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ABSTRACTWe study undire
ted networks with edge 
osts that sat-isfy the triangle inequality. Let n denote the number ofnodes. We present an O(1)-approximation algorithm for ageneralization of the metri
-
ost subset k-node-
onne
tivityproblem. Our approximation guarantee is proved via lowerbounds that apply to the simple edge-
onne
tivity versionof the problem, where the requirements are for edge-disjointpaths rather than for openly node-disjoint paths. A 
orol-lary is that, for metri
 
osts and for ea
h k = 1; 2; : : : ; n�1,there exists a k-node 
onne
ted graph whose 
ost is within afa
tor of 24 of the 
ost of any simple k-edge 
onne
ted graph.This resolves an open question in the area. Based on ourO(1)-approximation algorithm, we present an O(log rmax)-approximation algorithm for the node-
onne
tivity surviv-able network design problem where rmax denotes the maxi-mum requirement over all pairs of nodes. Our results 
on-trast with the 
ase of edge 
osts of zero or one, where Ko-rtsarz et al. [20℄ re
ently proved, assuming NP*quasi-P, ahardness-of-approximation lower bound of 2log1�� n for thesubset k-node-
onne
tivity problem, where � denotes a smallpositive number.
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1. INTRODUCTIONA basi
 problem in network design is to �nd a minimum-
ost sub-network H of a given network G su
h that H sat-is�es some prespe
i�ed 
onne
tivity requirements. Funda-mental examples in
lude the minimum spanning tree (MST)problem and the traveling salesman problem (TSP). By anetwork we mean an undire
ted graph together with non-negative 
osts for the edges, and we use n to denote thenumber of nodes. Our fo
us is on networks where the edge
osts are metri
; that is, the edge 
osts satisfy the trian-gle inequalities. This spe
ial 
ase is signi�
ant from boththeoreti
al and pra
ti
al viewpoints; metri
 
osts arise inmany appli
ations of network design, and perhaps in mostof the obvious ones, su
h as the design of tele
ommuni
ationnetworks. Our goal is to design and analyse approximationalgorithms for some key problems in network design. More-over, we resolve a long-standing 
onje
ture on metri
 graphs,where by a metri
 graph we mean a 
omplete graph Kn to-gether with edge-
osts that satisfy the triangle inequalities.We atta
k the metri
-
ost node-
onne
tivity survivable net-work design problem (NC-SNDP). In this problem, we aregiven a metri
 graph, as well as a 
onne
tivity requirementri;j between every pair of nodes i and j. Let rmax denotemaxi;j2V ri;j . The goal is to �nd a minimum-
ost subgraphH that satis�es these requirements, that is, H should haveri;j openly node-disjoint paths between every pair of nodes iand j. There are two well-known spe
ial 
ases of NC-SNDP.The �rst is the subset k-node-
onne
tivity problem, where weare given a set of terminal nodes T � V and ri;j = k pre-
isely if both i and j are in T , otherwise ri;j = 0. The se
ondis the 
lassi
al k-node 
onne
ted spanning subgraph problem(k-NCSS) where ri;j = k for every pair of nodes; this is thespe
ial 
ase of the subset k-node-
onne
tivity problem withT = V . We also study a new spe
ial 
ase of NC-SNDP thatwe 
all the subset [k; 1:5k℄-node-
onne
tivity problem: givena set of terminal nodes T � V and an (integer) requirementri for ea
h node i 2 T , where 1 � k � ri � 1:5k, the goal isto �nd a minimum-
ost subgraph that has min(ri; rj) openlynode-disjoint i; j-paths for every pair of nodes i; j 2 T .(Thus the subset k-node-
onne
tivity problem is the spe-
ial 
ase where ri = k; 8i 2 T .) See Se
tion 4 for moredis
ussion.Most network design problems stay NP-hard and APX-hard even assuming metri
 
osts. This remains true evenfor small 
onne
tivity requirements; for example, Bern &Plassmann [3℄ showed that the Steiner tree problem (the
lassi
al spe
ial 
ase of the subset k-node-
onne
tivity prob-



lem with k = 1) is APX-hard even with edge 
osts of 1and 2. Over the past de
ade, there has been signi�
antresear
h on approximation algorithms for network design,and there have been some notable su

esses in the designof networks that satisfy various types of \edge 
onne
tiv-ity" requirements, e.g., Goemans & Williamson [16℄, andJain [17℄, but from the perspe
tive of approximation algo-rithms, the design of networks subje
t to \node 
onne
-tivity" requirements is a murky area. For example, Kort-sarz, Krauthgamer & Lee [20℄ re
ently proved a hardness-of-approximation lower bound of 2log1�� n for the subset k-node
onne
tivity problem in graphs with zero-one edge 
osts,provided that NP* DTIME(npolylog(n)), where, � denotes asmall positive real number. (We give a detailed dis
ussionon previous work in the area after stating our results.)We present a 24-approximation algorithm for the met-ri
 
