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aAbstra
tWe study approximation algorithms and hardness of approximation for several versions of the problemof pa
king Steiner trees. For pa
king edge-disjoint Steiner trees of undire
ted graphs, we show APX-hardness for 4 terminals. For pa
king Steiner-node-disjoint Steiner trees of undire
ted graphs, we showa logarithmi
 hardness result, and give an approximation guarantee of O(pn logn), where n denotes thenumber of nodes. For the dire
ted setting (pa
king edge-disjoint Steiner trees of dire
ted graphs), weshow a hardness result of 
(m 13��) and give an approximation guarantee of O(m 12+�), where m denotesthe number of edges. We have similar results for pa
king Steiner-node-disjoint priority Steiner trees ofundire
ted graphs.1 Introdu
tionWe study approximation algorithms and hardness of approximation for several versions of the problem ofpa
king Steiner trees. Given an undire
ted graph G = (V;E) and a set of terminal nodes T � V , a Steinertree is a 
onne
ted, a
y
li
 subgraph that 
ontains all the terminal nodes (nonterminal nodes, whi
h are
alled Steiner nodes, are optional). The basi
 problem of pa
king edge-disjoint undire
ted Steiner trees(IUE-unit
ap for short) is to �nd as many edge-disjoint Steiner trees as possible. Besides IUE-unit
ap,we study some other versions; see below for details. All of the Steiner tree pa
king problems dis
ussed inthis paper are NP-hard, although some spe
ial 
ases may have polynomial-time algorithms.The IUE-unit
ap problem in its full generality (
alled GUE, see below) has appli
ations in VLSI
ir
uit design (e.g., see [13, 22℄). Other appli
ations in
lude multi
asting in wireless networks (see [9℄) andbroad
asting large data streams, su
h as videos, over the Internet (see [16℄). There is signi�
ant motivation�Supported by NSERC grant No. OGP0138432.ySupported by an NSERC postdo
toral fellowship, Dept. of Combinatori
s and Optimization at University of Waterloo,and a University start-up fund at University of Alberta. 1



from the areas of graph theory and 
ombinatorial optimization. Menger's theorem on pa
king edge-disjoints; t-paths [7℄ 
orresponds to the spe
ial 
ase of pa
king edge-disjoint Steiner trees on two terminal nodes(i.e., T = fs; tg). Another spe
ial 
ase is when all the nodes are terminals (i.e., T = V ). Then theproblem is to �nd a maximum set of edge-disjoint spanning trees. This topi
 was studied in the 1960'sby graph theorists, and a min-max theorem was developed by Tutte and independently by Nash-Williams[7℄. Subsequently, Edmonds and Nash-Williams derived su
h results in the more general setting of thematroid interse
tion theorem. One 
onsequen
e is that eÆ
ient algorithms are available via the matroidinterse
tion algorithm for the 
ase of T = V . A set of nodes S is said to be �-edge 
onne
ted if thereexist � edge-disjoint paths between every two nodes of S. An easy 
orollary of the min-max theorem ofNash-Willams and Tutte is that if the node set V is 2k-edge 
onne
ted, then the graph has k edge-disjointspanning trees. Re
ently, Kriesell [20℄ 
onje
tured an ex
iting generalization: If the set of terminals is2k-edge 
onne
ted, then there exist k edge-disjoint Steiner trees. He proved this for Eulerian graphs byan easy appli
ation of the splitting-o� theorem together with the min-max theorem of Nash-Willams andTutte. Note that a 
onstru
tive proof of this 
onje
ture may give a 2-approximation algorithm for IUE-unit
ap. Jain, Mahdian, and Salavatipour [16℄ gave an approximation algorithm with guarantee (roughly)jT j4 . Moreover, using a versatile and powerful proof te
hnique (that we will borrow and apply in the design ofour algorithms), they showed that the fra
tional version of IUE-unit
ap has an �-approximation algorithmif and only if the minimum-weight Steiner tree problem has an �-approximation algorithm (Theorem 4.1in [16℄). The latter problem is well studied and is known to be APX-hard. It follows that IUE-unit
ap isAPX-hard (Corollary 4.3 in [16℄). Frank et al. [10℄ gave a 3-approximation algorithm for the spe
ial 
aseof IUE-unit
ap where no two Steiner nodes are adja
ent. Very re
ently Lau [21℄, based on the result ofFrank et al. [10℄, has given an O(1)-approximation algorithm for IUE-unit
ap (but Kriesell's 
onje
tureremains open).Several of our proof te
hniques are inspired by results for disjoint-paths problems in the papers byGuruswami et al. [11℄, Baveja and Srinivasan [2℄, and Kolliopoulos and Stein [19℄. In these problems, weare given a graph and a set of sour
e-sink pairs, and the goal is to �nd a maximum set of edge/node disjointsour
e-sink paths. Although there is no dire
t relation between Steiner tree pa
king problems and disjoint-paths problems (neither problem is a spe
ial 
ase of the other one) there is a 
ommon generalization ofboth these problems, namely, the problem of pa
king Steiner trees with di�erent terminal sets: given `(not ne
essarily disjoint) sets of terminals T1; T2; : : : ; T`, ` polynomial in n, �nd a maximum set of edge-disjoint Steiner trees su
h that ea
h tree 
ontains one of the terminal sets T1; T2; : : : ; T`. Also, see Carrand Vempala [3℄ and Vempala and V�o
king [23℄ for results on multi
ast 
ongestion.We use n and m to denote the number of nodes and edges, respe
tively. The underlying assumptionfor most of our hardness results is P6=NP. Throughout, we use � to denote any small positive real number.We denote some of the versions of the Steiner tree pa
king problem by three-letter abbreviations. The �rstletter is either I or G, and denotes whether or not all Steiner trees have identi
al terminal sets (e.g., theletter I in IUE-unit
ap). The se
ond letter is either D or U, and denotes whether the graph is dire
ted orundire
ted. The third letter is either E or V, and denotes whether the Steiner trees in the pa
king are edgedisjoint or vertex disjoint. Note that here and elsewhere, we use \vertex disjoint Steiner trees" to meantrees that are disjoint on the Steiner verti
es (and of 
ourse they 
ontain all the terminal verti
es). In fa
t,we asso
iate nonnegative integer-valued 
apa
ities with the edges or the verti
es, and a feasible pa
king ofSteiner trees is one that satis�es the 
apa
ity 
onstraint of every edge or of every Steiner vertex. We denotethe spe
ial 
ase where all 
apa
ities are one by appending \unit
ap" to the abbreviation. We dis
uss some2



other versions of the Steiner tree pa
king problem too. Most of our hardness (of approximation) resultsare presented for the most spe
ialized version from the relevant family of problems (e.g., Theorem 2.4pertains to the spe
ial 
ase of IDE-unit
ap, namely, pa
king dire
ted edge-disjoint Steiner trees), and thuswe immediately get the same hardness result for all of the problems in the relevant family (e.g., Theorem2.4 implies the same hardness result for GDE); but better hardness results may be known for the mostgeneral problem in the relevant family (e.g., GDE 
ontains the problem of pa
king edge-disjoint pathsin dire
ted graphs, for whi
h a hardness lower bound of 
(m 12��) is known [11℄, hen
e this lower boundapplies to GDE). Most of our results on approximation algorithms and guarantees pertain to the mostgeneral version in the relevant family of problems, and thus we immediately get the same approximationguarantees for all of the problems in the relevant family, though better approximation guarantees may beknown for some spe
ialized problems in the relevant family.Consider the problems IUV, GUE, GUV-priority (to be de�ned later), and their spe
ial 
ases. ForIUV, we are given an undire
ted graphG, a set T � V of terminals, and a nonnegative vertex 
apa
ity 
v forea
h Steiner vertex v. We assume that there are no edges between terminal nodes (i.e., T is an independentset of G); this assumption may be enfor
ed by subdividing ea
h edge between two terminals by inserting adistin
t Steiner vertex with unit 
apa
ity. The goal is to �nd the maximum number of Steiner trees su
hthat ea
h Steiner vertex v is 
ontained in � 
v trees. The problem GUE is the generalization where theinstan
e has ` terminal sets T1; : : : ; T` (where ` is polynomial in n) and the goal is to �nd the maximumnumber of Steiner trees, su
h that ea
h Steiner tree 
ontains one of the terminal sets T1; : : : ; T`, and su
hthat ea
h Steiner vertex v is 
ontained in � 
v trees. For this and other problems on pa
king (dire
ted orundire
ted) vertex-
apa
itated Steiner trees with multiple terminal sets T1; : : : ; T`, our assumption is thatea
h Steiner tree H has an asso
iated index i 2 f1; : : : ; `g su
h that H 
ontains Ti, and any vertex of V �Timay be present in H as a Steiner vertex; thus a Steiner tree with terminal set Ti may 
ontain verti
es from(T1 [ : : : [ T`) � Ti as Steiner verti
es. Using the fa
t that IUE-unit
ap is APX-hard, Flor�een et al. [9℄showed that IUV-unit
ap is APX-hard. They raised the question whether this problem is in the 
lass APX.We prove an 
(log n)-hardness result (lower bound) for IUV-unit
ap. This shows that IUV-unit
ap issigni�
antly harder than IUE-unit
ap, and settles (in the negative) the open question of Flor�een et al. [9℄.We give an approximation guarantee (upper bound) of O(pn logn) for GUV, by an LP-based roundingalgorithm. We study another natural generalization of IUV, namely Pa
king undire
ted vertex-
apa
itatedpriority Steiner trees (IUV-priority for short), whi
h is motivated by the Quality of Servi
e in networkdesign problems (see [5℄ for appli
ations). For IUV-priority, we show a lower-bound of 
(n 13��) on theapproximation guarantee; moreover, our approximation algorithm for GUV extends to GUV-priority togive a guarantee of O(n 12+�). We mention that a hardness lower bound of 
(n 12��) is given in [11, Theorem2℄ for another spe
ial 
ase of GUV-priority, namely, the problem of pa
king vertex-disjoint priority si; tipaths.Now, 
onsider a dire
ted graph G(V;E) with a positive 
apa
ity 
e for ea
h edge e, a set T � V ofterminals, and a spe
i�ed root vertex r, r 2 T . A dire
ted Steiner tree rooted at r is a rooted subtree of Gthat 
ontains a dire
ted path from r to t, for ea
h terminal t 2 T . In the problem of pa
king dire
ted edge-
apa
itated Steiner trees (IDE) the goal is to �nd the maximum number of dire
ted Steiner trees rooted atr su
h that ea
h edge e is 
ontained in � 
e dire
ted trees. The problem GDE is the generalization wherethe instan
e has ` terminal sets T1; : : : ; T` and ` roots r1; : : : ; r` (where ` is polynomial in n, and ri 2 Ti,i = 1; : : : ; `), and the goal is to �nd the maximum number of dire
ted Steiner trees, ea
h rooted at an riand 
ontaining all the nodes in Ti (for an i = 1; : : : ; `), su
h that ea
h edge e is 
ontained in � 
e dire
ted3



