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APPROXIMATION ALGORITHMS FOR MINIMUM-COST k-(S, T )
CONNECTED DIGRAPHS∗

J. CHERIYAN† AND B. LAEKHANUKIT‡

Abstract. In the minimum-cost k-(S, T ) connected digraph (abbreviated as k-(S, T ) connectiv-
ity) problem we are given a positive integer k, a directed graph G = (V,E) with nonnegative costs

on the edges, and two subsets S, T of V ; the goal is to find a subset of edges ̂E of minimum cost
such that the subgraph (V, ̂E) has k edge-disjoint directed paths from each vertex in S to each vertex
in T . Most of our results focus on a specialized version of the problem that we call the standard
version, where every edge of positive cost has its tail in S and its head in T . This version of the
problem captures NP-hard problems such as the minimum-cost k-vertex connected spanning sub-
graph problem. We give an approximation algorithm with a guarantee of O((log k)(logn)) for the
standard version of the k-(S, T ) connectivity problem, where n denotes the number of vertices. For
k = 1, we give a simple 2-approximation algorithm that generalizes a well-known 2-approximation
algorithm for the minimum-cost strongly connected spanning subgraph problem. For k = 2, we give
a 3-approximation algorithm; this matches the best approximation guarantee known for the special
case of the minimum-cost 2-vertex connected spanning subgraph problem. Besides the standard
version, we study another version that is intermediate between the standard version and the problem
in its full generality. In the relaxed version of the (S, T ) connectivity problem, each edge of positive
cost has its head in T but there is no restriction on the tail. We study the relaxed version with the
connectivity parameter k fixed at one and observe that this version is at least as hard to approxi-
mate as the directed Steiner tree problem. We match this by giving an algorithm that achieves an
approximation guarantee of α(n)+1 for the relaxed (S, T ) connectivity problem, where α(n) denotes
the best approximation guarantee available for the directed Steiner tree problem. The key to the
analysis is a structural result that decomposes any feasible solution into a set of so-called junction
trees that are disjoint on the vertices of T . Our algorithm and analysis specialize to the case when
the input digraph is acyclic on T , meaning that there exists no dicycle that contains two distinct
vertices of T . In this setting, we show that the relaxed (S, T ) connectivity problem is at least as hard
to approximate as the set covering problem, and we prove that our algorithm achieves a matching
approximation guarantee of O(log |S|).
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1. Introduction.

1.1. The model of k-(S, T ) connectivity. We introduce a model for NP-
hard problems pertaining to the connectivity of graphs. One of the well-known NP-
hard problems is to find a minimum-cost strongly connected spanning subgraph of
a directed network. In the minimum-cost k-(S, T ) connected digraph (abbreviated
as k-(S, T ) connectivity) problem we are given an integer k ≥ 0, a directed graph
G = (V,E0 ∪E) with positive costs on the edges in E, and two subsets S, T of V . We

use n to denote the number of vertices. The goal is to find a subset of edges Ê ⊆ E of
minimum cost such that the subgraph (V,E0 ∪ Ê) has k edge-disjoint directed paths
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(abbreviated as dipaths) from each vertex in S to each vertex in T . When k = 1
and S = T = V , we get the minimum-cost strongly connected spanning subgraph
(abbreviated as SCSS) problem.

We call E the set of augmenting edges, and we callG0 = (V,E0) the initial digraph.
The vertices in V − (S ∪ T ) are called optional. Observe that the objective function
does not depend on the edges in E0; for convenience, we take the cost of each edge in
E0 to be zero. The initial digraph G0 = (V,E0) can be arbitrary. Throughout, we use
n and m to denote the number of vertices and the number of edges, respectively. We
use opt to denote the cost of an optimal solution, and we use E∗ to denote the set of
edges in an (fixed, arbitrary) optimal solution. When k = 1 we drop the connectivity
parameter k and refer to our problem as (S, T ) connectivity.

Our model of k-(S, T ) connectivity is at least as hard for approximation as the
label-cover problem, even when the connectivity parameter k is one. There is a simple
reduction from the directed Steiner network (a.k.a. directed Steiner forest) problem
(see Proposition 1), and it is well known that the latter problem is at least as hard as
the label-cover problem; see [1], [38, Corollary 16.39].

Rather than focusing on this general version of the problem, most of our results
focus on a specialized version that we call the standard version, where every edge
of positive cost has its tail in S and its head in T . This version of the problem
captures NP-hard problems such as the minimum-cost k-edge connected spanning
subgraph (abbreviated as k-ECSS) problem and the minimum-cost k-vertex connected
spanning subgraph (abbreviated as k-VCSS) problem, which have been extensively
studied in the area of approximation algorithms for almost two decades, yet there
are significant problems left open. Moreover, this version of the problem generalizes
the special case of the directed subset k-connected subgraph problem, where every
edge of positive cost has both endvertices in the set of terminals. We call it the
standard version because a still further specialization of it was introduced and studied
by Frank and Jordán more than 15 years ago [16]. Part of their motivation was to
extend their famous min-max theorem that gives an optimal characterization for the
vertex-connectivity augmentation problem on directed graphs to the more general
setting of the k-(S, T ) connectivity augmentation problem where every edge from S
to T is present and has unit cost. Thus, the model introduced and studied in [16] is
polynomial-time solvable; subsequently, improved algorithms were presented by [37].
Moreover, [16] proves min-max results for some of these problems. To the best of our
knowledge, the minimum-cost version of the k-(S, T ) connectivity augmentation model
of [16] has not been previously studied. We mention that all of the problems studied
in this paper are on digraphs, and thus k-VCSS and k-ECSS denote problems on
digraphs; some of the literature studies similar problems on undirected graphs: it can
be seen that an approximation guarantee of ρ for the k-VCSS problem on digraphs
implies an approximation guarantee of 2ρ for the k-VCSS problem on undirected
graphs, and the same holds for the k-ECSS problem.

One of our results is an O((log k)(log n)) approximation algorithm for the stan-
dard version of the k-(S, T ) connectivity problem. Observe that any approximation
guarantee for the min-cost k-(S, T ) connected digraph problem implies the same ap-
proximation guarantee for the k-VCSS problem. We do not improve on the best
known approximation guarantee for the latter problem, which is O(log k · log( n

n−k ))
[31]. Our algorithm is based on a paradigm that we call the halo-set decomposition; it
was used previously in [10], building on previous work by [28]; the notion of halo sets
was introduced in [28]. Recently, Nutov [30, Theorem 1.1] extended it to the problem
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of covering a crossing biset family by a set of edges of minimum cost to get an O(log n)
approximation algorithm.

An immediate question is whether our approximation guarantee for the k-(S, T )
connectivity problem is optimal or (more realistically) whether the approximation
guarantee can be improved substantially. For k = O(1), note that our approximation
guarantee is O(log n). It is not clear whether there exists a logarithmic (in n) hardness
threshold for k = O(1). For k = 1, we give a simple 2-approximation algorithm that
generalizes a well-known 2-approximation algorithm of [18, 23] for the SCSS problem.
But already for k = 2 there are substantial difficulties. We give a 3-approximation
algorithm in section 4; the algorithm is simple, but the analysis is nontrivial. We
could not find any simple way to achieve an approximation guarantee of O(1) for the
2-(S, T ) connectivity problem.

Besides the standard version, we study another version that is intermediate be-
tween the standard version and the problem in its full generality (which is label-cover
hard). In the relaxed version of the (S, T ) connectivity problem, each edge of positive
cost has its head in T but there is no restriction on the tail. We study the relaxed
version with the connectivity parameter k fixed at one and observe that this version
is at least as hard to approximate as the directed Steiner tree problem. The latter
problem has a hardness threshold of Ω(log2−ε n) assuming that NP is not contained in
ZPTIME(npolylog n) [21]. Let α(n) denote the best approximation guarantee available
for the directed Steiner tree problem; the results of [4, 22] show that an approximation
guarantee of O(�3n1/�) can be achieved in time O(n3�). In particular, the algorithm
achieves an approximation guarantee of O(log3 n) provided that it is allowed to run in
quasi-polynomial time. We give an algorithm that achieves an approximation guar-
antee of α(n)+1 for the relaxed (S, T ) connectivity problem. The key to the analysis
is a structural result that decomposes any feasible solution into a set of junction trees
that are disjoint on the vertices of T ; in fact, each vertex of T appears in exactly
one of these junction trees. (See [9, 5] for other applications of junction trees.) Our
algorithm and analysis specialize to the case when the input digraph is acyclic on T ,
meaning that there exists no dicycle that contains two distinct vertices of T . In this
setting, we show that the relaxed (S, T ) connectivity problem is at least as hard to
approximate as the set covering problem, and we prove that our algorithm achieves a
matching approximation guarantee of O(log n).

In brief, the model of k-(S, T ) connectivity captures several of the key problems
in the area of approximation algorithms for network design, such as the SCSS prob-
lem and its extensions to k-edge connectivity, the k-VCSS problem (section 5.1), the
directed Steiner tree problem (Proposition 1), the set covering problem (Theorem 5),
and the directed Steiner network problem (Proposition 1). Despite this versatility,
the model is amenable to simple algorithmic schemes that give state-of-the-art ap-
proximation guarantees—meaning that the approximation guarantees are almost as
good as those for the well-studied special cases.

Figure 1 summarizes the model and the three versions of the k-(S, T ) connectivity
problem by illustrating some of the key NP-hard problems in network design captured
by it.

Many of the results of this paper were first presented in the second author’s thesis
[29]. We mention that many other types/models of connectivity problems have been
studied from the perspective of approximation algorithms [6, 12, 32], etc., but we
restrict most of our discussion to the literature that connects directly to our model.
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SCP(set.covering) k=1, acyclic on T

k−(S,T) conn. general: E      V    V

k−(S,T) conn. relaxed: E      V    T

k−(S,T) conn. standard: E      S    T

k−VCSS k−ECSS

SCSS  k=1

DSN(dir.Steiner.network) k=1

DST(dir.Steiner.tree) k=1

Fig. 1. An illustration of the model of k-(S, T ) connectivity, showing some of the key NP-hard
problems in network design captured by it.

1.2. Frank’s algorithm for rooted connectivity. Frank and Tardos [17] and
Frank [14, 15] gave polynomial-time algorithms and min-max theorems for finding a
min-cost “rooted out-subgraph.” More precisely, Frank’s results focus on the special
case of the min-cost (S, T ) connectivity problem, where S consists of a single vertex,
called the root, and every augmenting edge has its head in T , that is, (v, w) ∈ E =⇒
w ∈ T . Note that the restriction on E is critical; without this restriction, the directed
Steiner tree problem would be a special case of this problem.

We stress that Frank’s results (see our Theorem 9) immediately give an approx-
imation guarantee of min{|S|, |T |} for the k-(S, T ) connectivity problem. The main
point of the results in our paper is to obtain substantial improvements on this ap-
proximation guarantee. (We have no results of our own on the problems addressed
by Frank.)

1.3. Summary of results on k-(S, T ) connectivity. This subsection summa-
rizes our results on the k-(S, T ) connectivity problem; see sections 3–6. These results
are proved under the assumption that the sets S and T are disjoint; this is without
loss of generality (see Proposition 7).

Proposition 1. Consider the k-(S, T ) connectivity problem with the connectivity
parameter k equal to one. The hardness of approximation of the problem depends on
the version of the problem (and thus on the restrictions on the augmenting edges).

(1) The standard (S, T ) connectivity problem is at least as hard as the SCSS
problem.

(2) The relaxed (S, T ) connectivity problem is at least as hard as the directed
Steiner tree problem.

(3) The (S, T ) connectivity problem (without any restrictions on the augmenting
edges) is at least as hard as the directed Steiner network problem.

We have (almost) matching approximation guarantees for the first two versions.

The next result gives a 2-approximation algorithm for the standard (S, T ) con-
nectivity problem, and the details are given in section 3. Note that no approximation
guarantee better than 2 is known for the SCSS problem, which is a special case of
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our problem (standard (S, T ) connectivity), although the former problem (SCSS) has
been studied for almost two decades.

Theorem 2. Consider the standard version of the (S, T ) connectivity problem;
thus, k = 1. There is a 2-approximation algorithm that runs in polynomial time.

The next result addresses the 2-(S, T ) connectivity problem; the details are in sec-
tion 4. For the special case of the 2-VCSS problem, the best approximation guarantee
known is 3 [27].

Theorem 3. Consider the standard version of the 2-(S, T ) connectivity problem.
There is a 3-approximation algorithm that runs in polynomial time.

The next result addresses the standard version of the k-(S, T ) connectivity prob-
lem; the details are in sections 5. For the special case of the k-VCSS problem, the
best approximation guarantee known is O(log k · log( n

n−k )) [31].
Theorem 4. There is a polynomial-time approximation algorithm for the stan-

dard version of the min-cost k-(S, T ) connected digraph problem that achieves a guar-
antee of O(log k · logn).

The next result gives an almost tight approximation guarantee for the relaxed
version of the (S, T ) connectivity problem, where each augmenting edge has its head
in T but the tail is unrestricted. The guarantee is tight up to an additive term of
one. Moreover, we have some results on the relaxed (S, T ) connectivity problem on a
restricted class of digraphs. These results are proved in section 6.

Theorem 5. Consider the relaxed k-(S, T ) connectivity problem with the connec-
tivity parameter k equal to one.

(1) There exists an (α(n) + 1)-approximation algorithm, where α(n) denotes the
(best available) approximation guarantee for the directed Steiner tree prob-
lem. In particular, there is an O(log3 n)-approximation algorithm that runs
in quasi-polynomial time.

