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aAbstra
t. We study approximation algorithms and hardness of approx-imation for several versions of the problem of pa
king Steiner trees. Forpa
king edge-disjoint Steiner trees of undire
ted graphs, we show APX-hardness for 4 terminals. For pa
king Steiner-node-disjoint Steiner treesof undire
ted graphs, we show a logarithmi
 hardness result, and give anapproximation guarantee of O(pn log n), where n denotes the numberof nodes. For the dire
ted setting (pa
king edge-disjoint Steiner trees ofdire
ted graphs), we show a hardness result of 
(m 13��) and give anapproximation guarantee of O(m 12+�), where m denotes the number ofedges. The paper has several other results.1 Introdu
tionWe study approximation algorithms and hardness (of approximation) for severalversions of the problem of pa
king Steiner trees. Given an undire
ted graphG = (V;E) and a set of terminal nodes T � V , a Steiner tree is a 
onne
ted,a
y
li
 subgraph that 
ontains all the terminal nodes (nonterminal nodes, whi
hare 
alled Steiner nodes, are optional). The basi
 problem of Pa
king Edge-disjoint Undire
ted Steiner trees (PEU for short) is to �nd as many edge-disjointSteiner trees as possible. Besides PEU, we study some other versions (see belowfor details).The PEU problem in its full generality has appli
ations in VLSI 
ir
uit design(e.g., see [11,21℄). Other appli
ations in
lude multi
asting in wireless networks(see [7℄) and broad
asting large data streams (su
h as videos) over the Internet(see [14℄). There is signi�
ant motivation from the areas of graph theory and
ombinatorial optimization.Menger's theorem on pa
king edge-disjoint s; t-paths[5℄ 
orresponds to the spe
ial 
ase of pa
king edge-disjoint Steiner trees on two? Supported by NSERC grant No. OGP0138432.?? Resear
h done while a postdo
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terminal nodes (i.e., T = fs; tg). Another spe
ial 
ase is when all the nodes areterminals (i.e., T = V ). Then the problem is to �nd a maximum set of edge-disjoint spanning trees. This topi
 was studied in the 1960's by graph theorists,and a min-max theorem was developed by Tutte and independently by Nash-Williams [5℄. Subsequently, Edmonds and Nash-Williams derived su
h results inthe more general setting of the matroid interse
tion theorem. One 
onsequen
eis that eÆ
ient algorithms are available via the matroid interse
tion algorithmfor the 
ase of T = V . (Note that most problems on pa
king Steiner trees areNP-hard, so results from matroid optimization do not apply dire
tly.) A setof nodes S is said to be �-edge 
onne
ted if there exist � edge-disjoint pathsbetween every two nodes of S. An easy 
orollary of the min-max theorem isthat if the node set V is 2k-edge 
onne
ted, then the graph has k edge-disjointspanning trees. Re
ently, Kriesell [19℄ 
onje
tured an ex
iting generalization:If the set of terminals is 2k-edge 
onne
ted, then there exist k edge-disjointSteiner trees. He proved this for Eulerian graphs (by an easy appli
ation ofthe splitting-o� theorem). Note that a 
onstru
tive proof of this 
onje
ture maygive a 2-approximation algorithm for PEU. Jain, Mahdian, and Salavatipour [14℄gave an approximation algorithm with guarantee (roughly) jT j4 . Moreover, usinga versatile and powerful proof te
hnique (that we will borrow and apply in thedesign of our algorithms), they showed that the fra
tional version of PEU hasan �-approximation algorithm if and only if the minimum-weight Steiner treeproblem has an �-approximation algorithm (Theorem 4.1 in [14℄). The latterproblem is well studied and is known to be APX-hard. It follows that PEU isAPX-hard (Corollary 4.3 in [14℄). Kaski [16℄ showed that the problem of �ndingtwo edge-disjoint Steiner trees is NP-hard, and moreover, problem PEU is NP-hard even if the number of terminals is 7. Frank et al. [8℄ gave a 3-approximationalgorithm for a spe
ial 
ase of PEU (where no two Steiner nodes are adja
ent).Very re
ently Lau [20℄, based on the result of Frank et al. [8℄, has given an O(1)approximation algorithm for PEU (but Kriesell's 
onje
ture remains open).Using the fa
t that PEU is APX-hard, Flor�een et al. [7℄ showed that pa
