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Abstract. We study approximation algorithms and hardness of approx-
imation for several versions of the problem of packing Steiner trees. For
packing edge-disjoint Steiner trees of undirected graphs, we show APX-
hardness for 4 terminals. For packing Steiner-node-disjoint Steiner trees
of undirected graphs, we show a logarithmic hardness result, and give an
approximation guarantee of O(y/nlogn), where n denotes the number
of nodes. For the directed setting (packing edge-disjoint Steiner trees of
directed graphs), we show a hardness result of Q(m%_e) and give an
approximation guarantee of O(m%‘i'e)7 where m denotes the number of
edges. The paper has several other results.

1 Introduction

We study approximation algorithms and hardness (of approximation) for several
versions of the problem of packing Steiner trees. Given an undirected graph
G = (V, F) and a set of terminal nodes T C V, a Steiner tree is a connected,
acyclic subgraph that contains all the terminal nodes (nonterminal nodes, which
are called Steiner nodes, are optional). The basic problem of Packing Edge-
disjoint Undirected Steiner trees (PEU for short) is to find as many edge-disjoint
Steiner trees as possible. Besides PEU, we study some other versions (see below
for details).

The PEU problem in its full generality has applications in VLSI circuit design
(e.g., see [11,21]). Other applications include multicasting in wireless networks
(see [7]) and broadcasting large data streams (such as videos) over the Internet
(see [14]). There is significant motivation from the areas of graph theory and
combinatorial optimization. Menger’s theorem on packing edge-disjoint s, -paths
[5] corresponds to the special case of packing edge-disjoint Steiner trees on two
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terminal nodes (i.e., T = {s,t}). Another special case is when all the nodes are
terminals (i.e., T = V). Then the problem is to find a maximum set of edge-
disjoint spanning trees. This topic was studied in the 1960’s by graph theorists,
and a min-max theorem was developed by Tutte and independently by Nash-
Williams [5]. Subsequently, Edmonds and Nash-Williams derived such results in
the more general setting of the matroid intersection theorem. One consequence
is that efficient algorithms are available via the matroid intersection algorithm
for the case of T = V. (Note that most problems on packing Steiner trees are
NP-hard, so results from matroid optimization do not apply directly.) A set
of nodes § is said to be A-edge connected if there exist A edge-disjoint paths
between every two nodes of S. An easy corollary of the min-max theorem is
that if the node set V' is 2k-edge connected, then the graph has &k edge-disjoint
spanning trees. Recently, Kriesell [19] conjectured an exciting generalization:
If the set of terminals is 2k-edge connected, then there exist £ edge-disjoint
Steiner trees. He proved this for Eulerian graphs (by an easy application of
the splitting-off theorem). Note that a constructive proof of this conjecture may
give a 2-approximation algorithm for PEU. Jain, Mahdian, and Salavatipour [14]
gave an approximation algorithm with guarantee (roughly) %. Moreover, using
a versatile and powerful proof technique (that we will borrow and apply in the
design of our algorithms), they showed that the fractional version of PEU has
an a-approximation algorithm if and only if the minimum-weight Steiner tree
problem has an a-approximation algorithm (Theorem 4.1 in [14]). The latter
problem is well studied and is known to be APX-hard. It follows that PEU is
APX-hard (Corollary 4.3 in [14]). Kaski [16] showed that the problem of finding
two edge-disjoint Steiner trees is NP-hard, and moreover, problem PEU is NP-
hard even if the number of terminals is 7. Frank et al. [8] gave a 3-approximation
algorithm for a special case of PEU (where no two Steiner nodes are adjacent).
Very recently Lau [20], based on the result of Frank et al. [8], has given an O(1)
approximation algorithm for PEU (but Kriesell’s conjecture remains open).

Using the fact that PEU is APX-hard, Floréen et al. [7] showed that packing
Steiner-node-disjoint Steiner trees (see problem PVU defined below) is APX-
hard. They raised the question whether this problem is in the class APX. Also,
they showed that the special case of the problem with 4 terminal nodes is NP-
hard.