(2) Consider the special case of the problem where the given digraph G is acyclic
on T . This problem is at least as hard as the set covering problem. Moreover,
there is an O(log |S|)-approximation algorithm that runs in polynomial time.

Table 1 summarizes the results of this paper and compares them to the best
results known for several well-known problems that are captured by the model of
k-(S, T ) connectivity; the references in the table point to easily accessible results and
are not meant to establish priority for the previous results. In the row for relaxed
(S, T ) connectivity, note that both the approximation guarantees of O(log3 n) are
from algorithms that run in quasi-polynomial time.

2. Preliminaries. Most of our notation and terms are standard; see e.g., Schri-
jver [35]. When we say that two sets S1, S2 intersect (or, are intersecting), we mean
that S1∩S2 is nonempty. We call a directed graph a digraph and call a directed path a
dipath. Suppose that G = (V,E) is a graph or digraph that is an input for our problem
instance; then we use n to denote |V |, m to denote |E|, and, when stating running
times, we assume m = Ω(n). By an edge we mean an arc (directed edge) of a digraph,
as well as an undirected edge of a graph. For a set of vertices U and a set of edges F of
a digraph, δoutF (U) denotes the set of edges in F with tail in U and head not in U ; thus,
δoutF (U) = {(v, w) ∈ F : v ∈ U, w ∈ V − U}, and doutF (U) denotes the size of this set,
|δoutF (U)|; δinF (U) and dinF (U) are defined similarly. Given two vertices s, t, an s, t di-
path means a dipath with start-vertex s and end-vertex t. Given a digraph G = (V,E)
and two sets of vertices S, T ⊆ V , we use (S, T ) connectivity to mean the minimum
over all pairs s ∈ S, t ∈ T of the maximum number of edge-disjoint s, t dipaths; by
Menger’s theorem, this equals mins∈S,t∈T {|F | : F ⊆ E, G − F has no s, t dipath}.
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Table 1

The table shows our results for the three versions of k-(S, T ) connectivity, and the best results
known for some of the problems captured by this model; the references in the table point to easily
accessible results.

Model of k-(S, T ) This paper Problems captured: Previous results
connectivity Problem Hardness Approx. guarantee

General DSN (k = 1) 2log
1−ε n [7] O(n2/3+ε) [3]

Relaxed O(log3 n) DST (k = 1) log2−ε n [21] O(log3 n) [4, 22]
(quasi-poly-time) (quasi-poly-time)

Relaxed O(logn) SCP (k = 1) Ω(logn) [2, 34, 11] O(logn) [36, 38]
(acyclic on T )

Standard O(log k logn) k-VCSS APX-hard [26] O(log k log n
n−k

) [31]

k-ECSS APX-hard [19] 2 [25]
Subset k-connectivity APX-hard [26] O(logn log k) [31]
(special case: positive
cost arcs are in T × T )

Standard k = 2 3 2-VCSS APX-hard [26] 3 [27]
Standard k = 1 2 SCSS (k = 1) APX-hard [19] 2 [18]

We say that a digraph is (S, T ) connected (or, has (S, T ) connectivity of one) if there
exists an s, t dipath for each pair of vertices s ∈ S, t ∈ T . Similarly, we say that
a digraph is k-(S, T ) connected if it has k edge-disjoint s, t dipaths for each pair
s ∈ S, t ∈ T . We assume that the sets S and T are disjoint in sections 3–6; this is
without loss of generality (see Proposition 7).

By a T, S dipath, we mean a dipath that has its start-vertex in T and its end-vertex
in S.

Fact 6. In the relaxed version of the (S, T ) connectivity problem (where all
augmenting edges have heads in T ), the input digraph G has a T, S dipath iff the
initial digraph G0 has a T, S dipath. Moreover, G has ν edge-disjoint T, S dipaths iff
G0 has ν edge-disjoint T, S dipaths.

Proof. Consider the first part. Let P be any T, S dipath of G. If P has no
augmenting edges, then it is in G0. Otherwise, consider the suffix of P between the
last augmenting edge and the end-vertex of P . This subpath has a start-vertex in T ,
an end-vertex in S, and no augmenting edges, so it is a T, S dipath of G0.

The second part follows in a similar way.
The standard version (where all augmenting edges have tails in S and heads in

T ) is a special case of the relaxed version; hence G has a T, S dipath iff the initial
digraph G0 has a T, S dipath.

A digraph G = (V,E) with T ⊆ V is called acyclic on T if there is no dicycle in G
that contains two distinct vertices of T (by a dicycle we mean a connected subgraph
having the same in-degree and out-degree at every vertex). Observe that if G contains
both a t, t′ dipath and a t′, t dipath for t, t′ ∈ T , then the union of these two dipaths
is a dicycle. Another way to view this is via the reachability digraph on T : this is an
auxiliary digraph with vertex set T , and for t, t′ ∈ T , t �= t′, it has an edge (t, t′) iff G
has a t, t′ dipath; observe that G is acyclic on T iff the reachability digraph on T has
no dicycles.

Let r be a vertex. An in-tree (or in-branching) J in rooted at r is a minimal
digraph (w.r.t. the edge set) that has a v, r dipath for each vertex v ∈ V (J in). An
out-tree (or out-branching) Jout rooted at r is a minimal digraph (w.r.t. the edge set)
that has an r, v dipath for each vertex v ∈ V (Jout). Edmonds [8] gave a polynomial-



1456 J. CHERIYAN AND B. LAEKHANUKIT

time algorithm that finds a minimum cost in-branching (respectively, out-branching);
see also [14, 15].

A directed Steiner tree rooted at r is a digraph that has an r, t dipath for every
vertex t ∈ T , where T ⊆ V is a given set of terminal vertices; the digraph may
contain vertices of V − {r} − T ; these are called the Steiner vertices or the optional
vertices. In the directed Steiner tree problem, we are given a digraph G = (V,E),
nonnegative costs on the edges, r ∈ V , and T ⊆ V ; the goal is to find a directed
Steiner tree of minimum cost. The problem has a hardness threshold of Ω(log2−ε n)
assuming that NP is not contained in ZPTIME(npolylog n) [21]. Charikar et al. [4]
gave an O(log3 n)-approximation algorithm for the directed Steiner tree problem that
runs in quasi-polynomial time; also see [22]. More precisely, this algorithm achieves an
approximation guarantee ofO(�3|T |1/�) in a running time of nO(�), where � is a positive
number; thus, fixing � = log |T | gives an approximation guarantee of O(log3 |T |) in
quasi-polynomial time.

In the directed Steiner network problem, also known as the directed Steiner forest
problem, we are given a digraph G = (V,E), nonnegative costs on the edges, and a
set of requirement pairs D ⊆ V ×V ; the goal is to find a subgraph (V, F ) of minimum
cost that contains an si, ti dipath for each requirement pair (si, ti) ∈ D. This problem
is at least as hard for approximation as the label-cover problem (see [1], [38, Corol-
lary 16.39]); in particular, assuming that NP is not contained in DTIME(npolylog n),

the problem has a hardness threshold of 2log
(1−ε) n for any fixed ε > 0.

In the directed minimum-cost k-edge connected spanning subgraph problem, we
are given a digraph G = (V,E) and nonnegative costs on the edges; the goal is to find
a subgraph (V, F ) of minimum cost that contains k edge-disjoint s, t dipaths for each
ordered pair of vertices s, t.

In the directed subset k-connected subgraph problem, we are given a digraph G =
(V,E), nonnegative costs on the edges, and a set of terminals T ⊆ V ; the goal is to
find a subgraph (V, F ) of minimum cost that contains k openly disjoint s, t dipaths for
each ordered pair of vertices s, t ∈ T . The directed minimum-cost k-vertex connected
spanning subgraph problem is the special case where T = V .

In the set covering problem, we are given a ground-set U of so-called points,
subsets S1, . . . , Sq of U , and a nonnegative cost for each subset Sj , j = 1, . . . , q; the
goal is to cover U by picking a family of subsets from S1, . . . , Sq of minimum cost;
that is, each point of U should be in at least one of the chosen subsets. A greedy
algorithm achieves an approximation guarantee of O(logmaxqj=1 |Sj |), and there exists
a constant c such that improving on the approximation guarantee of (c log |U |) in
polynomial time would imply that P = NP; see [2, 34, 11].

2.1. Basic results. This subsection has some basic results on the k-(S, T ) con-
nectivity problem.

Proposition 7. There is a polynomial-time reduction from instances of the
(S, T ) connectivity problem (with the connectivity parameter k equal to one) where
S ∩ T �= ∅ to instances such that S ∩ T = ∅ that preserves the feasibility and the cost
of candidate solutions.

Proof. For each vertex v ∈ S ∩ T , we split v into two vertices v+ and v− and
join them by a pair of new edges (v−, v+) and (v+, v−) with zero-cost. For each old
edge having v as the tail (respectively, head), we change the tail (respectively, head)
to v+ (respectively, v−). Finally, for each vertex v ∈ S ∩ T , we replace v by v+ in S
and replace v by v− in T . It can be seen that this preserves any restrictions on the
augmenting edges; that is, an edge has its head in T (respectively, has its tail in S)
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iff the old edge corresponding to it has its head in T (respectively, has its tail in S).

We can map any dipath in the original instance to a dipath in the transformed
one by replacing a vertex v ∈ S ∩ T by a subpath v−, v+. Conversely, we can map
any dipath in the transformed instance to a dipath in the original one by replacing
subpaths v−, v+ or v+, v− (or v+ or v−) by a single vertex v. Edges of the form
(v+, v−) guarantee that S, T dipaths of the form v (with no edges) in the original
instance map to S, T dipaths of the form v+, v− in the transformed instance. Hence,
a subgraph (candidate solution) of the original instance is feasible iff the corresponding
subgraph of the transformed instance is feasible. Moreover, optimal solutions of both
instances have the same cost.

Remark 8. There is a similar reduction for the k-(S, T ) connectivity problem that
reduces instances with S∩T �= ∅ to instances such that S∩T = ∅: the only difference
is that we keep k parallel copies of the edge (v−, v+), as well as k parallel copies of
the edge (v+, v−).

The proofs of our hardness-of-approximation results on different versions of the
(S, T ) connectivity problem are given below; the results are stated in Proposition 1
in section 1.3.

Proof of Proposition 1. We will describe the hardness construction of each version
of the problem. We recall that an instance of the (S, T ) connectivity problem consists
of a digraph G = (V,E0 ∪ E), sets of vertices S and T , and a positive cost c(e) on
each augmenting edge e ∈ E.

The standard (S, T ) connectivity problem: The reduction from the SCSS problem
to the standard (S, T ) connectivity problem is straightforward. In fact, the SCSS
problem is a special case of the standard (S, T ) connectivity problem, where S =
T = V . It is clear that the restriction on heads and tails of augmenting edges holds
because S = T = V . Moreover, By Proposition 7, we can transform this instance to
an instance such that S ∩ T = ∅.

The relaxed (S, T ) connectivity problem: The reduction from the directed Steiner
tree problem is as follows. The given instance of the in-directed Steiner tree problem
consists of a digraph G′ = (V ′, E′) with nonnegative cost on edges, a root vertex
r ∈ V ′, and a set of terminals S′ ⊆ V ′. We may assume that r �∈ S′. Moreover, we
may assume that each terminal s ∈ S′ is incident to a unique edge which is outgoing
from s and has zero-cost. Otherwise, we can replace each terminal s ∈ S′ by a dummy
terminal s+ and attach s+ to s by a zero-cost edge (s+, s). Observe that the reduction
does not increase the cost or violate the feasibility of an optimal solution. We construct
the digraph G for the instance of the relaxed (S, T ) connectivity problem by starting
with G′ and then adding auxiliary edges with zero-cost from the root vertex r to
all nonterminal vertices. Thus, the digraph is G = (V,E0 ∪ E), where V = V ′ and
E0 ∪ E = E′ ∪ {(r, v) : v ∈ V ′ − S′}. We define S to be the set of terminals S′

and T to be the set of nonterminal vertices, that is, S = S′ and T = V − S. Note
that T also includes the root vertex r. We define the set of edges E0 of the initial
digraph to be the set of all zero-cost edges including the auxiliary ones. We define the
set of augmenting edges E to be the set of all positive-cost edges. The construction
is valid for the relaxed (S, T ) connectivity problem because all positive-cost edges
have heads in T , the set of nonterminal vertices. It can be seen that the reduction is
approximation-preserving. The reduction is illustrated in Figure 2.