Table 1: Summary of resultsProblem Approx.Guarantee Hardness Hardness for smallparametersIUE-unit
ap 26[21℄ APX-hard[16℄ APX-hard for 4 terminals (T3.3)NP-hard for 2 trees[18℄GUE O(log npn) (T3.11)IUV O(log2 n)[6℄IUV-unit
ap 
(logn)-hard (T3.9) APX-hard for 4 terminals (T3.8)NP-hard for 2 trees (T3.2)GUV-priority O(n 12+�) (T3.12) 
(n 12��)[11℄IUV-priority 
(n 13��)-hard (T3.15)GDE O(m 12+�) (T2.15) 
(m 12��)[11℄IDE-unit
ap 
(m 13��) (T2.8) NP-hard for 3 terminals and 2 trees (T2.3)GDV O(n 12+�) (T2.16) 
(n 12��)[11℄IDV-unit
ap 
(n 13��) (T2.4) NP-hard for 3 terminals and 2 trees (T2.2)trees. As mentioned above, one spe
ial 
ase of GDE is the problem of pa
king edge-disjoint paths in adire
ted graph, and a hardness lower bound of 
(m 12��) is given in [11℄. We prove an 
(m 13��)-hardnessresult for IDE-unit
ap. Moreover, we give an approximation algorithm with a guarantee of O(m 12+�) forGDE. We also 
onsider the problem of pa
king dire
ted vertex-
apa
itated Steiner trees (IDV andGDV),where instead of 
apa
ities on the edges we have a 
apa
ity 
v on every Steiner vertex v, and the goal isto �nd the maximum number of dire
ted Steiner trees su
h that ea
h Steiner vertex v is 
ontained in � 
vdire
ted trees. For dire
ted graphs, IDE and IDV (and also GDE and GDV) are similar, see Theorem2.1. We get a lower-bound of 
(n 13��) on the approximation guarantee for IDV-unit
ap. Moreover, wegive an approximation algorithm with a guarantee of O(n 12+�) for GDV.We now fo
us on hardness (of approximation) results for several versions of the problem of pa
kingSteiner trees (with identi
al terminal sets) when some of the key parameters are small. In parti
ular, wedis
uss problems where the number of terminals is small, meaning jT j = O(1), and also problems wherethe optimal value is small, meaning the number of Steiner trees in an optimal pa
king is either one or two.Kaski [18℄ showed that the problem IUE-unit
ap is NP-hard even if the number of terminals is 7, andmoreover, the problem of �nding two edge-disjoint Steiner trees is NP-hard. Flor�een et al. [9℄ showed thatthe spe
ial 
ase of the problem IUV-unit
ap with only 4 terminal nodes is NP-hard. Our hardness resultsfor small-parameter problems are as follows.� Pa
king undire
ted edge-disjoint Steiner trees (IUE-unit
ap): We show that the spe
ial 
ase of theproblem with four terminal nodes is APX-hard. (An early draft of our paper proved, independently of [18℄,that �nding two edge-disjoint Steiner trees is NP-hard.)� Pa
king undire
ted vertex-disjoint Steiner trees (IUV-unit
ap): We show essentially the same hardnessresults for IUV-unit
ap as for IUE-unit
ap, that is, the spe
ial 
ase of the problem with four terminalnodes is APX-hard, and the problem of �nding two vertex-disjoint Steiner trees is NP-hard.� Pa
king dire
ted edge-disjoint Steiner trees (IDE-unit
ap): We show that the problem of �nding twoedge-disjoint dire
ted Steiner trees with only three terminal nodes is NP-hard.4



Table 1 summarizes the results of this paper and the previous works [9, 11, 16, 18, 21℄; results fromthis paper are 
ited by theorem number, and results from other papers are indi
ated by 
iting the paper.Very re
ently, we have obtained a randomized O(log2 n) approximation algorithm for IUV, using di�erentmethods from the ones used in this paper [6℄; this result will appear elsewhere.For the problems IUV, IUV-priority, IDE, and IDV, we are not aware of any previous results onapproximation algorithms or hardness results other than [9℄, although there is extensive literature on ap-proximation algorithms for the 
orrespondingminimum-weight Steiner tree problems (e.g., [4℄ for minimum-weight dire
ted Steiner trees and [14℄ for minimum-node-weighted Steiner trees).Se
tion 2 has our results on dire
ted graphs for problemsGDE, GDV, and their spe
ial 
ases. Se
tion3 has our results on undire
ted graphs for problems IUE, GUE, GUV-priority, and their spe
ial 
ases.2 Pa
king Dire
ted Steiner TreesIn this se
tion, we study the problem of pa
king dire
ted steiner trees. We start with an auxiliary result:The problems IDE and IDV are equivalent in the sense that there is a polynomial-time redu
tion fromeither problem to the other problem that preserves the optimal value (number of Steiner trees in an optimalpa
king). Then we present hardness results for IDE-unit
ap (i.e., edge-disjoint dire
ted 
ase), and theseimmediately imply similar hardness results for IDV-unit
ap (i.e., dire
ted vertex-disjoint version). Wealso present an approximation algorithm for GDE whi
h implies a similar approximation algorithm forGDV. The proof of the following theorem is easy. The idea for the �rst dire
tion is to insert a new nodein every edge, and for the se
ond one is to split every vertex into two adja
ent verti
es.Theorem 2.1 Given an instan
e I = (G(V;E); T � V; k) of IDE (of IDV), there is an instan
e I 0 =(G0(V 0; E0); T 0 � V; k) of IDV (of IDE) with jG0j = poly(jGj), su
h that I has k dire
ted Steiner treessatisfying the 
apa
ities of the edges (verti
es) if and only if I 0 has k dire
ted Steiner trees satisfying the
apa
ities of the verti
es (edges). The same statement holds for GDE and GDV.Proof: (1st dire
tion)We insert a new Steiner node vxy in every edge xy, and we �x the 
apa
ity of vxy (in G0) to be the sameas the 
apa
ity of xy (in G). All the other Steiner nodes of G0 (
orresponding to Steiner nodes of G) getin�nite 
apa
ities. The root and the other terminals are the same in G and G0. It 
an be seen that G has k(dire
ted) Steiner trees satisfying edge 
apa
ities if and only if G0 has k (dire
ted) Steiner trees satisfyingvertex 
apa
ities.(2nd dire
tion)We 
onstru
t G0 from G in the following way. For ea
h node v 2 V , G0 
ontains two nodes v1; v2. If v 2 Tthen both v1 and v2 be
ome terminals in G0, and if r 2 T is the root then r1 be
omes the root in G0. Weadd v1v2 to E0 and give it the same 
apa
ity as vertex v in G. If v 2 T , then we give in�nite 
apa
ity tov1v2. Furthermore, for every edge uv 2 E we 
reate an edge u2v1 (with in�nite 
apa
ity) in E0 and forevery edge vw 2 E we 
reate an edge v2w1 (with in�nite 
apa
ity) in E0.It is easy to see that if T is a 
olle
tion of k Steiner trees in G that satisfy vertex 
apa
ities then thereis a 
olle
tion T 0 of k Steiner trees in G0 that satisfy edge 
apa
ities. Conversely, suppose that T 0 is a5




