
Approximation Algorithms and Hardness Results for Packing

Element-Disjoint Steiner Trees in Planar Graphs

A. Aazami ∗ J. Cheriyan † K. R. Jampani ‡

March 2, 2011

Abstract

We study the problem of packing element-disjoint Steiner trees in graphs. We are given a graph and
a designated subset of terminal nodes, and the goal is to find a maximum cardinality set of element-
disjoint trees such that each tree contains every terminal node. An element means a non-terminal node
or an edge. (Thus, each non-terminal node and each edge must be in at most one of the trees.) We
show that the problem is APX-hard when there are only three terminal nodes, thus answering an open
question.

Our main focus is on the special case when the graph is planar. We show that the problem of finding
two element-disjoint Steiner trees in a planar graph is NP-hard. Similarly, the problem of finding two
edge-disjoint Steiner trees in a planar graph is NP-hard. We design an algorithm for planar graphs
that achieves an approximation guarantee close to 2. In fact, given a planar graph that is k element-
connected on the terminals (k is an upper bound on the number of element-disjoint Steiner trees), the
algorithm returns

⌊
k
2

⌋
− 1 element-disjoint Steiner trees. Using this algorithm, we get an approximation

algorithm for the edge-disjoint version of the problem on planar graphs that improves on the previous
approximation guarantees. We also show that the natural LP relaxation of the planar problem has an
integrality ratio approaching 2.

Keywords: Steiner trees; packing; approximation algorithms; hardness of approximation; NP-hard; planar
graphs; element connectivity; edge connectivity; partition connectivity.

1 Introduction

In the Steiner Tree Packing problem we are given an (undirected) graph G = (V,E) and a subset of
nodes R ⊆ V ; each node in R is called a terminal node, and each node in V −R is called a Steiner node or a
non-terminal node. A Steiner node or an edge is called an element. A tree that contains all terminal nodes
in R is called an R-Steiner tree (or Steiner tree, for short). The goal is to find a set of element-disjoint
R-Steiner trees of maximum cardinality; that is, find as many R-Steiner trees as possible such that each
Steiner node and each edge is in at most one of the trees. Our main focus is on approximation algorithms
and hardness results for this problem. There is an important version of the problem that we call the
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Edge-disjoint Steiner Tree Packing problem; here, the goal is to find a set of edge-disjoint R-Steiner
trees of maximum cardinality; that is, find as many R-Steiner trees as possible such that each edge is in
at most one of the trees.

1.1 Previous literature

Consider the special case of the Steiner Tree Packing problem where all of the nodes are terminal
nodes (i.e., R = V ). Then the problem is the same as finding a maximum-cardinality set of edge-disjoint
spanning trees. Tutte [31] and Nash-Williams [26] independently proved the following min-max theorem for
this special case: An undirected graph G has k edge-disjoint spanning trees if and only if for any partition
P of V into |P| non-empty subsets we have e(P) ≥ k(|P| − 1), where e(P) is the number of edges in G
with end-nodes in different sets of P. Frank, Kiraly, and Kriesell [8] extended this result to hypergraphs
via the notion of partition-connectivity (see Section 2 for details): A hypergraph H decomposes into k
hyperedge-disjoint partition-connected hypergraphs if and only if the partition-connectivity of H is at least
k.

We say that the set of terminals R is k-element connected if there exist k element-disjoint paths between
every pair of nodes in R; that is, for any two nodes s, t ∈ R, there exist k paths between s and t such that
each element occurs in at most one of these k paths. Similarly, we say that the set of terminals R is k-edge
connected if there exist k edge-disjoint paths between every pair of nodes in R. We use n to denote the
number of nodes in the input graph. Also, we call the terminal nodes black nodes, and the non-terminal
nodes white nodes. An edge between two white nodes is called a white edge.

Kaski [19] proved that the problem of finding two edge-disjoint Steiner trees is NP-hard, and also
showed that the Edge-disjoint Steiner Tree Packing problem is NP-hard even with 7 terminals. The
problem was proved to be APX-hard even with 4 terminals in [3]. Jain, Mahdian, and Salavatipour [17]
presented an approximation algorithm with a guarantee of O(|R|). Later, Lau [22, 23], using the result
of Frank et al. [8], proved that if the terminals are 24k-edge connected, then there exist k edge-disjoint
Steiner trees, and he gave an approximation algorithm with a guarantee of 24.

Cheriyan and Salavatipour [4] studied the element-disjoint Steiner Tree Packing problem; they ob-
served that the problem is hard to approximate within a factor of Ω(log n), and they designed a randomized
approximation algorithm with a guarantee of O(log n). Subsequently, Calinescu, Chekuri and Vondrak [1]
designed a simpler algorithm with a similar approximation guarantee, and also, they derandomized their
algorithm.

To the best of our knowledge, the above results gave the best results for planar graphs, before the
results in this paper were obtained. In other words, the previous best approximation guarantee for packing
edge-disjoint Steiner trees in planar graphs was 24, [23], and for packing element-disjoint Steiner trees in
planar graphs was O(log n), [4, 1].

There have been some recent developments; we were not aware of these results until after we completed
our research and submitted our manuscript for journal publication. Chekuri and Korula [2] obtained
some related results using different techniques; in particular, they design an O(1)-approximation algorithm
for the problem of packing element-disjoint Steiner forests in planar graphs. Demaine, Hajiaghayi, and
Klein [5] obtained some results on minimum-cost node-weighted Steiner trees in planar graphs, including
a 6-approximation algorithm ; this implies a 6-approximation algorithm for fractionally packing element-
disjoint Steiner trees in planar graphs, even with capacities on the elements. West and Wu [33] have
improved on the results of Lau [23] by showing that there exist k edge-disjoint Steiner trees if the terminals
are 6.5k-edge connected.

To the best of our knowledge, the systematic study of problems of this type was started by Grötschel et
al., see [12, 10, 13, 11, 14]. They were motivated by applications in VLSI circuit design, see [14, 24]. They
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focused on a generalization of the Edge-disjoint Steiner Tree Packing problem, where we are given
a list of terminal sets, R1, R2, R3, . . . , Rq and the goal is to find edge-disjoint Steiner trees T1, T2, T3, . . . , Tq

such that Ti contains (and connects) all the terminal nodes in Ri, for i = 1, . . . , q. Their problem is quite
different from the problems of interest to us, and is more general; for example, their problem contains the
Edge-disjoint Paths problem as a special case, namely, the special case where each terminal set Ri has
size two. Consequently, any hardness result that applies to the Edge-disjoint Paths problem applies
also to the Generalized edge-disjoint Steiner Tree Packing problem of Grötschel et al., but those
hardness results may not apply to the problems of interest to us. Further results and applications of the
generalized problem are discussed by Wagner [32] and Korte et al., [20], but note that the NP-hardness
results in [20] (where different Steiner trees have different terminal sets) do not apply to the problems
of interest to us. The main focus of the work on the generalized problem was to obtain computational
procedures for finding an optimal solution, based on mathematical programming. Some algorithmic results
on the generalized problem are presented by Wagner [32], but those results are “disjoint” from our results.

The generalized problem has other well-known applications including multicasting in wireless networks
[7], and broadcasting large data streams, such as videos, over the Internet [17].

1.2 Results in this paper

Our focus is on approximation algorithms and hardness results for the element-disjoint Steiner Tree
Packing problem on planar graphs. We call this the Planar Steiner Tree Packing problem. Our
main results are as follows:

• In Section 2, we present an approximation algorithm with a guarantee of (almost) 2 for the Planar
Steiner Tree Packing problem; more precisely, given a planar graph and a set of terminal nodes
R such that R is k-element connected, our algorithm finds at least min(1,

⌊
k
2

⌋
− 1) element-disjoint

Steiner trees; here, k is a positive integer. Based on this, we get an approximation algorithm with a
guarantee of (almost) 4 for the edge-disjoint version of the problem on planar graphs. To the best
of our knowledge, this improves on the known approximation guarantees for the Edge-disjoint
Steiner Tree Packing problem on planar graphs. The planarity of the graph is used at only one
point in our analysis, and there we use the upperbound on the number of edges in a planar bipartite
simple graph. Our methods extend to larger classes of graphs, namely, graphs that exclude a fixed
minor, to give approximation guarantees that depend on the order of the forbidden minor.

We conjecture that a planar graph that is k-element connected on the terminals has at least
⌊

k
2

⌋
element-disjoint Steiner trees.

• In Section 3, we prove that the Steiner Tree Packing problem is APX-hard even with three
terminals (i.e., |R| = 3). This answers an open question in the literature, see Floréen, et al. [7, Page
119].

Then, we show that the problem of finding two element-disjoint Steiner trees in a planar graph is
NP-hard. An immediate implication is that one cannot improve on the approximation guarantee of
2 for the Planar Steiner Tree Packing problem without further assumptions. We extend our
construction and proof to show that the problem of finding two edge-disjoint Steiner trees in a planar
graph is NP-hard.

• In Section 4, we show that even on planar graphs the standard LP (linear programming) relaxation
of the element-disjoint Steiner Tree Packing problem has an integrality ratio ≥ 2− 2

|R| − ε, where
the additive term ε is a function of |R| and the element-connectivity of the terminals, k, and for fixed
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Figure 1: A Hypergraph and its bipartite representation

|R|, ε → 0 as k → ∞. Our approximation guarantee of (almost) 2 for planar graphs (mentioned
above) implies that the integrality ratio on planar graphs approaches 2 as k →∞.

The significance of our lower bound on the integrality ratio comes from the fact that the optimal value
of this LP relaxation gives the best upper bound known (as far as we know) on the maximum number
of element-disjoint Steiner trees. Thus, for planar graphs, our result shows that the approximation
guarantee of 2 cannot be improved by any algorithm or analysis that relies on an upper bound that
is dominated by the LP bound.

Moreover, we modify our construction to get a similar lower bound on the integrality ratio for the
edge-disjoint version of the problem on planar graphs.

1.3 Hypergraphs: notation and definitions

This subsection has a few definitions pertaining to hypergraphs; these are used in Section 2.1.
A hypergraph is a pair H = (V, E) where V is the node-set of H and E is a collection of non-empty

subsets of V . A subset Z ∈ E is called a hyperedge of H. Given a partition P = {V1, . . . , Vt} of V into
non-empty subsets, a hyperedge Z ∈ E is called a crossing hyperedge if it intersects at least two subsets
of P and otherwise it is called an internal hyperedge. We use |P| to denote the number of sets Vi in P,
and we denote the number of crossing hyperedges corresponding to the partition P by eH(P) (or simply,
by e(P)).