The (general) (S, T ) connectivity problem: The reduction from the directed Steiner
network problem is as follows. The given instance of the directed Steiner network
problem consists of a digraph G′ = (V ′, E′), with nonnegative costs on the edges,
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Fig. 2. The reduction from an instance of the directed Steiner tree problem to an instance of
the relaxed (S, T ) connectivity problem. The left figure shows the instance of the former problem.
The squares denote terminals, and the circles denote Steiner vertices; r is the root vertex. The right
figure shows the instance of the relaxed (S, T ) connectivity problem. The black lines denote positive
cost edges, and the grey lines denote zero-cost edges.

and a set of requirement pairs D ⊆ V ′ × V ′. We may assume that there exist a set
of sources S ⊆ V ′ and a set of sinks T ⊆ V ′ such that D ⊆ S × T . Moreover, we
may assume that each source s ∈ S is incident to one outgoing edge but incident
to no incoming edges. Similarly, we may assume that each sink t ∈ T is incident to
one incoming edge but incident to no outgoing edges. The reduction can be done
similarly to that of the directed Steiner tree problem. For each source s ∈ S, we
add a dummy vertex s+ and attach it to s by a zero-cost edge (s+, s). Likewise, for
each sink t ∈ T , we add a dummy vertex t− and attach it to t by a zero-cost edge
(t, t−). We then replace the requirement pair (s, t) by (s+, t−) for all (s, t) ∈ D. Since
the dummy sources and sinks are attached to the original ones by zero-cost edges,
the reduction does not increase the cost or violate the feasibility. Note that each
source and sink may occur in more than one requirement pair; e.g., we may have both
(s, t1) and (s, t2) in D. We construct the digraph G for the instance of the (general)
(S, T ) connectivity problem by starting with G′ and then adding some auxiliary edges
with zero-cost. We define S and T to be the set of sources and sinks, respectively. For
all ordered pairs (s, t) with s ∈ S and t ∈ T , if (s, t) /∈ D, then we add an auxiliary
edge (s, t) to G with zero-cost. In other words, we pad the digraph with auxiliary
edges to handle the new requirement pairs implicit in the (general) (S, T ) connec-
tivity problem. The set of edges E0 is defined to be the set of all zero-cost edges
including the auxiliary ones. The set of augmenting edges E is defined to be the set
of positive-cost edges. The construction is valid for the (general) (S, T ) connectivity
problem because there is no restriction on augmenting edges. It can be seen that the
reduction is approximation-preserving.

2.2. Frank’s result on rooted k-connectivity. Recall that a digraph G′ =
(V ′, E′) is said to be k-(r, T ) connected, where k ≥ 0 is an integer, r ∈ V ′, and
T ⊆ V ′, if it has k edge-disjoint r, t dipaths for each t ∈ T . Below, we state a result
of Frank on a version of the min-cost k-(r, T ) connectivity problem: there is a linear
programming (LP) relaxation that is integral; i.e., the problem can be captured as an
LP problem. Our algorithmic results in section 5 rely on Frank’s results on the rooted
k-connectivity problem. Also, our algorithms in section 4 apply Frank’s results with
k = 2.
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Theorem 9 (Frank [15, Thms. 4.4, 5.9]). Given a digraph G = (V,E0 ∪ E),
a vertex r ∈ V , a set of vertices T ⊆ V − {r} that contains the head of every edge
in E, and positive costs on the edges in E, there is a polynomial-time algorithm for
finding a set of edges F ⊆ E of minimum cost such that the subgraph (V,E0 ∪ F )
is k-(r, T ) connected. Moreover, the optimal cost equals the optimal value of an LP
relaxation.

It is easily seen that Frank’s result applies also for the min-cost “rooted in-
subgraph” problem by replacing each edge (v, w) by its reverse edge (w, v) and making
appropriate changes for T and E; that is, we have a set of vertices S ⊆ V − {r} that
contains the tail of every edge of positive cost, and the goal is to find a subgraph of
minimum cost that is k-(S, r) connected.

2.3. Reducing algorithm for digraphs. This subsection presents a simple
algorithm that, given a digraph and a set of its vertices Z, finds a minimal subset
of Z that preserves some reachability properties; precise statements are given in the
next result. We apply this algorithm in sections 3 and 4.

Proposition 10. Let H ′ = (V ′, E′) be a digraph, and let Z ⊆ V ′ be a set of
vertices. Then there is a linear-time algorithm for finding a subset Y of Z such that

(1) for each vertex v ∈ Z, there is a vertex y ∈ Y such that H ′ has a v, y dipath;
(2) H ′ has no dipath from any vertex of Y to another vertex of Y ; and
(3) if H ′ has a dipath from a vertex y ∈ Y to a vertex v ∈ Z, then y and v are

in the same strongly connected component of H ′.
Proof. We apply the following method to output the vertices of Y sequentially.

This method can be implemented to run in linear time.
We contract each strongly connected component of H ′ into a single vertex to

obtain an acyclic digraph H ′′. Observe that Y can have at most one vertex from each
strongly connected component of H ′. Thus, we transform the problem from H ′ to
the acyclic digraph H ′′ in an obvious way. (A vertex v of H ′′ is in Z iff the strongly
connected component of H ′ associated with v contains a vertex of Z; similarly, a
set Y of H ′′ can be mapped to a set Y of H ′ of the same size.) Then we assign a
topological numbering to the vertices of H ′′, starting with the vertices of in-degree
zero and ending with the vertices of out-degree zero.

We start with X = Z. We output the vertex y of H ′′ that is in X and has the
highest topological number; thus, this vertex is placed in Y . Then we find the vertices
of X that have dipaths to y in H ′′; we remove all these vertices (including y) from
X . We repeat this step until X becomes empty.

This method can be implemented to run in time O(|V ′|+ |E′|). At the start, we
can construct H ′′, a topological numbering of V (H ′′), and a labeling of V (H ′′) by
X = Z in linear time; see [35]. We have an outer loop that scans the vertices of H ′′

according to the topological numbering (highest to lowest); whenever the outer loop
finds a vertex y of X , y is placed in Y , we execute an inner loop that visits all vertices
that have dipaths to y in H ′′, and then we remove all these vertices from H ′′ and X .
Finally, the mapping of Z from H ′ to H ′′, and the mapping of Y from H ′′ to H ′, can
be computed in linear time.

To verify the correctness, note that the initial set X satisfies the following:
(∗) for each vertex v ∈ Z −X , there is a vertex y ∈ Y such that H ′

has a v, y dipath.
Whenever we add a vertex y to Y , we remove from X all vertices v that can reach
y. Clearly, this preserves (∗). At termination, X = ∅ and (∗) holds; hence (1) holds.
Consider (2): whenever we add a vertex y to Y , there is no dipath from y to vertices
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already in Y , and there is no dipath from y to vertices in the current set X ; hence (2)
holds. Consider (3): whenever we add a vertex y to Y , y has the highest topological
number among the vertices in the current X ; this implies that (3) holds. (If (3) fails,
then there is a vertex y ∈ Y and a vertex v ∈ Z such that v and y are in different
strongly connected components of H ′, and there is a y, v dipath in H ′. Thus, y and v
are associated with distinct vertices of H ′′, call them y′′ and v′′, and H ′′ has a dipath
from y′′ to v′′. This is not possible because when we add y to Y , either v ∈ X or
v �∈ X ; in the first case, v has a higher topological number than y, and in the second
case, y and v would have been removed from X at the same step.)

3. A 2-approximation algorithm for standard (S, T ) connectivity . This
section has our 2-approximation algorithm for the standard version of the (S, T ) con-
nectivity problem, that is, the problem of finding an (S, T ) connected digraph of
minimum cost, assuming that each augmenting edge has its tail in S and its head in
T .

This problem is a generalization of the SCSS problem. We sketch a well-known
2-approximation algorithm for the latter problem (see [18]): Let opt denote the cost
of an optimal solution. The algorithm picks any vertex to be the root vertex r and
then computes a min-cost out-branching (V, F out) with root r; similarly, the algorithm
computes a min-cost in-branching (V, F in) with root r; then the algorithm outputs
(V, F out ∪ F in). It can be seen that the solution is strongly connected. Moreover, it
can be seen that the cost of the solution is ≤ 2opt.

Recall that a T, S dipath is a dipath that has its start-vertex in T and its end-
vertex in S; moreover, G has a T, S dipath iff the initial digraph G0 has one.

We consider two cases:

1. G has a T, S dipath.
2. G has no T, S dipath.

We give a 2-approximation algorithm for the first case in section 3.1 by designing
a simple extension of the above 2-approximation algorithm for the SCSS problem.
We handle the second case in section 3.2 by giving a polynomial-time algorithm that
solves it optimally.

To solve the standard (S, T ) connectivity problem, we first run a depth first search
algorithm to find a T, S dipath, if one exists. If there is no such dipath, then we run
the algorithm given in section 3.2. Otherwise, we run the 2-approximation algorithm
given in section 3.1. Combining these two cases, we get a 2-approximation algorithm
for the problem. This proves Theorem 2 in section 1.3.

3.1. A 2-approximation algorithm for the case when a T, S dipath
exists. First, suppose that there exists a T, S dipath, call it P̂ , with start-vertex t̂ ∈ T
and end-vertex ŝ ∈ S. Then we apply Frank’s algorithm (see Theorem 9) for the min-
cost rooted in-subgraph problem to our digraph G = (V,E0 ∪E) with root t̂ to find a
min-cost set of edges F in such that the rooted in-subgraph (V,E0 ∪F in) is (S, t̂) con-
nected, that is, the subgraph contains an s, t̂ dipath for each vertex s ∈ S. Next,
we apply Frank’s algorithm (see Theorem 9) for the min-cost rooted out-subgraph
problem to our digraph G = (V,E0 ∪ E), but now we take the root to be ŝ and
we find a min-cost set of edges F out such that the “out-subgraph” (V,E0 ∪ F out) is
(ŝ, T ) connected; that is, the subgraph contains an ŝ, t dipath for each vertex t ∈ T .
The algorithm outputs F in ∪F out as its solution. Below, we show that the algorithm
is correct, that is, the subgraph Ĝ = (V,E0 ∪ F in ∪ F out) is (S, T ) connected, and it
achieves an approximation guarantee of 2, that is, c(F in ∪ F out) ≤ 2opt.
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Fig. 3. The figure illustrates the working of our 2-approximation algorithm for the standard
(S, T ) connectivity problem on an example that has a T, S dipath. The left figure shows an instance
of the rooted out-subgraph problem with root vertex s and set of terminals T . The right figure shows
an instance of the rooted in-subgraph problem with a root vertex t and a set of terminals S. The
grey lines denote the edges of the initial digraph G0. The grey dashed lines denote the T, S dipath.
The black lines (solid and dashed) denote the augmenting edges. The black solid lines denote the
augmenting edges chosen by the algorithm.

Proposition 11. Suppose that the digraph G has a T, S dipath. Then the above
algorithm runs in polynomial time and finds a feasible solution of cost ≤ 2opt.

Proof. First, we show that the output is correct, that is, the digraph Ĝ returned
by the algorithm is (S, T ) connected. Consider any pair of vertices s, t where s ∈ S

and t ∈ T . Observe that Ĝ is (S, t̂) connected; similarly, Ĝ is (ŝ, T ) connected. Hence,

Ĝ has an s, t dipath of the form

s → . . . (F in) . . . → t̂ → . . . (P̂ ) . . . → ŝ → . . . (F out) . . . → t.

Therefore, Ĝ is (S, T ) connected.

To see that the algorithm achieves an approximation guarantee of 2, note that
a set of edges that is feasible to the (S, T ) connectivity problem is also feasible to
each of the two rooted subproblems solved by Frank’s algorithm; hence the cost of a
feasible solution to each rooted subproblem is ≤ opt. Therefore, Ĝ has cost ≤ 2opt.

The algorithm runs in polynomial time because a T, S dipath of G0 can be found
in linear time (if it exists), and each of the two applications of Frank’s algorithm runs
in polynomial time (see Theorem 9). This completes the proof.

Figure 3 illustrates the working of this algorithm.

3.2. An algorithm for the case of no T, S dipath. Recall the reducing
algorithm from section 2.3 and conditions (1)–(3) from Proposition 10. We apply
that algorithm to the initial digraph G0 and we take Z = S. We take the output
Y ⊆ Z to be S̃ ⊆ S. Then conditions (1)–(3) apply to S̃ and S. (Thus, (1) for each

s ∈ S, there is an s′ ∈ S̃ such that G0 has an s, s′ dipath; (2) G0 has no dipath

between two vertices of S̃; and (3) if G0 has a dipath from s′ ∈ S̃ to s ∈ S, then both
s, s′ are in the same strongly connected component of G0.) After that, for each vertex

si ∈ S̃, we apply Frank’s “rooted out-subgraph” algorithm to the original digraph,
taking the root to be si, and we compute an augmenting edge set F out(si) of minimum
cost such that (V,E0 ∪ F out(si)) is (si, T ) connected.

Proposition 12. Suppose that the digraph G has no T, S dipath. Then the above
algorithm finds an optimal solution to the (S, T ) connectivity problem. The algorithm

runs in time O(|S̃|m(n+m)) = O(nm2).
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Proof. Let Ĝ denote the digraph returned by the algorithm, that is, Ĝ =
(V,E0

⋃
si∈˜S F out(si)). First, we show that Ĝ is (S, T ) connected. Consider any

vertex s ∈ S. Then the set S̃ found by the reducing algorithm has a vertex s′ such
that G0 has a dipath from s to s′ by (1) in Proposition 10. Moreover, each vertex in

S̃ has been chosen as the root vertex for an application of Frank’s algorithm; hence
G0, together with the augmenting edge set added via Frank’s algorithm, contains an
s′, t′ dipath for all t′ ∈ T . Thus, Ĝ has an s, t′ dipath for all t′ ∈ T .