olle
tion of k Steiner trees in G0 satisfying edge 
apa
ities. Then for every edge v1v2 (
orresponding toa vertex v 2 V (G) with 
apa
ity 
v in G) there are at most 
v trees 
ontaining that edge. Therefore, by
ontra
ting the edges of the form v1v2 on ea
h tree of T 0 we obtain a 
olle
tion of k Steiner trees in G su
hthat for every vertex v there are at most 
v trees 
ontaining it.2.1 Hardness resultsFirst we prove that IDV-unit
ap is NP-hard even in the simplest non-trivial 
ase where there are onlythree terminals (one root r and two other terminals) and we are asked to �nd only 2 vertex-disjoint Steinertrees. The problem be
omes easy if any of these two 
onditions is tighter, i.e., if the number of terminals isredu
ed to 2 or the number of Steiner trees that we have to �nd is redu
ed to 1. If the number of terminalsis arbitrary, then we show that IDV-unit
ap is NP-hard to approximate within a fa
tor of O(n 13��) for any� > 0. The proof does not rely on the PCP theorem. Also, as we mentioned before, both of these hardnessresults 
arry over to IDE. For both redu
tions, we use the following well-known NP-hard problem (see[12℄):Problem: 2DIRPATH:Instan
e: A dire
ted graph G(V;E), distin
t verti
es x1; y1; x2; y2 2 V .Question: Are there two vertex-disjoint dire
ted paths, one from x1 to y1 and the other from x2 to y2 inG?Theorem 2.2 Given an instan
e I of IDV-unit
ap and only three terminals (root r and two terminals t1and t2), it is NP-hard to de
ide if it has 2 vertex-disjoint dire
ted Steiner trees.Proof: Let I = (G;x1; y1; x2; y2) be an instan
e of 2DIRPATH. Constru
t G0 from G by adding threeterminal nodes, r; t1; t2 with r being the root, and 
reating dire
ted edges rx1, rx2, y1t1, x2t1, y2t2, and x1t2.We 
laim that I is a \Yes" instan
e if and only if G0 has two Steiner trees rooted at r. If there are (vertex)disjoint paths x1P1y1 and x2P2y2 in G then 
learly x1P1y1[frx1; y1t1; x1t2g and x2P2y2[frx2; y2t2; x2t1gform two vertex-disjoint dire
ted Steiner trees. Conversely, if there are two vertex-disjoint dire
ted Steinertrees T1 and T2 in G0 then, sin
e r has only two outgoing edges, we may assume that rx1 2 T1 and rx2 2 T2.Therefore, there is a path from x1 to t1 in T1, whi
h must go through y1 (sin
e x2 is not in T1), and a pathfrom x2 to t2 in T2, whi
h must go through y2 (sin
e x1 is not in T2). These two paths are vertex-disjointbe
ause T1 and T2 are vertex-disjoint.From Theorems 2.1 and 2.2, it follows that:Theorem 2.3 Given an instan
e I of IDE-unit
ap and only three terminals, (root r and two terminalst1 and t2) it is NP-hard to de
ide if it has 2 edge-disjoint dire
ted Steiner trees.Now we show that, unless P=NP, any approximation algorithm for IDV-unit
ap has a guarantee of
(n 13��). A similar 
onstru
tion shows a hardness of 
(m 13��) for IDE-unit
ap.Theorem 2.4 Given an instan
e of IDV-unit
ap, it is NP-hard to approximate the solution within O(n 13��)for any � > 0. 6
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Figure 1: Constru
tion of H: ea
h gray box will be repla
ed with a 
opy of GProof: We use a redu
tion from the 2DIRPATH problem. Our proof is inspired by a redu
tion used in [11℄for the edge-disjoint path problem. Assume that I = (G;x1; y1; x2; y2) is an instan
e of 2DIRPATH and let� > 0 be given. We 
onstru
t a dire
ted graph H. First we 
onstru
t a graph G0 whose underlying stru
tureis shown in Figure1. For N = jV (G)j1=�, 
reate two sets of verti
es A = fa1; : : : ; aNg and B = fb1; : : : ; bNg.In the �gure, all the edges are dire
ted from top to bottom and from left to right. For ea
h gray box, thereis a vertex at ea
h of the four 
orners, and there are two edges, from left to right and from top to bottom.This graph may be viewed as the union of N vertex-disjoint dire
ted trees T1; : : : ; TN , where Ti is rootedat ai and has paths to all the verti
es in B�fbig. Ea
h tree Ti 
onsists of one horizontal path Hi, whi
h isessentially the ith horizontal row above bj's, and starts with ai; vi1; : : : and ends in viN , together with N � 1verti
al paths P ij (1 � j 6= i � N), su
h that ea
h of these verti
al paths bran
hes out from the horizontalpath, starting at vertex vij and ending at vertex bj 2 B. Ea
h vertex vij is in the ith horizontal row, and isthe start vertex of a verti
al path that ends at bj; note that there are no verti
es vii. Also, note that ea
hgray box 
orresponds to a triple (i; j; `) where the box is in the ith horizontal line and is in the verti
alpath that starts at vj̀ and ends at bj; the 
orner verti
es of the gray box are labeled sìj; tìj ; pj̀i; qj̀i forthe left, right, top, and bottom 
orners, respe
tively. More spe
i�
ally, for T1 the horizontal and verti
alpaths are: H1 = a1; s121; t121; : : : ; s1N1; t1N1; v12 ; s132; t132; : : : ; v13 ; : : : ; v1N , and P 1j = v1j ; bj , for 2 � j � N . For T2the horizontal and verti
al paths are: H2 = a2; v21 ; s231; t231; : : : ; s2N2; t2N2; v23 ; : : : ; v2N , and P 2j = v2j ; p2j1; q2j1; bj(for 1 � j 6= 2 < N), and P 2N = v2N ; bN . In general, for Ti:� Hi = ai; vi1; si(i+1)1; ti(i+1)1; : : : ; siN1; tiN1; vi2; si(i+1)2; ti(i+1)2; : : : ; siN2; tiN2; vi3; : : : ; viN�1; si(i+1)(N�1); ti(i+1)(N�1); : : : ;siN(N�1); tiN(N�1); viN ,� For j 6= i < N : P ij = vij; pij(i�1); qij(i�1); pij(i�2); qij(i�2); : : : ; pij1; qij1; bj , and P iN = viN ; bN .Graph H is obtained from G0 by making the following modi�
ations:7



� For ea
h gray box, with 
orresponding triple say (i; j; `) and with verti
es sìj; tìj ; pj̀i; qj̀i, we �rstremove the edges sìjtìj and pj̀iqj̀i, then we pla
e a 
opy of graph G and identify verti
es x1; y1; x2,and y2 with sìj; tìj ; pj̀i; and qj̀i, respe
tively.� Add a new vertex r (root) and 
reate dire
ted edges from r to a1; : : : ; aN .� Create N new dire
ted edges aibi, for 1 � i � N .The set of terminals (for the dire
ted Steiner trees) is B[frg = fb1; : : : ; bN ; rg. The proof follows fromthe following two Lemmas.Lemma 2.5 If I is a \Yes" instan
e of 2DIRPATH, then H has N vertex-disjoint dire
ted Steiner trees.Proof: Consider the vertex-disjoint trees T1; : : : ; TN explained above. At every gray-box interse
tion withverti
es si��; ti�� ; p��i; q��i, instead of using edges si��ti�� and p��iq��i des
ribed in G0, we use the disjoint pathsthat exist in the lo
al 
opy of G from si�� (equivalent to x1 in G) to ti�� (equivalent to y1 in G) and fromp��i (equivalent to x2 in G) to q��i (equivalent to y2 in G). Now by adding edges rai and aibi to Ti, weobtain a Steiner tree for H. Thus H has N vertex-disjoint Steiner trees. This proves Lemma 2.5.Lemma 2.6 If I is a \No" instan
e, then H has exa
tly 1 vertex-disjoint dire
ted Steiner tree.Proof: First, note that H always has at least one Steiner tree, namely, the union of paths Li = r; ai; bi,for 1 � i � N . Now assume that I is a \No" instan
e and by way of 
ontradi
tion assume that there isa set T = fT1; : : : ; Tkg, with k � 2, of vertex-disjoint Steiner trees in H. Note that ea
h ai belongs to atmost one Steiner tree T� 2 T .Claim 2.7 There 
annot be a dire
ted path from ai to any bj (with j > i) in any tree T� 2 T .Proof: We prove this by indu
tion on i. For the basis of the indu
tion, 
onsider a1 and suppose thatthere is a path P�(a1; bj) from a1 to bj (j � 2) in some tree T� 2 T . Let T� 2 T be another tree in Tand look at the path P�(r; b1) from r to b1 in T�. Consider the embedding of these two paths P�(a1; bj)and P�(r; b1) on the plane. There has to be an interse
ting point (on the horizontal path from v11 to v12)of these two paths. In other words, there has to be a gray-box in whi
h these two paths 
ross ea
h otherwithout having any vertex in 
ommon. But sin
e G is a \No" instan
e, this is not possible. So there is nopath from r to b1 in any other tree T� 2 T , a 
ontradi
tion.For the indu
tion step, let i � 2 and assume that there is a path P�(ai; bj) from ai to bj (j > i) in sometree T� 2 T . Let T� 2 T be any other tree in T and P�(r; bi) be a path from r to bi in T�. We assume thispath goes through al, for some 1 � l � N . By indu
tion hypothesis, there is no path from a1; : : : ; ai�1 tobi in any tree. Also, ai 2 T�. So l > i.Again, if we 
onsider the embeddings of these two paths P�(ai; bj) and P�(r; bi) on the plane, there isan interse
ting gray box in whi
h these two paths 
ross ea
h other without having any vertex in 
ommon.But this is impossible be
ause G is a \No" instan
e. This proves Claim 2.7.8