kingSteiner-node-disjoint Steiner trees (see problem PVU de�ned below) is APX-hard. They raised the question whether this problem is in the 
lass APX. Also,they showed that the spe
ial 
ase of the problem with 4 terminal nodes is NP-hard.Our Results:We use n and m to denote the number of nodes and edges, respe
tively. Theunderlying assumption for most of our hardness results is P6=NP.� Pa
king Edge Disjoint Undire
ted Steiner Trees (PEU): For this setting, weshow that the maximization problem with only four terminal nodes is APX-hard. This result appears in Se
tion 3. (An early draft of our paper also proved,independently of [16℄, that �nding two edge-disjoint Steiner trees is NP-hard.)� Pa
king Vertex Capa
itated Undire
ted Steiner Trees (PVCU): We are givenan undire
ted graph G, a set T � V of terminals, and a positive vertex 
apa
ity
v for ea
h Steiner vertex v. The goal is to �nd the maximumnumber of Steiner



trees su
h that the total number of trees 
ontaining ea
h Steiner vertex v is atmost 
v. The spe
ial 
ase where all the 
apa
ities are 1 is the problem of Pa
kingVertex Disjoint Undire
ted Steiner Trees (PVU for short). Note that here andelsewhere we use \vertex disjoint Steiner trees" to mean trees that are disjointon the Steiner nodes (and of 
ourse they 
ontain all the terminals). We showessentially the same hardness results for PVU as for PEU, that is, �nding twovertex disjoint Steiner trees is NP-hard and the maximization problem for a 
on-stant number of terminals is APX-hard. For an arbitrary number of terminals,we prove an 
(logn)-hardness result (lower bound) for PVU, and give an ap-proximation guarantee (upper bound) of O(pn logn) for PVCU, by an LP-basedrounding algorithm. This shows that PVU is signi�
antly harder than PEU, andthis settles (in the negative) an open question of Flor�een et al. [7℄ (mentionedabove). These results appear in Se
tion 3. Although the gap for PVU betweenour hardness result and the approximation guarantee is large, we tighten thegap for another natural generalization of PVU, namely Pa
king Vertex Capa
-itated Priority Steiner Trees (PVCU-priority for short), whi
h is motivated bythe Quality of Servi
e in network design problems (see [4℄ for appli
ations). Forthis priority version, we show a lower-bound of 
(n 13��) on the approximationguarantee; moreover, our approximation algorithm for PVCU extends to PVCU-priority to give a guarantee of O(n 12+�); see Subse
tion 3.1. (Throughout, we use� to denote any positive real number.)� Pa
king Edge/Vertex Capa
itated Dire
ted Steiner Trees (PECD and PVCD):Consider a dire
ted graph G(V;E) with a positive 
apa
ity 
e for ea
h edge e, aset T � V of terminals, and a spe
i�ed root vertex r, r 2 T . A dire
ted Steinertree rooted at r is a subgraph of G that 
ontains a dire
ted path from r to t,for ea
h terminal t 2 T . In the problem of Pa
king Edge Capa
itated Dire
tedSteiner trees (PECD) the goal is to �nd the maximum number of dire
tedSteiner trees rooted at r su
h that for every edge e 2 E the total number oftrees 
ontaining e is at most 
e. We prove an 
(m 13��)-hardness result even forunit-
apa
ity PECD (i.e., pa
king edge-disjoint dire
ted Steiner trees), and alsoprovide an approximation algorithm with a guarantee of O(m 12+�). Moreover,we show the NP-hardness of the problem of �nding two edge-disjoint dire
tedSteiner trees with only three terminal nodes. We also 
onsider the problem ofPa
king Vertex Capa
itated Dire
ted Steiner trees (PVCD), where instead of
apa
ities on the edges we have a 
apa
ity 
v on every Steiner node v, and thegoal is to �nd the maximumnumber of dire
ted Steiner trees su
h that the num-ber of trees 
ontaining any Steiner node v is at most 
v. For dire
ted graphs,PECD and PVCD are quite similar and we get the following results on the ap-proximation guarantee for the latter problem: a lower-bound of 
(n 13��) (evenfor the spe
ial 
ase of unit 
apa
ities), and an upper bound of O(n 12+�). Theseresults appear in Se
tion 2.In summary, with the ex
eption of PVCU, the approximation guarantees(upper bounds) and hardness results (lower bounds) presented in this paper andthe previous works [7, 14, 16, 20℄ are within the same 
lass with respe
t to the
lassi�
ation in Table 10.2 in [1℄.