Next, we show that the cost of Ĝ is ≤ opt. Consider an optimal set of augmenting
edges E∗ and an arbitrary vertex s ∈ S̃. The graph G∗ = G0 + E∗ must have an
s, t′ dipath from s to each t′ ∈ T . Let E∗(s) denote the subset of the augmenting
edges in E∗ that are used by these dipaths; the tail vertex of each of these augmenting
edges must be reachable from s. Then, by Proposition 10, the tail vertices of these
augmenting edges are in the same strongly connected component as s (by (3) in the

proposition); moreover, for any other vertex s′ ∈ S̃, there is no dipath from s′ to any
vertex in the strongly connected component of s (by (2) in the proposition). Thus,

the sets {E∗(s) : s ∈ S̃} form a partition of E∗; i.e., each augmenting edge is in at
most one of the sets E∗(s). Finally, note that E∗(s) forms a feasible solution for our
application of Frank’s “rooted out-subgraph” algorithm with root s; hence the cost
of the augmenting edges for this application is ≤ c(E∗(s)). Summing over the cost
of the augmenting edges for all of the applications of Frank’s “rooted out-subgraph”
algorithm with roots in S̃, we see that the total cost is ≤ ∑

s∈˜S c(E∗(s)) ≤ opt.
Observe that this analysis relies on our assumption that the input digraph G has no
T, S dipath; since there are no T, S dipaths, the reducing algorithm returns the same
output Y for input Z = S on both digraphs G and G0; in other words, the addition
of augmenting edges has no effect on the output of the reducing algorithm.

The bound on the running time follows from the fact that the reducing algorithm
runs in linear time per vertex of S̃, and each application of Frank’s algorithm runs
in time O(m(n + m)). Moreover, O(m(n + m)) = O(m2), since we assume m =
Ω(n).

4. A 3-approximation algorithm for standard 2-(S, T ) connectivity . We
say that a digraph is 2-(S, T ) connected if it contains two edge-disjoint s, t dipaths for
every vertex s ∈ S and every vertex t ∈ T . In this section, we give a 3-approximation
algorithm for the standard version of the minimum-cost 2-(S, T ) connected digraph
problem, or, in brief, the standard 2-(S, T ) connectivity problem. Recall that the
standard version has E ⊆ S × T ; that is, each augmenting edge has its tail in S and
its head in T .

Many of the steps of the algorithm and analysis occur in “symmetric pairs”; for
example, we may apply some procedure to a vertex in S, and then we may apply a
similar procedure to a vertex in T . We describe one of these procedure in detail.

4.1. Preliminaries for the approximation algorithm. Let P be a dipath of
G. For vertices vi, vj of P , we denote by P (vi, vj) the subpath of P that starts with vi
and ends with vj . Similarly, for edges ei, ej of P , we denote by P (ei, ej) the subpath
of P that starts with ei and ends with ej .

Recall that a T, S dipath is a dipath whose start-vertex is in T and whose end-
vertex is in S. Let ν denote the maximum number of edge-disjoint T, S dipaths of G.
By Fact 6, ν is the same for G and for the initial digraph G0. Usually, we will consider
G0 whenever we discuss T, S dipaths. Our algorithm has three cases depending on
whether ν is zero, one, or more than one. The case of ν = 1 appears to be substantially
more difficult than the other two cases.
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The algorithm starts with (the edge set of) the initial digraph G0 = (V,E0) and

adds augmenting edges in several steps. We denote the current digraph by Ĝ and the

current set of augmenting edges by Ê. Thus, Ĝ = (V,E0 ∪ Ê), and initially, Ĝ = G0,

Ê = ∅.

4.2. No T, S dipaths. First, suppose that ν = 0, i.e., G (and G0) have no
T, S dipaths. We focus on the initial digraph G0.

The key subroutine for our algorithm is an extension of Frank’s algorithm for the
min-cost “rooted out-subgraph” problem. Frank gave polynomial-time algorithms and
min-max theorems for the special case of the k-(S, T ) connectivity problem, where S
consists of a single vertex and every augmenting edge has its head in T ; see Theorem 9
and [14, 15]. Thus, given a root vertex r and assuming E ⊆ V ×T , Frank’s algorithm
computes a minimum-cost set of augmenting edges such that the resulting digraph is
k-(r, T ) connected.

Recall the reducing algorithm from section 2.3 and the conditions (1)–(3) from
Proposition 10. We apply that algorithm to G0 and we take Z = S. We take the
output Y ⊆ Z to be S̃ ⊆ S. Then conditions (1)–(3) apply to S̃ and S. After that, for

each vertex si ∈ S̃, we apply Frank’s “rooted 2-outconnected-subgraph” algorithm to
the original digraph, taking the root to be si, and we compute an augmenting edge
set F out(si) of minimum cost such that (V,E0 ∪ F out(si)) is 2-(si, T ) connected.

Similarly, we apply the reducing algorithm (in section 2.3) to the initial digraph

G0 to find a subset T̃ of T such that conditions (1)–(3) of Proposition 10 hold with

T̃ = Y and T = Z. (Formally speaking, we apply the algorithm to the digraph
obtained from G0 by replacing each edge (v, w) by the reverse edge (w, v). Thus,

(1) for each t ∈ T there is a t′ ∈ T̃ such that G0 has a t′, t dipath; (2) G0 has no

dipath between two vertices of T̃ ; and (3) if G0 has a dipath from t ∈ T to t′ ∈ T̃ ,
then both t, t′ are in the same strongly connected component of G0.) Then, for each

vertex tj ∈ T̃ , we apply Frank’s “rooted 2-inconnected-subgraph” algorithm to the
original digraph, taking the root to be tj , and we compute an augmenting edge set
F in(tj) of minimum cost such that (V,E0 ∪ F in(tj)) is 2-(S, tj) connected.

All these augmenting edge sets are added to the current digraph; thus we have
Ê =

⋃
si∈˜S F out(si)

⋃
tj∈ ˜T F in(tj).

Lemma 13. The current digraph Ĝ is 2-(S, T ) connected.

Proof. To see that Ĝ is 2-(S, T ) connected, consider any cut (U, V − U) with

U ∩ S �= ∅ and (V − U) ∩ T �= ∅. If any vertex si of S̃ is in U , then the cut has ≥ 2

edges (since Ĝ is 2-(si, T ) connected for all si ∈ S̃). Similarly, if any vertex tj of T̃

is in V − U , then the cut has ≥ 2 edges. In the remaining case, we have T̃ ⊆ U and
S̃ ⊆ V − U . Let s be a vertex of U ∩S and let t be a vertex of (V − U)∩ T ; both s, t
exist by our choice of U . Moreover, by Proposition 10, there is a dipath Ps from s
to some vertex s′ ∈ S̃ (by (1) in the proposition). Similarly, by Proposition 10, there

is a dipath Pt from some vertex t′ ∈ T̃ to t. The dipaths Ps and Pt have no vertex
(or edge) in common; otherwise, their union would contain a T, S dipath. It follows
that the cut (U, V − U) has at least two edges, one from Ps and one from Pt. This
completes the proof.

The next lemma shows that the cost of the solution digraph Ĝ is ≤ opt. The
proof is similar to the proof of Proposition 12.

Lemma 14. The cost of the current digraph Ĝ is ≤ 2opt.
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Proof. The key point is that the total cost of the edges in
⋃

s∈˜S F out(s) is ≤ opt;

similarly, the total cost of the edges in
⋃

t∈˜T F in(t) is ≤ opt.

Consider the first claim. Consider an optimal set of augmenting edges E∗ and an
arbitrary vertex s ∈ S̃; let E∗(s) denote the subset of the augmenting edges in E∗

that are used by the two edge-disjoint s, t′ dipaths from s to each t′ ∈ T . Arguing
as in the proof of Proposition 12, it can be seen that the sets {E∗(s) : s ∈ S̃} form
a partition of E∗. Moreover, E∗(s) forms a feasible solution for our application of
Frank’s “rooted 2-outconnected-subgraph” algorithm with root s; hence the cost of
the augmenting edges for this application is ≤ c(E∗(s)). Summing over the cost of

the augmenting edges for all of the applications of Frank’s algorithm with roots in S̃,
we see that the total cost is ≤ ∑

s∈˜S c(E∗(s)) ≤ opt.

4.3. Two edge-disjoint T, S dipaths. Suppose that G has two edge-disjoint
T, S dipaths. We consider G0, since the maximum number of edge-disjoint T, S di-
paths is the same in G and G0. We find two edge-disjoint T, S dipaths in G0 (call
them P1 and P2); this can be done via an application of a maximum s, t flow algorithm
to find an integral flow, with T as the set of sources and S as the set of sinks. Let
t1, s1 be the start-vertex and end-vertex of P1, and let t2, s2 be the start-vertex and
end-vertex of P2.

Then, for i = 1, 2, we apply Frank’s “rooted 2-outconnected-subgraph” algorithm
to the original digraph, taking the root to be si, and we compute an augmenting
edge set F out(si) of minimum cost such that (V,E0 ∪F out(si)) is 2-(si, T ) connected.
Clearly, the cost of each of these augmenting edge sets is ≤ opt.

Finally, we apply Frank’s “rooted 2-inconnected-subgraph” algorithm to compute
an augmenting edge set F in(s1, s2) of minimum cost such that the digraph (V,E0 ∪
F in(s1, s2)) has two edge-disjoint dipaths from each vertex s ∈ S to the set {s1, s2};
that is, for each s ∈ S, the digraph (V,E0 ∪ F in(s1, s2)) has an s, s1 dipath and
an s, s2 dipath such that these two dipaths are edge disjoint. Formally speaking, we
construct an auxiliary digraph by adding a new vertex s∗∗ and the new edges (s1, s

∗∗),
(s2, s

∗∗), and then we apply Frank’s “rooted 2-inconnected-subgraph” algorithm to
compute an augmenting edge set F in(s1, s2) of minimum cost such that the digraph
(V ∪ {s∗∗}, E0 ∪ {(s1, s∗∗), (s2, s∗∗)} ∪ F in(s1, s2)) is 2-(S, s

∗∗) connected.
It can be seen that the cost of F in(s1, s2) is ≤ opt; to see this, consider an opti-

mal set of augmenting edges E∗, and any vertex s ∈ S; clearly, (V,E0 ∪E∗) contains
two edge-disjoint s, t1 dipaths, two edge-disjoint s, t2 dipaths, and two edge-disjoint
{t1, t2}, {s1, s2} dipaths; hence (V,E0 ∪ E∗) contains two edge-disjoint s, {s1, s2} di-
paths.

We add all these augmenting edge sets to the current digraph; i.e., we let Ê =
E0

⋃
F out(s1)

⋃
F out(s2)

⋃
F in(s1, s2).

Lemma 15. The current digraph Ĝ = G0 + Ê is 2-(S, T ) connected, and the cost

of Ê is ≤ 3opt.

Proof. Clearly, c(Ê) ≤ 3opt, since each of the three sets of augmenting edges

added to Ê has cost ≤ opt.

To see that Ĝ is 2-(S, T ) connected, consider any cut (U, V − U) with U ∩ S �= ∅
and (V − U) ∩ T �= ∅. If s1 or s2 is in U , then the cut has ≥ 2 edges (since Ĝ is
2-(si, T ) connected for i = 1, 2). Otherwise, U contains some vertex s ∈ S − {s1, s2},
and V − U contains both s1 and s2; then the cut has ≥ 2 edges (since Ĝ contains two
edge-disjoint s, {s1, s2} dipaths for all s ∈ S). This completes the proof.
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4.4. One (but not two) edge-disjoint T, S dipaths. Recall that the maxi-
mum number of edge-disjoint T, S dipaths is the same in G and G0. Suppose that G0

has a T, S dipath but does not have two edge-disjoint T, S dipaths; thus ν = 1. Then
there exists a (T, S) cut of G0 of size one. (Such a cut can be found by applying the
max-flow min-cut theorem and algorithm, with T as the set of sources and S as the
set of sinks.) We define a cut edge (of G0 or, equivalently, of G) to be an edge whose
deletion results in a digraph that has no T, S dipaths. (Observe that an edge e is a
cut edge w.r.t. G0 iff e is a cut edge w.r.t. G.)

We start by finding a T, S dipath of G0 with the minimum number of edges (call it

P̂ ). We denote the start-vertex and end-vertex of P̂ by t̂ and ŝ, respectively. Clearly,

every cut edge is contained in P̂ . Let e1, e2, . . . , e� denote all the cut edges, listed

according to their order of occurrence in P̂ .

Lemma 16. Let P be any T, S dipath. Then all of the cut edges are in P , and
their order of occurrence is the same in P and P̂ , namely, e1, e2, . . . , e�.

Proof. Clearly, each of the cut edges is in P . For the second part, we argue by
contradiction. Let j be the smallest index (possibly, j = 1) such that ej does not
occur as the jth cut edge of P . Then P − ej contains a dipath starting with ej−1

(starting with some t ∈ T if j = 1) and ending with eq, q ≥ j + 1; then the union of

this dipath with P̂ contains a T, S dipath of Ĝ− ej .

We use t∗ to denote the tail vertex of e1 and s∗ to denote the head vertex of e�.
(In general, t∗ �∈ T and s∗ �∈ S, but it turns out that t∗ and s∗ have some of the
properties of the vertices in T and S, respectively.) The next lemma states that the
deletion of a noncut edge from G0 cannot disconnect t∗ from s∗.

Lemma 17. Let f be an edge of P̂ (e1, e�) that is not a cut edge. Then G0 − f
has a dipath from t∗ to s∗.

Proof. Since f is not a cut edge, G0 − f has a T, S dipath P ′. Moreover, P ′

contains all of the cut edges, and their order of occurrence on P ′ is e1, e2, . . . , e�.
Thus, P ′(e1, e�) is the required dipath of G0 − f from t∗ to s∗.

We construct the digraph Ĝ by starting with G0 and then applying preprocessing
steps to obtain a digraph that is (S, T ) connected such that the deletion of any one
noncut edge preserves the (S, T ) connectivity; in other words, if the removal of a single

edge from Ĝ results in a digraph that is not (S, T ) connected, then the removed edge
must be a cut edge.