ost subset k-node-
onne
tivity problem, and then wegeneralize this to get an O(1)-approximation algorithm forthe metri
 
ost subset [k; 1:5k℄-node 
onne
tivity problem.Modulo P6=NP and up to 
onstant fa
tors, these are thebest possible results. These algorithms are deterministi
and 
ombinatorial; they do not use linear programming re-laxations. Based on this, we present an O(log rmax) approx-imation algorithm for the metri
-
ost NC-SNDP. The algo-rithm for NC-SNDP is based on a linear programming re-laxation. Also, it uses a 2-approximation algorithm of Goe-mans & Williamson [16℄ (see also Agrawal et al. [1℄) for thegeneralized Steiner tree problem. Moreover, we resolve thefollowing long-standing 
onje
ture: In a metri
 graph andfor ea
h k = 1; 2; : : : ; n � 1, the minimum 
ost of a k-node
onne
ted spanning subgraph is within a 
onstant fa
tor ofthe minimum 
ost of a simple k-edge 
onne
ted spanningsubgraph. Thus, for metri
 graphs, the requirements of k-node-
onne
tivity and simple k-edge-
onne
tivity are equiv-alent for the obje
tive fun
tion, up to 
onstant fa
tors. Asimilar result holds for requirements of subset [k; 1:5k℄-node
onne
tivity versus subset simple [k; 1:5k℄-edge 
onne
tiv-ity.We apply two lower bounds on the optimal value of thesubset [k; 1:5k℄-
onne
tivity problem. We may assume (with-out loss of generality) that there exist at least two termi-nals with the maximum requirement. Hen
e, every solutionsubgraph has at least ri edges in
ident to ea
h terminal i,be
ause there is another terminal j with rj � ri, so the solu-tion subgraph must have ri openly node-disjoint i; j-paths.Our �rst lower bound 
omes from the the minimum 
ost ofa subgraph that has degree � ri for every terminal i. Ourse
ond lower bound 
omes from the 
ost of a minimum span-ning tree of the subgraph indu
ed by the terminals. For anynode i, we use �i or �(i) to denote the sum of the 
osts of theri 
heapest edges in
ident to i in the 
omplete graph, andfor any set of nodes S, we use �(S) to denote Pi2S �i. Weuse the abbreviations MST for minimum-
ost spanning tree,and TSP for the traveling salesman problem. Let mst(T ) de-note the 
ost of an MST of the subgraph indu
ed by T . Ourlower bounds are:(i) 12 �(T ), and(ii) k2 mst(T ).Note that these lower bounds apply also to the simple edge-
onne
tivity version of the subset [k; 1:5k℄-
onne
tivity prob-lem, where the requirements are for min(ri; rj) edge-disjointpaths between every pair of nodes i; j 2 T ; note that multi-edges are not allowed in the solution subgraph. See Se
tion 2

for more details. Throughout, we use opt to denote the 
ostof an optimal solution. Next, we state our main results for-mally.Theorem 1. There is a polynomial-time algorithm for
omputing a solution to the metri
-
ost subset k-node 
on-ne
tivity problem of 
ost� 10�(T ) + 4(k2 ) mst(T ) � 24opt:Consider k-NCSS, the spe
ial 
ase of the subset k-node 
on-ne
tivity problem in whi
h the terminal set T is V . Letk-ECSS be the problem of �nding a minimum-
ost simplek-edge 
onne
ted spanning subgraph. Then our two lowerbounds apply for both k-NCSS and k-ECSS. This gives thenext result.Corollary 2. In a network with metri
 