Given a hypergraph H = (V, E), we associate a bipartite graph GH = (V,U ;E) to H as follows.
Corresponding to each hyperedge Z ∈ E we have a node uZ ∈ U . A node v ∈ V is adjacent to uZ ∈ U if
v ∈ Z; note that the degree of uZ in GH is the size of Z.

Consider the hypergraph H shown in Figure 1(a). The node-set of H is V = {t1, t2, t3, t4, t5}, and the
hyperedges of H are Z1 = {t1, t2}, Z2 = {t2, t3, t5}, Z3 = {t1, t2, t3, t4} and Z4 = {t4, t5}. Figure 1(b) shows
the bipartite graph, G = (V,U ;E), associated with H. Consider the partition P = {{t1, t2} , {t3, t4, t5}} of
V ; this partition is shown in dashed lines in Figure 1(b). The hyperedges Z2, Z3 are crossing hyperedges
w.r.t. (with respect to) P, and hyperedges Z1, Z4 are internal hyperedges w.r.t. P. Thus, e(P) = 2, since
there are two crossing hyperedges in P. Given a partition P, a useful operation is to contract an internal
hyperedge: we identify all nodes in Z into a single node and remove Z from the hypergraph. For example,
Figure 1(c) shows the bipartite representation of the hypergraph obtained by contracting the internal
hyperedge Z4 = {t4, t5}. If we further contract Z1 = {t1, t2} we get a copy of K2,3. If we contract some
internal hyperedges (w.r.t. P) of H, then we obtain a “shrunk” hypergraph H′ and a partition P ′ of V (H′);
note that the crossing hyperedges of H (w.r.t. P) are the same as the crossing hyperedges of H′ (w.r.t. P ′).
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2 Approximation algorithms

2.1 Element-disjoint Steiner trees

We present an approximation algorithm for packing element-disjoint Steiner trees in planar graphs that
achieves an approximation guarantee close to 2 (details below). Our method consists of two steps. First,
we transform to a planar bipartite graph, while preserving the terminals and their element-connectivity.
Then, we view the bipartite graph as a hypergraph, and apply a method of Frank et al. [8] to decompose
the set of hyperedges E into a number of disjoint sets E1, E2, . . . such that each set Ei induces a Steiner
tree of our bipartite graph. Each of these “bipartite” Steiner trees transforms back to a Steiner tree of
the original graph. The planarity of the graph is used at only one point in our analysis, and there we
use the upperbound on the number of edges in a planar bipartite simple graph. Our methods extend to
larger classes of graphs, namely, graphs that exclude a fixed minor, to give approximation guarantees that
depend on the order of the forbidden minor.

The following theorem is the main result of this section.

Theorem 2.1 Let G = (V,E) be an undirected planar graph, let R ⊆ V be the set of terminals, and
assume that R is k-element connected. Then there are at least

⌊
k
2

⌋
− 1 element-disjoint Steiner trees in G.

Moreover, there is an algorithm with a running time of O(|V |4.5) that finds at least
⌊

k
2

⌋
−1 element-disjoint

Steiner trees in G.

We define the Bipartite Steiner Tree Packing problem to be a subproblem of the element-disjoint
Steiner Tree Packing problem such that the graph is bipartite, all terminal nodes are in one part of the
bipartition, and all Steiner nodes are in the other part. Consider a planar instance of the element-disjoint
Steiner Tree Packing problem, i.e., the associated graph is planar. We can transform it into a planar
instance of Bipartite Steiner Tree Packing by using the following theorem. The theorem is due to
Hind and Oellermann, see [16], and a short proof is given in [4].

Theorem 2.2 [16] Consider a graph G = (V,E) that has a set of terminals R such that R is k-element
connected. There is a polynomial-time algorithm that repeatedly deletes or contracts white edges to obtain
a bipartite graph G′ from G such that R stays k-element connected, and moreover, R forms one part of the
bipartition of G′.

Let G = (R,U ;E) be an instance of the Bipartite Steiner Tree Packing problem, where R is the
set of terminal nodes and U is the set of Steiner nodes. Recall the definitions and notation for hypergraphs
from Section 1.3. We associate a hypergraph HG to G as follows. The node set of HG is given by the set
of terminal nodes of G, that is, V (HG) = R; moreover, corresponding to each Steiner node u ∈ U of G,
HG has a hyperedge that we denote by Zu, where Zu is the subset of V (HG) consisting of the neighbors
of u in G, that is, Zu = {v ∈ R | {u, v} ∈ E(G)}; thus, HG = (R, E) where E = {Zu | u ∈ U}.

Moreover, given any hypergraph H, we may view its associated bipartite graph GH as an instance of
the Bipartite Steiner Tree Packing problem, where V (HG) gives the set of terminal nodes of the
latter instance and the nodes of GH corresponding to the hyperedges of H give the Steiner nodes of the
latter instance.

Recall that we denote a partition of V into non-empty subsets by P = {V1, . . . , Vt}, and we use |P| to
denote the number of sets Vi in P. A hypergraph H is called k-partition connected if eH(P) ≥ k(|P| − 1)
for every partition P of V . A 1-partition connected hypergraph is simply called partition-connected. If
a hypergraph H is partition-connected, then it is easy to see that the associated bipartite graph GH is
connected, and so it contains a Steiner tree (with terminal set V (H)). But the converse does not hold:
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for a connected instance of Bipartite Steiner Tree Packing, the associated hypergraph may not
be partition-connected. Frank et al. [8] proved the following generalization of the Tutte–Nash-Williams
theorem.

Theorem 2.3 (Theorem 2.8 in [8]) A hypergraph H = (V, E) is k-partition connected if and only if E
partitions into k subsets E1, . . . , Ek such that each of the sub-hypergraphs Hi = (V, Ei) is partition-connected.

Therefore, we can obtain ` element-disjoint Steiner trees in G if HG is `-partition connected. Now we
prove the following lemma that completes the proof of Theorem 2.1.

Lemma 2.4 Let G = (R,U ;E) be a bipartite planar graph such that R is k-element connected. Then the
hypergraph HG = (R, E) associated with G is

⌊
k−2
2

⌋
-partition connected.

Proof: We may assume that G is connected. Consider the hypergraph H and define the fractional
partition-connectivity, λ∗, as follows:

λ∗ = min
P

e(P)
|P| − 1

, (1)

where the minimum is over all partitions P of R with |P| ≥ 2. Let λ denote the partition-connectivity of
H. It follows from the definition of partition-connectivity that λ = bλ∗c. Let P∗ = {X1, X2, . . . , X`} be a
partition that achieves the minimum ratio λ∗. In the rest of the proof, except where mentioned otherwise,
crossing hyperedges and internal hyperedges are w.r.t. P∗.

Consider the Steiner nodes of G that correspond to the internal hyperedges. We contract all the edges
of G that are incident to these Steiner nodes, and we call the resulting graph G′. In more detail, consider
each internal hyperedge Zu ∈ E and contract all edges in G adjacent to the Steiner node u corresponding
to hyperedge Zu. We may ignore all parallel edges in G′ formed by these edge contractions.

Claim 2.5 The obtained graph G′ is a bipartite planar graph and has the following properties:

1. All of the remaining Steiner nodes in G′ correspond to crossing hyperedges in H, and they form one
part of the bipartition,

2. The other part of the bipartition has |P∗| nodes, and each node has degree at least k.

Proving this claim completes the lemma. This follows because G′ has at least k |P∗| edges and at most
2(e(P∗) + |P∗|) − 4 edges since it is a bipartite planar graph and each planar bipartite graph on n nodes
has at most 2n− 4 edges. Hence, we have

k |P∗| ≤ 2(e(P∗) + |P∗|)− 4 =⇒ e(P∗) ≥ (k − 2) |P∗|
2

+ 2 =⇒ λ∗ >
k − 2

2
.

Proof of Claim 2.5: Consider a set Xi ∈ P∗ of size at least 2 and arbitrarily partition it into two non-
empty sets X ′

i and X ′′
i , and let P ′ be the obtained partition. Since P∗ is the minimum ratio partition, we

have λ′ = e(P ′)
|P ′|−1 ≥ λ∗. Hence, e(P ′) ≥ λ∗(|P ′|−1) > λ∗(|P∗|−1) = e(P∗). Hence, there exists a hyperedge

that is crossing w.r.t. P ′ but is not crossing w.r.t. P∗; that is, one of the internal hyperedges w.r.t. P∗

intersects both X ′
i and X ′′

i . This reasoning applies to each set Xi ∈ P∗ and to each 2-partition X ′
i, X

′′
i of

Xi; hence, for each Xi ∈ P∗, the subgraph of G induced by Xi and the Steiner nodes corresponding to
the hyperedges internal to Xi is connected. Thus, contracting all edges in G adjacent to the Steiner nodes
corresponding to the internal hyperedges (w.r.t. P∗) will shrink each set Xi of P∗ into a single node. The
obtained graph G′ is planar, and it is easy to see that it is bipartite with all the Steiner nodes corresponding
to the crossing hyperedges (w.r.t P∗) in one part of the partition and all of the “contracted” nodes in the

6



other part. Now we prove that the degree of each contracted node is at least k using the fact that the
terminals are k-element connected in G. To see this, consider a shrunk node vi corresponding to a subset
Xi ∈ P∗, and assume that it has less than k neighbors in G′. Let Y ′ be the set of neighbors of vi, so
|Y ′| < k. Note that Y ′ separates vi from any other contracted node vj in G′, i.e., vi and vj are in different
connected components of G′ \ Y ′. Now focus on the original hypergraph H and note that Y ′ (viewed as a
subset of E(H)) contains all hyperedges that intersect both Xi and R\Xi; thus, in the original graph G, we
see that Y ′ (viewed as a subset of U) separates Xi from the rest of the terminals, because Y ′ contains all
the Steiner nodes that are adjacent to both Xi and R \Xi. This is a contradiction because the terminals
are k-element connected in G; that is, for any set of white nodes Y whose deletion separates a pair of
terminals, we must have |Y | ≥ k. This shows that each contracted node has degree at least k in G′. �

This completes the proof the theorem. �

We give a formal outline of the algorithm, followed by an analysis of the running time.

Algorithm:

1. In the first step, we reduce the given graph G = (V,E) to an instance G′ of the Bipartite Steiner
Tree Packing problem using Theorem 2.2; note that G′ is obtained from G by removing or con-
tracting white edges.

2. In the second step, we decompose the associated hypergraph H of G′ into the maximum number
of hyperedge-disjoint partition-connected sub-hypergraphs, by using results of Frank et al. [8] and
Edmonds’ matroid partition algorithm [6]. The independence test in this algorithm checks whether a
given hypergraph is a hyperforest. (See the running time analysis given below for more discussion.)