The preprocessing steps first apply Frank’s “rooted 2-inconnected-subgraph” al-
gorithm with root t∗ to compute an augmenting edge set F in(t∗) of minimum cost
such that (V,E0 ∪ F in(t∗)) is 2-(S, t∗) connected. Then we apply Frank’s “rooted
2-outconnected-subgraph” algorithm with root s∗ to compute an augmenting edge
set F out(s∗) of minimum cost such that (V,E0 ∪F out(s∗)) is 2-(s∗, T ) connected. Let
Ĝ be the digraph G0+F in(t∗)+F out(s∗); note that the initial digraph is a subgraph

of Ĝ.

Lemma 18. The digraph Ĝ = G0+F in(t∗)+F out(s∗) has cost ≤ 2opt, and,
moreover, it is both 2-(S, t∗) connected and 2-(s∗, T ) connected.

Proof. We claim that the digraph G∗ = G0+E∗ given by an optimal solution E∗

to the 2-(S, T ) connectivity problem satisfies the requirements of both 2-(S, t∗) connec-
tivity and 2-(s∗, T ) connectivity. Consider the first requirement. Informally speaking,
G∗ is 2-(S, T ) connected and G0 has two edge-disjoint dipaths from T to t∗; hence
G∗ is 2-(S, t∗) connected (a rigorous proof is given below). Similarly, it can be proved
that G∗ is 2-(s∗, T ) connected. Moreover, it can be seen that the condition required
by Frank’s “rooted 2-inconnected-subgraph” algorithm applies; that is, every edge of
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positive cost has its tail at a vertex with positive connectivity requirement because
every augmenting edge has its tail vertex in S. Therefore, Frank’s algorithm finds an
optimal solution to the “rooted 2-inconnected-subgraph” problem, and moreover, this
solution has cost ≤ c(E∗) = opt. Hence, F in(t∗) has cost ≤ opt. Similarly, F out(s∗)
has cost ≤ opt. Thus, the total cost of Ĝ is ≤ 2opt.

We prove by a contradiction that G∗ is 2-(S, t∗) connected. Suppose that the
connectivity requirement does not hold for G∗. Then there is a cut (U, V − U) of size
< 2 such that U ∩S is nonempty and t∗ ∈ V − U . Since G∗ is 2-(S, T ) connected, we
have T ⊆ U . Moreover, G∗ has a T, t∗ dipath (i.e., a dipath from a vertex of T to t∗)
because G∗ has the T, S dipath P̂ which contains t∗. Hence, the cut (U, V − U) has
one edge of the T, t∗ dipath; let this edge be f . Then the digraph G∗ − f has no T, t∗

dipath. Hence, G0 − f has no T, S dipath (if such a dipath existed, then it would
contain the cut edge e1 and its tail vertex t∗, and thus it would contain a subpath from
T to t∗). Thus, f is a cut edge, say f = ej, j = 1, . . . , �. This gives a contradiction

because G0 − ej contains the T, t∗ dipath P̂ (t̂, t∗) for each j = 1, . . . , �.
Suppose that the resulting digraph is not 2-(S, T ) connected. Then, there exists

an edge whose removal results in a digraph that is not (S, T ) connected. The next
lemma shows that any such edge must be a cut edge.

Lemma 19. Consider the current digraph Ĝ = G0+F in(t∗)+F out(s∗). Suppose

that f is an edge such that Ĝ− f is not (S, T ) connected. Then f is a cut edge.

Proof. Observe that Ĝ − f has a dipath from every vertex of S to t∗ (due to
F in(t∗)), and it has a dipath from s∗ to every vertex of T (due to F out(s∗)). If there
is a t∗, s∗ dipath in Ĝ− f , then Ĝ − f would be (S, T ) connected and we would get
a contradiction. Lemma 17 shows that G0 − f has a t∗, s∗ dipath, unless f is a cut
edge. This completes the proof.

4.5. Last step for ν = 1: “Eliminating” all cut edges. The last part of
the algorithm “eliminates” the cut edges; we examine the cut edges e1, e2, . . . , e� and
find a set of augmenting edges F ′; we will prove that the digraph obtained by adding
F ′ to Ĝ is 2-(S, T ) connected and has cost ≤ 3opt.

To see the key idea, consider the special case of one cut edge, that is, � = 1.
We apply the algorithm for (S, T ) connectivity to Ĝ− e1 to find a set of augmenting

edges F1 such that Ĝ − e1 + F1 is (S, T ) connected. Observe that Ĝ − e1 has no
T, S dipaths; hence in this special case, our algorithm finds a set of augmenting edges
F1 of minimum cost. We claim that Ĝ + F1 is 2-(S, T ) connected. To prove this,
suppose that there exists an edge e whose deletion results in a digraph that is not
(S, T ) connected. By Lemma 19, e is a cut edge of Ĝ; thus, e = e1. Then we get a

contradiction since Ĝ− e1 + F1 is (S, T ) connected.
In general, for � ≥ 2, we handle all of the cut edges in one step by “reducing” the

problem (of finding a set of augmenting edges F ′ such that Ĝ+ F ′ − ei is (S, T ) con-
nected for each i ∈ {1, . . . , �}) to a single (S, T ) connectivity problem on an auxiliary

digraph G′. The auxiliary digraph G′ is obtained from Ĝ by
(i) deleting all the cut edges e1, . . . , e�, and
(ii) adding an auxiliary edge (v, w) of zero-cost for each pair v ∈ S, w ∈ T such

that Ĝ has two edge-disjoint v, w dipaths.
As above, we apply the algorithm for (S, T ) connectivity to G′ to find a set of aug-
menting edges F ′ such that G′ + F ′ is (S, T ) connected. Let A′ denote the set of

auxiliary edges of G′ (edges present in G′ but not in Ĝ). The correctness of this
method follows from the following lemma.
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Lemma 20. Consider the auxiliary digraph G′ and a set of augmenting edges F ′.
Then

(i) G′ + F ′ is (S, T ) connected implies Ĝ+ F ′ is 2-(S, T ) connected, and
(ii) G0 + F ′ is 2-(S, T ) connected implies G′ + F ′ is (S, T ) connected.

Proof. See Figure 4 for an illustration of the notation. Consider the easy part (i)

first. Suppose that G′ +F ′ is (S, T ) connected, but Ĝ+F ′ is not 2-(S, T ) connected.
Then, by Lemma 19, there exists a cut edge e ∈ {e1, . . . , e�} such that Ĝ+F ′−e is not
(S, T ) connected. Consider any pair s ∈ S, t ∈ T . The augmented auxiliary digraph
G′+F ′ has an s, t dipath P ′, and P ′ contains none of the edges in {e1, . . . , e�}, but P ′

may contain one or more of the auxiliary edges; now, observe that for each auxiliary
edge (v, w) ∈ A′, Ĝ has at least two edge-disjoint v, w dipaths; hence Ĝ− e has a v, w
dipath Pv,w; thus, the union of P ′ − A′ and

⋃
(v,w)∈A′ Pv,w contains an s, t dipath of

Ĝ− e. We get the desired contradiction since Ĝ+ F ′ − e is (S, T ) connected.

Now consider part (ii). Suppose that G0 + F ′ is 2-(S, T ) connected, but G′ + F ′

is not (S, T ) connected.

Then there exists a pair s ∈ S, t ∈ T such that

(a) G0 + F ′ has two edge-disjoint s, t dipaths, but
(b) G′ + F ′ has no s, t dipath, and

(c) Ĝ does not have two edge-disjoint s, t dipaths (otherwise, G′ would have the
auxiliary edge (s, t)).

We derive a contradiction by showing that Ĝ has two edge-disjoint s, t dipaths if
statements (a) and (b) hold.

Let P1 and P2 denote two edge-disjoint s, t dipaths of G0 + F ′. One of these
dipaths (possibly, both of them) has an augmenting edge; otherwise, both dipaths

would be contained in G0 and thus in Ĝ. Observe that every dipath of G0 + F ′ that
avoids all cut edges is contained in G′ + F ′. Since P1 and P2 are not contained in
G′+F ′, each of these dipaths must contain a cut edge. Moreover, neither P1 nor P2 has
two or more augmenting edges; to see this, suppose that P1 contains an augmenting
edge (s1, t1) followed by another augmenting edge (s2, t2); then, by Lemma 16, all the
cut edges e1, . . . , e� would occur in P1(t1, s2) between the two augmenting edges, but
then P2 (being edge disjoint from P1) would not contain any cut edges.

Consider two cases:

(1) one of P1, P2, say P1, contains augmenting edges, but the other one, P2,
contains no augmenting edges;

(2) P1, P2 both contain augmenting edges.

The next claim states simple but useful properties of G.

Claim 21. Consider the digraph G and any dipath P that has an augmenting
edge α and a cut edge e. Then either

(1) the first cut edge following α (in P ) is e1, or
(2) the last cut edge preceding α (in P ) is e�.

Proof. α either precedes some cut edge or follows all cut edges. Suppose the first
cut edge following α (in P ) is ei (i ≥ 2); then the union of P (α, ei) and P̂−e1 contains
a T, S dipath, a contradiction to the definition of e1. Similarly, if the last cut edge
preceding α (in P ) is ei (i < �), then we get a contradiction to the definition of e�.
The claim follows.

By way of contradiction, assume that Ĝ does not have two edge-disjoint s, t di-
paths. Then there exists an edge e such that Ĝ− e has no s, t dipath.

First, consider case (1): P1 has augmenting edges, but P2 has none. If e �∈ P2,
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                                                      S

                                                      T

(a) T, S dipath ̂P of G0.

                                                      S

                                                      T

(b) S, T dipath P1 of G0 + F ′.

Fig. 4. The figures illustrate the notation in Lemma 20. The left figure illustrates the T, S dipath
̂P and its cut edges. The right figure illustrates one of the possible S, T dipaths P1 of G0 + F ′.

then we are done because P2 = P2 − e is an s, t dipath of Ĝ. Now, suppose e ∈ P2.
Consider P1, and let α be its unique augmenting edge. By Claim 21, either e1 ∈ P1 or
e� ∈ P1. First, suppose that e1 is the first cut edge in P1 following α; thus, the tail t∗

of e1 is in P1. Observe that e �∈ P1(t
∗, t) because P1, P2 are edge disjoint and e ∈ P2.

Moreover, the unique augmenting edge of P1 precedes t∗; hence, P1(t
∗, t) contains no

augmenting edges. Finally, observe that Ĝ− e has a dipath P ′′ from s to t∗ because
Ĝ is 2-(S, t∗) connected (by Lemma 18); hence, deleting any edge results in a digraph
that is 1-(S, t∗) connected, and thus has an s, t∗ dipath. (We state this observation

as a claim below for further use.) It follows that Ĝ− e contains the union of P ′′ and
P1(t

∗, t), which contains an s, t dipath.

Claim 22.

(1) Ĝ− e has a dipath P ′′ from s to t∗, where t∗ denotes the tail of e1.

(1) Ĝ− e has a dipath P ′′′ from s∗ to t, where s∗ denotes the head of e�.

Now, suppose that e� is the last cut edge in P1 preceding α. Then, a similar
argument shows that e �∈ P1(s, s

∗), and P1(s, s
∗) contains no augmenting edges. Thus,

applying Claim 22 (and its notation), Ĝ− e contains the union of P1(s, s
∗) and P ′′′,

which contains an s, t dipath.

Thus, in case (1), we get the desired contradiction: Ĝ has two edge-disjoint s, t
dipaths.

Finally, consider case (2): both P1, P2 contain augmenting edges and cut edges.

Let e be an edge such that Ĝ − e has no s, t dipath. By Claim 21, either e1 ∈ P1

or e� ∈ P1, and the same holds for P2; moreover, neither P1 nor P2 contains two or
more augmenting edges. We may fix the indices of P1 and P2 such that e1 ∈ P1 and
e� ∈ P2. Then note that the dipaths P1(e1, t) and P2(s, e�) are edge disjoint, and
one of them avoids e. As above, we apply Claim 22 (and its notation). If P1(e1, t)

avoids e, then the union of P ′′ and P1(e1, t) is contained in Ĝ − e, and it contains

an s, t dipath; otherwise, the union of P ′′′ and P2(s, e�) is contained in Ĝ − e, and

it contains an s, t dipath. Thus, in case (2), we get the desired contradiction: Ĝ has
two edge-disjoint s, t dipaths.

This completes the proof of the lemma.

The next result summarizes the contributions of this subsection by proving the
correctness and the approximation guarantee for the above algorithm.
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Lemma 23. The digraph returned by the algorithm is 2-(S, T ) connected and has
cost ≤ 3opt.

Proof. The digraph returned by the algorithm has the edge set

E0

⋃
F out(s∗)

⋃
F in(t∗)

⋃
F ′.

Each of the sets of augmenting edges has cost ≤ opt, and hence Ĝ has cost ≤ 3opt.
To see the correctness, first note that Ĝ is both 2-(S, t∗) connected and 2-(s∗, T )

connected because Ĝ has the edge set E0

⋃
F out(s∗)

⋃
F in(t∗) (see Lemma 18). Also,

observe that G0 + E∗ is 2-(S, T ) connected, and hence, by Lemma 20, G′ + E∗ is
(S, T ) connected. Thus, the algorithm succeeds in finding a set of augmenting edges

F ′ such that G′ + F ′ is (S, T ) connected, and hence (by Lemma 20), Ĝ + F ′ is
2-(S, T ) connected. Moreover, c(F ′) ≤ c(E∗) = opt.