osts, there isa k-node 
onne
ted spanning subgraph whose 
ost is at most24 times the minimum 
ost of a simple k-edge 
onne
tedspanning subgraph.Remarks: For metri
 graphs, it is well known that thereexists a 2-node 
onne
ted graph of 
ost � the 
ost of any 2-edge 
onne
ted graph, but this does not hold for k � 3 (see[4, Fig.1℄ and the full version of this paper for examples).Also, note that the 12 �(V ) lower bound for k-ECSS doesnot apply for the version where multi-edges are allowed. Inmore detail, if multi-edges are allowed, then there exist k-edge 
onne
ted graphs H su
h that any k-node 
onne
tedgraph has 
ost � �(k) 
(H). See the full paper for moredetails.Theorem 3. There is a polynomial-time algorithm for
omputing a solution to the metri
-
ost subset [k; 1:5k℄-node-
onne
tivity problem of 
ost� O(1) � (�(T ) + k2 mst(T )) � O(1) � opt:Remark: A loose analysis gives a 
onstant fa
tor between 800and 1000 in the above theorem. Possibly, an approximationguarantee of � 100 
an be obtained by some 
hanges to thealgorithm. We have not attempted to optimise the 
onstantsin the approximation guarantees.Theorem 4. There is a polynomial-time algorithm for
omputing a solution to the metri
-
ost NC-SNDP of 
ost� O(log rmax) � opt.
Previous workOver the past few de
ades, there has been signi�
ant re-sear
h on approximation algorithms for network design. Forearly work in network design, see for example Dantzig, Ford& Fulkerson [11℄. A 
elebrated and still unsurpassed resultwas Christo�des' 32 -approximation algorithm for the metri
-
ost TSP [8℄. Partly motivated by Christo�des' result, therefollowed a stream of resear
h on related problems in the de-sign of metri
-
ost networks. Most of this resear
h fo
usedon small 
onne
tivity requirements, su
h as 2-edge 
onne
-tivity and 2-node 
onne
tivity; see Frederi
kson & Ja'Ja'[13℄, Monma & Shall
ross [25℄, Monma, Munson & Pulley-blank [24℄, and Biensto
k, Bri
kell & Monma [4℄. For 
on-stant k, this last paper gives a 
onstant-fa
tor approxima-tion algorithm for k-NCSS. Moreover, the proof also showsthat for metri
 graphs and any 
onstant k, there exists a



k-node 
onne
ted spanning subgraph of Kn whose 
ost iswithin a 
onstant fa
tor of the 
ost of any k-edge 
onne
tedspanning subgraph, see [4, Se
.4℄. They left open the ques-tion of extending these results to all k. This was followedby another burst of resear
h, partly initiated by the work ofGoemans & Bertsimas [14℄ who presented a logarithmi
 ap-proximation algorithm for a general model 
alled the edge-
onne
tivity survivable network design problem (EC-SNDP)assuming metri
 
osts. Soon after this, the resear
h fo
us
hanged frommetri
 
osts to the more general setting of non-negative 
osts. Agrawal, Klein & Ravi [1℄, and Goemans &Williamson [16℄ built on the primal-dual method to obtainO(1)-approximation algorithms for some spe
ial 
ases of EC-SNDP with small (i.e., zero and one) 
onne
tivity require-ments. Later, these methods were generalized to EC-SNDP,albeit with a logarithmi
 approximation guarantee, by Goe-mans et al. [15℄ based on work by Williamson et al. [30℄.This line of resear
h 
ulminated with a 2-approximation al-gorithm for EC-SNDP by Jain [17℄.Although there was 
onsiderable interest in extending thesemethods to the setting of node 
onne
tivity, there was lim-ited su

ess even for rather spe
ial 
ases of NC-SNDP. Wemention a few results and refer the interested reader to[6℄ for more referen
es. For the 
ase of non-negative edge
osts, Kortsarz & Nutov [21℄ and [7℄ have logarithmi
 (orworse) approximation guarantees for the k-NCSS problem.For metri
 
osts, there is an O(1)-approximation algorithmdue to Khuller & Raghava
hari [19℄, and there are other re-lated results in [5, 22℄. Some explanation for this la
k ofgood approximation algorithms for NC-SNDP 
omes fromthe re
ent hardness-of-approximation results of Kortsarz,Krauthgamer & Lee [20℄. Also, see the surveys by Frank[12℄, Khuller [18℄, and Stoer [27℄, and the book by Vazirani[29℄.We brie
y mention the relationship between our work andthe stream of ex
iting re
ent results on PTAS's (polynomial-time approximation s
hemes) for related problems. Begin-ning with the results of Arora [2℄ on the Eu
lidean TSP,many PTAS's have been obtained for problems in \geomet-ri
 network design" where the edge 
osts 
ome from spe
ialmetri
s su
h as the Eu
lidean metri
, see [9, 10, 26℄ andthe referen
es in those papers. But, modulo P6=NP, su
hPTAS's do not exist in the setting of interest to us, namely,(general) metri
 
osts; this follows from APX-hardness re-sults in [3, 20, 28℄.The rest of the paper is stru
tured as follows. In Se
-tion 2, we dis
uss some preliminaries, and give an overviewof our method for the metri
-
ost subset k-node 
onne
tiv-ity problem. We present a 
onstant-fa
tor approximationalgorithm for the problem in Se
tion 3. Se
tion 4 gives a
onstant-fa
tor approximation algorithm for the metri
-
ostsubset [k; 1:5k℄-node 
onne
tivity problem. This leads toan O(log rmax)-approximation algorithm for the metri
-
ostNC-SNDP in Se
tion 5.
2. PRELIMINARIES AND AN OVERVIEW