3. Each partition-connected sub-hypergraph corresponds to a Steiner tree in G′. By “uncontracting”
the edges that were contracted in the first step of the algorithm, we obtain a set of element-disjoint
Steiner trees in G. If the given graph G is planar, and k-element connected on the terminals, then
the algorithm returns ≥

⌊
k
2

⌋
− 1 element-disjoint Steiner trees.

To analyse the running time of the algorithm, consider the first step in detail. We take a white edge
e and delete it from G. Then we check if the terminals are still k-element connected. If this holds, then
we take another white edge and continue, otherwise, we identify the end-nodes of e and move to the
next white edge. We can test for k-element connectivity in planar graphs in time O(kn |R|) using the
augmenting-paths algorithm for the maximum s-t flow problem. Hence, the total running time of the first
step is O(kn2 |R|), since the number of white edges is O(n).

In the second step, we decompose H into the maximum number of hyperedge-disjoint partition-
connected sub-hypergraphs via Theorem 2.3. The proof of this theorem is based on Edmonds’ matroid
partition theorem, and the proof can be “implemented” via the matroid partition algorithm [6]. The run-
ning time of the matroid partition algorithm is O(p2.5f(p)), where p denotes the size of the ground set
of the matroid, and f(p) denotes the running time for testing independence in the given matroid. The
test for independence corresponds to testing whether a hypergraph satisfies the conditions for a hyper-
forest, and this in turn corresponds to testing whether a bipartite graph (R,U ;E) has positive surplus,
i.e., ∀S ⊆ U, S 6= ∅ : |Γ(S)| > |S|; we mention that U corresponds to a subset of the ground set of the
matroid. The positive surplus condition holds if and only if the size of a maximum matching is |U | and
every node v ∈ R is non-critical, i.e., there is a maximum matching avoiding v; we can test for this via the
Gallai-Edmonds decomposition in a running time of O(|E| (|U |+ |R|)). Thus f(p) = O(p3) for an arbitrary
bipartite graph, and for planar bipartite graphs this improves to f(p) = O(p2). Hence, using the fact that
p ≤ n, the running time of our algorithm on planar graphs is O(kn2 |R|+ n4.5) = O(n4.5).
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We have planar examples showing that the analysis in Lemma 2.4 is tight. Construct a planar bi-
partite graph G = (R,U ;E) as follows: Let R = {t1, · · · , td} be the set of terminal nodes. For each
i ∈ {1, · · · , d− 1}, the node set U contains k′ nodes of degree 2, where each one is adjacent to ti and ti+1.
In addition, the set U contains k′ nodes of degree 2 where each one is adjacent to td and t1. Finally, we
add two nodes of degree d to U , each of which is adjacent to all the terminal nodes in R.

Note that G has k′ element-disjoint cycles, such that each cycle contains all the terminal nodes, and
moreover, the nodes on each cycle are alternately Steiner nodes and terminal nodes. Each one of these k′

cycles corresponds to a 1-partition connected subhypergraph in HG. Note that these subhypergraphs are
hyper-edge disjoint. Hence, by Theorem 2.3, which is due to Frank et al. [8], the partition-connectivity of
HG is at least k′. Let P be the partition of R into singletons, i.e., P has a set for each node in R. Also let
λ be the partition-connectivity of HG. Then, assuming that k′ < d− 3, we have

λ ≤
⌊

e(P)
|P| − 1

⌋
=

⌊
k′d + 2
d− 1

⌋
= k′ +

⌊
k′ + 2
d− 1

⌋
= k′

It is clear from the construction that the element-connectivity of G is 2k′+2, while the partition-connectivity
of its corresponding hypergraph is k′. This shows the tightness of Lemma 2.4.

2.2 Edge-disjoint Steiner trees

The above result extends to the packing of edge-disjoint Steiner trees in planar graphs, to give the following
result.

Theorem 2.6 Let G = (V,E) be an undirected planar graphs, let R ⊆ V be the set of terminals, and
assume that R is k-edge connected. Then there are at least

⌊
k
4

⌋
− 1 edge-disjoint Steiner trees in G.

Moreover, there is an algorithm with a running time of O(|V |4.5) that finds at least
⌊

k
4

⌋
− 1 edge-disjoint

Steiner trees in G.

Proof: We first reduce G to a planar graph G′ with Steiner nodes of degree at most 4. This is done by
repeatedly replacing a Steiner node of degree more than 4 by a gadget that preserves the edge-connectivity
and planarity, but doesn’t introduce any new Steiner nodes of degree more than 4. Let v be a Steiner node
of degree d > 4 in G. We replace node v by the gadget shown in Figure 2(a).

The gadget has
⌈

d
2

⌉
− 1 rows including the last row containing a single node v′. Clearly, the obtained

graph has one less Steiner node of degree more than 4; also, the set of terminal nodes and their degrees
stay the same. Moreover, R is k edge-connected in the obtained graph. To show this, we claim that any set
of edge-disjoint paths using edges incident to v can be rerouted via the gadget. We sketch a proof of this
claim, although the gadget and its properties are well known, see [25, 28]. This can be proved by induction
on the number of rows in the gadget. The base case is when there is only one row containing the single
node v′, and note that v′ has degree at most 4. Clearly for this case the claim is true. Given a paring of
edges used in the paths going through v, we first route one of the extreme pairs (i.e., the pair using the
left most edge or the pair using the right most edge), say the left most pair, using the first horizontal row
of the gadget. Next, we send the other pairs using the vertical edges to the next horizontal row. Some of
the paths may need to be “shifted” to the left; for example, the path labeled (2, 2′) is shifted on the first
row to the left in Figure 2(b). Finally, we inductively reroute the remaining paths.

We replace all Steiner nodes of degree more than 4 to get a planar graph G′ with no Steiner node of
degree more than 4 such that the terminal nodes are k-edge connected in G′. Also observe that edge-disjoint
Steiner trees in G′ can be transformed to edge-disjoint Steiner trees in G.
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=⇒

v′v

(a) Gadget for high degree Steiner nodes

=⇒

v′v

1′1 2 2′3 3′ 1′1 2 2′3 3′

(b) Routing the paths via the gadget

Figure 2: Gadget for reducing degree

We can assume that G′ has no edge connecting two terminals; such an edge can be subdivided by
introducing a Steiner node. Now we show that the terminal nodes in G′ are

⌈
k
2

⌉
element-connected. Let X

be a set of white nodes of minimum cardinality whose deletion separates some two terminals, i.e., G′\X has
at least two connected components C1, C2, . . . , C` that each contains a terminal. There are at most 4 |X|
edges going out of X since each white node in X has degree ≤ 4. Hence, there is a component Cj that has
at most 2 |X| edges entering it, and consequently there is an edge-cut of size at most 2 |X| that separates a
pair of terminals. Since such a cut has size ≥ k, we have |X| ≥ k

2 . This shows that terminal nodes are
⌈

k
2

⌉
element-connected in G′. Now we apply Theorem 2.1 to G′ and obtain

⌊
k
4

⌋
− 1 element-disjoint Steiner

trees in G′. These Steiner trees are clearly edge-disjoint. Thus, G has at least
⌊

k
4

⌋
−1 edge-disjoint Steiner

trees. �

2.3 Element-disjoint Steiner trees in H-minor-free graphs

In the proof of Lemma 2.4, we used the fact that the number of edges in a planar graph is linear in the
number of nodes; moreover, the proof uses edge contractions and edge deletions, and the fact that these
operations preserve the planarity of the graph. These two facts about planar graphs are valid in graphs
that exclude a fixed minor H. Kostochka [21] and Thomason [30] showed that every graph of average
degree at least cr

√
log2 r has a Kr minor, where c ≤ 324. It follows from the Kostochka–Thomason result

that an H-minor-free graph G has at most cH · |V (G)| edges, where cH = c
2 |V (H)|

√
log2 |V (H)|. Thus,

our analysis for planar graphs extends to give the following result.

Theorem 2.7 Let H be a fixed graph. Let G = (V,E) be an undirected graph that has no H minor,
let R ⊆ V be the set of terminals, and assume that R is k-element connected. Then there are at least⌊

k
cH

⌋
− 1 element-disjoint Steiner trees in G. Moreover, there is an algorithm with a running time of

O(n4.5 + k |R| c2
Hn2) that finds this number of element-disjoint Steiner trees in G.

3 Hardness results

This section has four main results. In the first two subsections, we focus on instances with only 3 terminal
nodes. We show that the edge-disjoint Steiner Tree Packing problem is NP-hard in planar graphs, even
when there are 3 terminal nodes. Next, we focus on graphs in general (without the planarity restriction),
and we show that the edge-disjoint Steiner Tree Packing problem with 3 terminal nodes is APX-hard;
then we extend this to prove APX-hardness for the element-disjoint Steiner Tree Packing problem on
three terminal nodes. This settles an open question in the literature, see [7, Page 119 second column]. In
the third subsection, we show that the problem of finding two element-disjoint Steiner trees in a planar
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graph is NP-hard. In the last subsection, we extend this NP-hardness result to the setting of edge-disjoint
Steiner trees.

3.1 Planar graphs with three terminal nodes

This section has a proof of the following result; our proof is based on a major recent result of Naves [27].

Theorem 3.1 The edge-disjoint Steiner Tree Packing problem in planar graphs with 3 terminals is
NP-hard even with all terminals on the outer face.

We focus on planar graphs, and reduce the Edge-Disjoint Path problem with 2 demand pairs to
the Steiner Tree Packing problem with 3 terminals. Let I = (G;x1, y1, d1;x2, y2, d2) be an instance
of the planar Edge-Disjoint Path problem, where G = (V,E) is a planar graph and (x1, y1), (x2, y2)
are demand pairs. Moreover, the end nodes of the demand pairs are incident to the outer face in a given
planar embedding of G, and they occur in the order x1, x2, y1, y2 in the face. The goal is to find d1 paths
from x1 to y1 and d2 paths from x2 to y2 such that all of the d1 + d2 paths are edge disjoint. Our result is
based on the following major recent result of Naves [27, 28].

Theorem 3.2 (Theorem 9 in [27]) The planar Edge-Disjoint Path problem with two demand pairs
on the outer face is NP-hard.

Reduction:

1. Start from a copy of G and add 3 terminal nodes {t, t1, t2} and two non-terminal nodes s1, s2 to the
outer face of G.

2. Add d1 parallel edges from s1 to each of t, t2, x1, and similarly we add d2 parallel edges from s2 to
each of t, t1, x2.