Our Results:

We use n and m to denote the number of nodes and edges, respectively. The
underlying assumption for most of our hardness results is P£ANP.

e Packing Fdge Disjoint Undirected Steiner Trees (PEU ). For this setting, we
show that the maximization problem with only four terminal nodes is APX-
hard. This result appears in Section 3. (An early draft of our paper also proved,
independently of [16], that finding two edge-disjoint Steiner trees is NP-hard.)
e Packing Vertex Capacitated Undirected Steiner Trees (PVCU ): We are given
an undirected graph G, a set T'C V of terminals, and a positive vertex capacity
¢y for each Steiner vertex v. The goal is to find the maximum number of Steiner



trees such that the total number of trees containing each Steiner vertex v is at
most ¢,. The special case where all the capacities are 1 is the problem of Packing
Verter Disjoint Undirected Steiner Trees (PVU for short). Note that here and
elsewhere we use “vertex disjoint Steiner trees” to mean trees that are disjoint
on the Steiner nodes (and of course they contain all the terminals). We show
essentially the same hardness results for PVU as for PEU, that is, finding two
vertex disjoint Steiner trees is NP-hard and the maximization problem for a con-
stant number of terminals is APX-hard. For an arbitrary number of terminals,
we prove an {2(logn)-hardness result (lower bound) for PVU, and give an ap-
proximation guarantee (upper bound) of O(y/nlogn) for PVCU, by an LP-based
rounding algorithm. This shows that PVU is significantly harder than PEU, and
this settles (in the negative) an open question of Floréen et al. [7] (mentioned
above). These results appear in Section 3. Although the gap for PVU between
our hardness result and the approximation guarantee is large, we tighten the
gap for another natural generalization of PVU, namely Packing Vertex Capac-
itated Priority Steiner Trees (PVCU-priority for short), which is motivated by
the Quality of Service in network design problems (see [4] for applications). For
this priority version, we show a lower-bound of Q(n%_ﬁ) on the approximation
guarantee; moreover, our approximation algorithm for PVCU extends to PVCU-
priority to give a guarantee of O(n%‘l'ﬁ); see Subsection 3.1. (Throughout, we use
€ to denote any positive real number.)

e Packing Edge/Vertex Capacitated Directed Steiner Trees (PECD and PVCD ):
Consider a directed graph G/(V, F) with a positive capacity ¢, for each edge e, a
set T'C V of terminals, and a specified root vertex r, » € T. A directed Steiner
tree rooted at r is a subgraph of (G that contains a directed path from r to ¢,
for each terminal ¢ € T. In the problem of Packing Edge Capacitated Directed
Steiner trees (PECD) the goal is to find the maximum number of directed
Steiner trees rooted at r such that for every edge e € F the total number of
trees containing e is at most ¢.. We prove an Q(m%_ﬁ)—hardness result even for
unit-capacity PECD (i.e., packing edge-disjoint directed Steiner trees), and also
provide an approximation algorithm with a guarantee of O(m%‘l'ﬁ). Moreover,
we show the NP-hardness of the problem of finding two edge-disjoint directed
Steiner trees with only three terminal nodes. We also consider the problem of
Packing Vertex Capacitated Directed Steiner trees (PVCD), where instead of
capacities on the edges we have a capacity ¢, on every Steiner node v, and the
goal is to find the maximum number of directed Steiner trees such that the num-
ber of trees containing any Steiner node v is at most ¢,. For directed graphs,
PECD and PVCD are quite similar and we get the following results on the ap-
proximation guarantee for the latter problem: a lower-bound of Q(n%_ﬁ) (even
for the special case of unit capacities), and an upper bound of O(n%‘l'ﬁ). These
results appear in Section 2.

In summary, with the exception of PVCU, the approximation guarantees
(upper bounds) and hardness results (lower bounds) presented in this paper and
the previous works [7,14,16,20] are within the same class with respect to the
classification in Table 10.2 in [1].