Therefore, the only possible path from r to bN goes through aN . Thus, there 
an be only one Steinertree in T : the one that 
ontains aN . This proves Lemma 2.6.The number of 
opies of G in the 
onstru
tion of H is O(N3) where N = jV (G)j1=�. So the number ofverti
es in H is O(N3+�). By Lemmas 2.5 and 2.6 it is NP-hard to de
ide if H has at least N or at mostone dire
ted Steiner trees. This 
reates a gap of 
(n 13��). This proves Theorem 2.4.For IDE-unit
ap we use a similar redu
tion. The only di�eren
es are: (i) the instan
e that we use asthe building blo
k in our 
onstru
tion (
orresponding to graph G above) is an instan
e of another well-known NP-hard problem, namely edge-disjoint 2DIRPATH (instead of vertex-disjoint), (ii) the parameterN above is jE(G)j1=�. Using this redu
tion we 
an show:Theorem 2.8 Given an instan
e of IDE-unit
ap, it is NP-hard to approximate the solution within O(m 13��)for any � > 0.2.2 Approximation algorithmsIn this se
tion we show that, although GDE is hard to approximate within a ratio of O(m 13��), there isan approximation algorithm with a guarantee of O(m 12+�) (details in Theorem 2.15). The algorithm isLP-based with a simple rounding s
heme similar to those in [2, 19℄. The main idea of the algorithm is tostart with one of the known approximation algorithms for �nding a Minimum-weight Dire
ted Steiner Tree.Using this and an extension of Theorem 4.1 in [16℄, we obtain an approximate solution to the fra
tionalversion of GDE. After that, a simple randomized rounding algorithm yields an integral solution. A similarmethod yields an approximation algorithm for GDV that has a guarantee of O(n 12+�).We may formulate GDE as an integer program (IP). Re
all that we have a digraph G(V;E), ` rootsr1; : : : ; r`, and ` sets of terminals T1; : : : ; T`. In the following, F denotes the 
olle
tion of all dire
tedSteiner trees in G. We use F to denote an element of F , i.e., F denotes a dire
ted Steiner tree of G. Forea
h F 2 F , there is an i 2 f1; : : : ; `g su
h that F 
ontains Ti and has a dire
ted path from ri to ea
hnode in Ti. maximize PF2F xFsubje
t to 8e 2 E :PF :e2F xF � 
e8F 2 F : xF 2 f0; 1g (1)The fra
tional pa
king edge 
apa
itated dire
ted Steiner tree problem (fra
tional GDE, for short) isthe linear program (LP) obtained by relaxing the integrality 
ondition in the above IP to xF � 0. Forany instan
e I of the (integral) pa
king problem, we denote the fra
tional instan
e by If . The proof ofTheorem 4.1 in [16℄ may be adapted to prove the following:Theorem 2.9 There is an �-approximation algorithm for fra
tional GDE if and only if there is an �-approximation algorithm for the minimum (edge weighted) dire
ted Steiner tree problem.Charikar et al. [4℄ gave an O(n�)-approximation algorithm for the minimum-weight dire
ted Steinertree problem. This, together with Theorem 2.9 implies:9



Corollary 2.10 There is an O(n�)-approximation algorithm for fra
tional GDE.The key lemma in the design of our approximation algorithm for GDE is as follows.Lemma 2.11 Let I be an instan
e of GDE, and let '� be the (obje
tive) value of a (not ne
essarilyoptimal) feasible solution fx�F : F 2 Fg to If su
h that the number of non-zero x�F 's is polynomiallybounded and ea
h x�F < 1. Then, we 
an �nd in polynomial time, a solution to I with value at least
(maxf'�=pm; minf'�2=m; '�gg).Proof: We will use the following simple and well-known deviation bound.Lemma 2.12 (Cherno�-Hoe�ding Bounds) Let X1;X2; : : : ;Xq be a set of q independent random variableswith Xi 2 f0; 1g and let X =Pqi=1Xi. Then for 0 � Æ < 1:Pr[X < (1� Æ)E[X℄℄ � e�Æ2E[X℄=2:The following simple lemma has been used (with k = 2) in [2℄:Lemma 2.13 Assume that A = fa1; : : : ; ang is a set of n non-negative reals and let Ak be the set of allsubsets of size k of A. If Pni=1 ai � Q , then Pfai1 ;:::;aikg2Ak ai1ai2 : : : aik � �nk�(Q=n)k.Proof: For �; � 2 f1; : : : ; ng, if a� < a� , then adding any 0 < � � a� � a� to a� and subtra
ting it froma� will in
rease the value of P ai1ai2 : : : aik , while keeping thePni=1 ai un
hanged. So the maximum valueof P ai1ai2 : : : aik is obtained when all a�'s are equal. This proves Lemma 2.13.If '� � 10epm (e is the base of natural logarithm) then it is enough to just �nd one Steiner tree andreturn it. So from now on we assume that '� � 10epm. For every tree F 2 F for whi
h x�F > 0, let's pi
kthat tree with probability x�F=�, for some � � 1 to be de�ned later. Note that we assumed x�F < 1. LetXF be the random variable that is 1 if we pi
k tree F and 0 otherwise. Then for X =PF2F XF (i.e. thetotal number of trees pi
ked by the algorithm), we have:E[X℄ = XF2F Pr[XF = 1℄ = XF2F x�F� = '�� :For every edge e 2 E, de�ne the bad event Ae to be the event that the 
apa
ity 
onstraint of e isviolated, i.e. more than 
e trees 
ontaining e are pi
ked. Our goal is to show that with some positiveprobability, none of these bad events happen (i.e. all Ae's hold) and that the total number of trees pi
kedis not too small. We want to �nd a good upper bound for Pr[Ae℄. For every edge e, denote the number oftrees F with x�F > 0 that 
ontain e by  e. By this de�nition:Pr[Ae℄ �X 
e+1Yi=1 x�Tai=�;10



where the summation is over all subsets fFa1 ; : : : ; Fa
e+1g of size 
e+1 of trees with x�Fai > 0 that 
ontainedge e. Therefore, using Lemma 2.13:Pr[Ae℄ � �  e
e + 1�� 
e� e�
e+1 � � e e
e + 1�
e+1� 
e� e�
e+1 � e2�2 ;where we have used the fa
t �nk� � ( enk )k for the se
ond inequality. It is intuitively 
lear that if Ae holds thenit does not in
rease the probability of any other Ae0 . In other words, events Ae are \positively 
orrelated".This will be formalized in the following lemma that follows easily from FKG inequality:Lemma 2.14 Pr[Ve2E Ae℄ �Qe2E Pr[Ae℄ � (1� e2�2 )m.So, the probability that at least one event Ae happens is at most 1 � (1 � e2=�2)m. Also, by Lemma2.12, for 0 � Æ < 1: Pr[X < (1� Æ)E[X℄℄ � e�Æ2'�=2�. Thus:Pr[(X < (1� Æ)E[X℄) _ (9e 2 E : Ae)℄ � e�Æ2'�=2� + 1� (1� e2=�2)m:Using the approa
h of [2℄ (whi
h is essentially the method of 
onditional probability), if we 
an show thatfor suitable Æ and �: (1 � e2=�2)m > e�Æ2'�=2� then we 
an eÆ
iently �nd a sele
tion of trees su
h thatX � (1� Æ)'�=� and that no edge 
onstraint is violated.Case 1: If '� � m and we set Æ = 12 and � = epm, then (re
all that '� � 10epm) we 
an �nd a
olle
tion F 0 � F of dire
ted Steiner trees that obey the edge 
apa
ities with jF 0j � '�=2epm.Case 2: If '� � m then by setting Æ = 12 and � = 32em='�, we 
an �nd a 
olle
tion F 0 � F of dire
tedSteiner trees that obey the edge 
onstraints with jF 0j � '�2=64em.Case 3: if '� > m then there is a 
onstant 
0 > 0 su
h that with Æ = 12 and � = 
0: (1 � e2=�2)m >e�Æ2'�=2�. Again, we 
an �nd a 
olle
tion F 0 � F of dire
ted Steiner trees with jF 0j � '�2
0 . This provesLemma 2.11.Theorem 2.15 Let � > 0 be a 
onstant. There is a polynomial-time algorithm for GDE that �nds a setof dire
ted Steiner trees (satisfying the edge
apa
ity 
onstraints) of size 
(maxf'f=m 1+�2 ; '2f=m1+�g) if'f � m, and of size 
('f=m �2 ) otherwise, where 'f denotes the optimal value of the instan
e of fra
tionalGDE.Proof: Let If be the fra
tional instan
e. By Corollary 2.10, we 
an �nd an approximate solution x withobje
tive value '� for If su
h that '� � 
'f=m �2 for some 
onstant 
 and the given � > 0.Then we apply a prepro
essing step to the fra
tional solution x. For every Steiner tree F with xF � 1we \take out" bxF 
 
opies of that tree and put it in the �nal integral solution, we de
rease xF by bxF 
,and also we update the 
apa
ities of the edges a

ordingly. This de
omposes x into a (multi)set of Steinertrees F1 and a fra
tional part (with ea
h entry xF < 1). We will \round" the fra
tional part x to aninteger solution (using Lemma 2.11). For the rest of the proof we may assume that the fra
tional solutionx has ea
h entry < 1, sin
e the other 
ase redu
es to this one.11