3. Finally, we add d1 parallel edges from y1 to t1, and d2 parallel edges from y2 to t2. Note that the
obtained graph is planar.

4. Let H be the obtained graph, and let R = {t, t1, t2} (see Figure 3 for an illustration).

t1

t2

t G

d1 d1 d1

d1

d2

d2

d2

d2

x1

x2

y2

y1

s1

s2

Figure 3: Planar graph with 3 terminals on the outer face

The following lemma completes the proof of Theorem 3.1.
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Lemma 3.3 The planar graph H has d1 +d2 edge-disjoint Steiner trees if and only if the Edge-Disjoint
Path problem in G has a solution.

Proof: Assume that the Edge-Disjoint Path problem in G has a solution; that is, there are d1 edge-
disjoint x1-y1 paths, and there are d2 edge-disjoint x2-y2 paths, and all these d1+d2 paths are edge-disjoint.
Observe that by adding edges {s1, t}, {s1, x1}, {s1, t2}, {y1, t1} to any x1-y1 path in G we get a Steiner
tree. Hence, using d1 edge-disjoint x1-y1 paths, we get d1 edge-disjoint Steiner trees. Similarly, we can get
d2 edge-disjoint Steiner trees using d2 edge-disjoint x2-y2 paths. Moreover, any two of these d1 +d2 Steiner
trees are edge-disjoint. Thus, graph H has d1 + d2 edge-disjoint R-Steiner trees.

Now we prove the other direction. Suppose that H has d1+d2 edge-disjoint Steiner trees. Let F denote
this set of Steiner trees. The degree of each terminal in any one of the Steiner trees in F is one since each
terminal has degree d1 + d2 in H. Therefore, each Steiner tree in F has a Steiner node of degree three.
We claim that this node of degree three is either s1 or s2, and moreover, only one of s1 or s2 can be in
any Steiner tree. Focus on the edges with exactly one end-node in V (G); these are the edges crossing the
dashed box in Figure 3. First we show that each Steiner tree T in F has exactly two of these crossing
edges. If T has no crossing edges, then terminal t is forced to have degree two in T , which is not possible.
Also note that T cannot have only one crossing edge since there are no terminal nodes in V (G). This shows
that T has at least two crossing edges. This implies that each Steiner tree in F has exactly two crossing
edges, since there are (d1 + d2) Steiner trees in F and 2(d1 + d2) crossing edges in total. Hence, for any
Steiner tree in F , the node of degree three cannot be in V (G) (i.e., it cannot be inside the dashed box in
Figure 3), so the node of degree three is either s1 or s2. Also since there are 3(d1 + d2) edges adjacent
to s1 and s2 no tree contains both s1 and s2. Now consider a Steiner tree T in F containing s1. Tree T
uses the edge {s1, x1} to enter G and it has no edges adjacent to s2, so it must contain {y1, t1}. Hence, T
contains an x1-y1 path inside G. Similarly, if T contains s2, then it has an x2-y2 path inside G. Therefore,
the d1 + d2 Steiner trees in F give us a solution to the instance I of the Edge-Disjoint Path problem
in G. �

3.2 APX-hardness for general graphs with 3 terminal nodes

In this subsection, we focus on graphs in general, without the planarity restriction. We prove that the
edge-disjoint Steiner Tree Packing problem with 3 terminals is APX-hard. Our result is obtained by
a reduction from the Integer2Commodity problem that is known to be APX-hard [15, Corollary 4.1].
We also show that the element-disjoint Steiner Tree Packing problem with 3 terminals is APX-hard,
by using a simple reduction from the edge-disjoint version.

Theorem 3.4 The edge-disjoint Steiner Tree Packing problem with 3 terminals is APX-hard.

The Integer2Commodity problem is as follows: We are given an undirected graph G = (V,E) and
distinct nodes x1, y1, x2, y2 ∈ V ; the goal is to find a maximum-size collection of edge-disjoint paths, each
joining either x1 to y1 or x2 to y2.

Theorem 3.5 ([15, Corollary 4.1]) The Integer2Commodity problem is APX-hard.

Reduction: In the hardness construction in the proof of the above theorem (see [15, Section 4.1.1]), the
nodes x1 and y1 both have degree d1, and the node y2 has degree d2; so there are at most di edge-disjoint
paths between xi and yi for each i ∈ {1, 2}. In the “yes” instances of the problem the objective value
is d1 + d2, whereas in the “no” instance the objective value is at most (d1 + d2)(1 − ε), for some ε > 0.
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(Refer to the appendix for more details.) We denote this instance of the Integer2Commodity problem
by I = (G;x1, y1, d1;x2, y2, d2).

We use the same construction as the construction in Theorem 3.1. Let H be the undirected graph with
three terminal nodes t, t1, t2 that is obtained from G (see Figure 3 for an illustration).
Proof of Theorem 3.4 :
Completeness: Assume that the instance I has objective value of d1 + d2. Hence, there are di edge-
disjoint paths from xi to yi for each i ∈ {1, 2}. Observe that by adding edges {s1, t}, {s1, x1}, {s1, t2},
{y1, t1} to any x1-y1 path in G we get a Steiner tree. Hence, using d1 edge-disjoint x1-y1 paths, we get d1

edge-disjoint Steiner trees. Similarly, we can get d2 edge-disjoint Steiner trees using d2 edge-disjoint x2-y2

paths. Moreover, any two of these d1 +d2 Steiner trees are edge-disjoint. Thus, H has d1 +d2 edge-disjoint
Steiner trees.
Soundness: Suppose H has a set T of at least (1− ε)(d1 + d2) edge-disjoint Steiner trees in H. First, we
claim that for each terminal node there are at most ε(d1 + d2) Steiner trees from T where that terminal
node is not a leaf. Consider a terminal node r ∈ {t, t1, t2}. Let n1 denote the number of Steiner trees
from T where r is a leaf node, and let n2 be the number of remaining Steiner trees. The degree of each
terminal node is d1 + d2, so n1 + 2n2 ≤ d1 + d2; note that each terminal node has either degree 1 or degree
2 in any Steiner tree. Also we know that n1 + n2 = |T | ≥ (1 − ε)(d1 + d2). These two inequalities imply
that n2 ≤ ε(d1 + d2). Applying this argument for all three terminal nodes, we see that the following holds:
There is a set of edge-disjoint Steiner trees T ′ ⊆ T of size at least (1 − 4ε)(d1 + d2) such that in each
Steiner tree in T ′ each terminal node has degree one.

Note that each Steiner tree T ∈ T ′ has a non-terminal node of degree 3, since all terminal nodes in T
have degree 1. The node of degree 3 in each Steiner tree is either a node from G (a node inside the dashed
box in Figure 3) or a node from {s1, s2}. Let T ′′ ⊆ T ′ be the set of Steiner trees where the node of degree 3
is either s1 or s2. We claim that there are at least (1− 12ε)(d1 + d2) Steiner trees in T ′′. To see this, note
that each Steiner tree from T ′ \ T ′′ uses at least 3 edges crossing the dashed box in Figure 3, and each
Steiner tree from T ′′ uses exactly two edges crossing the dashed box. Let q2 = |T ′′|, and let q3 = |T ′ \ T ′′|.
There are 2(d1 + d2) edges crossing the dashed box, so we have 2q2 + 3q3 ≤ 2(d1 + d2). We also have
q2 + q3 = |T ′| ≥ (1 − 4ε)(d1 + d2). Using these two inequalities, we get |T ′ \ T ′′| = q3 ≤ 8ε(d1 + d2),
and this proves our claim. Note that a Steiner tree in T ′′ may contain both s1 and s2. Using similar
arguments as above, we can show that there is a set of edge-disjoint Steiner trees T ′′′ ⊆ T ′′ of size at least
(1− 30ε)(d1 + d2) such that each Steiner tree T ∈ T ′′′ satisfies the following properties: (1) each terminal
node in T has degree 1, (2) the degree 3 node in T is either s1 or s2, and (3) T does not contain both
s1, s2. To see this, note that each tree in T ′′′ uses exactly 3 of the edges incident to both s1, s2 and each
tree in T ′′ \ T ′′′ uses at least 5 of the edges incident to both s1, s2, hence, we get |T ′′ \ T ′′′| ≤ 18ε(d1 + d2).

Now consider a Steiner tree T ∈ T ′′′ containing s1. Tree T uses the edge {s1, x1} to enter G and it has
no edges incident to s2, so it must contain the edge {y1, t1}. Hence, T contains an x1-y1 path inside G.
Similarly, if T contains s2, then it contains an x2-y2 path inside G. Therefore, the Steiner trees in T ′′′ give
us a solution to the instance I with objective value at least |T ′′′| ≥ (1− 30ε)(d1 + d2). This completes the
proof of soundness. �

Corollary 3.6 The element-disjoint Steiner Tree Packing problem with 3 terminals is APX-hard.

Proof: The proof is by a reduction from the edge-disjoint Steiner Tree Packing problem. Let G
be an instance of the edge-disjoint Steiner Tree Packing problem with 3 terminals. Let G′ be a
graph obtained from G by sequentially replacing each Steiner node v of degree d by a clique of size d and
connecting each neighbor of v to a distinct node in the clique. It can be checked that any set of element-
disjoint Steiner trees in G′ corresponds to a set of edge-disjoint Steiner trees in G, and there is a bijection

12



t1

t2

n1 n2

Figure 4: Basic Gadget

between the two sets, i.e., each tree in the first set corresponds to a tree in the second set. Therefore, the
maximum number of element-disjoint Steiner trees in G′ is equal to the maximum number of edge-disjoint
Steiner trees in G. Hence, by Theorem 3.4, the element-disjoint Steiner Tree Packing problem with 3
terminals is APX-hard. �

3.3 NP-hardness of packing 2 element-disjoint Steiner trees in planar graphs

In this subsection, we prove the following Theorem.

Theorem 3.7 The problem of finding two element-disjoint Steiner trees in planar graphs is NP-hard.

Our proof is based on two previous results, namely, Kaski’s proof [19] that the problem of finding two
edge-disjoint Steiner trees in general graphs is NP-hard, and Plesńık’s proof [29] that the Hamiltonian
cycle problem in planar digraphs with degree bound two is NP-hard. We give a reduction from the NAE-
3SAT problem, see the NOT-ALL-EQUAL 3SAT problem in [9]. An instance of this problem consists of
a set of boolean variables {x1, . . . , xn} and a collection of clauses {Q1, . . . , Qm}, where each clause consists
of three literals; the question is whether there exists a truth assignment to the variables such that each
clause has at least one true literal and at least one false literal. This problem is NP-complete.