Comments:

Several of our proof techniques are inspired by results for disjoint-paths problems
in the papers by Guruswami et al. [9], Baveja and Srinivasan [2], and Kolliopoulos
and Stein [17]. (In these problems, we are given a graph and a set of source-sink
pairs, and the goal is to find a maximum set of edge/node disjoint source-sink
paths.) To the best of our knowledge, there is no direct relation between Steiner
tree packing problems and disjoint-paths problems — neither problem is a special
case of the other one. (In both problems, increasing the number of terminals
seems to increase the difficulty for approximation, but each Steiner tree has
to connect together all the terminals, whereas in the disjoint-paths problems
the goal is to connect as many source-sink pairs as possible by disjoint paths.)
There is a common generalization of both these problems, namely, the problem
of packing Steiner trees with different terminal sets (given £ sets of terminals
11,75, ..., Ty, ¢ polynomial in n, find a maximum set of edge-disjoint, or Steiner-
node-disjoint, Steiner trees where each tree contains one of the terminal sets T;
(1 < i< ¢)). We chose to focus on our special cases (with identical terminal sets)
because our hardness results are of independent interest, and moreover, the best
approximation guarantees for the special cases may not extend to the general
problems.

For the problems PVCU, PVCU-priority, PECD, and PVCD, we are not
aware of any previous results on approximation algorithms or hardness results
other than [7], although there is extensive literature on approximation algo-
rithms for the corresponding minimum-weight Steiner tree problems (e.g., [3]
for minimum-weight directed Steiner trees and [12] for minimum-node-weighted
Steiner trees).

Due to space constraints, most of our proofs are deferred to the full version
of the paper. Very recently, we have obtained new results that substantially
decrease the gap between the upper bounds and the lower bounds for PVU;
these results will appear elsewhere.

2 Packing Directed Steiner Trees

In this section, we study the problem of packing directed steiner trees. We show
that Packing Vertex Capacitated Directed Steiner trees (PVCD) and the edge
capacitated version (PECD) are as hard as each other in terms of approximabil-
ity (similarly for the unit capacity cases). Then we present the hardness results
for PECD with unit capacities (i.e., edge-disjoint directed case), which immedi-
ately implies similar hardness results for PVCD with unit capacities (i.e., vertex-
disjoint directed case). We also present an approximation algorithm for PECD
which implies a similar approximation algorithm for PVCD. The proof of the
following theorem is easy. The idea for the first direction is to take the line graph,
and for the second one is to split every vertex into two adjacent vertices.

Theorem 1. Given an instance I = (G(V, E),T CV, k) of PECD (of PVCD),
there is an instance I' = (G'(V', E'),T" C V,k) of PVCD (of PECD) with



|G’ = poly(|G|), such that T has k directed Steiner trees satisfying the capacities
of the edges (vertices) if and only if I' has k directed Steiner trees satisfying the
capacities of the vertices (edges).

2.1 Hardness results

First we prove that PVCD with unit capacities is NP-hard even in the simplest
non-trivial case where there are only three terminals (one root r and two other
terminals) and we are asked to find only 2 vertex-disjoint Steiner trees. The
problem becomes trivially easy if any of these two conditions is tighter, i.e., if
the number of terminals is reduced to 2 or the number of Steiner trees that we
have to find is reduced to 1. If the number of terminals is arbitrary, then we show
that PVCD with unit capacities is NP-hard to approximate within a guarantee
of O(n%_ﬁ) for any € > 0. The proof is relatively simple and does not rely on the
PCP theorem. Also, as we mentioned before, both of these hardness results carry
over to PECD. For both reductions, we use the following well-known NP-hard
problem (see [10]):

ProBrLEM: 2DIRPATH:

INSTANCE: A directed graph G(V, F), distinct vertices 21, y1, 2,42 € V.
QUESTION: Are there two vertex-disjoint directed paths, one from 1 to y; and
the other from x5 to yo in G7

Theorem 2. Given an instance I of PVCD with unit capacities and only three
terminals, it is NP-hard to decide if it has 2 vertex-disjoint directed Steiner trees.

From Theorems 1 and 2, it follows that:

Theorem 3. Given an instance I of PECD with unit capacities and only three
terminals, it is NP-hard to decide if it has 2 edge-disjoint directed Steiner trees.