OF THE ALGORITHM FOR SUBSET K-
CONNECTIVITYApart from Se
tion 1, we omit the word `node' from termssu
h as `node-
onne
tivity' when there is no danger of am-biguity.Let the input graph be G = (V;E). We denote the nodes

by numbers i = 1; 2; : : : ; n, and for nodes i; j the edge be-tween them is denoted ij. The 
ost of an edge ij 2 E is de-noted 
ij or 
(i; j). The 
osts are said to be metri
 if the tri-angle inequality holds: 
(v; w) � 
(v; u)+
(u; w); 8u; v; w 2V . Whenever we assume metri
 
osts, we also assume thatG is the 
omplete graph. Let k be an integer su
h thatn > k � 1 (k may be a fun
tion of n). For a pair ofnodes i; j, let �(i; j) denote the maximum number of openlynode-disjoint i; j-paths. Re
all that T denotes the set ofterminal nodes. We use n0 to denote jT j, and we assumeT = f1; : : : ; n0g.Let us formalize the lower bounds (i) and (ii) for the subset[k; 1:5k℄-
onne
tivity problem stated in Se
tion 1. For ea
hterminal node i, let �i denote the set of ri nearest neighboursof i; by 
onvention, i 62 �i. (Thus j�ij = ri and 8x 2 �i; y 62�i [ fig; 
iy � 
ix.) Then note that �i denotes Px2�i 
ix.Also, for ea
h terminal node i, let �i denote �i=ri, namely,the average 
ost of an edge from i to one of its ri nearestneighbours. Note that ea
h terminal node i has at leastri neighbours in an optimal subgraph, thus opt � 12�(T ).This gives the �rst lower bound. Next, we 
laim that opt �k2mst(T ). In more detail, we have opt � 12e
opt(T; 2k) �k2mst(T ), where e
opt(T; �) denotes the minimum 
ost of a�-edge 
onne
ted subgraph of G[T ℄ (allowing multi-edges).To see this, start with a graph 
orresponding to opt, andtake two 
opies per edge to get an Eulerian multi-graphH 0 that is 2k-edge 
onne
ted on T , then apply the Lov�asz-Mader splitting-o� theorem [23, Ex.6.51℄, [12℄, to eliminateall nodes of V �T from H 0 to get a 2k-edge 
onne
ted multi-graph on the node set T that has 
ost � e
opt(T; 2k); thenwe apply the well-known fa
t that e
opt(T; �) � �2mst(T ).For metri
 
osts, splitting o� edges does not in
rease the
ost. This gives the se
ond lower bound: opt � k2mst(T ).
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3Figure 1: A key spe
ial 
ase of the algorithm. Here,k = 6, T = f1; 2; 3; 4g, and the sets fig [ �i (indi
atedby dotted blobs) for i 2 T are pairwise disjoint. Thetra
ks Q1; Q2; Q3 are indi
ated by 
ir
les.We �rst give an overview of our method for subset k-
onne
tivity by des
ribing a key spe
ial 
ase where k iseven, say k = 2`, and the sets fig [ �i of the terminalsi are pairwise disjoint (that is, (fig [ �i) \ (fjg [ �j) =;; 8i 6= j 2 T ). Arbitrarily name the nodes in �i as