A Basic Gadget or BG is a complete bipartite graph with 3-terminals and 2-Steiner nodes (see Figure 4).
In any planar embedding of this graph, the outer face consists of two terminals and the two Steiner nodes.
If H is a BG we use H(t1) and H(t2) to denote its terminals on the outer face and H(n1) and H(n2) to
denote its Steiner nodes (also on the outer face). Note that any solution to the (planar) 2-element disjoint
trees problem on H, contains H(n1) and H(n2) in different trees.

Reduction: Let I = Q1 ∧Q2 ∧ · · ·Qm, be an instance of NAE-3SAT where clause Qj = Pj1 ∨ Pj2 ∨ Pj3 ,
with literals Pjk

∈ {x1, x̄1, x2, x̄2, · · · , xn, x̄n}.
Given I, we describe how to create an instance G = (U ∪ R,E) of the planar 2-element disjoint

Steiner trees problem, such that I has two complementary satisfying assignments if and only if G has two
element-disjoint Steiner trees. We first describe the construction of a partial planar graph Gp along with
its embedding; this will aid us in constructing G. We define Gp and its embedding as follows. (See Figure
5(a) for an example).

1. We add a sequence of “clause” BG’s C1, C2, · · · , C3m such that adjacent BG’s share their outer termi-
nals: i.e. for i ∈ {1, · · · , 3m− 1}, Ci(t2) = Ci+1(t1) and all nodes Ci(n2) are on the same side in the
embedding (see Figure 5(a)).

2. For each clause Qi, we add a terminal qi and connect it to Steiner nodes C3i−2(n1), C3i−1(n1) and
C3i(n1).
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3. We add a sequence of “literal” BG’s L1, L2, · · · , L2n such that adjacent BG’s share their outer terminals:
i.e for i ∈ {1, · · · , 2n− 1}, Li(t2) = Li+1(t1) and all nodes Li(n1) are on the same side in the
embedding.

4. For each pair of BG’s L2i−1 and L2i (where 1 ∈ {1, · · · , n}), we add a new terminal vi and connect it
to L2i−1(n2) and L2i(n2).

5. We add the edges {C1(t1), L1(t1)} and {C3m(t2), L2n(t2)}.

6. Finally, we add certain constraints between the Steiner nodes of Gp called switching lines. A switching
line (s1, s2) between Steiner nodes s1 and s2 ensures the two nodes are in different Steiner trees in any
solution to G. Later in the section, we give a procedure to replace the switching lines with certain gad-
gets that “implement” them. For each clause Qi = Pi1∨Pi2∨Pi3 , let Lj1 , Lj2 and Lj3 be the literal BG’s
corresponding to Pi1 , Pi2 and Pi3 . (e.g., If Pi1 = xk then j1 = 2k−1 and if Pi1 = x̄k, then j1 = 2k). We
add the following switching lines to Gp: (C3i−2(n2), Lj1(n1)), (C3i−1(n2), Lj2(n1)), (C3i(n2), Lj3(n1)).

7. Embedding of Gp: Let H be the graph Gp without the switching lines. We embed H in the
plane such that the clause BG’s are aligned vertically to the left, the literal BG’s are aligned verti-
cally to the right and the cycle Bp = C1(t1), C1(n2), C2(t1), C2(n2), · · · , C3m(t1), C3m(n2), C3m(t2),
L2n(t2), L2n(n1), L2n(t1), L2n−1(n1), L2n−1(t1), · · · , L1(n1), L1(t1) forms an (internal) face of H (see
Figure 5(a)). We define a boundary to be a cycle of the embedded graph whose interior contains no
nodes or edges but may contain switching lines. Thus, we call Bp the boundary of Gp. Now, we
represent each switching line of Gp with a straight (dashed) line joining its end nodes. Note that
these line segments would all be present inside (the embedding of) Bp. Also the line segments may
cross each other. But without loss of generality, we assume that no three switching lines cross at the
same point.

v1

v2

v3

q2

q1

C1(t1)

C1(n2)

C2(n2)

C3(n2)

C4(n2)

C5(n2)

C6(n2)

C6(t2)

L1(t1)

L1(n1)

L2(n1)

L3(n1)

L4(n1)

L5(n1)

L6(n1)

L6(t2)

(a) Graph Gp for the instance I = (x1 ∨ x̄2 ∨x3)∧
(x1 ∨ x2 ∨ x̄3)

v1

v2

v3

q2

q1

C1(t1)

C1(n2)

C2(n2)

C3(n2)

C4(n2)

C5(n2)

C6(n2)

C6(t2)

L1(t1)

L1(n1)

L2(n1)

L3(n1)

L4(n1)

L5(n1)

L6(n1)

L6(t2)

(b) The graph obtained by applying the Uncross
operation on the switching line (C5(n2), L3(n1))

Figure 5: Planar construction

14



We now describe the procedure for obtaining G from Gp. Given a boundary B and a switching line e
in B, the following operation replaces e with a subgraph Ŝe and adjusts the interior of B, splitting it into
two boundaries.

Uncross (B, e):

1. If e does not cross any other switching line, then define Ŝe to be a path of length two connecting the
end nodes of e and having a (new) terminal in the middle. Delete e and embed Ŝe along the straight
line corresponding to e.

2. Otherwise let e cross switching lines e1, e2, · · · , ek. In this case, define Ŝe as a sequence of BG
gadgets R1, R2, · · · , Rk, such that adjacent BG’s share an outer terminal (i.e., Ri(t2) = Ri+1(t1) for
i ∈ {1, · · · , k − 1}). Now connect the terminal nodes R1(t1) and Rk(t2) to the end nodes of e.

Delete e and embed Ŝe such that all terminals in Ŝe lie along the straight line corresponding to
e and for each Ri, i ∈ {1, · · · , k}, the Steiner nodes Ri(n1) and Ri(n2) lie along the straight line
corresponding to ei. Also, for each i (∈ {1, · · · , k}), replace ei with two switching lines, from Ri(n1)
and Ri(n2) to the end nodes of ei. These switching lines are embedded as (disjoint) line segments that
are contained in the line segment corresponding to ei. Figure 5(b) illustrates this with an example.

Note that Ŝe divides the boundary B into two boundaries B1 and B2 such that B1 and B2 share the end
nodes of e and the outer terminals of Ŝe. To construct G from Gp, we start by applying the above operation
on the boundary Bp and an arbitrary switching line ep in Bp. This splits Bp into boundaries B1

p and B2
p

such that any new or remaining switching line is present in either B1
p or B2

p . We use the above operation
recursively to eliminate all the switching lines in B1

p and B2
p . (Figure 6(a) shows the construction for a

sample instance). Let SLT (Gp) be the recursion tree obtained by this procedure. SLT (Gp) is a binary
tree in which each node is represented by a pair (B, e), where B is a boundary and e is a switching line in
B. A node (B′, e′) is a child of (B, e) if boundary B′ is one of the two boundaries obtained by applying
the uncross operation at (B, e). If (B, e) is a leaf node then B doesn’t contain any switching lines inside
it, and we define e to be empty. We assign an integer number called the level to each pair (B, e) in the
above construction. The level of the pair (Bp, ep) is defined to be 0. If (B′, e′) is a child of a pair (B, e)
at level i, then we define the level of (B′, e′) to be i + 1. Let h denote the maximum level over all pairs;
i.e., h is the height of the recursion tree SLT (Gp). In the construction of G, we assign a level to each of
the following objects: terminal nodes, Steiner nodes, boundaries, and switching lines. The objects in Gp

(before applying any uncross operation) are defined to be at level 0. When we apply the uncross operation
to a pair at level i in SLT (Gp), we define the level of the new objects (i.e., terminal nodes, Steiner nodes,
switching lines, and the two new boundaries) to be i + 1.

Lemma 3.8 The instance I of NAE-3SAT is satisfiable if and only if G has two element-disjoint Steiner
trees.

Proof: We first prove the lemma for the simple case when no two switching lines in Gp cross each other,
that is, each switching line in G is realized by a path of length two with a unique terminal in the middle.
Subsequently, we extend the proof to the general case.

Simple Case (switching lines of Gp do not cross each other):

Consider an assignment that satisfies I. We show that elements of G can be colored with red and blue
colors such that each color class corresponds to a Steiner tree, and the two Steiner trees are element-disjoint.
We first color the subgraph Gp of G as follows.

15



v1

v2

v3

q2

q1

C1(t1)

C1(n2)

C2(n2)

C3(n2)

C4(n2)

C5(n2)

C6(n2)

C6(t2)

L1(t1)

L1(n1)

L2(n1)

L3(n1)

L4(n1)

L5(n1)

L6(n1)

L6(t2)

(a) The final graph G obtained by recursive appli-
cations of the uncross operation.
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(b) Two element-disjoint Steiner trees correspond-
ing to I = (x∨x̄∨ȳ)∧(ȳ∨z∨z̄) and the assignment
(x, y, z) = (T, F, T )

Figure 6: The final construction

1. For each clause Qi and each literal Pik in Qi, if Pik is true, then we assign red color to C3(i−1)+k(n1),
forcing C3(i−1)+k(n2) to take blue color. If Pik is false, then we assign blue color to C3(i−1)+k(n1),
forcing C3(i−1)+k(n2) to take red color.

2. For each variable xi, if xi is set to true then we assign red to L2i−1(n1) and blue to L2i(n1), forcing
L2i−1(n2) and L2i(n2) to take blue and red colors respectively. If xi is set to false then we assign
blue to L2i−1(n1) and red to L2i(n1), forcing L2i−1(n2) and L2i(n2) to take red and blue colors
respectively.

3. We assign red color to the edge {C1(t1), L1(t1)} and blue color to the edge {C3m(t2), L2n(t2)}.

It is easy to verify that the above coloring respects the switching lines of Gp (i.e., for any switching line e
in Gp, the two end nodes of e have different colors). Note that the subgraphs induced by each color class
together with all terminal nodes is connected in the graph Gp without the switching lines; see figure 6(b)
for an illustration. In G, each remaining terminal (i.e., terminal not in Gp) is adjacent to the ends of a
switching line and hence connected to both color classes. Thus, each color class is connected and contains
all the terminals. This shows that if I is satisfiable then G has two element-disjoint Steiner trees.