4.6. Combining the cases of 2-(S, T ) connectivity. This subsection summa-
rizes our approximation algorithm and analysis for the min-cost 2-(S, T ) connectivity
problem; see Theorem 3 in section 1.3.

Proof of Theorem 3. The correctness of the output follows from the correctness
proofs of the three main cases in the algorithm.

The cost analysis follows easily from the cost analysis of the three main cases in
the algorithm. In the case of no T, S dipaths, the cost of Ĝ is ≤ 2 opt. In the case of
one T, S dipath, but not two edge-disjoint T, S dipaths, the cost of Ĝ is ≤ 3 opt. In
the case of two edge-disjoint T, S dipaths, the cost of Ĝ is ≤ 3 opt.

5. An O(log k·logn) approximation algorithm for standard k-(S, T ) con-
nectivity.

5.1. Introduction to k-(S, T ) connectivity. This section focuses on the stan-
dard version of the k-(S, T ) connectivity problem: we are given an integer k ≥ 0, a
directed graph G = (V,E0∪E), two subsets S, T of V , and positive costs on the edges
in E; moreover, each edge in E has its tail in S and its head in T . A digraph is called
k-(S, T ) connected if it has k edge-disjoint dipaths between every vertex s ∈ S and

every vertex t ∈ T . The goal is to find a subset of edges Ê ⊆ E of minimum cost such
that the subgraph (V,E0 ∪ Ê) is k-(S, T ) connected.

Although the k-(S, T ) connectivity problem pertains to edge-connectivity, it can
be seen that the k-VCSS problem is a special case of this problem by applying the re-
duction in Proposition 7 (but keeping only one copy of each edge of the form (v−, v+)).
In particular, the k-VCSS digraph has k openly disjoint dipaths between every pair of
vertices v, w iff the digraph resulting from the reduction has k edge-disjoint dipaths
between every vertex v+ ∈ S and every vertex w− ∈ T .

The main result of this section is Theorem 4, stated in section 1.3; it is proved
by generalizing the algorithm and analysis for the k-VCSS problem in [10], which in
turn is based on ideas and results from [17, 24, 33, 28]. At a high level, our algorithm
and analysis are almost the same as the halo-set decomposition of [10]. But there are
differences. The application of the halo-set decomposition in [10] relies on the property
of “disjointness of cores,” whereas our application circumvents this property.

The standard k-(S, T ) connectivity problem also captures a special case of the
(directed) subset k-connected subgraph problem, where every edge of positive cost
has both endvertices in the set of terminals (see sections 1.1 and 2). This can be
seen by applying the same reduction as that for the k-VCSS problem and noting that
every edge of positive cost has its tail in S = {t+ : t is a terminal} and its head in
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T = {t− : t is a terminal}. Thus, our algorithm for the standard k-(S, T ) connectivity
problem gives an approximation guarantee of O(log k · logn) for this special case of
the subset k-connected subgraph problem.

5.2. An approximation algorithm for the k-(S, T ) connectivity prob-
lem. First, we show that the LP-scaling technique [20] applies in our setting. Based
on that, we focus on the key subproblem of increasing (S, T ) connectivity by one.

Consider the following linear programs: The first one, denoted LP(k), is a well-
known LP relaxation for the k-(S, T ) connectivity problem, where E0 denotes the edge
set of the initial digraph; see [13, 16]. The second, denoted LPinc(�), is a well-known
LP relaxation for the problem of increasing (S, T ) connectivity by one by adding edges
from E − E� to a digraph (V,E�) that is �-(S, T ) connected; we may view (V,E�) as
the “initial digraph.”

Linear program for k-(S, T ) connectivity:

LP(k)

⎧⎪⎪⎨
⎪⎪⎩

z∗k = min
∑

e∈E−E0

c(e) · xe

s.t. x(δoutE−E0
(U)) + doutE0

(U) ≥ k ∀U ⊆ V, U ∩ S �= ∅, U ∩ T �= T,
0 ≤ xe ≤ 1 ∀e ∈ E − E0.

Linear program for increasing (S, T ) connectivity from � to � + 1:

LPinc(�)

⎧⎪⎪⎨
⎪⎪⎩

zinc = min
∑

e∈E−E�

c(e) · xe

s.t. x(δoutE−E�
(U)) ≥ 1 ∀U ⊆ V, U ∩ S �= ∅, U ∩ T �= T, doutE�

(U) = �,
0 ≤ xe ≤ 1 ∀e ∈ E − E�.

Proposition 24. Suppose there is an approximation algorithm for the problem
of increasing the (S, T ) connectivity of a digraph by one that achieves an approxima-
tion guarantee of β(n) with respect to the LP relaxation LPinc(�). Then there is an
O(β(n) log k)-approximation algorithm for the k-(S, T ) connectivity problem.

We omit our proof, which follows from the well-known LP-scaling technique; a
proof is given in [29].

In the rest of this section, we present our approximation algorithm for increasing
the (S, T ) connectivity by one. We assume that the initial digraph is �-(S, T ) con-
nected. This assumption is valid because previous iterations of the algorithm have
increased the (S, T ) connectivity from zero to �.

5.3. Preliminaries on �-(S, T ) connected digraphs. This subsection de-
velops some basic results on �-(S, T ) connected digraphs, where � is a nonnegative
integer.

A deficient set is a set of vertices U ⊆ V such that U ∩ S �= ∅, U ∩ T �= T , and
dout(U) < � + 1. Thus, there exists a pair of vertices s ∈ S and t ∈ T such that U
“separates” s and t, so any feasible solution of the (�+ 1)-(S, T ) connectivity problem
has ≥ � + 1 edges in the cut (U, V − U), but the current digraph has ≤ � edges in
the cut. Observe that every deficient set U has dout(U) = �, since we assume that
the initial digraph is �-(S, T ) connected. The next lemma is basic and follows from
submodularity and the assumption on the initial digraph; see [29] for a proof.

Lemma 25 (uncrossing lemma). Let U and W be two deficient sets such that
(U ∩W ) ∩ S �= ∅ and (U ∪W ) ∩ T �= T . Then both U ∩W and U ∪W are deficient
sets.

We call an inclusionwise minimal deficient set a core and denote it by C or Ci,
etc. The halo family of a core C, denoted Halo(C), is the family of deficient sets
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containing C but containing no other cores, that is,

Halo(C) = {U : U is a deficient set, C ⊆ U,U contains no other cores}.

The halo set of C, denoted H(C), is the union of all members of the halo family of C,
that is, H(C) =

⋃{W : W ∈ Halo(C)}.
We say that an edge e = (v, w) covers a deficient set U if e has its tail in U and

its head in V − U . Similarly, we say that a set of edges F covers Halo(C) if every
member of Halo(C) is covered by some edge in F .

For a deficient set U , we define the body to be U ∩ S, and we define the shadow
to be T − U . The next lemma is a key tool for our algorithm and its analysis.

Lemma 26 (disjointness property). Let C and D be two distinct cores. Let U be
a deficient set in Halo(C), and let W be a deficient set in Halo(D). Then either

• (S ∩ U) and (S ∩W ) are disjoint, or
• (T − U) and (T −W ) are disjoint.

Proof. Suppose that (S ∩ U) and (S ∩W ) intersect; otherwise, the lemma holds.
For the sake of contradiction, suppose that (T −U) and (T −W ) intersect. Then we
have

(S ∩ U) ∩ (S ∩W ) = (U ∩W ) ∩ S �= ∅,
(T − U) ∩ (T −W ) = T − (U ∪W ) �= ∅.

Then by Lemma 25, U ∩W is a deficient set, and thus it contains a core. We have
a contradiction because C is the unique core contained in U , D is the unique core
contained in W , and C,D are distinct.

5.4. Computing cores. This subsection describes an efficient algorithm for
computing all cores. Recall our assumption that the current digraph is �-(S, T ) con-
nected.

For each pair of vertices s ∈ S, t ∈ T , we apply an efficient max s, t flow min s, t
cut algorithm to find a smallest set of vertices Cs,t that induces a minimum s, t-cut.
It can be seen that if the value of the maximum flow is less than � + 1 (the required
(S, T ) connectivity), then Cs,t is the unique minimal deficient set that includes s and
excludes t, and thus Cs,t is a candidate core; otherwise, there exists no deficient set
(and no core) that includes s and excludes t; clearly, Cs,t is not a core if it properly
contains another set Cs′,t′ , where s

′ ∈ S, t′ ∈ T , but otherwise, Cs,t is a core. Finally,
we construct a family C by choosing every subset Cs,t that does not properly contain
another set Cs′,t′ , where s′ ∈ S, t′ ∈ T . The family C is the family of all the cores.
Moreover, the construction immediately implies an upper bound of |S| · |T | on the
number of cores, and there exist examples showing that this bound is tight. A more
formal proof of the next result is given in [29].

Proposition 27. For every pair of vertices s ∈ S, t ∈ T , if the above algorithm
finds a set Cs,t, then the set is the unique minimal deficient set that includes s and
excludes t. Moreover, the algorithm finds all of the cores by computing C. The number
of cores is at most |S| · |T |.

5.5. Covering a halo family via Frank’s algorithm. A key subroutine of
our algorithm uses an algorithm due to Frank [14] to cover the halo family of a core.

Consider a core C and the halo family of C. To cover the halo family, we first
add so-called padding edges that cover all deficient sets that are not in the chosen
halo family. In particular, for each core D �= C, we choose an arbitrary vertex
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uD ∈ D ∩ S and add new edges from uD to each vertex v ∈ (T − D); thus, the set
of new edges for the core D is {(uD, w) : w ∈ (T − D)}; we call these edges the
padding edges. After adding all the padding edges, we choose an arbitrary root vertex
rC ∈ C ∩ S and run Frank’s algorithm on the resulting digraph, with rC as the root
vertex and T as the set of terminals; the set of augmenting edges E stays the same,
and the initial digraph has all the edges of the original initial digraph G0 as well as
all of the padding edges. We claim that the set of augmenting edges F (C) computed
by this algorithm covers the halo family of our chosen core C. This follows from
another claim: the halo family of C is equal to the family of deficient sets for the
input instance of the algorithm; that is, a set U ⊆ V is in the halo family of C iff U
is a deficient set for the padded digraph of the (� + 1)-(rC , T ) connectivity problem.
A formal proof of the next result is given in [29].

Proposition 28. Let C be the chosen core. Then the set of augmenting edges
F (C) found by Frank’s algorithm covers the halo family of C.

In the proof of Lemma 31 (see below), we need the property that Frank’s algorithm
does not cover any other core when it is used to cover the halo family of a core C; we
prove this in the next result.

Lemma 29. Let C be a core, and let F (C) be an (inclusionwise) minimal set of
augmenting edges that covers Halo(C). Let D �= C be another core. Then no edge in
F (C) covers D.

Proof. By way of contradiction, suppose that D is covered by some edge e ∈
F (C), where e = (v, q). By the minimality of F (C), e covers at least one deficient
set U ∈ Halo(C). Since the edge e = (v, q) covers both U and D, its tail v is in
(S ∩ U) ∩ (S ∩ D) and its head q is in (T − U) ∩ (T − D). This is a contradiction
by Lemma 25 (uncrossing) since U ∩D is a deficient set that is properly contained in
D.

5.6. Approximation algorithms for increasing (S, T ) connectivity. We
increase the (S, T ) connectivity by iteratively adding edges of low cost to decrease the
number of cores until no cores are left; if there are no cores, then observe that the
(S, T ) connectivity of the digraph has increased by one.

We present two different algorithms that yield the same approximation guarantee
up to constant factors. The first algorithm follows a sequential greedy strategy, and
it achieves an approximation guarantee of H|S|·|T | = O(ln |S| · |T |), where H� denotes
the �th harmonic number. The second algorithm has a better running time, and it
achieves an approximation guarantee of O(log2 |S|). The sequential greedy strategy
of the first algorithm has been used earlier for the k-VCSS problem by [10], and the
parallel strategy of the second algorithm has been used earlier for the k-VCSS problem
by [31]. Both algorithms rely on Frank’s algorithm; in general, the set of augmenting
edges computed by Frank’s algorithm is not added to the current digraph; instead,
we compute the cost of this edge set, and if it satisfies other criteria, then we add this
edge set to the current digraph.

Proposition 30. There is an O(log n)-approximation algorithm for increasing
(S, T ) connectivity from � to �+ 1.

The main result of this section, Theorem 4, follows from the above result and
Proposition 24.

5.7. Approximation Algorithm 1. Our first algorithm decreases the number
of cores by one in each iteration. Consider any iteration: For each core C, we apply
Frank’s algorithm to compute a set of edges F (C) that covers the halo family of C, but,
at this point, we do not add any edges to the current digraph. We then choose a core
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C∗ such that c(F (C∗)) is minimum, that is, c(F (C∗)) = min{c(F (C)) : C is a core},
and we add F (C∗) to the current digraph. Lemma 31 below shows that the number
of cores decreases by one in the resulting digraph. We repeat these iterations until no
core is left in the current digraph.

In general, when we add some augmenting edges, we cover some of the old cores,
but the augmented digraph may have several new cores that are intersecting, e.g.,
there may exist j ≥ 2 new cores that intersect each other but whose union contains
less than j old cores; see Figure 5. (Such complications do not arise in the algorithm
of [10] for the k-VCSS problem since the cores are disjoint in [10].)