Comments:Several of our proof te
hniques are inspired by results for disjoint-paths problemsin the papers by Guruswami et al. [9℄, Baveja and Srinivasan [2℄, and Kolliopoulosand Stein [17℄. (In these problems, we are given a graph and a set of sour
e-sinkpairs, and the goal is to �nd a maximum set of edge/node disjoint sour
e-sinkpaths.) To the best of our knowledge, there is no dire
t relation between Steinertree pa
king problems and disjoint-paths problems { neither problem is a spe
ial
ase of the other one. (In both problems, in
reasing the number of terminalsseems to in
rease the diÆ
ulty for approximation, but ea
h Steiner tree hasto 
onne
t together all the terminals, whereas in the disjoint-paths problemsthe goal is to 
onne
t as many sour
e-sink pairs as possible by disjoint paths.)There is a 
ommon generalization of both these problems, namely, the problemof pa
king Steiner trees with di�erent terminal sets (given ` sets of terminalsT1; T2; : : : ; T`, ` polynomial in n, �nd a maximumset of edge-disjoint, or Steiner-node-disjoint, Steiner trees where ea
h tree 
ontains one of the terminal sets Ti(1 � i � `)). We 
hose to fo
us on our spe
ial 
ases (with identi
al terminal sets)be
ause our hardness results are of independent interest, and moreover, the bestapproximation guarantees for the spe
ial 
ases may not extend to the generalproblems.For the problems PVCU, PVCU-priority, PECD, and PVCD, we are notaware of any previous results on approximation algorithms or hardness resultsother than [7℄, although there is extensive literature on approximation algo-rithms for the 
orresponding minimum-weight Steiner tree problems (e.g., [3℄for minimum-weight dire
ted Steiner trees and [12℄ for minimum-node-weightedSteiner trees).Due to spa
e 
onstraints, most of our proofs are deferred to the full versionof the paper. Very re
ently, we have obtained new results that substantiallyde
rease the gap between the upper bounds and the lower bounds for PVU;these results will appear elsewhere.2 Pa
king Dire
ted Steiner TreesIn this se
tion, we study the problem of pa
king dire
ted steiner trees. We showthat Pa
king Vertex Capa
itated Dire
ted Steiner trees (PVCD) and the edge
apa
itated version (PECD) are as hard as ea
h other in terms of approximabil-ity (similarly for the unit 
apa
ity 
ases). Then we present the hardness resultsfor PECD with unit 
apa
ities (i.e., edge-disjoint dire
ted 
ase), whi
h immedi-ately implies similar hardness results for PVCD with unit 
apa
ities (i.e., vertex-disjoint dire
ted 
ase). We also present an approximation algorithm for PECDwhi
h implies a similar approximation algorithm for PVCD. The proof of thefollowing theorem is easy. The idea for the �rst dire
tion is to take the line graph,and for the se
ond one is to split every vertex into two adja
ent verti
es.Theorem 1. Given an instan
e I = (G(V;E); T � V; k) of PECD (of PVCD),there is an instan
e I 0 = (G0(V 0; E0); T 0 � V; k) of PVCD (of PECD) with



jG0j = poly(jGj), su
h that I has k dire
ted Steiner trees satisfying the 
apa
itiesof the edges (verti
es) if and only if I 0 has k dire
ted Steiner trees satisfying the
apa
ities of the verti
es (edges).2.1 Hardness resultsFirst we prove that PVCD with unit 
apa
ities is NP-hard even in the simplestnon-trivial 
ase where there are only three terminals (one root r and two otherterminals) and we are asked to �nd only 2 vertex-disjoint Steiner trees. Theproblem be