For the other direction, assume that G has two element-disjoint Steiner trees. We color all the Steiner
nodes of G that appear in one of the trees with red and the Steiner nodes of the other tree are colored with
blue. Consider the subgraph Gp of G. For any switching line e of Gp, G contains a terminal (of degree 2)
adjacent to the end nodes of e. Hence, the end nodes of each switching line should have different colors.
Now, for any variable xi (i ∈ 1, · · · , n), the nodes L2i−1(n1) and L2i(n1) have different colors (because of
terminal vi). If these two nodes are colored red and blue respectively, then we assign true to xi. Otherwise
L2i−1(n1) and L2i(n1) are colored blue and red (respectively) and we assign false to xi. We claim that
this is a satisfying assignment for I. For the sake of contradiction, assume that there is a clause Qj ,
j ∈ 1, · · · ,m, such that every literal Pjk

, ∀k ∈ {1, 2, 3}, is false. Now, consider any k ∈ {1, 2, 3}. If Pjk
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appears uncomplemented (i.e., Pjk
= xl for some variable xl), then the switching line between C3(j−1)+k(n2)

and L2l−1(n1) implies that C3(j−1)+k(n2) is forced to be red and hence C3(j−1)+k(n1) is forced to be blue.
If Pjk

is of the form Pjk
= x̄l for some variable xl, then the switching line between C3(j−1)+k(n2) and

L2i(n1) implies that C3(j−1)+k(n2) is forced to be red and hence C3(j−1)+k(n1) is forced to be blue. Thus,
for each k ∈ 1, 2, 3, C3(j−1)+k(n1) is colored blue. But this disconnects the terminal qj in the red tree.
Therefore, all three literals cannot be false in any clause and hence the assignment satisfies every clause.
By a symmetric argument, we can show that the complement of the assignment also satisfies every clause.
Therefore, I is a satisfiable instance of NAE-3SAT.

General Case (switching lines of Gp may cross each other):
We now prove the lemma for the general case when switching lines of Gp may cross each other.
Consider an assignment that satisfies the NAE-3SAT instance I. We show that the Steiner nodes in

G can be colored with blue and red colors such that each color class together with all the terminal nodes
induces a connected subgraph. We first color all Steiner nodes in the graph Gp (i.e., all Steiner nodes that
are at level 0 in the construction) in the same way as explained in the simple case, and next we “extend”
this coloring to all the remaining Steiner nodes (at other levels) in G. Recall that in the coloring of Gp the
end nodes of each switching line in Bp have different colors. This is an important property in our coloring,
and in our extended coloring, at any level of the construction, each switching line has this property. Let
us denote the set of all Steiner nodes of blue (or red) color at levels ≤ i by U b

i (or U r
i ). Also let Ti denote

the set of all terminal nodes at levels ≤ i.
We claim that the coloring of Gp can be extended in such a way that the subgraphs induced by Ti ∪U b

i

and Ti∪U r
i form two element-disjoint connected subgraphs, and moreover, the end nodes of each switching

line at level ≤ i have different colors. We prove this by induction on i.

Base case: The coloring of Steiner nodes of Gp explained in the easy case proves the claim for i = 0.

Induction step: Now, assume that the claim is correct for all j ≤ i. Let (B, e) be a pair of face boundary
and its corresponding switching line at level i + 1 where the uncross operation is applied, and suppose
that e1, . . . , ek are the switching lines crossing e (in this order when we move from one end node of e to
the other end node). In the uncross operation, we realized the switching line e by a sequence of k new
BG gadgets, and replaced each ei by two switching lines (e1

i and e2
i ). This uncrossing operation split the

boundary B into boundaries B1 and B2. Note that one end node of each new switching line is connected
to a Steiner node on B and the other end node is a non-colored Steiner node on a copy of BG gadget (along
e). Now color the non-colored end node of each new switching line by the color “opposite” to the color of
the end node that is on B; this shows the first property in the induction hypothesis. In this coloring, the
two Steiner nodes in each new copy of the BG gadget get different colors. It is easy to check that in this
coloring all new terminal nodes (at level i + 1) are connected to the blue end node of e via blue Steiner
nodes, and similarly all new terminal nodes are connected via red Steiner nodes to the red end node of e;
all these paths are going through the k new copies of the BG gadget along e. Note that the end nodes of e
belong to different connected subgraphs induced by Ti∪U b

i and Ti∪U r
i (by the induction hypothesis), since

each end node of e is a Steiner node of level ≤ i. Applying the above procedure to all pairs (B, e) at level
i + 1, we can color all Steiner nodes at level i + 1; this shows that the subgraphs induced by Ti+1 ∪ U b

i+1

and Ti+1 ∪ U r
i+1 are connected. This completes the induction step.

Note that the above claim for i = h proves that G has two element-disjoint Steiner trees, since Th = R.
Thus, we showed that if I is satisfiable, then G has two element-disjoint Steiner trees.

For the other direction, assume that G has two element-disjoint Steiner trees. We color all the Steiner
nodes of G that appear in one of the trees with red and the Steiner nodes of the other tree with blue.
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We prove that the end nodes of each switching line in Gp have different colors. This completes the proof
by the argument given in the simple case. We prove that this property is satisfied at each level of the
construction; i.e., end nodes of each switching line at any level have different colors.

Given a boundary B, a path P is called a red B-path if all the Steiner nodes in P are red, P meets the
boundary of B only at its end nodes, P has at least one other node besides the two end nodes, and P lies
in the interior of B. A blue B-path is defined similarly. Now, we claim the following. In each boundary B
at level ≥ i the end nodes of each switching line, e in B, have different colors, and in B there is no red or
blue B-path. We prove this claim by induction on i.

Base case: The claim is trivial for i = h, since each boundary B at level h (leaf of the construction tree)
has no nodes in its interior; note that B has no switching line.

Induction step: Assume that the claim is true for all j ≥ i. Now, consider a boundary B at level i− 1,
and suppose the uncross operation is applied on a switching line e at this step (in the construction of G);
i.e., (B, e) is a uncross operation at this level. Let B1 and B2 be the boundaries obtained after this uncross
operation. First, we show that the end nodes of e have different colors. For the sake of the contradiction,
assume that both end nodes of e are colored blue; the other case where both end nodes are red is similar
to this case. Consider a terminal node t that lies on boundaries of both B1 and B2 in the subgraph Ŝe

that realizes the switching line e; recall that if e has no switching line crossing it, then e is replaced by
a terminal, otherwise, e is replaced by a sequence of BG gadgets. Let t′ be a terminal node in the outer
face of G. The terminal t is connected to t′ in the red tree. Both end nodes of e are blue, so such a
red path from t to t′ needs to go through the interior of B1 or B2. But, this is a contradiction, since by
induction hypothesis Bi (for i = 1, 2) has no red Bi-path. Now consider a switching line f (other than e)
in B. If f lies in B1 or B2, then obviously its end nodes have different colors by the induction hypothesis.
Otherwise, f crosses e, so f is replaced by two new switching lines f1 and f2, where one of them, say f1,
lies in B1 and the other one lies in B2. Note that each one of them is connected from one end node to a
boundary of B and from the other end node to a Steiner node of the same copy of a BG gadget in Ŝe. By
the induction hypothesis end nodes of f1 and f2 have different colors, and also the end nodes of f1 and f2

in the corresponding BG gadget have different colors. Hence, the end nodes of f are forced to be different.
This proves the first property of the induction hypothesis.

Now we show that there is no monochromatic B-path. Let P be a B-path, and note that by definition
it is going through the interior of B. The path P either contains a B1-path or a B2 path or it completely
goes through the subgraph Ŝe that realizes the switching line e. In the first two cases P cannot be
monochromatic by the induction hypothesis. In the last case, note that P starts from one end node of e
and ends at the other end node of e. Hence, it cannot be monochromatic either, since both end nodes of
e have different colors. This completes the induction step and proves the claim.

The above claim for i = 0 shows that the end nodes of each switching line in Bp have different colors.
Therefore, by the argument in the easy case the NAE-3SAT instance I is satisfiable. �

3.4 NP-hardness of packing 2 edge-disjoint Steiner trees in planar graphs

In this subsection, we extend Theorem 3.7 to the setting of edge-disjoint Steiner trees, and we sketch a
proof of the following theorem.

Theorem 3.9 The problem of finding two edge-disjoint Steiner trees in planar graphs is NP-hard.

We use the notation from the construction used for Theorem 3.7. Our plan is to start with the planar
graph G constructed in the proof of Theorem 3.7, and then to apply some modifications to get the result
on edge-disjoint Steiner trees; informally speaking, these modifications are successful because G has a
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Figure 7: Two edge-disjoint Steiner trees do not imply satisfiability of the NAE-3SAT formula. The
sequence of three BGs adjacent to a “clause terminal” qi “allows” two edge-disjoint Steiner trees: one
contained in the set of solid edges, the other one contained in the set of dashed edges; the dotted edges are
in neither tree; but the clause is not satisfied because all three literals get the same truth value.

special structure. (The modifications were suggested by Guyslain Naves.) Suppose that we replace each
Steiner node of G of degree ≥ 4 by a gadget such that the resulting graph has each Steiner node of degree
≤ 3, while preserving the key property that there exist two element-disjoint Steiner trees iff the instance
of NAE-3SAT is satisfiable. Then, we would have the desired result, since an upper bound of three on
the degree of every Steiner node implies that a pair of Steiner trees is disjoint on the edges iff the pair is
disjoint on the elements. Thus, we replace each Steiner node v of G of degree deg(v) ≥ 4 by a cycle on
deg(v) new Steiner nodes, and we replace the edges of G incident to v by edges incident to distinct nodes
of the cycle. (See Figure 10 for an illustration for a Steiner node of degree 4.) Unfortunately, this does
not suffice to preserve the key property. (We remark that the terminals qi for the clauses are adjacent to
three basic gadgets, and this property may be exploited to construct edge-disjoint Steiner trees that do
not correspond to element-disjoint Steiner trees.) See Figure 7 for an illustration. We also need to replace
the basic gadget BG. We may view BG as consisting of two “sides”, where each “side” is a K1,3 (a star with
3 leaves), and the three terminals are common to the two “sides”. The replacing gadget that we denote
by BGE has five terminals, and these are common to the two “sides”; each “side” consists of a tree with
three Steiner nodes (internal nodes of the tree) and the five terminals (leaves of the tree); let the terminals
be denoted t0, t1, t2, t

′
1, t

′
2, where t1, t2 are “external terminals” (used for attaching a basic gadget to its

neighboring basic gadgets, for example, in the sequence of “clause” gadgets C1, . . . , C3m) and the others
are “internal terminals”. The root of each tree corresponds to one of the Steiner nodes n1 or n2 of BG, and
it has three children: two Steiner nodes, and the terminal t0; moreover, each of the non-root Steiner nodes
has two of the terminals as children. See Figure 8 for an illustration.