i1; i2; : : : ; ik, 8i 2 T . Constru
t a 
heap 
y
le Q on theterminals using the well-known MST-doubling heuristi
 forthe TSP. (Start with an MST of the subgraph indu
ed by T ,repla
e ea
h edge by two 
opies, and short
ut the resulting
onne
ted Eulerian graph to get a 
y
le Q with V (Q) = Tand 
(Q) � 2mst(T ).) Let the sequen
e of terminals onQ be 1; 2; : : : ; n0; 1 (renumber the nodes if needed). Forea
h � = 1; : : : ; `, 
onstru
t a 
y
le Q� \parallel" to Qwhere Q� = 1� ; 1`+� ; 2� ; 2`+� ; 3� ; 3`+� ; : : : ; n0� ; n0`+� ; 1� .(Informally, start with the 
y
le 1� ; 2� ; : : : ; n0� ; 1� , thenfor ea
h i = 1; : : : ; n0 insert the node i`+� between nodesi� and (i + 1)� ; see Figure 1;) Let us refer to these 
y-
les as tra
ks. It 
an be seen that a tra
k Q� has 
ost
(Q� ) � 
(Q) +Pti=1 2(
(i; i� ) + 
(i; i`+� )) (see the se
-ond subroutine below), and the total 
ost of the tra
ks isP�̀=1 
(Q� ) � ` � 
(Q) + 2�(T ). Finally, for ea
h termi-nal i 2 T , we add the k edges ii1; ii2; : : : ; iik. The result-ing subgraph is our solution graph H; it has 
ost 
(H) �2` � mst(T ) + 3�(T ) � 2opt + 6opt = 8opt. Note thatea
h terminal has pre
isely two neighbours in ea
h tra
k.Thus H satis�es the 
onne
tivity requirements, be
ause forevery pair of terminals i; j(i 6= j), ea
h of the k=2 tra
ks
ontributes 2 openly disjoint i; j paths.The algorithm uses the following two subroutines. Notethat the solution graph H is simple, so when we add edgesto H we do so without 
reating multi-edges.� The �rst subroutine 
opies a spe
i�ed set of neighboursof a terminal i to another terminal v (possibly, v isadja
ent to i). More pre
isely, given a terminal i anda spe
i�ed set of neighbours of i, 
all itNi, and anotherterminal v, the subroutine adds an edge vx to H forea
h node x 2 Ni (without 
reating multi-edges orloops in H). After this step, �(i; v) � jNij in H. The
ost of the new edges is � jNij 
(i; v) +Px2Ni 
(i; x);moreover, if there is a positive real number 
 su
h thatPx2Ni 
(i; x) � 
�i, then the 
ost of the new edges is� jNij 
(i; v) + 
�i.� The other subroutine starts with a 
y
le 
ontaininga terminal i and inserts new node(s) into the 
y
le.Given a 
y
le Q0, a terminal i in Q0, and a node x 62V (Q0), we �rst add two 
opies of the edge ix to Q0to get a 
onne
ted Eulerian graph. Then we short
utthis Eulerian graph (as in the MST-doubling heuristi
for the TSP) to obtain a new 
y
le Q with node setV (Q0) [ fxg. The in
rease in 
ost is � 2
(i; x).It is important for our analysis to get good upper boundson the 
osts of the tra
ks. Note that the tra
ks are pairwisenode disjoint; thus ea
h terminal is in at most one tra
k.But, for upper-bounding the tra
k 
osts, we use the followinga

ounting tri
k. Consider any tra
k Q� . We assume thatthe tra
k initially 
onsists of all the terminals, thus V (Q� ) =T , and using the MST-doubling heuristi
 we have 
(Q� ) �2mst(T ). Subsequently, the algorithm may insert new nodesinto the tra
k { su
h insertions o

ur while we are pro
essingsome terminal { thus for inserting node x while pro
essingterminal i the 
ost 
(Q� ) in
reases by � 2
(i; x). Possibly,x may be another terminal { in that 
ase, we impli
itlyremove x from Q� and then insert x via the double-edge ix.At the end of the exe
ution, we keep only those terminalsthat were expli
itly inserted into Q� and remove all theother terminals from Q� ; 
learly, this does not in
rease the


ost 
(Q� ). Note that this \histori
al view" of Q� is onlyneeded for upper-bounding the 
ost. Other than this, it maybe easier to view the tra
ks as being pairwise node disjointall through the exe
ution, and this is the viewpoint we usein presenting the detailed algorithm.
3. THE ALGORITHM FOR SUBSET

K-CONNECTIVITYThis se
tion is devoted to an algorithm and proof for The-orem 1. The detailed algorithm follows. An analysis of the
ost of the edges added to H (the solution graph) is givenafter the algorithm. A terminal may be in two states a
-tive or ina
tive. Initially, all the terminals are a
tive. Let `denote dk=2e. Initially, H is the graph 
onsisting of all theterminal nodes and no edges, thus H = (T; ;).(1) [de-a
tivate terminals and 
onstru
t disjointballs for a
tive terminals℄Renumber the terminals as 1; 2; : : : ; n0 by in
reasingvalue of �; thus �1 � �2 � � � � � �n0 .Note: �h � �j i� �h � �j .S
an the terminals in the order 1; 2; : : : ; n0, and skipthe 
urrent terminal if it is ina
tive. For an a
tiveterminal i, 
onstru
t the set Bi = fj j 
(i; j) � ��ig,where we 
hoose � = 2. For ea
h a
tive terminal v > i,if 
iv � (��i + ���v), where we �x � = 2, then makev ina
tive, and re
ord i as the parent of v by assigningp(v) = i. (The aim is to ensure that the sets Bi ofa
tive terminals i are pairwise disjoint.)Note that i 2 Bi and jBij � 1 + (1 � 1� )k = 1 + k2 .(Otherwise, we have � k=� = k=2 nodes x in �i with
(i; x) > ��i = ��i=k, so these nodes 
ontribute > �ito Px2�i 
(i; x).) Hen
e, jBi � figj � `. Also notethat �p(v) � �v for ea
h ina
tive terminal v.Choose the ` nodes inBi nearest to i and name them asi1; i2; : : : ; i` su
h that 
(i; i1) � 
(i; i2) � � � � � 
(i; i`).(2) [
onstru
t ` tra
ks on the disjoint balls℄After step (1), let T � denote the set of a
tive terminalsand let n� = jT �j. If n� < 3, then apply step (20) andstop. Otherwise, 
onstru
t a 
heap 
y
le Q on the a
-tive terminals by applying the MST-doubling heuristi
for the TSP to the subgraph indu
ed by T �. Renum-ber the terminals su
h that Q = 1; 2; : : : ; n�; 1, thatis, the a
tive terminals get the numbers in f1; : : : ; n�ga