omes trivially easy if any of these two 
onditions is tighter, i.e., ifthe number of terminals is redu
ed to 2 or the number of Steiner trees that wehave to �nd is redu
ed to 1. If the number of terminals is arbitrary, then we showthat PVCD with unit 
apa
ities is NP-hard to approximate within a guaranteeof O(n 13��) for any � > 0. The proof is relatively simple and does not rely on thePCP theorem. Also, as we mentioned before, both of these hardness results 
arryover to PECD. For both redu
tions, we use the following well-known NP-hardproblem (see [10℄):Problem: 2DIRPATH:Instan
e: A dire
ted graph G(V;E), distin
t verti
es x1; y1; x2; y2 2 V .Question: Are there two vertex-disjoint dire
ted paths, one from x1 to y1 andthe other from x2 to y2 in G?Theorem 2. Given an instan
e I of PVCD with unit 
apa
ities and only threeterminals, it is NP-hard to de
ide if it has 2 vertex-disjoint dire
ted Steiner trees.From Theorems 1 and 2, it follows that:Theorem 3. Given an instan
e I of PECD with unit 
apa
ities and only threeterminals, it is NP-hard to de
ide if it has 2 edge-disjoint dire
ted Steiner trees.Now we show that, unless P=NP, any approximation algorithm for PVCDwith unit 
apa
ities has a guarantee of 
(n 13��).Theorem 4. Given an instan
e of PVCD with unit 
apa
ities, it is NP-hard toapproximate the solution within O(n 13��) for any � > 0.Proof. We use a redu
tion from the 2DIRPATH problem. Our proof is inspiredby a redu
tion used in [9℄ for the edge-disjoint path problem. Assume thatI = (G; x1; y1; x2; y2) is an instan
e of 2DIRPATH and let � > 0 be given.We 
onstru
t a dire
ted graph H. First we 
onstru
t a graph G0 whose underly-ing stru
ture is shown in Figure 1. For N = jV (G)j1=�, 
reate two sets of verti
esA = fa1; : : : ; aNg and B = fb1; : : : ; bNg. In the �gure, all the edges are dire
tedfrom top to bottom and from left to right. For ea
h grey box, there is a vertex atea
h of the four 
orners, and there are two edges, from left to right and from topto bottom. This graph may be viewed as the union of N vertex-disjoint dire
tedtrees T1; : : : ; TN , where Ti is rooted at ai and has paths to all the verti
es inB�fbig. Ea
h tree Ti 
onsists of one horizontal path Hi, whi
h is essentially the
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Fig. 1. Constru
tion of H: ea
h grey box will be repla
ed with a 
opy of Gith horizontal row above bj's, and starts with ai; vi1; : : : and ends in viN , togetherwith N � 1 verti
al paths P ij (1 � j 6= i � N ), su
h that ea
h of these verti
alpaths bran
hes out from the horizontal path, starting at vertex vij and endingat vertex bj 2 B. Ea
h vertex vij is in the ith horizontal row, and is the startvertex of a verti
al path that ends at bj; note that there are no verti
es vii. Also,note that ea
h grey box 
orresponds to a triple (i; j; `) where the box is in theith horizontal line and is in the verti
al path that starts at vj̀ and ends at bj;the 
orner verti
es of the grey box are labeled sìj ; tìj; pj̀i; qj̀i for the left, right,top, and bottom 
orners, respe
tively. More spe
i�
ally, for T1 the horizontaland verti
al paths are: H1 = a1; s121; t121; : : : ; s1N1; t1N1; v12; s132; t132; : : : ; v13; : : : ; v1N ,and P 1j = v1j ; bj, for 2 � j � N . For T2 the horizontal and verti