Let G′ denote the graph obtained from G (the graph constructed for Theorem 3.7) by replacing all
BG gadgets by BGE gadgets, and then replacing all Steiner nodes of degree ≥ 4. Similarly to the proof of
Theorem 3.7, the easy part of the proof is to show that G′ has two edge-disjoint Steiner trees if the instance
of NAE-3SAT is satisfiable. Let us focus on the other part of the proof, and let us assume that G′ has
two edge-disjoint Steiner trees.

In our construction, in every copy of BGE, each internal terminal has degree two, hence, their two
incident edges and two neighbors (which are Steiner nodes of degree 3) are placed in two different Steiner
trees. Moreover, we claim that all the nodes of the same “side” of the gadget may be placed in the
same Steiner tree. (Observe that the middle gadget in Figure 7 violates this claim.) It can be seen that
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Figure 8: The Basic Gadgets for element-disjoint Steiner trees, BG, and for edge-disjoint Steiner trees, BGE

Theorem 3.9 follows from this claim. Informally speaking, the claim implies that the functioning of each
BGE gadget is the same as the functioning of a BG gadget; hence, the proof of Lemma 3.8 applies to G′ and
guarantees that the instance of NAE-3SAT is satisfiable (since G′ has two element-disjoint Steiner trees).

This claim can be verified if the switching lines do not cross each other, as in the proof of the simple
case of Lemma 3.8. First, observe that every terminal of degree 2 is a leaf of each Steiner tree; therefore, we
may ignore all terminals of degree 2. Now, consider the subgraph formed by the sequence of “literal” BGEs
L1, . . . , L2n and the two edges {C1(t1), L1(t1)} and {C3m(t2), L2n(t2)}. Clearly, each of the two Steiner
trees contains exactly one of the latter two edges. Hence, each Steiner tree must induce a connected
subgraph of the subgraph formed by the sequence of “literal” BGEs L1, . . . , L2n. It follows that our claim
holds for these “literal” BGEs: all the nodes of the same “side” of the gadget may be placed in the same
Steiner tree. The claim also holds for the “clause” BGEs C1, . . . , C3m. This can be verified by detailed
checking; we omit the details, but mention the importance of the three internal terminals of degree 2 in
each BGE gadget.

Finally, observe that a switching line e with crossings is replaced by a subgraph, call it G′(e), that
consists of a sequence of BGEs R1, . . . , Rk together with edges between these BGEs and some other terminals
of degree 2; also, there are two other edges between G′(e) and the rest of G′, namely, the edge between R1

and one end node of the switching line, and the edge between Rk and the other end node of the switching
line. Thus, we may view G′(e) as a terminal of degree 2, and G′(e) is essentially a leaf of each of the two
Steiner trees. In other words, deleting G′(e) from G′ should not disconnect either of the two Steiner trees,
hence, we cannot “route” one of the Steiner trees “through” G′(e). Thus, the claim holds in general, even
when the switching lines cross each other.

4 Integrality ratio for packing Steiner trees in planar graphs

In this section, we show that the “standard” linear programming relaxation of the element-disjoint Steiner
Tree Packing problem has integrality ratio approaching 2, even on planar graphs. This result extends to
give the same lower bound on the integrality ratio for the edge-disjoint Steiner Tree Packing problem.
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Figure 9: Integrality ratio example for the element-disjoint problem

4.1 Integrality ratio example for packing element-disjoint Steiner trees

Consider the following linear programming relaxation of the element-disjoint Steiner Tree Packing
problem. For notational convenience, we assume there are no edges between terminals, by subdividing
edges if needed.

(LP-element) zLP (G) =max
∑
T∈T

xT

subject to ∑
T∈T :v∈T

xT ≤ 1 ∀v ∈ V \R

xT ≥ 0 ∀T ∈ T

Theorem 4.1 The LP relaxation of the element-disjoint Steiner Tree Packing problem has an inte-
grality ratio ≥ 2− 2

|R| − ε even on planar graphs, where the additive term ε is a function of k and |R| and
for fixed |R|, ε → 0 as k →∞ (here, k denotes the element-connectivity of the terminals).

Construction: Start from a 2k × 2kd grid (with 2k + 1 horizontal lines and 2kd + 1 vertical lines); then
subdivide the alternate edges of the last row of the grid; thus, the number of subdividing nodes is kd;
moreover, within the last row, there is a path of length three between consecutive subdividing nodes.
Next, add d terminal nodes R = {t1, . . . , td} to the outer face of the grid. Finally, connect each terminal
node ti to k consecutive subdividing nodes, such that each subdividing node is connected to one terminal
node. Let G be the obtained graph. The construction is illustrated in Figure 9; the figure does not show all
of the graph G; in particular, many vertical lines and horizontal lines of the grid are omitted; the purpose
of the figure is to illustrate half-integral Steiner trees and the way they cross each other (see the proof of
Claim 4.5).

First, we prove that G has at most kd
2(d−1) + d− 2 element-disjoint Steiner trees. Next, we show that

LP-element has optimal value of zLP = k. Proving these two claims completes the proof of Theorem 4.1.
The following result holds for any planar graph that satisfies the conditions given in the result; the graph
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G satisfies these conditions, so the result applies to G. The result will be also used in the analysis of the
integrality ratio example for the edge-disjoint Steiner Tree Packing problem.

Lemma 4.2 Let Ĝ = (V̂ , Ê) be any planar graph, and let R be a subset of V̂ ; call R the set of terminal
nodes. Let d denote |R|, where d ≥ 3. Suppose that there is no edge between terminal nodes, the degree of
each terminal node is k, and Ĝ has a planar embedding such that all terminal nodes are on the outer face.
Then Ĝ has at most kd

2(d−1) + d− 2 element-disjoint Steiner trees.

Proof: Let S be a maximum-size set of element-disjoint R-Steiner trees in Ĝ. We may assume that none
of the Steiner trees in S has a Steiner node of degree one. By a terminal edge we mean an edge that is
incident to a terminal. Let S1 be the set of Steiner trees from S with less than 2(d − 1) terminal edges,
and let S2 be the remaining subset of S (i.e., S2 = S \ S1). Note that |S2| ≤ kd

2(d−1) since any Steiner tree
in S2 has at least 2(d− 1) terminal edges and there are kd terminal edges in total. We complete the proof
of the lemma by showing that S1 ≤ d− 2.

First, observe that each Steiner tree T ′ in S1 has a Steiner node of degree ≥ 3; otherwise, if each Steiner
node in T ′ has degree two, then

∑d
i=1 degT ′(ti), the sum of the degrees of the terminals in T ′, would equal

2(d − 1); this would contradict the fact that T ′ has ≤ 2d − 3 terminal edges since it is in S1. Consider
the union of all Steiner trees in S1, and contract all white edges in the union. In the obtained graph, each
terminal node is on the outer face, and each modified Steiner tree has a Steiner node of degree at least 3.
Note that the modified Steiner trees are still element-disjoint, so the number of Steiner nodes of degree at
least 3 is an upper bound on |S1|. Also note that the obtained graph is a bipartite planar graph with all
the terminal nodes on the outer face. Let n2 be the number of Steiner nodes of degree 2 and let n3 be the
number of Steiner nodes of degree at least 3 in this graph. Now add a new node to the outer face of this
graph and connect it to all d terminal nodes. The obtained graph is a bipartite planar graph with at least
2n2 + 3n3 + d edges and at most 2(n2 + n3 + 1 + d)− 4 edges. Thus, we have:

2n2 + 3n3 + d ≤ 2(n2 + n3 + 1 + d)− 4 =⇒ |S1| ≤ n3 ≤ d− 2.

�

Claim 4.3 The linear program LP-element has objective value zLP (G) = k.

Proof: To show this we construct k pairs of half-integral Steiner trees. Each pair is obtained from two
consecutive rows by connecting each terminal to these two rows using two consecutive columns. Figure 9
shows two pairs of half-integral Steiner trees and shows how they cross each other. It is easy to check that
each Steiner node is contained in at most 2 half-integral Steiner trees. Hence, these 2k Steiner trees form
a feasible solution to LP-element. Thus, we have zLP ≥ k; moreover, zLP ≤ k since each terminal has
degree k. �

4.2 Integrality ratio example for packing edge-disjoint Steiner trees

In this subsection, we show that the following linear programming relaxation of the edge-disjoint version
of the problem has integrality ratio approaching 2. Let T be the set of all R-Steiner trees in G = (V,E).

(LP-edge) zLP (G) =max
∑
T∈T

xT

subject to ∑
T∈T :e∈T

xT ≤ 1 ∀e ∈ E

xT ≥ 0 ∀T ∈ T
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v
⇒ 4-cycle

Figure 10: Gadget for degree 4 nodes

Theorem 4.4 The standard linear programming relaxation of the edge-disjoint Steiner Tree Packing
problem has an integrality ratio ≥ 2− 2

|R| − ε even on planar graphs, where the additive term ε is a function
of k and |R| and for fixed |R|, ε → 0 as k →∞ (here, k denotes the edge-connectivity of the terminals).

Construction: Start from a k × kd grid (with k + 1 horizontal lines and kd + 1 vertical lines); then
add a set of d terminal nodes, R = {t1, . . . , td}, to the outer face of the grid. Connect terminal t1 to the
first k consecutive nodes on the bottom-most row of the grid, next, connect terminal t2 to the second k
consecutive nodes on the bottom-most row, and continue in this way to connect each terminal to a set of
k consecutive nodes. Note that the terminals have disjoint sets of neighbors. Now, replace each Steiner
node of degree 4 in the obtained graph by the gadget shown in Figure 10. Let G be the obtained graph.
Note that G is a planar graph. There are k edge-disjoint paths between any two terminal nodes; each path
is formed by using one row and two columns of the grid. Hence, the terminal set R is k-edge-connected.
Observe that each Steiner node has degree ≤ 3 in G. Therefore, edge-disjoint Steiner trees in G are also

t1 t2 ti td

i-th row

j-th row

Figure 11: Integrality ratio example for the edge-disjoint problem

element-disjoint. Applying Lemma 4.2, we see that G has at most kd
2(d−1) + d− 2 element-disjoint (or,

edge-disjoint) Steiner trees. Now, we only need to show that LP-edge has optimal value of zLP (G) = k.
Proving this claim will complete the proof of Theorem 4.4.