ording to their ordering in Q. Constru
t ` tra
ksQ1; Q2; : : : ; Q`, where tra
k Q� = 1� ; 2� ; : : : ; n�� , 1�(� = 1; : : : ; `). Add all the tra
ks (but not the 
y
leQ) to H. The 
ost of the tra
ks 
onstru
ted in thisstep is analysed in Proposition 6 below.(20) [spe
ial handling for 1 or 2 a
tive terminals℄Skip this step if n� � 3. Suppose n� = 1. Let thea
tive terminal be i. Add all the edges iv; v 2 �i, andthen for ea
h ina
tive terminal j, 
opy the set �i ofneighbours of i to j. The resulting graph H satis�esthe 
onne
tivity requirements.Suppose n� = 2. Let the a
tive terminals be h; i, with�h � �i. Add all the edges hq; q 2 �h, and iv; v 2 �i.Then add a mat
hingM of maximum size between thenodes in �i�(�h[fhg) and in �h�(�i[fig); now, ea
hmat
hing edge qv (say q 2 �h � fig and v 2 �i � fhg)



gives an h; i path, namely, h; q; v; i. Finally, for ea
hina
tive terminal j, 
opy the set �p(j) of neighbours ofp(j) to j. The resulting graph H satis�es the 
onne
-tivity requirements.(3) [augment disjoint balls and assign token ar
s℄In summary, this step s
ans the a
tive terminals i andaugments ea
h \ball" Bi to get an \augmented ball"B0i (that ideally has jB0ij � ri + 1 = k + 1) su
h thatthese augmented balls are pairwise disjoint. The ob-vious 
onstru
tion for B0i is to start with Bi and thenadd some nodes from �i�Bi, but then the augmentedballs may interse
t. We \de-interse
t" two interse
tingsets B0h and B0i, while preserving the balls Bh and Bi,by assigning so-
alled token ar
s to the a
tive termi-nals su
h that for ea
h a
tive terminal i, jB0ij plus thenumber of token ar
s assigned to i is � ri+1 = k+1.Consider one spe
ial 
ase: suppose that h and i are a
-tive terminals and node q is in B0h\B0i but q 62 Bh[Bi.Then we 
ompare the 
osts of the edges hq and iq and\repla
e" the 
ostlier edge, say iq, by a token ar
 whose
ost we �x to be 3
iq ; that is, we remove q from B0iand instead assign to i a token ar
 with 
ost 3
iq . Thedetails follow.Renumber the terminals so that the a
tive terminalsi in order of in
reasing �i values are 1; 2; : : : , n�, ands
an the a
tive terminals in this order. Start the s
anof i 2 T � by de�ning B0i := Bi if �i � Bi, and B0i :=�i otherwise. If B0i is disjoint from B0h for all a
tiveterminals h < i; then 
ontinue with the next a
tiveterminal, otherwise, for ea
h a
tive terminal h < iwith B0h \ B0i 6= ;, examine the nodes q in B0h \B0i inany order. Note that �h � �i.(a) Suppose q 2 Bh. Then note that q 62 Bi and
iq > ��i � ��h. Remove q from B0i and give to ia token ar
 (i; h) with 
ost 3
iq . (Later, this tokenar
 will be repla
ed by an edge ix where x 2 Bh;note that the 
ost of ix is � 
iq + 
hq + 
hx �
iq + 2��h � 3
iq .)(b) Otherwise, q 2 B0h � Bh. Suppose q 2 Bi. Thennote that 
hq+
iq � 
hi � (��h+���i) (the lastinequality holds be
ause both h; i are a
tive), and
iq � ��i, hen
e, 
hq � �(�h + �i) (re
all that� = 2). Remove q from B0h and give to h a tokenar
 (h; i) with 
ost 3
hq . (Later, this token ar
will be repla
ed by an edge hx, x 2 Bi, of 
ost� 
hq+
iq+
ix � 
hq+2��i � 
hq+2
hq � 3
hq .)(
) Suppose q 2 B0h �Bh and q 2 B0i �Bi. Then we
ompare 
iq and 
hq.If 
iq � 
hq , then remove q from B0i and give to i atoken ar
 (i; h) with 
ost 3
iq . (Later, this tokenar
 will be repla
ed by an edge ix, x 2 Bh, of 
ost� 
iq + 
hq + 
hx � 2
iq + ��h � 3
iq , where thelast inequality holds be
ause 
iq > ��i � ��h.)Otherwise, we have 
iq < 
hq . Then we removeq from B0h and give to h a token ar
 (h; i) with
ost 3
hq . (Later, this token ar
 will be repla
edby an edge hx, x 2 Bi, of 
ost � 
hq+ 
iq + 
ix �2
hq+��i � 3
hq , where the last inequality holdsbe
ause 
hq + 
iq � 
hi � (��h+���i) (as in (b)above), hen
e, 
hq � �2 (�h + ��i) � ��i (re
allthat � = 2).)