al pathsare: H2 = a2; v21; s231; t231; : : : ; s2N2; t2N2; v23; : : : ; v2N , and P 2j = v2j ; p2j1; q2j1; bj (for1 � j 6= 2 < N ), and P 2N = v2N ; bN . In general, for Ti:{ Hi = ai; vi1; si(i+1)1; ti(i+1)1; : : : ; siN1; tiN1; vi2; si(i+1)2; ti(i+1)2; : : : ; siN2; tiN2; vi3; : : : ;viN�1; si(i+1)(N�1); ti(i+1)(N�1); : : : ; siN(N�1); tiN(N�1); viN ,{ For j 6= i < N : P ij = vij; pij(i�1); qij(i�1); pij(i�2); qij(i�2); : : : ; pij1; qij1; bj, andP iN = viN ; bN .Graph H is obtained from G0 by making the following modi�
ations:{ For ea
h grey box, with 
orresponding triple say (i; j; `) and with verti
essìj ; tìj; pj̀i; qj̀i, we �rst remove the edges sìjtìj and pj̀iqj̀i, then we pla
e a
opy of graph G and identify verti
es x1; y1; x2, and y2 with sìj ; tìj; pj̀i; andqj̀i, respe
tively.



{ Add a new vertex r (root) and 
reate dire
ted edges from r to a1; : : : ; aN .{ Create N new dire
ted edges aibi, for 1 � i � N .The set of terminals (for the dire
ted Steiner trees) isB[frg = fb1; : : : ; bN ; rg.The proof follows from the following two 
laims (we omit their proofs).Claim 1: If I is a \Yes" instan
e of 2DIRPATH, then H has N vertex-disjointdire
ted Steiner trees.Claim 2: If I is a \No" instan
e, then H has exa
tly 1 vertex-disjoint dire
tedSteiner tree.The number of 
opies of G in the 
onstru
tion of H is O(N3) where N =jV (G)j1=�. So the number of verti
es in H is O(N3+�). By Claims 1 and 2 it isNP-hard to de
ide if H has at least N or at most one dire
ted Steiner trees.This 
reates a gap of 
(n 13��). �For PECD with unit 
apa
ities we use a redu
tion very similar to the onewe presented for PVCD. The only di�eren
es are: (i) the instan
e that we useas the building blo
k in our 
onstru
tion (
orresponding to graph G above)is an instan
e of another well-known NP-hard problem, namely edge-disjoint2DIRPATH (instead of vertex-disjoint), (ii) the parameter N above is jE(G)j1=�.Using this redu
tion we 
an show:Theorem 5. Given an instan
e of PECD with unit 
apa
ities, it is NP-hard toapproximate the solution within O(m 13��) for any � > 0.2.2 Approximation algorithmsIn this se
tion we show that, although PECD is hard to approximate withina ratio of O(m1=3��), there is an approximation algorithm with a guaranteeof O(m 12+�) (details in Theorem 7). The algorithm is LP-based with a simplerounding s
heme similar to those in [2, 17℄. The main idea of the algorithm is tostart with one of the known approximation algorithms for �nding a Minimum-weight Dire
ted Steiner Tree. Using this and an extension of Theorem 4.1 in [14℄,we obtain an approximate solution to the fra
tional version of PECD. After that,a simple randomized rounding algorithm yields an integral solution. A similarmethod yields an approximation algorithm for PVCD that has a guarantee ofO(n 12+�).We may formulate PECD as an integer program (IP). In the following, Fdenotes the 
olle
tion of all dire
ted Steiner trees in G.maximize PF2F xFsubje
t to 8e 2 E :PF :e2F xF � 
e8F 2 F : xF 2 f0; 1g (1)The fra
tional pa
king edge 
apa
itated dire
ted Steiner tree problem (fra
-tional PECD, for short) is the linear program (LP) obtained by relaxing theintegrality 
ondition in the above IP to xF � 0. For any instan
e I of the (in-tegral) pa
king problem, we denote the fra
tional instan
e by If . The proof ofTheorem 4.1 in [14℄ may be adapted to prove the following:



Theorem 6. There is an �-approximation algorithm for fra
tional PECD if andonly if there is an �-approximation algorithm for the minimum (edge weighted)dire
ted Steiner tree problem.Charikar et al. [3℄ gave an O(n�)-approximation algorithm for the minimum-weight dire