Now we show that, unless P=NP, any approximation algorithm for PVCD
. . o, 1
with unit capacities has a guarantee of £2(n~°).
Theorem 4. Given an instance of PVCD with unit capacities, it is NP-hard to

approximate the solution within O(n%_ﬁ) for any € > 0.

Proof. We use a reduction from the 2DIRPATH problem. Our proof is inspired
by a reduction used in [9] for the edge-disjoint path problem. Assume that
I = (G, 21,41, %2,%2) is an instance of 2DIRPATH and let € > 0 be given.
We construct a directed graph H. First we construct a graph G’ whose underly-
ing structure is shown in Figure 1. For N = |V(G)|'/, create two sets of vertices
A={ay,...,an} and B = {by,...,by}. In the figure, all the edges are directed
from top to bottom and from left to right. For each grey box, there is a vertex at
each of the four corners, and there are two edges, from left to right and from top
to bottom. This graph may be viewed as the union of N vertex-disjoint directed
trees T1,...,Txn, where T; is rooted at a; and has paths to all the vertices in
B—{b;}. Each tree T} consists of one horizontal path H*, which is essentially the



Fig. 1. Construction of H: each grey box will be replaced with a copy of G

1th horizontal row above b;’s, and starts with a;, vi,...and ends in vy, together
with N — 1 vertical paths P} (1 < j # i < N), such that each of these vertical
paths branches out from the horizontal path, starting at vertex v} and ending

i
J :
vertex of a vertical path that ends at b;; note that there are no vertices v}. Also,
note that each grey box corresponds to a triple (¢, j, ¢) where the box is in the

1th horizontal line and is in the vertical path that starts at vf and ends at b;;

at vertex b; € B. Each vertex v} is in the 7th horizontal row, and is the start

the corner vertices of the grey box are labeled szj,téj,pfi, qfi for the left, right,

top, and bottom corners, respectively. More specifically, for T} the horizontal

: Ll 141 141 11 g1 1 1
and vertical paths are: H* = a1, 531,151, +++s Sy, EN1s V2, 5325 6395« « o3 U3y« oo, Unyy
and le = v]l»,bj, for 2 < j < N. For T the horizontal and vertical paths

.2 _ 2 2 42 2422 2 2 _ .2 .2 2 3
are: H* = ay, vy, 531,151, ..., 5§2:ENgy V55 -+, Uy and PP = 07, p3y, 457, b5 (for

1<j#2<N),and PJ%, = U?V,bN. In general, for T;:
— HZ — ai}a Uli, 82(’i+1)1"t2('i+1)1’ e 53’\71,??\71, Ué, Sii+1)2,tii+1)27 e 5%27153’\727 Uéa e
v} st t. el S t v}
N=1 8(i41)(N=1) L1y (N=1)r + + 0 SN(N—1) EN(NV=1)2 VN o
- FOI' .7 ;él < N: PJZ = U}ap;'(i_l)aQ;(i_l)ap;(i_2)7Q;(i_2)a . '7p}17q§17bj7 and
Py = vy, bn.

Graph H is obtained from G’ by making the following modifications:

— For each grey box, with corresponding triple say (¢, j,¢) and with vertices
52j7t2j7p§i74§i7 we first remove the edges sj;t}; and pﬁiqfi, then we place a
copy of graph G and identify vertices x1, y1, #2, and y, with 527», téj,pfi, and

qfi, respectively.



— Add a new vertex r (root) and create directed edges from r to ay, ..., an.
— Create N new directed edges a;b;, for 1 <i < N.

The set of terminals (for the directed Steiner trees) is BU{r} = {b1,...,bn,r}.
The proof follows from the following two claims (we omit their proofs).

Claim 1: If I is a “Yes” instance of 2DIRPATH, then H has N vertex-disjoint
directed Steiner trees.

Claim 2: If I is a “No” instance, then H has exactly 1 vertex-disjoint directed
Steiner tree.