After step (3), note that the 
ost of a token ar
 (i; j)depends on the 
ost of the asso
iated edge iq and is3
iq .(4) [atta
h a
tive terminals to tra
ks℄In summary, this step s
ans ea
h a
tive terminal i andadds edges from i to the tra
ks su
h that ea
h tra
kQ� ; � = 1; : : : ; bk=2
, gets two neighbours of i, and thelast tra
k Q` gets � 1 neighbour of i.First add edges from i to ea
h of i1; i2; : : : ; i`; also,mark the nodes i1; i2; : : : ; i` as used.Then for ea
h � = 1; 2; : : : ; bk=2
, do the following.If an unused token ar
 (i; h) is available, then 
hooseit, mark it as used, and add the edge ih� ; note thath� is in Bh and is the \�rst neighbour" of h in tra
kQ� ; also, note that 
(i; h� ) is � the 
ost of the tokenar
 (i; h). If no unused token ar
s are available, then
hoose an unused node q 2 B0i, mark it as used, insertq into tra
k Q� , and add the edge iq. (Note that thenumber of token ar
s given to i plus jB0ij is � k + 1,hen
e, this step will �nd bk=2
 token ar
s or unusednodes, ex
luding the nodes i1; i2; : : : ; i`.)For ea
h a
tive terminal i, let Ni denote the set ofneighbours of i in the tra
ks, just after step (4) is ap-plied to i.(5) [atta
h ina
tive terminals to tra
ks℄Finally, \atta
h" the ina
tive terminals to the tra
ks.Note that an ina
tive terminal may be already in oneof the tra
ks. For ea
h ina
tive terminal j, 
opy theset of neighbours Np(j) of the parent p(j) to j.Proposition 5. The graph 
onstru
ted in step (20) has
ost � 16opt.Proof. Suppose n� = 1, and let i be the (unique) a
tiveterminal. Then 
(H) � �i +Pj2T�T�(k
ij + �i) � �i +Pj2T�T�(k(��i+���j)+�i) � �i+Pj2T�T�(�(1+�)�j+�j) � 7�(T ) � 14opt (we have � = 2; � = 2, and we used�i � �j for an ina
tive terminal j).Suppose n� = 2, and let i; h be the two a
tive terminals.Then re
all that M denotes a mat
hing of maximum sizebetween the nodes in �i� (�h [fhg) and in �h� (�i [fig);note that an edge qv 2 M (say, q 2 �h; v 2 �i) has 
ost� 
hq+
hi+
iv, hen
e, 
(M) � �h+�i+k�mst(T ); the otheredges in H 
ontribute a 
ost of � �h+�i+Pj2T�T�(�(1+�)�j + �j) (as in the analysis for n� = 1) hen
e, 
(H) �7�(T ) + k �mst(T ) � 16opt. 2Proposition 6. (i) The total 
ost of the edges added bystep (4) and in
ident to an a
tive terminal i is � 4�i. (ii) Atthe end of step (4), the total 
ost of the ` tra
ks is� 2` �mst(T ) + 4�(T �):Proof. For an a
tive terminal i, the total 
ost of thetoken ar
s (i; h) given to i is � 3�i. The 
ost of the edgesadded that are in
ident to i, but ex
luding the 
ost due tothe token ar
s, is � ��i if jBij � k+1 (in this 
ase, B0i = Biand no token ar
s are given to i), and is �Px2�i 
ix � �iotherwise. Thus the total 
ost of the added edges in
identto i is � max(��i; �i + 3�i) � 4�i.The total 
ost of the ` tra
ks (that were 
onstru
ted instep (2) and modi�ed in step (4)) is � 2` �mst(T )+ 4�(T �).