Note that the approximate fra
tional solution x 
ontains only a polynomial number of Steiner treeswith non-zero fra
tional values (this follows from the proof of Theorem 2.9 whi
h is essentially the sameas Theorem 4.1 in [16℄). If we substitute '� in Lemma 2.11 we obtain an approximation algorithm that�nds a set F 0 of dire
ted Steiner trees su
h that F 0 has the required size.For GDV we do the following. Given an instan
e I of GDV with graph G(V;E) and terminal setsT1; : : : ; T` � V (with jV j = n and jEj = m), we �rst apply Theorem 2.1 to produ
e an instan
e I 0of GDE with graph G0(V 0; E0) and terminal sets T 01; : : : ; T 0̀ � V 0. By the 
onstru
tion of G0 we havejV 0j = 2jV j = 2n and there are at most n edges in E0 with bounded 
apa
ities (
orresponding to theverti
es of G). Therefore, if we use the algorithm of Theorem 2.15, the number of bad events will be n,rather than m. Using this observation we have the following:Theorem 2.16 Let � > 0 be a 
onstant. There is a polynomial-time algorithm for GDV that �nds a setof dire
ted Steiner trees (satisfying the vertex 
apa
ity 
onstraints) of size 
(maxf'f=n 1+�2 ; '2f=n1+�g) if'f � n, and of size 
('f=n �2 ) otherwise, where 'f denotes the optimal value of the instan
e of fra
tionalGDV.3 Pa
king Undire
ted Steiner TreesFor pa
king edge-disjoint undire
ted Steiner trees (IUE-unit
ap), Jain et al. [16℄ showed that the (general)problem is APX-hard, and Kaski [18℄ showed the spe
ial 
ase of the problem with only 7 terminal nodesis NP-hard. Here we show that IUE-unit
ap is APX-hard even when there are only 4 terminals. In anearly draft of this paper we also showed, independently of [18℄, that �nding two edge-disjoint Steiner treesis NP-hard. Both of these hardness results 
arry over (using similar 
onstru
tions) to IUV-unit
ap. Thefollowing observation will be used in our proofs:Observation 3.1 For any solution of any of our Steiner tree pa
king problems, we may assume that: (1)In any Steiner tree, none of the leaves is a Steiner node (otherwise we simply remove it). (2) Every Steinernode with degree 3 belongs to at most one Steiner tree.3.1 Hardness results for small-parameter problemsUsing the above observation, the proof of NP-hardness for �nding two edge-disjoint Steiner trees (forinstan
e see [18℄) implies the following theorem.Theorem 3.2 Finding 2 undire
ted vertex disjoint Steiner trees is NP-hard.Theorem 3.3 IUE-unit
ap is APX-hard even if there are only 4 terminals.Proof: We use a redu
tion from Bounded 3-Dimensional Mat
hing (B3DM). Assume that we are giventhree disjoint setsX;Y;Z (ea
h 
orresponding to one part of a 3-partite graphG), with jXj = jY j = jZj = n,and a set E � X � Y � Z 
ontaining m triples. Furthermore, we assume that ea
h vertex in X [ Y [ Z12
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Figure 2: Constru
tion with 4 terminals from B3DMbelongs to at most 5 triples. It is known [17℄ that there is an absolute 
onstant �0 > 0 su
h that it isNP-hard to distinguish between instan
es of B3DM where there is a perfe
t mat
hing (i.e., n vertex-disjointtriples) and those in whi
h every mat
hing (set of vertex-disjoint triples) has size at most (1��0)n. Assumethat x1; : : : ; xn, y1; : : : ; yn, and z1; : : : ; zn are the nodes of X, Y , and Z, respe
tively. We 
onstru
t a graphH whi
h 
onsists of:� 4 terminals tx, ty, tz, and tyz.� Non-terminals x1; : : : ; xn, y1; : : : ; yn, and z1; : : : ; zn (
orresponding to the nodes inX;Y;Z), x01; : : : ; x0m�n,y01; : : : ; y0m�n, and z01; : : : ; z0n.� Two non-terminals U and W .� Edges txxi, tyyi, tzz0i, z0izi, and tyzz0i, for 1 � i � n.� Edges txx0i, x0iy0i, x0iU , y0ity, and y0ityz, for 1 � i � m� n.� m� n parallel edge from W to tz.� For ea
h triple eq = xiyjzk 2 E, 3 non-terminals vq
 ; vqx; vqz and the following edges: vqxxi, vq
yj, vqzzk,vq
vqx, vq
vqz , vqxU , and vqzW .See Figure 2. Now we prove that (a)[
ompleteness℄ if G has a perfe
t mat
hing then H has m edge-disjoint Steiner trees and (b)[soundness℄ if every mat
hing in G has size at most (1 � �0)n then H has atmost (1� �1)m edge-disjoint Steiner trees, for �1 � �0=110.Lemma 3.4 (
ompleteness) If G has a perfe
t mat
hing M = fea1 ; ea2 ; : : : ; eang then H has m edge-disjoint Steiner trees. 13



Proof: For ea
h triple eq = xiyjzk 2 M we 
onstru
t a tree Tq by using the following edges: txxi, tyyj,tzz0k, z0kzk, xivqx, vqxvq
 , vq
yj, vq
vqz , vqzzk, and z0ktzy. (See the tree shown by bold lines in Figure 2). Thisgives a set S1 of n edge-disjoint trees. Without loss of generality assume that e1; : : : ; em�n are the triplesthat are not in M . For ea
h triple ep = xi0yj0zk0 62M , 1 � p � m� n, we 
onstru
t a tree Tp by using thefollowing edges: txx0p, x0py0p, y0pty, y0ptyz, x0pU , Uvpx, vpxvp
 , vp
vpz , vpzW , and (one of the parallel edges) Wtz.This gives a set S2 of m� n edge-disjoint trees. It is not hard to see that all these trees in S1 and S2 areedge-disjoint. This proves Lemma 3.4.Now assume that H has a set T = fT1; : : : ; Tm0g of edge-disjoint Steiner trees, with m0 = (1 � �1)m.Our goal is to show that, G will have a mat
hing of size at least (1� 110�1)n.Claim 3.5 There is a subset T 0 � T of size at least (1 � 11�1)m su
h that every tree Ti 2 T 0 has thefollowing properties: (i) all the terminals have degree 1, and (ii) there is exa
tly one (unique) vertex vq
(for some 1 � q � m) in Ti and furthermore both vqxvq
 and vq
vqz are in Ti, and there is no q0 6= q for whi
hvq0x or vq0z is in Ti.Proof: Sin
e degree of tx is exa
tly m in H, there are at most �1m trees in T in whi
h tx is not a leaf. Tosee this, let � be the number of Steiner trees in T that ea
h have at least 2 edges in
ident with tx; sin
ethese trees \use" at least 2� edges in
ident with tx, there are at most m � 2� other Steiner trees in T ;then we have m� �1m � jT j � m� �, and this implies that � � �1m. The same 
laim applies to all theterminals, be
ause they all have degree exa
tly m.It follows that there is a set T 00 � T of size at least (1� 3�1)m of trees in whi
h tyz and ty both havedegree 1. For ea
h tree of T 00, there is at least one 1 � q � m, su
h that the path that 
onne
ts tz to txgoes through edge vqzvq
 . To see this note that tyz has degree 1 in every tree of T 00, hen
e, for ea
h of thesetrees, the tz; tx path does not use any edge in
ident to tyz; moreover, if we delete tyz and all the edgesvqzvq
 for q = 1; : : : ;m, then tx and tz are dis
onne
ted; thus the tz; tx path must use one of the edges vqzvq
 .Then the number of trees in T 00 that have at least two verti
es vq
 and vq0
 is at most 3�1m; also, the same
laim holds for verti
es vqz and vq0z . (To see this, let � be the number of trees in T 00 that ea
h have at least2 verti
es vq
 and vq0
 ; note that the verti
es vq
 and vqz have degree 3 so by Observation 3.1(2) ea
h su
hvertex is in at most one tree; then there are at most m� 2� other trees in T 00, sin
e ea
h of the trees inT 00 has a vertex vqz ; thus we have (1 � 3�1)m � jT 00j � m� �, and this implies that � � 3�1.) Therefore,there is a set T � � T 00 of size at least (1 � 6�1)m of trees for whi
h there is a unique q su
h that both vq
and vqz are in the tree and there is no q0 6= q su
h that either vq0
 or vq0z is in the tree. Similarly, sin
e tyhas degree 1, in every tree of T 00, the path between tz and tx 
annot 
ontain ty. Hen
e, ea
h tree of T 00
ontains at least one vertex vpx, for some 1 � p � m. In parti
ular ea
h tree of T � that 
ontains vq
 and vqz(for some 1 � q � m), 
ontains vqx as well. Then the number of trees in T 00 that have at least 2 verti
es vpxis at most 3�1m. Thus, at least (1� 6�1 � 3�1)m of the trees in T � do not violate 
ondition(ii). There areat most 2�1m trees in T 00 su
h that either tx or tz is a non-leaf (by the argument at the start of this proof).Hen
e, the number of trees that violate neither (i) nor (ii) is at least (1� 9�1� 2�1)m = (1� 11�1)m. Thisproves Claim 3.5.Consider a set T 0 of Steiner trees of H as des
ribed in the previous 
laim. Note that jT 0j � (1�11�1)m.Pi
k any tree Ta 2 T 0 that 
ontains txx0i for some 1 � i � m� n. Clearly the path that 
onne
ts tx to tzgoes through the unique vertex vq
 that belongs to Ta (be
ause tyz has degree 1). We 
laim that y0i 
annot14



