d(v) < 14 d(w), for each residual edge (v,w). (So, if d(v) < n, then d(v) is no more than the
length of a directed path from v totin G¢.) Anedge e = (v,w) € Gy is called eligible if d(w) < d(v).
A push across an edge e = (v,w) € G can be performed only if v is active and e is eligible.

There is another basic operation in the preflow-push method. When v is active and there is no
eligible edge out of v, v may be relabeled by increasing d(v) by one.

The preflow-push method is given in Table 1. Goldberg and Tarjan [GT88, Lemmas 3.8,3.9]
give a short proof of the following result.

Proposition 1 The number of relabelings is at most 2n?, and the number of saturating pushes is
at most 2nm.

The preflow-push method is general, and different algorithms can be obtained by fixing rules

for choosing nodes/edges for applying the basic operations. Several different rules for selecting the
active node v in the main loop (see Table 1) have been proposed, see [AMO93]. The number of
nonsaturating pushes depends on the rule for selecting active nodes. The rule that guarantees the
currently best bound on the number of nonsaturating pushes is the so-called highest-level selection
rule.

3 The Highest-Level Selection Rule

The highest-level selection rule always selects an active node on the highest-level, i.e., with the
maximum d-label.

Theorem 2 For the preflow-push algorithm that uses the highest-level selection rule, the number
of nonsaturating pushes is O(n*\/m).

Proof: Our proof is based on a potential function. Let K = /m; the reason for this choice of K
will become clear in the analysis. For a node v, let

d(v) =|{w : d(w) < d(v)}].

In words, d’(v) is the number of nodes w such that the label d(w) is no more than d(v). Let

o= > dw/K

v : v is active

Note that ® < n?/K initially, and ® > 0 always.

Consider the effect on ® of relabelings and pushes. Note that d'(w) < n always, for all w € V.
A relabeling of a node v increases ® by at most n/K, since d'(v) may increase, but for all other
nodes w # v, d’(w) does not increase. A saturating push increases ® by at most n/K, since at
most one new active node may be created. A nonsaturating push does not increase ®. To see this,
note that a nonsaturating push across an edge (v, w) deactivates v, activates w (if w is not active
already), and d'(w) < d'(v).

We estimate the total number of nonsaturating pushes by splitting the execution into phases.
We define a phase to consist of all pushes between two consecutive changes of

d* = max{d(v) : v is active }.

We call a phase cheap if it contains at most K nonsaturating pushes, and expensive otherwise.

Claim 1: The number of phases is at most 4n?. The number of nonsaturating pushes in cheap
phases is at most 4n’K.

To see that the number of phases is < 4n?, we observe that d* = 0 initially, d* > 0 always,
and every increase of d* is caused by a relabeling. Since d* increases at most 2n? times (by
Proposition 1), it decreases at most 2n? times, and hence it changes at most 4n? times. The second
part of Claim 1 follows immediately.

Claim 2: An expensive phase containing () > K nonsaturating pushes decreases ® by at least Q.

To see Claim 2, consider an expensive phase that executes () > K nonsaturating pushes.
Clearly, d* is constant during the phase, and hence all () nonsaturating pushes must be out of
nodes at level d*. The phase terminates either when all nodes in level d* are deactivated, or when
a relabeling moves a node from level d* to level d* + 1. In either case, we conclude that level d*

contains) > K (active/inactive) nodes at all times during the phase. Hence, each nonsaturating
push in the phase decreases ® by at least one, since we have d'(v) < d'(u) — 1 for an edge (u,v)
with {w : d(w) =d(u)}| > K.

To complete the proof, note that the total increase of ® is at most (2n? +2nm)n/K, hence, the
total decrease is at most this number plus the initial value of ® (since ® > 0 always). Therefore,
the number of nonsaturating pushes in expensive phases is bounded by (2n% 4+ n? + 2n?m)/K <
(3n3 + 2n?m) /K. Now, Claim 1 implies that the total number of nonsaturating pushes is at most
(3n3 + 2n%m)/K + 4n?K. Observing that n = O(m) and that the choice K = /m balances the
contributions from expensive and cheap phases, we obtain a bound of O(n?/m). O

The bound on the running time follows easily from the previous theorem. Note that each push
operation and each relabel operation can be implemented in O(1) time. The highest-level selection
rule can be implemented by a “buckets data structure” with each bucket i containing all nodes w
with d(w) = ¢. The total running time overhead for this is O(nm).

Theorem 3 For the preflow-push algorithm that uses the highest-level selection rule, the running

time is O(n%\/m).

References

[AKMO97] R. K. Ahuja, M. Kodialam, A. K. Mishra, and J. B. Orlin. Computational investigation of
maximum flow algorithms. FEuropean Journal on Operational Research, 97:509-542; 1997.

[AMO93] R. K. Ahuja, T. L. Magnanti, and J.B. Orlin. Network Flows. Prentice Hall, 1993.

[CGIT] B.V. Cherkassky and A.V. Goldberg. On implementing the push-relabel method for the maxi-
mum flow problem. Algorithmica, pages 390-410, 1997.

[CMB9] Cheriyan and Maheshwari. Analysis of preflow push algorithms for maximum network flow.
SIAM Journal of Computing, 18:1057-1086, 1989.

[GT8S] A.V. Goldberg and R.E. Tarjan. A new approach to the maximum-flow problem. JACM,
35:921-940, 1988.

[MN99] K. Mehlhorn and S. Naher. The LEDA Platform for Combinatorial and Geometric Computing.
Cambridge University Press, 1999. http://www.mpi-sb.mpg.de/ mehlhorn.

[Tun94] L. Tuncel. On the complexity of preflow-push algorithms for maximum flow problems. Algorith-
mica, 11:353-359, 1994.