ted Steiner tree problem. This, together with Theorem 6 implies:Corollary 1. There is an O(n�)-approximation algorithm for fra
tional PECD.The key lemma in the design of our approximation algorithm for PECD isas follows.Lemma 1. Let I be an instan
e of PECD, and let '� be the (obje
tive) value of a(not ne
essarily optimal) feasible solution fx�F : F 2 Fg to If su
h that the num-ber of non-zero x�F 's is polynomially bounded. Then, we 
an �nd in polynomialtime, a solution to I with value at least 
(maxf'�=pm; minf'�2=m; '�gg).Theorem 7. Let I be an instan
e of PECD. Then for any � > 0, we 
an �nd inpolynomial time a set of dire
ted Steiner trees (satisfying the edge 
apa
ity 
on-straints) of size at least 
(maxf'f=m 1+�2 ; minf'2f=m1+�; 'f=m�=2gg), where'f is the optimal value of the fra
tional instan
e If .Proof. Let If be the fra
tional instan
e. By Corollary 1, we 
an �nd an approx-imate solution '� for If su
h that '� � 
'f=m�=2 for some 
onstant 
 and thegiven � > 0. Furthermore, the approximate solution 
ontains only a polynomialnumber of Steiner trees with non-zero fra
tional values (this follows from theproof of Theorem 6 whi
h is essentially the same as Theorem 4.1 in [14℄). If wesubstitute '� in Lemma 1 we obtain an approximation algorithm that �nds aset F 0 of dire
ted Steiner trees su
h that F 0 has the required size. �For PVCD we do the following. Given an instan
e I of PVCD with graphG(V;E) and T � V (with jV j = n and jEj = m), we �rst use the redu
tion pre-sented in Theorems 1 to produ
e an instan
e I 0 of PECD with graph G0(V 0; E0)and T 0 � V 0. By the 
onstru
tion of G0 we have jV 0j = 2jV j = 2n and there areonly n edges in E0 with bounded 
apa
ities (
orresponding to the verti
es of G).Therefore, if we use the algorithm of Theorem 7, the number of bad events willbe n, rather than m. Using this observation we have the following:Theorem 8. Let I be an instan
e of PVCD. Then for any � > 0 we 
an �ndin polynomial time a set of dire
ted Steiner trees (satisfying the vertex 
apa
ity
onstraints) of size at least 
(maxf'f=n 1+�2 ; minf'2f=n1+�; 'f=n�=2gg), where'f is the optimal value of the fra
tional instan
e If .3 Pa
king Undire
ted Steiner TreesFor pa
king edge-disjoint undire
ted Steiner trees (PEU), Jain et al. [14℄ showedthat the (general) problem is APX-hard, and Kaski [16℄ showed the spe
ial 
ase



of the problem with only 7 terminal nodes is NP-hard. Here we show that PEU isAPX-hard even when there are only 4 terminals. In an early draft of this paper wealso showed, independently of [16℄, that �nding two edge-disjoint Steiner trees isNP-hard. Both of these hardness results 
arry over (using similar 
onstru
tions)to PVU. The following observation will be used in our proofs:Observation 2. For any solution to any of our Steiner tree pa
king problems,we may assume that: (1) In any Steiner tree, none of the leaves is a Steiner node(otherwise we simply remove it). (2) Every Steiner node with degree 3 belongsto at most one Steiner tree.Using this observation, the proof of NP-hardness for �nding two edge-disjointSteiner trees implies the following theorem.Theorem 9. Finding 2 vertex-disjoint undire
ted Steiner trees is NP-hard.Theorem 10. PEU is APX-hard even if there are only 4 terminals.Proof. We use a redu
tion from Bounded 3-DimensionalMat
hing (B3DM). As-sume that we are given three disjoint sets X;Y; Z (ea
h 