belong to any tree in T 0 other than Ta. Otherwise, let y0i 2 Tb, for some b 6= a. Therefore, be
ause x0i 62 Tband by Observation 3.1(1), tyy0i and tyzy0i must be in Tb. But sin
e both ty and tyz are leaves in every treein T 0 and in parti
ular in Tb, y0ix0i must be in Tb, a 
ontradi
tion. Then we may add y0i to Ta (if it is notalready in Ta), and add the edges y0ity and y0ityz (if other edges are in
ident to ty or tyz, then we removethose edges). We still have a Steiner tree whi
h is edge-disjoint from the other trees in T 0. We apply thismodi�
ations for any tree Ta 2 T 0 that 
ontains some edge txx0i for some 1 � i � m� n.Claim 3.6 There is a set T 00 � T 0 of size at least (1� 22�1)m su
h that every tree in T 00 
ontains at mostone vertex from Q = fy01; : : : ; y0m�ng [ fz01; : : : ; z0ng.Proof: Sin
e all verti
es in Q have degree 3, ea
h of them belongs to at most one Steiner tree. So, on
e avertex v 2 Q is in a tree Ta 2 T 0 then the edges tyzv 
annot be in any other tree in T 0. Therefore, if thereare � trees in T 0 that ea
h 
ontain two or more verti
es from Q, then they \use" at least 2� edges in
identwith tyz, and there 
an be at mostm�2� other Steiner trees in T 0. Then we havem�11�1m � jT 0j � m��,and this implies that � � 11�1m. We remove from T 0 all the trees that have � 2 verti
es from Q. Thisgives the desired set T 00, and this proves Claim 3.6.Consider the subset T 00 � T 0 as de�ned in the previous 
laim. Re
all that for every tree Ta 2 T 00, (i)terminals have degree 1, (ii) there is one unique vertex vq
 in Ta and both edges vq
vqx and vq
vqz are in Ta, and(iii) there is no other vertex vq0x or vq0z in Ta, for q0 6= q, (iv) there is at most one vertex from set Q in Ta, and(v) if txx0i 2 Ta for some 1 � i � m�n then tyy0i, tyzy0i, and y0ix0i are all in Ta, and therefore no vertex fromfz01; : : : ; z0ng is in Ta, i.e., the edge in
ident with tz in Ta is tzW . Remove all the trees in T 00 that satisfy
ondition (v) above to obtain set Tnew. Sin
em � 5n, we have jTnewj � (1�22�1)m�(m�n) � (1�110�1)n.Lemma 3.7 (soundness) Tnew indu
es a mat
hing of size jTnewj in G.Proof: By de�nition of Tnew, in every tree Ta 2 Tnew: (i) tx and ty and tz are adja
ent to verti
es xi, yj,and z0k, respe
tively (for some unique 1 � i; j; k � n), and z0kzk 2 Ta, and (ii) there is exa
tly one (unique)vq
 that belongs to Ta, and vqxvq
 2 Ta and vq
vqz 2 Ta, and (iii) there is no other vertex vq0x or vq0z in Ta, thatis xivqx 2 Ta and vqzzk 2 Ta and vq
yj 2 Ta. This implies that Ta indu
es a triple (xi; yj; zk) in the 3-partitegraph G. Sin
e the trees in Tnew are edge-disjoint and moreover, ea
h of these trees 
ontains exa
tly onenode from ea
h of the 3 sets fx1; : : : ; xng, fy1; : : : ; yng, fz1; : : : ; zng, it follows that these jTnewj triples arevertex-disjoint. Thus they form a mat
hing of size at least (1� 110�1)n in G. This proves Lemma 3.7.By Lemma 3.7, if every mat
hing in G has size at most (1 � �0)n then H has at most (1 � �0=110)medge-disjoint Steiner trees. This 
ompletes the proof of Theorem 3.3.The 
onstant 110 in the above theorem is not optimal. We 
an �nd expli
it lower bounds for thehardness of IUE-unit
ap with 
onstant number of terminals using the known hardness results for kDM,for higher values of k. For instan
e, Hazan et al. [15℄ proved that 4DM (with upper bounds on the degreeof ea
h vertex) is hard to approximate within a fa
tor 5354 . Using this and a redu
tion similar to theone presented in Theorem 3.3 it seems possible to show that IUE-unit
ap with 5 terminals is hard toapproximate within a fa
tor (1 + 12000 ). The proof of Theorem 3.3 extends to give the next result.Theorem 3.8 IUV-unit
ap is APX-hard with only 4 terminals.15



Proof: First, we prove APX-hardness with only 6 terminals, by using the same redu
tion as in Theorem3.3. The only di�eren
e is that verti
es U and W are also terminals in the 
onstru
tion. Now it is nothard to prove that: (i) if the given 3-partite graph G has a perfe
t mat
hing then H has m vertex disjointSteiner trees, and (ii) if every mat
hing in G has size at most (1 � �0)n then H has at most (1 � �1)mvertex-disjoint Steiner trees, where �1 is within a 
onstant fa
tor of �0. We skip the details.A more 
areful redu
tion similar to the one in Theorem 3.3 improves the number of terminals from 6to 4. The basi
 
hange is to repla
e U with m � n 
opies of it u1; : : : ; um�n. We have an edge from x0ito ea
h ui (for i = 1; : : : ;m � n). We 
onne
t every u1; : : : ; um�n to every vertex vqx (for q = 1; : : : ;m).We do similar 
hanges for W , that is, we repla
e it with m� n 
opies w1; : : : ; wm�n, and 
onne
t ea
h ofw1; : : : ; wm�n to tz and to ea
h vertex vqz (for q = 1; : : : ;m). We skip the details as they are similar tothose of Theorem 3.3.3.2 The unrestri
ted IUV and GUE problemsThe next theorem shows that IUV-unit
ap is signi�
antly harder than IUE-unit
ap. We show this bya redu
tion from the set-
over pa
king problem (or domati
 number problem). Given a bipartite graphG(V1 [ V2; E), a set-
over (of V2) is a subset S � V1 su
h that every vertex of V2 has a neighbor in S.A set-
over pa
king is a 
olle
tion of pairwise disjoint set-
overs of V2. The goal is to �nd a pa
king ofset-
overs of maximum size. Feige et al. [8℄ show that, unless P=NP, there is no o(log n)-approximationalgorithm for set-
over pa
king, where n = jV1j+ jV2j. We have the following theorem.Theorem 3.9 IUV-unit
ap, even restri
ted to the 
ase that both the set of terminals and the set ofSteiner nodes are independent, 
annot be approximated within ratio 
0 logn, for some 
onstant 
0 > 0,unless P=NP.Proof: Given a bipartite graph G(V1 [ V2; E) as the instan
e of set-
over pa
king problem, the instan
efor IUV-unit
ap problem will be G0 that is obtained from G by adding a vertex t0 and 
onne
ting it toall the verti
es in V1. Let the terminal set of G0 be t0 [ V2. We 
laim that G0 has set-
over pa
king of sizep if and only if G0 has p vertex-disjoint Steiner trees. If sets S1; : : : ; Sp form a set-
over pa
king then it iseasy to see that Ti = Si [ V2 [ ft0g, for 1 � i � p, forms a set of vertex-disjoint Steiner trees. Conversely,if T1; : : : ; Tp are vertex-disjoint Steiner trees then, sin
e V2 is an independent set, for ea
h Ti there has tobe a set Si � V1 of verti
es su
h that every vertex in V2 has a neighbor in Si in order to be 
onne
ted tothe rest of the tree.On the other hand, we obtain an O(pn log n) algorithm for GUE (whi
h 
ontains IUV-unit
ap asa spe
ial 
ase). To do so, 
onsider the fra
tional version of GUE obtained by relaxing the integrality
ondition in the IP formulation. The separation problem for the dual of this LP is the minimum node-weighted Steiner tree problem. For this problem, Guha and Khuller [14℄ give an O(log n) approximationalgorithm. Using the following analog of Theorem 2.9 (or Theorem 4.1 in [16℄) we obtain a polytimeO(log n)-approximation algorithm for fra
tional GUE.Lemma 3.10 There is an �-approximation for fra
tional GUE if and only if there is an �-approximationfor the minimum node-weighted Steiner tree problem.16