The number of copies of G in the construction of H is O(N?3) where N =
|V(G)|M¢. So the number of vertices in H is O(N3t¢). By Claims 1 and 2 it is
NP-hard to decide if H has at least /N or at most one directed Steiner trees.
This creates a gap of £2(ns~°). O

For PECD with unit capacities we use a reduction very similar to the one
we presented for PVCD. The only differences are: (i) the instance that we use
as the building block in our construction (corresponding to graph G above)
is an instance of another well-known NP-hard problem, namely edge-disjoint
2DIRPATH (instead of vertex-disjoint), (ii) the parameter N above is |E(G)|'/<.
Using this reduction we can show:

Theorem 5. Gliven an instance of PECD with unit capacities, it is NP-hard to
approximate the solution within O(m%_ﬁ) for any € > 0.

2.2 Approximation algorithms

In this section we show that, although PECD is hard to approximate within
a ratio of O(ml/?’_ﬁ), there is an approximation algorithm with a guarantee
of O(m%‘l'ﬁ) (details in Theorem 7). The algorithm is LP-based with a simple
rounding scheme similar to those in [2, 17]. The main idea of the algorithm is to
start with one of the known approximation algorithms for finding a Minimum-
weight Directed Steiner Tree. Using this and an extension of Theorem 4.1 in [14],
we obtain an approximate solution to the fractional version of PECD. After that,
a simple randomized rounding algorithm yields an integral solution. A similar
method yields an approximation algorithm for PVCD that has a guarantee of
O(nz+e),

We may formulate PECD as an integer program (IP). In the following, F
denotes the collection of all directed Steiner trees in G.

maximize ) pcrTF
subject to Ve € E: ZF:eEF zp < ce (1)
VFeF: xpef0,1}

The fractional packing edge capacitated directed Steiner tree problem (frac-
tional PECD, for short) is the linear program (LP) obtained by relaxing the
integrality condition in the above IP to #p > 0. For any instance I of the (in-
tegral) packing problem, we denote the fractional instance by I;. The proof of
Theorem 4.1 in [14] may be adapted to prove the following:



Theorem 6. There is an a-approzimation algorithm for fractional PECD if and
only if there is an a-approzimation algorithm for the minimum (edge weighted)
directed Steiner tree problem.

Charikar et al. [3] gave an O(n€)-approximation algorithm for the minimum-
weight directed Steiner tree problem. This, together with Theorem 6 implies:

Corollary 1. There is an O(n®)-approzimation algorithm for fractional PECD.

The key lemma in the design of our approximation algorithm for PECD is
as follows.

Lemma 1. Let I be an instance of PECD, and let o™ be the (objective) value of a
(not necessarily optimal) feasible solution {x%, : F € F} to I; such that the num-
ber of non-zero % ’s is polynomially bounded. Then, we can find in polynomial
time, a solution to I with value at least 2(max{¢*//m, min{e**/m, ©*1}).

Theorem 7. Let I be an instance of PECD. Then for any € > 0, we can find in
polynomial time a set of directed Steiner trees (satisfying the edge capacity con-
straints) of size at least .Q(max{gof/m%—_e, min{gp?/m”ﬁ, o7 /mI?1Y), where
@y is the optimal value of the fractional instance I¢.

Proof. Let I; be the fractional instance. By Corollary 1, we can find an approx-
imate solution ¢* for I; such that ¢* > cgof/mﬁ/2 for some constant ¢ and the
given € > 0. Furthermore, the approximate solution contains only a polynomial
number of Steiner trees with non-zero fractional values (this follows from the
proof of Theorem 6 which is essentially the same as Theorem 4.1 in [14]). If we
substitute ¢* in Lemma 1 we obtain an approximation algorithm that finds a
set J’' of directed Steiner trees such that F’ has the required size. O

For PVCD we do the following. Given an instance I of PVCD with graph
G(V,E) and T C V (with |V] = n and |E| = m), we first use the reduction pre-
sented in Theorems 1 to produce an instance I' of PECD with graph G'(V', ')
and 7" C V'. By the construction of G/ we have |V'| = 2|V| = 2n and there are
only n edges in E’ with bounded capacities (corresponding to the vertices of ().
Therefore, if we use the algorithm of Theorem 7, the number of bad events will
be n, rather than m. Using this observation we have the following:

Theorem 8. Let I be an instance of PVCD. Then for any € > 0 we can find
in polynomial time a set of directed Steiner trees (satisfying the vertex capacity

constraints) of size at least Q(max{gof/n%—_e, min{gp?/nl‘l'ﬁ, @7 /n?Y}), where
@y is the optimal value of the fractional instance I¢.