orresponding to onepart of a 3-partite graph G), with jXj = jY j = jZj = n, and a set E � X�Y �Z
ontaining m triples. Furthermore, we assume that ea
h vertex in X [ Y [ Zbelongs to at most 5 triples. It is known [15℄ that there is an absolute 
onstant�0 > 0 su
h that it is NP-hard to distinguish between instan
es of B3DM wherethere is a perfe
t mat
hing (i.e., n vertex-disjoint triples) and those in whi
hevery mat
hing (set of vertex-disjoint triples) has size at most (1 � �0)n. As-sume that x1; : : : ; xn, y1; : : : ; yn, and z1; : : : ; zn are the nodes of X, Y , and Z,respe
tively. We 
onstru
t a graph H whi
h 
onsists of:{ 4 terminals tx, ty, tz, and tyz.{ Non-terminals x1; : : : ; xn, y1; : : : ; yn, and z1; : : : ; zn (
orresponding to thenodes in X;Y; Z), x01; : : : ; x0m�n, y01; : : : ; y0m�n, and z01; : : : ; z0n.{ Two non-terminals U and W .{ Edges txxi, tyyi, tzz0i, z0izi, and tyzz0i, for 1 � i � n.{ Edges txx0i, x0iy0i, x0iU , y0ity, and y0ityz, for 1 � i � m� n.{ m � n parallel edge from W to tz.{ For ea
h triple eq = xiyjzk 2 E, 3 non-terminals vq
 ; vqx; vqz and the followingedges: vqxxi, vqzzk, vq
vqx, vq
yj , vq
vqz , vqxU , and vqzW .See Figure 2. We 
an show that (a) [
ompleteness℄ ifG has a perfe
t mat
hingthen H has m edge-disjoint Steiner trees and (b) [soundness℄ if every mat
hingin G has size at most (1 � �0)n then H has at most (1 � �1)m edge-disjointSteiner trees, for �1 � �0=110. �The 
onstant 110 in the above theorem is not optimal. We 
an �nd expli
itlower bounds for the hardness of PEU with 
onstant number of terminals usingthe known hardness results for kDM, for higher values of k. For instan
e, Hazanet al. [13℄ proved that 4DM (with upper bounds on the degree of ea
h vertex)
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Fig. 2. Constru
tion with 4 terminals from B3DMis hard to approximate within a fa
tor 5354 . Using this and a redu
tion similarto the one presented in Theorem 10 it seems possible to show that PEU with5 terminals is hard to approximate within a fa
tor (1 + 12000). The proof ofTheorem 10 extends to give the next result.Theorem 11. PVU is APX-hard even with only 6 terminals.These results may seem to suggest that PEU and PVU have the same ap-proximation guarantees. But the next theorem shows that PVU is signi�
antlyharder than PEU. We show this by a redu
tion from the set-
over pa
king prob-lem (or domati
 number problem). Given a bipartite graph G(V1 [ V2; E), aset-
over (of V2) is a subset S � V1 su
h that every vertex of V2 has a neighborin S. A set-
over pa
king is a 
olle
tion of pairwise disjoint set-
overs of V2. Thegoal is to �nd a pa
king of set-
overs of maximum size. Feige et al. [6℄ show that,unless NP � DTIME(nlog logn), there is no (1� �) lnn approximation algorithmfor set-
over pa
king, where n = jV1j+ jV2j. We have the following theorem.Theorem 12. PVU 
annot be approximated within ratio (1 � �) logn, for any� > 0, unless NP � DTIME(nlog logn).On the other hand, we 
an obtain an O(pn logn) algorithm for PVCU (whi
h
ontains PVU as a spe
ial 
ase). To do so, 
onsider the fra
tional version ofPVCU obtained by relaxing the integrality 
ondition in the IP formulation. Theseparation problem for the dual of this LP is the minimumnode-weighted Steinertree problem. For this problem, Guha and Khuller [12℄ give an O(logn) approx-imation algorithm. Using the following analog of Theorem 6 (or Theorem 4.1 in[14℄) we obtain a polytime O(logn) approximation for fra
tional PVCU.