Remark: Lemma 3.10 and the fa
t that the minimum node-weighted Steiner tree problem is hard toapproximate within O(log k) (with k being the number of terminals) yields an alternative proof for the
(log k) hardness of IUV-unit
ap.The algorithm for GUE is similar to the ones we presented for GDE and GDV. That is, we applyrandomized rounding to the solution of the fra
tional GUE instan
e. Skipping the details, this yields thefollowing:Theorem 3.11 Let � > 0 be a 
onstant. There is a polynomial-time algorithm for GUE that �nds aset of Steiner trees (satisfying the vertex 
apa
ity 
onstraints) of size 
(maxf'f=pn log n; '2f=n log2 ng) if'f � n, and of size 
('f= log n) otherwise, where 'f denotes the optimal value of the instan
e of fra
tionalGUE.3.3 Pa
king vertex-disjoint priority Steiner treesThe priority Steiner tree problem has been studied by Charikar et al. [5℄. Here, we study the problem ofpa
king vertex-disjoint priority Steiner trees of undire
ted graphs. (One di�eren
e with the earlier work in[5℄ is that we asso
iate weights and priorities with verti
es rather than with edges.) Consider an undire
tedgraph G = (V;E) with a set of terminals T � V , one of whi
h is distinguished as the root r. Let everyvertex v have a nonnegative integer pv as its priority, and let every vertex v have a nonnegative integer 
v asits 
apa
ity. A priority Steiner tree is a Steiner tree su
h that for ea
h terminal t 2 T every vertex v on ther; t path has priority pv � pt. In the problem IUV-priority (pa
king undire
ted vertex-
apa
itated prioritySteiner trees) the goal is to �nd a maximum set of priority Steiner trees obeying vertex 
apa
ities (i.e., forea
h Steiner vertex v 2 V �T the number of trees 
ontaining v is � 
v). In the problem GUV-priority, wehave ` sets of terminals T1; : : : ; T` and ` roots r1; : : : ; r` (where ri 2 Ti, for i = 1; : : : ; `, and ` is polynomialin n), and the goal is to �nd a maximum set of trees obeying the vertex 
apa
ities, where ea
h of thesetrees must have an i 2 f1; : : : ; `g su
h that the tree is a priority Steiner tree with root ri and terminalset Ti (that is, the tree 
ontains all the nodes in Ti and for ea
h t 2 Ti every vertex v on the ri; t pathhas pv � pt). The algorithm we presented for GUE extends to GUV-priority, giving roughly the sameapproximation guarantee.Theorem 3.12 Let � > 0 be a 
onstant. There is a polynomial-time algorithm for GUV-priority that �ndsa set of priority Steiner trees (satisfying the vertex 
apa
ity 
onstraints) of size 
(maxf'f=n 1+�2 ; '2f=n1+�g)if 'f � n, and of size 
('f=n �2 ) otherwise, where 'f denotes the optimal value of the instan
e of fra
tionalGUV-priority.Proof: The fra
tional pa
king problem for GUV-priority is obtained in the usual way (formulate thepa
king problem as an integer program and then relax the integer variables to be nonnegative reals).First note that in the dual of the LP formulation of fra
tional GUV-priority, the separation problemis the minimum (node-weighted) priority Steiner tree problem, where the node weights 
orrespond to the(nonnegative) variables of the dual. The following lemma, together with the O(n�) approximation algorithmof [4℄ for minimum (ar
-weighted) dire
ted Steiner trees, shows that there is an O(n�) approximationalgorithm for the minimum (node-weighted) priority Steiner tree problem. (In the lemma, we abuse thenotation and denote instan
es of these problems by the asso
iated graphs or digraphs.)17



Lemma 3.13 There is a polynomial-time algorithm that given an instan
e G = (V;E) of the minimum(node-weighted undire
ted) priority Steiner tree problem 
onstru
ts an instan
e G00 of the minimum (ar
-weighted) dire
ted Steiner tree problem su
h that G has a priority Steiner tree of weight W if and only ifG00 has a dire
ted Steiner tree of weight W .Proof: Let G(V;E) be the given undire
ted graph, let r be the root, and let the set of terminals be T � V ;ea
h vertex v 2 V has a weight wv and a priority pv. Without loss of generality, we may assume that thevertex priorities pv are in the range 1; : : : ; n, and the root r has priority n. We assume (w.l.o.g.) that ea
hterminal in G has weight zero.Let G0 be the digraph obtained from graph G by �rst splitting ea
h vertex v into two verti
es v1; v2and adding the ar
 v1v2, and then repla
ing ea
h edge xy 2 E by a pair of ar
s x2y1, y2x1; moreover, forea
h v 2 V , de�ne the weight and priority of ar
 v1v2 to be wv and pv, and de�ne the weight and priorityof the other ar
s to be 0 and n, respe
tively. For ea
h possible priority ` 2 f1; : : : ; ng, we start with a
opy G0̀ of G0 and we remove all ar
s that have priority less than ` (thus ea
h ar
 in G0̀ has priority � `).Finally, for ` = n; n� 1; : : : ; 2, for ea
h node v 2 G we add an ar
 from the 
opy of v2 in G0̀ to the 
opyof v2 in G0̀ �1. These new ar
s have a weight of 0 and a priority of n (so their weights and priorities willnot a�e
t our proof). In the resulting digraph, let the root be the node r1 in G0n, and for ea
h terminalvertex t 2 T of G let the 
opy of node t2 in G0pt be a terminal (thus t 
orresponds to t2 in the 
opy of G0indexed by pt). Denote the dire
ted instan
e by G00, and denote its set of terminals and root by T 00 andr00, respe
tively (see Figure 3 for an illustration).Consider any terminal t 2 T of G, and let t00 denote the 
orresponding terminal of G00. Clearly, in G00,every ar
 in any (dire
ted) path from r00 to t00 has priority at least pt. Moreover, for any path between rand t in G su
h that every vertex v in the path has pv � pt, G00 has dire
ted paths from r00 to t00. Our
onstru
tion pi
ks one of these r00; t00 dire
ted paths as follows: Let the r; t path of G be v0; v1; v2; : : : ; vq(where v0 = r; vq = t); we assign a number p00(v) to ea
h vertex v in this path su
h that pt � p00(v) � pv,p00(t) = pt, p00(r) = pr, and moreover, these numbers form a non-in
reasing sequen
e along the r; t path(i.e., p00(v0) � p00(v1) � : : : � p00(vq)). Then the r00; t00 dire
ted path of G00 
onsists of the nodes r00 = r1,r2 in G0n, followed by a dire
ted path from (the 
opy of) r2 in G0n to (the 
opy of) r2 in G0p00(v1), followedby v11 and v21 in G0p00(v1), followed by a dire
ted path from (the 
opy of) v21 in G0p00(v1) to (the 
opy of) v21 inG0p00(v2), followed by v12 and v22 in G0p00(v2), . . . , followed by v1q and v2q in G0p00(vq).It 
an be seen that 
orresponding to any dire
ted Steiner tree H 00 of G00 there is a priority Steiner treeof G whose weight is at most the weight of H 00. (To see this, let S be the set of Steiner verti
es v of Gsu
h that one of the 
opies of the ar
 v1v2 is in H 00; then the subgraph of G indu
ed by S [ T has an r; tpath for ea
h t 2 T , and moreover, ea
h Steiner vertex v in an r; t path has pv � pt be
ause the ar
 v1v2(in H 00) o

urs in say G0p00(v) where pv � p00(v) � pt.)Moreover, it 
an be seen that 
orresponding to any priority Steiner tree H of G there is a dire
tedSteiner tree H 00 of G00 with the same weight. (To see this, we asso
iate a number p00(v) with ea
h vertex vof H, where p00(v) is the maximum priority of any terminal in the subtree of H rooted at v; thus p00(v) � pv,8v 2 V , and for ea
h terminal t, every vertex v in the r; t path of H has p00(v) � pt; then for ea
h terminalvertex v 2 T and for ea
h Steiner vertex v in H, we add to H 00 (the 
opy of) nodes v1; v2 and ar
 v1v2 inG0p00(v); �nally we add to H 00 appropriate ar
s of weight 0 and priority n.)18



r a b 
d5 1 22 4
d1

j

r a b 
dp00 = 5 p00 = 1(wv not shown)v terminalSteiner nodepv
Priority Stiener tree and p00(v), 8v 2 Vp00 = 2 p00 = 2 p00 = 2