                                                      S

                                                      T                                                      T

                                                      S
s1 s2 s1 s2

t1 t2
t3 t4 t1 t2 t3 t4

Fig. 5. The figure shows an example where the number of cores increases after adding augment-
ing edges; these edges are indicated by black lines. The problem is to increase (S, T ) connectivity by
one, where the initial digraph is 1-(S, T ) connected; the edges of the initial digraph are indicated by
grey lines. The example in the left figure has two cores, {s1} and {s2}. The example in the right
figure is obtained by adding the augmenting edges (s1, t2) and (s2, t2); it has six cores, {s1, t1, t2, t3},
{s1, t1, t2, t4}, {s1, t2, t3, t4}, {s2, t1, t2, t3}, {s2, t1, t2, t4}, and {s2, t2, t3, t4}.

Lemma 31. If we cover the halo family of a core C (by adding the edge set F (C)
computed by Frank’s algorithm), then the number of cores decreases by at least one.

Proof. We refer to the cores in the “old digraph” (V,E0∪E′) as the old cores and
the cores in the “new digraph” (V,E0 ∪E′ ∪ F (C)) as the new cores.

It can be seen that the lemma follows from two key facts: (1) every one of the
deficient sets in Halo(C) is covered by the set of augmenting edges F (C); (2) every
one of the old cores other than C is preserved; that is, except for C, all of the old
cores are new cores. Fact (1) holds by definition; we will prove fact (2) below.

Consider fact (2) and its proof. When Frank’s algorithm is applied to any core
C, then it finds an (inclusionwise) minimal set of augmenting edges F (C) that covers
Halo(C); the minimality holds because the algorithm finds a set of augmenting edges
of minimum cost. It then follows from Lemma 29 that for any core D �= C, D is not
covered by any edge in F (C). Thus, every old core D �= C stays as a deficient set of
the new digraph, and moreover, it must be a new core.

5.8. Cost analysis by decomposing an optimal fractional solution. For
the rest of this section, we revise our definitions of opt and E∗ for the sake of notational
convenience. We use opt to denote the optimal value of LPinc(�), which is the LP
relaxation for increasing (S, T ) connectivity from � to �+1, and we use E∗ to denote
the support of some fixed optimal solution of this LP (thus, letting x denote an
optimal solution of LPinc(�), we have E∗ = {e ∈ E : xe > 0}).

Let C1, C2, . . . , Ct denote all of the cores. For each core Ci, 1 ≤ i ≤ t, let E∗(Ci)
denote an (inclusionwise) minimal subset of E∗ such that Halo(Ci) is covered by x
restricted to E∗(Ci).
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Lemma 32 (decomposition lemma). E∗(Ci) and E∗(Cj) are disjoint for all 1 ≤
i �= j ≤ t. Furthermore,

∑t
i=1

∑
e∈E∗(Ci)

c(e)x(e) ≤ opt.
Proof. We prove the first statement by contradiction. Suppose that the statement

does not hold. Then there exist i, j with 1 ≤ i < j ≤ t such that E∗(Ci) ∩ E∗(Cj)
contains an augmenting edge e. Then by the minimality of E∗(Ci) and E∗(Cj), emust
cover some deficient set U ∈ Halo(Ci) as well as some deficient set W ∈ Halo(Cj).
This contradicts Lemma 26 (the disjointness property). Hence, E∗(Ci) and E∗(Cj)
are disjoint for all i �= j.

The second statement is an immediate consequence of the first statement.
Lemma 33. Let t be the number of cores. Let C1, . . . , Ct be all of the cores, and

let F (Ci) be an edge set of minimum cost that covers Halo(Ci) for all i = 1, . . . , t.
Then

∑t
i=1 c(F (Ci)) ≤ opt.

Proof. Consider any core C. Recall that F (C) denotes the set of augmenting edges
found by Frank’s algorithm, and E∗(C) denotes an (inclusionwise) minimal subset of
E∗ such that Halo(C) is covered by x restricted to E∗(C). Then we have c(F (C)) ≤∑

e∈E∗(C) c(e)x(e). This follows from Frank’s results on the LP relaxation for the

min-cost k-(r, T ) connected digraph problem. Frank proved that the LP relaxation is
integral; see Theorem 9, and also see Theorems 4.4 and 5.9 of [15].

We apply this to all the cores C1, C2, . . . , Ct. Thus, we have

c(F (Ci)) ≤
∑

e∈E∗(Ci)

c(e)x(e) for i = 1, 2, . . . , t.

Moreover, we have
∑t

i=1

∑
e∈E∗(Ci)

c(e)x(e)≤opt by Lemma 32. Hence,
∑t

i=1c(F (Ci))

≤ ∑t
i=1

∑
e∈E∗(Ci)

c(e)x(e) ≤ opt.

Lemma 34. The total cost incurred by the algorithm is O(log n)opt.
Proof. Let t0 denote the number of cores at the start of the algorithm; we have

t0 ≤ |S| · |T | ≤ n2 by Proposition 27. Each iteration decreases the number of cores by
one by Lemma 31. Moreover, we claim that the cost of the set of augmenting edges
added by an iteration is≤ opt/t, where t denotes the number of cores at the start of the
iteration. To see this, consider a core C∗ such that the edge set F (C∗) has minimum
cost, i.e., c(F (C∗)) ≤ c(F (C)) for all cores C. Then c(F (C∗)) = mint

i=1{c(F (Ci))} ≤
1
t

∑t
i=1{c(F (Ci))} ≤ 1

t opt, where the last inequality follows from Lemma 33.
Therefore, the total cost of the edges added by the algorithm is less than or equal

to opt ( 1
t0
+ 1

t0−1 + · · ·+1) = opt Ht0 = O(ln t0) opt = O(log n) opt, where H� denotes
the �th harmonic number.

Approximation Algorithm 1, together with its analysis, gives a proof of Proposi-
tion 30.

Remark 35. Approximation Algorithm 1 can be implemented to run in time
O(n6m+ n5m · f(m,n)), where f(m,n) denotes the time for computing a maximum
s, t flow.

5.9. Approximation Algorithm 2. The second approximation algorithm ex-
ecutes O(log n) rounds, where each round adds a set of augmenting edges with the
hypothetical goal of decreasing the number of cores by a factor of two. At the start
of each round, we compute the set C of all cores for the current digraph; then, for
each core C ∈ C, we compute the set of edges F (C) that covers Halo(C), via Frank’s
algorithm; then, we add all these edge sets to the current digraph; that is, we add
the edge set

⋃{F (C) | C ∈ C}; this completes one round. We repeatedly apply such
rounds until there is no core left.
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Lemma 36. No deficient set contains two cores whose bodies are intersecting.
Proof. By Lemma 26 (the disjointness property), any two distinct cores C and

D whose bodies are intersecting must have disjoint shadows. Hence, C ⊇ T −D and
D ⊇ T − C, and thus C ∪D contains T . Thus, any set of vertices containing C ∪D
cannot be a deficient set because it contains T .

Lemma 37. In each iteration, the maximum number of body-disjoint cores de-
creases by a factor of two.

Proof. Let ν and ν′ denote the maximum number of body-disjoint cores at the
beginning and at the end of the iteration, respectively. We refer to cores at the
beginning of the iteration as old cores and those at the end of the iteration as new
cores. In each iteration, the algorithm covers every deficient set that is contained
in some halo family. Thus, the current digraph has no deficient set that contains
exactly one old core. In other words, any new core contains at least two old cores.
By Lemma 36, a new core cannot contain two old cores whose bodies are intersecting
because each new core is a deficient set in the old digraph. Hence, ν′ body-disjoint
new cores must contain at least 2ν′ body-disjoint old cores. Thus, 2ν′ ≤ ν which
proves the lemma.

Lemma 38. The algorithm terminates within O(log n) rounds, and it runs in poly-
nomial time. Moreover, the total cost incurred by the algorithm is at most O(logn)opt.

Proof. The maximum number of body-disjoint cores is O(|S|) = O(n), and the
maximum number of body-disjoint cores decreases by half in each round; hence the
number of rounds is O(log n).

The cost of the edges added in each round is at most opt. To see this, let
C1, C2, . . . , Ct be all of the cores. Recall that, for i = 1, 2, . . . , t, F (Ci) is a set of edges
of minimum cost that covers Halo(Ci); hence, by Lemma 33, we have

∑t
i=1 c(F (Ci)) ≤

opt. Thus, the total cost incurred in O(log n) rounds is O(log n)opt.
Approximation Algorithm 2, together with its analysis, gives another proof of

Proposition 30.
Remark 39. Approximation Algorithm 2 can be implemented to run in time

O((n4m + n3m · f(m,n)) · logn), where f(m,n) denotes the time for computing a
maximum s, t flow.

6. An approximation algorithm for relaxed 1-(S, T ) connectivity. In
this section, we present an approximation algorithm for the relaxed (S, T ) connectiv-
ity problem. We prove part (1) of Theorem 5 in section 6.2 and part (2) in section 6.3.
Our approximation algorithm and its analysis are based on a key structural result that
decomposes any feasible solution into junction trees that are disjoint on the vertices
of T ; see Theorem 41 in section 6.1. Our algorithm in section 6.2 achieves an approx-
imation guarantee of α(n) + 1, where α(n) denotes the best available approximation
guarantee for the directed Steiner tree problem. This approximation guarantee is tight
up to an additive term of one, since Proposition 1 shows that the relaxed (S, T ) con-
nectivity problem is at least as hard as the directed Steiner tree problem. Finally, in
section 6.3, we focus on digraphs that are acyclic on T , meaning that there exists no
dicycle that contains two distinct vertices of T ; we refine the algorithm and analysis
of section 6.2 to obtain a tight approximation guarantee of O(log |S|).

6.1. Decomposing a 1-(S, T ) connected digraph via junction trees. We
start with a key structural result on decomposing a feasible solution of the 1-(S, T ) con-
nectivity problem; this result places no restriction on the type of augmenting edges
nor on the presence of T, S dipaths. We need the notion of junction trees. Let r be
a vertex. Recall that an in-tree J in rooted at r is an edge-minimal digraph that has



1476 J. CHERIYAN AND B. LAEKHANUKIT

a v, r dipath for every vertex v ∈ V (J in), and similarly, we have the notion of an
out-tree Jout rooted at r. A junction tree J rooted at r is the union of an in-tree J in

and an out-tree Jout, both rooted at the same vertex r; the in-tree and the out-tree
may have common edges; see [9, 5].

By a good junction tree for a digraph G that is 1-(S, T ) connected, we mean a
junction tree J such that

(1) the root of J is in T ,
(2) the in-tree J in contains S (that is, J in is an in-directed Steiner tree with

terminal set S),
(3) the out-tree Jout contains all vertices of T that are reachable from the root

in G, and moreover,
(4) the out-tree Jout contains all vertices of T that are in the in-tree J in.

It is easy to construct a junction tree for a 1-(S, T ) connected digraph G that
satisfies properties (1)–(3); indeed, we could choose any vertex r ∈ T to be the root,
take the in-tree to be a minimal subgraph that contains an s, r dipath for each s ∈ S,
and take the out-tree to be a minimal subgraph that contains an r, t dipath for each
t ∈ T that is reachable from r in G. By a good vertex we mean a vertex t̂ ∈ T such
that every vertex of T that occurs in an s, t̂ dipath of G, for any s ∈ S, is reachable
from t̂ in G (in other words, there exists no vertex t ∈ T such that t occurs in an
s, t̂ dipath of G, for some s ∈ S, and t is not reachable from t̂ in G). Clearly, if
we choose a good vertex as the root, and then apply the above construction, then
we obtain a good junction tree (thus, properties (1)–(4) hold). Below (in the proof
of Theorem 41), we show that there exists a good vertex in any 1-(S, T ) connected
digraph; in fact, if G is acyclic, then there exists a vertex t̂ ∈ T that is not reachable
in G from any other vertex of T , and it can be seen that t̂ is a good vertex.

The relevance of good junction trees (and property (4)) for our decomposition
result on 1-(S, T ) connected digraphs comes from the following fact (proved below):
when we remove the vertices of a good junction tree that are in T from the digraph,
then the resulting digraph is again 1-(S, T ) connected (w.r.t. the resulting set T ).

Example 40. Consider a digraph G = (V,E) on six nodes, where V = {s1, s2, v,
t1, t2, t3}, S = {s1, s2}, T = {t1, t2, t3}, and E = {(s1, s2), (s2, v), (v, t1), (t1, t2),
(t1, t3)}. Thus, G is the union of a dipath on five vertices and a dipath on two
vertices. Let J ′ = G − {t3}; thus, J ′ is the dipath s1, s2, v, t1, t2. Taking t2 to be
the root, observe that J ′ is a junction tree that satisfies properties (1)–(3) but is not
a good junction tree. Moreover, observe that G − V (J ′) ∩ T = G − {t1, t2} is not
1-(S, T − V (J ′)) connected. On the other hand, taking t1 to be the root, observe that
J = G is a good junction tree.

Theorem 41. Let H = (V,E) be a 1-(S, T ) connected digraph. Then there exists
a sequence of junction trees J1, J2, . . . , J� such that T is partitioned by V (J1), V (J2),

. . . , V (J�), and moreover, for each i=1, . . . , �, the digraph Hi=H−⋃i−1
q=1 V (Jq) ∩ T

is 1-(S, T −⋃i−1
q=1 V (Jq) ∩ T ) connected and Ji is a good junction tree for Hi.