3 Packing Undirected Steiner Trees

For packing edge-disjoint undirected Steiner trees (PEU), Jain et al. [14] showed
that the (general) problem is APX-hard, and Kaski [16] showed the special case



of the problem with only 7 terminal nodes is NP-hard. Here we show that PEU is
APX-hard even when there are only 4 terminals. In an early draft of this paper we
also showed, independently of [16], that finding two edge-disjoint Steiner trees is
NP-hard. Both of these hardness results carry over (using similar constructions)
to PVU. The following observation will be used in our proofs:

Observation 2. For any solution to any of our Steiner tree packing problems,
we may assume that: (1) In any Steiner tree, none of the leaves is a Steiner node
(otherwise we simply remove it). (2) Fvery Steiner node with degree 3 belongs
to at most one Steiner tree.

Using this observation, the proof of NP-hardness for finding two edge-disjoint
Steiner trees implies the following theorem.

Theorem 9. Finding 2 vertex-disjoint undirected Steiner trees is NP-hard.
Theorem 10. PEU is APX-hard even if there are only 4 terminals.

Proof. We use a reduction from Bounded 3-Dimensional Matching (B3DM). As-
sume that we are given three disjoint sets X,Y, 7 (each corresponding to one
part of a 3-partite graph (), with | X| =Y | =|7| =n,andaset F C X XY x 7
containing m triples. Furthermore, we assume that each vertex in X UY U Z
belongs to at most 5 triples. It is known [15] that there is an absolute constant
€0 > 0 such that it is NP-hard to distinguish between instances of BADM where
there is a perfect matching (i.e., n vertex-disjoint triples) and those in which
every matching (set of vertex-disjoint triples) has size at most (1 — eg)n. As-
sume that z1,...,%n, Y1,..+,¥Yn, and z1,..., z, are the nodes of X, Y, and 7,
respectively. We construct a graph H which consists of:

— 4 terminals t., ty, ., and t,,.
— Non-terminals 1,...,%n, y1,...,¥Un, and z1,..., 2, (corresponding to the
nodes in X, Y, 7Z), @), ..., %0 s Yise s Ymon, and 24, ..., 2.
— Two non-terminals U and W.
— Edges toi, tyyi, to2), zlz;, and t,, 2}, for 1 <i <n.
— Edges t,2, xiyl, iU, yity, and yit,,, for 1 <i<m—n.
— m — n parallel edge from W to ¢,.
— For each triple e, = z;y; 2, € F, 3 non-terminals v, vZ, v and the following
edges: viz;, vizy, vivd, viy;, vive, viU, and vIW.

See Figure 2. We can show that (a) [completeness] if G has a perfect matching
then I has m edge-disjoint Steiner trees and (b) [soundness] if every matching
in G has size at most (1 — €g)n then H has at most (1 — €;)m edge-disjoint
Steiner trees, for €; > €o/110. O

The constant 110 in the above theorem is not optimal. We can find explicit
lower bounds for the hardness of PEU with constant number of terminals using
the known hardness results for kDM, for higher values of k. For instance, Hazan
et al. [13] proved that 4DM (with upper bounds on the degree of each vertex)



Fig. 2. Construction with 4 terminals from B3DM

is hard to approximate within a factor %. Using this and a reduction similar
to the one presented in Theorem 10 it seems possible to show that PEU with
5 terminals is hard to approximate within a factor (1 + ﬁ). The proof of

Theorem 10 extends to give the next result.
Theorem 11. PVU is APX-hard even with only 6 terminals.