r1 a1 b2d1 d2b2 
1 
2a2
r1 a1 b2d2b2 
1 
2a2

r1 a1 b2d1 d2b2 
1 
2a2

r2
r2
r2

iv1wv1v2 = 0pv1v2 = pv
ar
s of dire
tedSteiner treepij = n = 5

G0n (n = 5)
G02
G01

r00
wij = 0

v2

Figure 3: Graph G(V;E), and dire
ted graph G00, showing only G05, G02, and G01; also, only some of thear
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Consequently, an �-approximate solution to the minimum ar
-weighted dire
ted Steiner tree problemin G00 gives an �-approximate solution to the minimum node-weighted priority Steiner tree problem in G.This proves Lemma 3.13The next result follows from Lemma 3.13 and another analog of Theorem 2.9 (or Theorem 4.1 in [16℄)that relates the fra
tional GUV-priority problem to the minimum (node weighted) priority Steiner treeproblem.Lemma 3.14 There is an O(n�)-approximation algorithm for the fra
tional GUV-priority problem.The above lemma 
an be used to obtain an O(n 12+�)-approximation algorithm for the GUV-priorityproblem, similar to the approximation algorithm for GUE; we �nd an approximately optimal solution tothe fra
tional pa
king problem and then apply randomized rounding; see the analysis in Se
tion 2.2. Thisproves Theorem 3.12.On the other hand, we prove an 
(n 13��) hardness result for IUV-priority by adapting the proof ofTheorem 2.4, thus improving on our logarithmi
 hardness result for IUV. The main di�eren
e from theproof of Theorem 2.4 is that we use instan
es of the Undir-Node-USF problem (Undire
ted Node 
apa
itatedUnsplittable Flow) { whi
h is shown to be NP-
omplete in [11℄ { instead of instan
es of 2DIRPATH as themodules that are pla
ed on the \gray boxes" in Figure 1.Theorem 3.15 Given an instan
e of IUV-priority, it is NP-hard to approximate the solution withinO(n 13��) for any � > 0.Proof: The 
onstru
tion is the same as in the proof of Theorem 2.4, ex
ept that the edges are undire
tedand we repla
e the \modules" (gray box interse
tions) that 
onsist of the same instan
e of the 2DIRPATHproblem by parameterized instan
es of the Undir-Node-USF problem, des
ribed below. An instan
e ofthe Undir-Node-USF problem is an undire
ted graph G(V;E) with distin
t verti
es x1; y1; x2; y2 2 V , plustwo integers p2 > p1 � 0. Furthermore, ea
h node v of G has a priority pv. We may assume that G hasan x2; y2 path su
h that ea
h vertex v on this path has pv � p2 (this follows from the 
onstru
tion ofGuruswami et al. [11℄). The question is whether or not there exist two vertex-disjoint paths Q1; Q2, su
hthat Qi (for i = 1; 2) starts at xi, ends at yi, and every node v of Qi has priority pv � pi. Guruswami et al.[11℄ (see Theorem 3 in their paper) proved the following result (by giving a redu
tion from the satis�abilityproblem): Given an instan
e of Undir-Node-USF, it is NP-
omplete to de
ide whether the answer is \Yes"or \No". Moreover, this holds for any two distin
t integers p2; p1. (We remark that our notation di�ersfrom that of [11℄; they use the terms \node 
apa
ities 
v", and \sour
e-sink pairs (si; ti)" with \demandsdi" whereas we use \node priorities pv", and we have two pairs (x1; y1) with priority p1 and (x2; y2) withpriority p2; there is no other di�eren
e.)In the proof of Theorem 2.4 we make the following 
hanges. We �x N = jV (G)j 1� , where G is the\module" graph (instan
e of Undir-Node-USF). The terminals b1; : : : ; bN are given distin
t priorities, say,1; : : : ; N . We remove all the edges aibi, i = 1; : : : ; N . For ea
h gray box interse
tion with verti
essi��; ti�� ; p��i; q��i we identify verti
es x2; y2 with si��; ti�� (horizontal line) and �x priority p2 = N (to
onne
t bN to the root), and we identify verti
es x1; y1 with p��i; q��i (verti
al line) and �x priority p1 = �20



(to 
onne
t b� to the root). All the nodes v that are not in the interior of any \module" get prioritypv = N .It 
an be seen that Lemma 2.5 in the proof of Theorem 2.4 applies to the new setting (for IUV-priority).Now, 
onsider any priority Steiner tree Tq. Every vertex in the r; bN path (of Tq) must have priority N ,thus this path 
annot 
ontain any \verti
al line segments" (paths 
ontaining edges of the form p��iq��(i+1));that is, this path 
orresponds to one of the horizontal lines Hi. Using this, it 
an be seen that Lemma 2.6in the proof of Theorem 2.4 applies to the new setting (for IUV-priority). This proves Theorem 3.15.Referen
es[1℄ S. Arora and C. Lund, Hardness of approximations, in Approximation Algorithms for NP-hard Prob-lems, Dorit Ho
hbaum Ed., PWS Publishing, 1996.[2℄ A. Baveja and A. Srinivasan, Approximation algorithms for disjoint paths and related routing andpa
king problems, Mathemati
s of Operations Resear
h 25:255-280, 2000. Earlier version in FOCS1997.[3℄ R. Carr, and S. Vempala, Randomized metarounding, Random Stru
tures and Algorithms, 20:343-352,2002. Earlier version in STOC2000.[4℄ M. Charikar, C. Chekuri, T. Cheung, Z. Dai, A. Goel, S. Guha, and M. Li, Approximation algorithmsfor dire
ted Steiner problem, J.Algorithms 33(1):73-91, 1999. Earlier version in SODA1998.[5℄ M. Charikar, J. Naor, and B. S
hieber, Resour
e optimization in QoS multi
ast routing of real-timemultimedia, Pro
. 19th Annual IEEE INFOCOM (2000).[6℄ J. Cheriyan and M.R. Salavatipour, Pa
king Steiner-node-disjoint Steiner trees, manus
ript, 2004.[7℄ R. Diestel, Graph Theory, Springer, New York, NY, 2000.[8℄ U. Feige, M. Halldorsson, G. Kortsarz, and A. Srinivasan, Approximating the domati
 number, SiamJ.Computing 32(1):172-195, 2002. Earlier version in STOC 2000.[9℄ P. Flor�een, P. Kaski, J. Kohonen, and P. Orponen, Multi
ast time maximization in energy 
onstrainedwireless networks, in Pro
. 2003 Joint Workshop on Foundations of Mobile Computing (DIALM-POMC2003), San Diego, CA, 2003.[10℄ A. Frank, T. Kir�aly, M. Kriesell, On de
omposing a hypergraph into k 
onne
ted sub-hypergraphs,Dis
rete Applied Mathemati
s 131(2):373-383, 2003.[11℄ V. Guruswami, S. Khanna, R. Rajaraman, B. Shepherd, and M. Yannakakis, Near-optimal hardnessresults and approximation algorithms for edge-disjoint paths and related problems, J.Computer andSystem S
ien
es 67(3):473-496, 2003. Earlier version in STOC1999.[12℄ S. Fortune, J. Hop
roft, and J. Wyllie, The dire
ted subgraph homeomorphism problem, Theoreti
alComputer S
ien
e 10(2):111-121, 1980. 21



[13℄ M. Gr�ots
hel, A. Martin, and R. Weismantel, The Steiner tree pa
king problem in VLSI design,Mathemati
al Programming 78:265-281, 1997.[14℄ S. Guha and S. Khuller, Improved methods for approximating node weighted Steiner trees and 
onne
teddominating sets, Information and Computation 150:57-74, 1999. Earlier version in FST&TCS1998.[15℄ E. Hazan, S. Safra, and O. S
hwartz, On the hardness of approximating k-dimensional mat
hing,Ele
troni
 Colloqium on Computational Complexity, Rep.No.20, 2003.[16℄ K. Jain, M. Mahdian, M.R. Salavatipour, Pa
king Steiner trees, Pro
. SODA2003.[17℄ V. Kann, Maximum bounded 3-dimensional mat
hing is MAX SNP-
omplete, Information Pro
essingLetters 37:27-35, 1991.[18℄ P. Kaski, Pa
king Steiner trees with identi
al terminal sets, Information Pro
essing Letters 91(1):1-5,2004.[19℄ S.G. Kolliopoulos and C. Stein, Approximating disjoint-path problems using pa
king integer programs,Mathemati
al Programming 99:63-87, 2004. Earlier version in Pro
. IPCO1998.[20℄ M. Kriesell, Edge-disjoint trees 
ontaining some given verti
es in a graph, J.Combinatorial Theory(B) 88:53-65, 2003.[21℄ L. Lau, An approximate max-Steiner-tree-pa
king min-Steiner-
ut theorem, Pro
. 45th IEEEFOCS2004.[22℄ A. Martin and R. Weismantel, Pa
king paths and Steiner trees: Routing of ele
troni
 
ir
uits, CWIQuarterly 6:185-204, 1993.[23℄ S. Vempala, and B. V�o
king, Approximating multi
ast 
ongestion, Pro
. 10th ISAAC, Chennai,Springer LNCS, 367-372, 1999.

22