Lemma 3. There is an �-approximation for fra
tional PVCU if and only ifthere is an �-approximation for the minimum node weighted Steiner tree problem.Remark: Lemma 3 and the fa
t that the minimum node weighted Steiner treeproblem is hard to approximate within O(log k) (with k being the number ofterminals) yields an alternative proof for the 
(log k) hardness of PVCU.The algorithm for PVCU is similar to the ones we presented for PECD andPVCD. That is, we apply randomized rounding to the solution of the fra
tionalPVCU instan
e. Skipping the details, this yields the following:Theorem 13. Given an instan
e of PVCU and any � > 0, we 
an �nd in poly-nomial time a set of Steiner trees (satisfying the vertex 
apa
ity 
onstraints) ofsize at least 
(maxf'f=pn logn; minf'2f=n log2 n; 'f= logngg), where 'f isthe optimal value of the instan
e of fra
tional PVCU.3.1 Pa
king vertex-disjoint priority Steiner treesThe priority Steiner problem has been studied by Charikar et al. [4℄. Here, westudy the problem of pa
king vertex-disjoint priority Steiner trees of undire
tedgraphs. (One di�eren
e with the earlier work in [4℄ is that weights and prioritiesare asso
iated with verti
es rather than with edges). Consider an undire
tedgraph G = (V;E) with a set of terminals T � V , one of whi
h is distinguished asthe root r, every vertex v has a nonnegative integer pv as its priority, and everySteiner vertex v 2 V � T has a positive 
apa
ity 
v. A priority Steiner tree isa Steiner tree su
h that for ea
h terminal t 2 T every Steiner vertex v on ther; t path has priority pv � pt. In the problem PVCU-priority (Pa
king VertexCapa
itated Undire
ted Priority Steiner Trees) the goal is to �nd a maximumset of priority Steiner trees obeying vertex 
apa
ities (i.e., for ea
h Steiner vertexv 2 V �T the number of trees 
ontaining v is � 
v). The algorithm we presentedfor PVCU extends to PVCU-priority, giving roughly the same approximationguarantee.Theorem 14. Given an instan
e of PVCU-priority and any � > 0, we 
an �ndin polynomial time a set of priority Steiner trees (satisfying the vertex 
apa
ity
onstraints) of size at least 
(maxf'f=n 1+�2 ; minf'2f=n1+�; 'f=n�=2gg), where'f is the optimal value of the instan
e of fra
tional PVCU-priority.On the other hand, we prove an 
(n 13��) hardness result for PVCU-priorityby adapting the proof of Theorem 4 (thus improving on our logarithmi
 hardnessresult for PVCU). The main di�eren
e from the proof of Theorem 4 is that weuse instan
es of the Undir-Node-USF problem (Undire
ted Node 
apa
itated Un-splittable Flow) { whi
h is shown to be NP-
omplete in [9℄ { instead of instan
esof 2DIRPATH as the modules that are pla
ed on the \grey boxes" in Figure 1.Theorem 15. Given an instan
e of PVCU-priority, it is NP-hard to approxi-mate the solution within O(n 13��) for any � > 0.
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