Proof. The theorem follows directly from two facts discussed above, namely,
there exists a good junction tree J in H , and removing V (J) ∩ T from H results in
a digraph that is (S, T ) connected w.r.t. the new set T (that is, H − V (J) ∩ T is
1-(S, T − V (J)) connected).

Let us prove the first fact. We contract each strong component in the digraph
H to a single vertex to obtain an acyclic digraph D. For each vertex u of D, let
C(u) denote the corresponding strong component of H . Next, we assign a topological
numbering to the vertices of D, starting with the vertices of in-degree zero and ending



APPROXIMATION ALGORITHMS FOR k-(S, T ) CONNECTIVITY 1477

with the vertices of out-degree zero. Then we pick a vertex r∗ of D with the smallest
topological number such that C(r∗) ∩ T is nonempty, and we pick any vertex of
C(r∗) ∩ T to be the root t̂. We claim that t̂ is a good vertex of H . Indeed, by our
choice of r∗, every vertex t ∈ T that occurs in any s, t̂ dipath of H , for any s ∈ S,
belongs to C(r∗), and hence t is reachable from t̂ in H . It is easy to see that there
exists a good junction tree for H with the good vertex t̂ as the root.

Finally, let us prove the second fact. Let J be a good junction tree of H . We
claim that the digraph H−V (J)∩T is (S, T ) connected w.r.t. the new set T (namely,
T −V (J)). The key point is that whenever we remove a vertex t ∈ T from H , then we
also remove every vertex of T that is reachable from t in H . Hence, we cannot have
a pair of vertices s ∈ S and t ∈ T − V (J) such that H − V (J) ∩ T has no s, t dipath.
(In more detail, H has an s, t dipath P , and if P is disjoint from V (J) ∩ T , then it
survives in H − V (J) ∩ T , and otherwise, t cannot survive in H − V (J) ∩ T , because
t is reachable from some vertex of V (J) ∩ T .) This proves the second fact.

The theorem follows: we start with a good junction tree J1 of H , and for i =
2, . . . , using induction, we observe that each of the digraphs H −⋃i−1

q=1 V (Jq) ∩ T is

(S, T ) connected w.r.t. the appropriate set T (namely, T −⋃i−1
q=1 V (Jq)), and hence,

it has a good junction tree that we take to be Ji; we stop when
⋃i

q=1 V (Jq) contains
T .

The next corollary is immediate and will be used in the design and analysis of
the algorithm in section 6.3.

Corollary 42. Suppose that the digraph H in the above theorem is acyclic on
T . Then for each i = 1, . . . , �, the in-tree J in

i has exactly one vertex of T , namely,
the root of Ji.

Theorem 41 is the key tool for our approximation algorithm for the relaxed
(S, T ) connectivity problem. But, the following example shows that this theorem may
not be useful in the context of approximation algorithms for the general 1-(S, T ) con-
nectivity problem.

Example 43. Consider the following digraph H . The vertex set is S ∪ T ∪ {v, w},
where |S|, |T | ≥ 1, and the edge set is {(s, v) : s ∈ S} ∪ {(v, w)} ∪ {(w, t) : t ∈ T }.
The edge (v, w) has cost one, and all other edges have cost zero. Then, by applying
the above theorem, we obtain |T | junction trees, where each junction tree Ji has one
distinct vertex of T , call it ti, and has the edge set {(s, v) : s ∈ S}∪{(v, w)}∪{(w, ti)};
thus, each junction tree Ji has cost one, which is the cost of H .

6.2. An approximation algorithm for relaxed (S, T ) connectivity. In
this section, we present an approximation algorithm for the relaxed (S, T ) connec-
tivity problem, assuming that there is no T, S dipath in the given digraph G. This
assumption simplifies the algorithm and its analysis. The assumption is without
loss of generality, because there is a simple, linear-time reduction from the relaxed
(S, T ) connectivity problem to its special case where there is no T, S dipath. For
each vertex s ∈ S, we add a new vertex s+ and a new edge (s+, s) to G0 (the initial
digraph); the vertex s and its other incident edges stay the same. Then we replace
each vertex s in S by the associated vertex s+ to get Snew = {s+ : s ∈ S}. Note that
the new instance is an instance of the relaxed (S, T ) connectivity problem. It is easily

seen that a set of edges Ê ⊆ E is a solution to the new instance iff it is a solution to
the original instance. Observe that the new instance has no T, Snew dipath, because
each of the vertices s+ in Snew has in-degree zero.

Our algorithm constructs a “rooted” auxiliary digraph, then computes a rooted
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Fig. 6. The figure illustrates the working of our approximation algorithm for the relaxed
(S, T ) connectivity problem on an example that has no T, S dipath. The left figure shows the orig-
inal digraph. The right figure shows the auxiliary digraph. The set of vertices S is contracted into
a single vertex ŝ. The black vertices denote the vertices of S ∪ T . The grey vertices denote the
optional vertices. The grey lines denote the edges of the initial digraph. The black lines denote the
augmenting edges. The dashed lines denote the auxiliary edges obtained by replacing an in-directed
Steiner tree Ft rooted at a vertex t ∈ T by an auxiliary edge (ŝ, t) with cost c(Ft) for each vertex
t ∈ T .

out-branchingM of minimum-cost in it, and then mapsM back to the original digraph
G to get a solution to the relaxed (S, T ) connectivity problem.

The auxiliary digraph Gaux is constructed as follows. Let ŝ be a new vertex and
call it the root vertex of Gaux (ŝ may be viewed as a representative for the set S of
G). Let Q denote the set of all optional vertices v ∈ V − (S ∪ T ) that are reachable
from T in G. The vertex set of Gaux is {ŝ} ∪ T ∪ Q. Gaux has a so-called auxiliary
edge (ŝ, t) for each vertex t ∈ T . Moreover, for each edge (v, w) of G that has both
endvertices in T ∪ Q, the auxiliary digraph has the edge (v, w), and the cost of this
edge in Gaux is defined to be the same as the cost of the edge in G. Next, we assign
the costs of the auxiliary edges of Gaux. We focus on the given digraph G, and for
each vertex t ∈ T , we compute an in-directed Steiner tree Ft with terminal set S and
root t of approximately minimum cost (using a quasi-polynomial-time algorithm for
the directed Steiner tree problem that achieves the best approximation guarantee);
we define the cost of the auxiliary edge (ŝ, t) to be c(Ft). Observe that Gaux has
dipaths from the root to each of its vertices; that is, all vertices are reachable from ŝ
in Gaux. See Figure 6 for an illustration.

After constructing Gaux, our algorithm computes a min-cost out-branching M
of Gaux with root ŝ. Observe that M has one or more auxiliary edges. Finally, we
replace each auxiliary edge (ŝ, t) of M by the corresponding directed Steiner tree Ft

of G to get a solution digraph Ĝ that is a subgraph of G. Figure 6 illustrates the
working of our algorithm.

The next result gives the correctness and cost analysis for the algorithm.

Proposition 44. The above algorithm finds a feasible solution Ĝ of cost ≤
(α(n) + 1)opt for the relaxed (S, T ) connectivity problem.

Proof. The correctness of our solution follows from the fact that M is an out-
branching rooted at ŝ. In more detail, consider any vertex t ∈ T . Observe that every
ŝ, t dipath in M is of the form ŝ, t∗, . . . , t, where (ŝ, t∗) is an auxiliary edge, while
the other edges belong to the digraph G. Since we replace (ŝ, t∗) by the in-directed

Steiner tree Ft∗ in the final step, the resulting digraph Ĝ must have an s, t∗ dipath
for every s ∈ S. Hence, for each vertex s ∈ S, the resulting digraph Ĝ has an s, t
dipath of the form s, . . . , t∗, . . . , t. Thus, Ĝ is (S, T ) connected.
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Now, consider the cost analysis. We abbreviate α(n) to α within this proof. We

have c(E(Ĝ)) ≤ c(M). Our key claim is that c(M) ≤ (α + 1)opt. To prove this, we
start with the digraph G∗ = (V,E0 ∪ E∗) of an optimal solution E∗ and construct
a spanning subgraph M∗ of Gaux such that M∗ contains an out-branching of Gaux

rooted at ŝ and c(M∗) ≤ (α+ 1)opt; clearly, this will prove the claim.
We apply Theorem 41 to G∗ to obtain junction trees J1, . . . , J� that satisfy the

properties stated in the theorem; in particular, we have
∑�

i=1 c(Ji) = c(G∗) = opt.
Let ti denote the root of the in-directed Steiner tree J in

i of Ji for i = 1, . . . , �. For each
of the junction trees Ji, where i = 1, . . . , �, we add the auxiliary edge (ŝ, ti) to M∗;
observe that c(ŝ, ti) ≤ α c(J in

i ), because J in
i is an in-directed Steiner tree of G rooted

at ti with terminal set S, and c(ŝ, ti) ≤ α c(F opt
ti ) ≤ α c(J in

i ), where F opt
ti denotes a

minimum-cost in-directed Steiner tree of G rooted at ti with terminal set S.
Next, for i = 1, . . . , �, we add to M∗ all the edges of Jout

i . Observe that Jout
i

is a subgraph of Gaux because each edge in Jout
i is reachable from ti (Jout

i has no
vertex of S since the digraph G has no T, S dipath); hence each of these edges has
both endvertices in T ∪Q. Finally, we add to M∗ the edges of a minimum-cost dipath
from T to v, for each optional vertex v ∈ Q; each of these edges has zero-cost since
the head is in Q. This completes the construction of M∗. Clearly, M∗ contains an
out-branching of Gaux rooted at ŝ. We have

c(M∗) ≤
�∑

i=1

(α c(J in
i )+c(Jout

i )) ≤
�∑

i=1

(α c(Ji)+c(Ji)) ≤ (α+1)

�∑
i=1

c(Ji) ≤ (α+1)opt,

where the last inequality follows from Theorem 41. This implies that our algorithm
achieves an approximation guarantee of (α(n) + 1) as required. We remark that the
additive term of +1 arises because c(Ji) may be strictly less than c(J in

i ) + c(Jout
i ),

since J in
i and Jout

i may have common vertices of T .

6.3. Relaxed (S, T ) connectivity on a digraph that is acyclic on T . In
this section, we focus on the special case of the relaxed (S, T ) connectivity problem,
where the digraph G is acyclic on T ; moreover, we assume that G has no T, S dipath;
this assumption can be enforced by the reduction described above. First, we show
that this problem is at least as hard for approximation as the set covering problem.
Then, we refine the algorithm of section 6.2 to improve the approximation guarantee
to O(log |S|) when the digraph is acyclic on T . We use the abbreviation SCP for the
set covering problem.

For the hardness result, consider an instance ISC of SCP with ground-set U =
{u1, . . . , up} and subsets S1, . . . , Sq ⊆ U . We can represent ISC by a bipartite graph
B whose vertex partition consists of U and W = {S1, . . . , Sq}; B has an edge between
ui ∈ U and Sj ∈ W iff ui ∈ Sj in the instance ISC . To obtain an instance of the
relaxed (S, T ) connectivity problem, we orient the edges of B from U to W , and then
we add one new vertex t and the edges (Sj , t) with cost c(Sj) for each subset Sj

of the instance ISC ; we give a cost of zero to all other edges, and we fix T = {t},
S = U ; note that each edge of positive cost has its head in T . This completes the
construction. It can be seen that a feasible solution Ê for the instance of the relaxed
(S, T ) connectivity problem corresponds to a feasible solution of the instance ISC of

the same cost by choosing a subset Sj of ISC iff an edge (Sj , t) is in Ê.
Next, we present the refined approximation algorithm for the relaxed (S, T ) con-

nectivity problem. For any vertex t̂ ∈ T , when we compute an in-directed Steiner tree
with root t̂ and terminal set S, then we consider only solution subgraphs such that
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all augmenting edges have heads at t̂; in other words, we ignore solution subgraphs
that contain s, t̂ dipaths (for some s ∈ S) that use ≥ 2 augmenting edges. There
may exist vertices t̂ ∈ T such that there exist no in-directed Steiner trees rooted at
t̂ satisfying the above conditions; then, we give an infinite cost to the corresponding
auxiliary edges (ŝ, t̂) in the auxiliary digraph constructed by the algorithm. To see the
correctness of this construction, consider an optimal solution G∗ = G0 + E∗ and the
decomposition given by Theorem 41 and Corollary 42; each of the in-directed Steiner
trees J in

i (of the decomposition) contains the terminal set S and has its root t̂i in T
but contains no other vertex of T by Corollary 42; hence, J in

i contains no augmenting
edge with head in T − {t̂i}.

We can compute an approximately min-cost directed Steiner tree of this special
form by solving the following instance ÎSC of SCP. We take the ground-set in the
instance ÎSC to be the set S (in the instance of relaxed (S, T ) connectivity); moreover,
for each edge ej with head at t̂ (in the instance of relaxed (S, T ) connectivity), we have

a subset Sj ⊆ S in the instance ÎSC , where Sj = {s ∈ S : G0 + ej has an s, t̂ dipath}.
A greedy algorithm for SCP gives an approximation guarantee of O(log |S|) for

each of these instances of SCP (one for each vertex in T ). Hence, by Proposition 44,
the algorithm for the relaxed (S, T ) connectivity problem achieves an approximation
guarantee of O(log |S|). This proves Theorem 5 in section 1.3.
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[18] G. N. Frederickson and J. JáJá, Approximation algorithms for several graph augmentation

problems, SIAM J. Comput., 10 (1981), pp. 270–283.
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