These results may seem to suggest that PEU and PVU have the same ap-
proximation guarantees. But the next theorem shows that PVU is significantly
harder than PEU. We show this by a reduction from the set-cover packing prob-
lem (or domatic number problem). Given a bipartite graph G(V; U V3, E), a
set-cover (of V) is a subset S C V; such that every vertex of V2 has a neighbor
in 5. A set-cover packing is a collection of pairwise disjoint set-covers of V5. The
goal is to find a packing of set-covers of maximum size. Feige et al. [6] show that,
unless NP C DTIME(n!°81°87) there is no (1 — €) In n approximation algorithm
for set-cover packing, where n = |Vi| + |[V2|. We have the following theorem.

Theorem 12. PVU cannot be approzimated within ratio (1 — €)logn, for any
€ >0, unless NP C DTIME(n'o8losn),

On the other hand, we can obtain an O(y/nlogn) algorithm for PVCU (which
contains PVU as a special case). To do so, consider the fractional version of
PVCU obtained by relaxing the integrality condition in the IP formulation. The
separation problem for the dual of this LP is the minimum node-weighted Steiner
tree problem. For this problem, Guha and Khuller [12] give an O(logn) approx-
imation algorithm. Using the following analog of Theorem 6 (or Theorem 4.1 in
[14]) we obtain a polytime O(logn) approximation for fractional PVCU.



Lemma 3. There is an a-approzimation for fractional PVCU if and only if
there is an a-approzimation for the minimum node weighted Steiner tree problem.

Remark: Lemma 3 and the fact that the minimum node weighted Steiner tree
problem is hard to approximate within O(logk) (with k& being the number of
terminals) yields an alternative proof for the £2(log k) hardness of PVCU.

The algorithm for PVCU is similar to the ones we presented for PECD and
PVCD. That is, we apply randomized rounding to the solution of the fractional
PVCU instance. Skipping the details, this yields the following:

Theorem 13. Given an instance of PVCU and any € > 0, we can find in poly-
nomial time a set of Steiner trees (satisfying the vertex capacity constraints) of

size at least 2(max{py/\/nlogn, min{goj%/nlog2 n, ¢r/logn}t}), where @¢ is
the optimal value of the instance of fractional PVCU.

3.1 Packing vertex-disjoint priority Steiner trees

The priority Steiner problem has been studied by Charikar et al. [4]. Here, we
study the problem of packing vertex-disjoint priority Steiner trees of undirected
graphs. (One difference with the earlier work in [4] is that weights and priorities
are associated with vertices rather than with edges). Consider an undirected
graph G' = (V, F') with a set of terminals T C V, one of which is distinguished as
the root 7, every vertex v has a nonnegative integer p, as its priority, and every
Steiner vertex v € V — T has a positive capacity ¢,. A priority Steiner tree is
a Steiner tree such that for each terminal ¢ € T every Steiner vertex v on the
r,t path has priority p, > p;. In the problem PVCU-priority (Packing Vertex
Capacitated Undirected Priority Steiner Trees) the goal is to find a maximum
set of priority Steiner trees obeying vertex capacities (i.e., for each Steiner vertex
v € V=T the number of trees containing v is < ¢, ). The algorithm we presented
for PVCU extends to PVCU-priority, giving roughly the same approximation
guarantee.

Theorem 14. Given an instance of PVCU-priority and any € > 0, we can find
in polynomial time a set of priority Steiner trees (satisfying the vertex capacity
constraints) of size at least Q(max{gof/n%—_e, min{p?/n'te, @7 /n?Y}), where
@y is the optimal value of the instance of fractional PVCU-priority.

On the other hand, we prove an Q(né_ﬁ) hardness result for PVCU-priority
by adapting the proof of Theorem 4 (thus improving on our logarithmic hardness
result for PVCU). The main difference from the proof of Theorem 4 is that we
use instances of the Undir-Node-USF problem ( Undirected Node capacitated Un-
splittable Flow) — which is shown to be NP-complete in [9] — instead of instances
of 2DIRPATH as the modules that are placed on the “grey boxes” in Figure 1.

Theorem 15. Given an instance of PVCU-priority, it is NP-hard to approzi-
mate the solution within O(n%_ﬁ) for any € > 0.
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