Claim 4.5 The linear program LP-edge has objective value zLP (G) = k.
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Proof: The optimal value zLP (G) is at most k since each terminal has degree k. Now, we create 2k
half-integral Steiner trees, and this shows that zLP (G) ≥ k. Corresponding to each row of the original
grid we construct a pair of half-integral Steiner trees. The `th pair uses the `th row and columns `, k +
`, . . . , ik + `, . . . , dk + ` of the grid. One of the trees in this pair uses the upper two edges of the 4-cycles
and the other tree uses the lower two edges of the 4-cycles of the `th row. Similarly one of them uses the
right two edges of the 4-cycles and the other one uses the left two edges of the 4-cycles of the columns. In
Figure 11 Steiner trees for the ith row and the jth row are shown. It is easy to check that each edge of the
modified grid is contained in at most two Steiner trees; Figure 11 shows how two Steiner trees cross each
other. Hence, the k pairs of half-integral Steiner trees form a solution to LP-edge of value k. �

Acknowledgements: We thank Guyslain Naves for suggesting the modifications to the construction for
Theorem 3.7 that give the construction for Theorem 3.9.
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Figure 12: hardness construction

A APX-hardness of the Integer2Commodity problem

In this appendix, we give a full proof of the following result due to Guruswami et al. [15, Corollary 4.1].
The construction in our proof uses a minor modification of their construction; the modification appears to
be essential for the proof.

Theorem A.1 The Integer2Commodity problem is APX-hard.

Proof: The proof is by a reduction from the Bounded 3-Dimensional Matching (B3DM) problem. In
the B3DM problem we are given three disjoint sets A = {a1, . . . , an}, B = {b1, . . . , bn}, C = {c1, . . . , cn}
and a set E = {e1, . . . , em} ⊆ A × B × C of m triples. Moreover, each element in A ∪ B ∪ C belongs to
q triples. It is known [18] that there is a constant ε0 > 0 such that it is NP-hard to distinguish between
instances of B3DM where there exists a perfect matching (i.e., n disjoint triples) and those instances where
the number of disjoint triples is at most (1 − ε0)n. We start from an instance G of the B3DM problem,
and construct an instance I = (H, s1, t1; s2, t2) of the Integer2Commodity problem as follows. For any
positive integer p, we will use [p] to denote the set {1, 2, . . . , p− 1, p}.

V (H) = {s1, s2, t1, t2}
⋃
{bi, ci : i ∈ [n]}

⋃
{ap

i : i ∈ [n], p ∈ [q − 1]}
⋃
{xi, yi, zi : i ∈ [m]}

E(H) = {{s1, bi} , {t1, ci} : i ∈ [n]}
⋃
{{t2, ap

i } : i ∈ [n], p ∈ [q − 1]}⋃
{{s2, x`} , {x`, z`} , {z`, y`} , {x`, bj`

} , {z`, ck`
} : e` = (ai` , bj`

, ck`
) ∈ E}⋃ {{

y`, a
p
i`

}
: e` = (ai` , bj`

, ck`
) ∈ E , p ∈ [q − 1]

}
The graph H has four nodes s1, s2, t1, t2, where (s1, t1) and (s2, t2) form the two demand pairs in H.
Corresponding to each element bi ∈ B or ci ∈ C, we have a node in H, and corresponding to each element
ai ∈ A we have q − 1 nodes a1

i , . . . , a
q−1
i in H. In addition, there are three nodes x`, y`, z` corresponding

to each triple e` ∈ E . Let X = {x` : ` ∈ [m]} , Y = {y` : ` ∈ [m]} , Z = {z` : ` ∈ [m]}. Node s1 is connected
to the nodes corresponding to the elements in B, and t1 is connected to the nodes corresponding to the
elements in C. We connect t2 to all (q − 1)n nodes corresponding to the elements in A. For each triple
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e` = (ai` , bj`
, ck`

) ∈ E , we connect x` to s2, bj`
and z`, we connect z` to y` and ck`

, and we connect y` to all
(q− 1) copies of the element ai` . In other words, for each triple e` ∈ E , H has a subpath x`, y`, z`, and also
H has edges between x` and the B-node of e`, between z` and the C-node of e`, and between y` and all
q− 1 nodes corresponding to the A-element of e`. (See Figure 12 for an illustration.) The goal is to find a
maximum-cardinality set of edge-disjoint paths such that each path has end nodes s1, t1 or has end nodes
s2, t2. Note that the number of such paths is ≤ m, because both s1 and t1 have degree n, and t2 has degree
n(q−1) = m−n. Note that the induced subgraph on {ap

i : i ∈ [n], p ∈ [q − 1]}∪Y is a collection of n = |A|
copies of the complete bipartite graph Kq−1,q; each copy of the complete bipartite graph corresponds to
an element ai ∈ A, where one part of the bipartition contains all q − 1 nodes corresponding to ai and the
other part contains the nodes y` corresponding to the q triples e` that contain ai.

Now, we prove:

(a) [completeness] if G = (A ∪ B ∪ C, E) has a perfect matching, then there are m edge-disjoint si-ti
paths for i = 1, 2 in total, and

(b) [soundness] if every matching in G has at most (1 − ε0)n triples, then there are at most (1 − ε)m
edge-disjoint si-ti paths for i = 1, 2 in total, where ε = ε0

4q .

Lemma A.2 (Completeness) If G has a perfect matching M, then the instance I of the Integer2Commodity
problem has objective value m.

Proof: There are n disjoint triples in M. For each triple e` = (ai` , bj`
, ck`

) ∈ M, we define a path
P` = s1, bj`

, x`, z`, ck`
, t1. This gives n edge-disjoint s1-t1 paths. Now, corresponding to the m−n triples in

E \M we define m− n paths between s2 and t2. Consider an element ai ∈ A, and note that it appears in
exactly q− 1 triples in E \M, because each element appears in q triples in E and M is a perfect matching.
Let e`1 , . . . e`q−1 be these q − 1 triples. For each triple e`j

, let Qi
j be the path s2, x`j

, z`j
, y`j

, aj
i , t2. Thus,

the path for e`j
uses the jth node corresponding to the element ai. Considering these q− 1 paths for each

element in A gives us (q − 1)n = m− n edge-disjoint paths between s2 and t2. We have m paths in total,
since we have n s1-t1 paths P` and m− n s2-t2 paths Qi

j ; observe that each of these m paths corresponds
to a distinct triple in E . It can be seen that all of these m paths are edge disjoint. Hence, the instance I
has a collection of m edge-disjoint si-ti paths for i = 1, 2 in total. �

Lemma A.3 (Soundness) If the instance I has a collection of (1− ε)m edge-disjoint si-ti paths, then G
has a perfect matching of size at least (1− ε0)n, where ε = ε0

4q .

Proof: Let P be a collection of (1−ε)m edge-disjoint si-ti paths. First, we claim that there is a subcollection
P ′ ⊆ P of size (1 − 3ε)m, such that each path in this subcollection uses exactly one node from X and
exactly one node from Z. To see this, note that each node in X has degree 3, so the edge-disjoint paths
in P are node-disjoint on X; moreover, |X| = m and each si-ti path uses at least one node from X; since
|P| = (1− ε)m, the number of paths in P that use more than one node from X is ≤ εm. Similarly, there
are at most εm paths in P that use more than one node from the set Z. After removing these paths from
P, we get a subcollection of paths P ′ of cardinality at least (1 − 3ε)m such that each path uses exactly
one node from X and exactly one node from Z. Also, note that the number of s1-t1 paths in P ′ is at least
(1− 3ε)m− (m− n) = n− 3εm.

Each path in P ′ has the form s1, bj`
, x`, z`, cj`

, t1 (without loss of generality), and so contains exactly
one edge of the form {x`, z`}; note that each such edge corresponds to a triple e` ∈ E . Thus, P ′ corresponds
to a set of triples T , and we have |T | = |P ′| ≥ n − 3εm. Observe that each element in B ∪ C appears in
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at most one triple in T ; otherwise, there will be two paths in P ′ that both contain either the same node
bj or the same node ck. But each element in A may appear in any number of triples in T . Let αi denote
the number of triples in T that contain the element ai. Now we pick a subset T ′ of disjoint triples from T
as follows. For each ai ∈ A with αi ≥ 1, we add to T ′ an arbitrary triple from T that contains ai, and we
discard the other αi − 1 triples containing ai. We claim that T ′ has at least (1− ε0)n disjoint triples. Let
us partition A into A0, A1, A2, where A0 is the set of ai’s with αi = 0, A1 is the set of ai’s with αi = 1,
and A2 is the set of ai’s with αi ≥ 2. Now focus on the s2-t2 paths in P, and note that there are at least
(1−ε)m−n = (q−1)n−εm such paths. We claim that there are at most (q−1)(|A0|+|A1|)+

∑
ai∈A2

(q−αi)
s2-t2 paths in P; we defer the proof of this claim. The claim implies that

(q − 1)n− εm ≤ (q − 1)(|A0|+ |A1|) +
∑

ai∈A2

(q − αi)

= (q − 1)(|A0|+ |A1|+ |A2|)−
∑

ai∈A2

(αi − 1).

Hence, we have: ∑
ai∈A2

(αi − 1) =
∑

ai∈A, αi≥1

(αi − 1) ≤ εm.

Observe that the number of triples in T \ T ′ is
∑

ai∈A, αi≥1(αi − 1), because we discard (αi − 1) triples
from T for each element ai ∈ A with αi ≥ 1. Thus, |T \ T ′| is at most εm, and recall that |T | ≥ n− 3εm.
Therefore, T ′ has at least n− 4εm = (1− ε0)n disjoint triples. This completes the proof of the lemma.

To prove the above claim (on the number of s2-t2 paths in P), we first remove from H all edges in
the union of the s1-t1 paths in P ′, and next, we find an s2-t2 edge cut in the remaining graph of an
appropriate size. Denote by H ′ the graph obtained after removing the edges of all the s1-t1 paths in P ′.
Define F ⊆ E(H ′) to contain all edges between t2 and the nodes corresponding to the elements in A0∪A1,
and moreover, for each element ai ∈ A2, let F contain every edge {y`, z`} in H ′ that corresponds to a
triple e` ∈ E \ T such that e` contains ai. Observe that for each ai ∈ A2, H has q subpaths x`, y`, z`

(corresponding to the q triples that contain ai), and αi of these subpaths are used by the s1-t1 paths in
P ′ (each of these s1-t1 paths uses an edge of the form {x`, y`}), and the remaining q − αi subpaths each
contribute an edge of the form {y`, z`} to F . We claim that F is an s2-t2 edge cut in H ′. To see this, remove
F from H ′ and note that the resulting graph has no s2-t2 path; we omit the details for this verification.
Therefore, F forms an s2-t2 edge cut in H ′ of size (q − 1)(|A0|+ |A1|) +

∑
ai∈A2

(q − αi), hence, this gives
an upper bound on the number of s2-t2 paths in P. �

Thus, the theorem follows. �
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