To see this, �rst 
onsider the term 2` �mst(T ). Re
all (fromSe
tion 2) the a

ounting tri
k we use for upper-boundingthe 
ost of a tra
k; due to this, we take the upper boundon the 
ost of Q (the 
heap 
y
le on T � in step (2)) to be2mst(T ) rather than 2mst(T �). Summed over ` tra
ks, thisgives 2` � mst(T ). For the se
ond term, note that i 2 T �
ontributes �Pq2B0i 2
(i; q), and this is � 2k(��i) if �i �Bi (then B0i = Bi), and � 2�i otherwise (then B0i = �i). 2Proposition 7. The edges added by step (5) and in
i-dent to the ina
tive terminals have total 
ost � 10�(T�T �).Proof. Suppose the 
ost of the added edges in
ident toan a
tive terminal i is � 
�i. (From Proposition 6, we have
 = 4.) Then the 
ost of the edges added for an ina
tiveterminal j with parent i is � k � 
ij+
�i � k(��i+���j)+
�i � (�(� + 1) + 
)�j , using the fa
t that �p(j) � �j .Thus the total 
ost of the edges added in this step is �10�(T � T �), using � = 2; � = 2; 
 = 4. 2Proof of Theorem 1. By the above propositions, the total
ost of H is � 2`�mst(T )+4�(T �)+
�(T �)+10�(T�T �) �(k + 1)mst(T ) + 8�(T �) + 10�(T � T �) � (k + 1)mst(T ) +10�(T ) � (2 + 2k )opt+ 20opt � 24opt.We 
laim that the graph H has the required 
onne
tivityproperty, namely, �(i; j) � k; 8i 6= j 2 T . To see this,
onsider any pair of terminals i; j and 
onsider any one tra
kQ� . Suppose that either i is in Q� , or i is not in Q� but hastwo neighbours in Q� . Suppose the same statement holds forj (that is, j is inQ� , or j is not inQ� but has two neighboursin Q�). Then, Q� (together with the edges from i and j toQ� ) 
ontributes two openly disjoint i; j paths. Similarly, Q�
ontributes one i; j path if both i and j either are in Q�or have a neighbour in Q� . By 
onstru
tion, ea
h a
tiveterminal has two neighbours in ea
h of the tra
ks Q� for� = 1; : : : ; bk=2
, and has a neighbour in Q`; similarly, ea
hina
tive terminal is either in Q� or has two neighbours in Q�for � = 1; : : : ; bk=2
, and is in Q` or has a neighbour in Q`.Then, for any two terminals i and j, H has k openly disjointi; j paths, sin
e ea
h of the tra
ks Q� for � = 1; : : : ; bk=2
,
ontributes two openly disjoint i; j paths, Q` 
ontributes ani; j path, and these k paths together are openly disjoint. 2
4. THE ALGORITHM FOR SUBSET

[K, 1.5K]-CONNECTIVITYIn this se
tion, we extend the methods of the previousse
tion to obtain an O(1)-approximation algorithm for thethe subset [k; 1:5k℄-
onne
tivity problem. The main 
ontri-bution of this se
tion is the following result 
on
erning arestri
ted 
ase of Theorem 3. Due to spa
e 
onstraints, wedefer the proof to the full paper.Theorem 8. Let k be an integer multiple of 4, thus k = 0(mod 4). There is polynomial-time algorithm for 
omputinga solution to the metri
-
ost subset [k; 1:5k℄-
onne
tivityproblem of 
ost � O(1) � opt. 2Remark: A loose analysis gives a 
onstant fa
tor between 800and 900 in the above theorem.Theorem 3 follows by 
ombining this theorem with Theo-rem 1. To see this, suppose that k 6= 0 (mod 4) (otherwise,we are done). Let k̂ � k denote the next integer multiple of

4; 
learly, k̂ � k � 3. Then for ea
h � = k; k + 1; : : : ; k̂ � 1,we apply the algorithm in Theorem 1 to the following in-stan
e �(�) of the subset �-
onne
tivity problem to obtaina solution subgraph H(�): we take the requirement of aterminal i in �(�) to be r0i = 0 if ri < �, and we taker0i = � if ri � �; the rest of the instan
e stays the same.Finally, we apply the algorithm of this se
tion to the in-stan
e of subset [k̂; 1:5k̂℄-
onne
tivity where we take therequirement of a terminal i to be r0i = 0 if ri < k̂, and wetake r0i = ri if ri � k̂; the rest of the instan
e stays thesame. Let H 0 be solution subgraph. Then, for the originalinstan
e (of subset [k; 1:5k℄-
onne
tivity), we output the so-lution subgraph H� = H(k)[H(k+1)[ � � � [H(k̂� 1)[H 0whose 
ost is at most O(1)opt. To see that H� satis�es the
onne
tivity requirements, note that for every pair of ter-minals i; j, one of the subgraphs forming H� (namely, oneof H(k); H(k + 1); : : : ; H(k̂ � 1); H 0) has min(ri; rj) openlydisjoint i; j-paths.
5. THE ALGORITHM FOR NODE-

CONNECTIVITY SNDPThis se
tion presents a proof of Theorem 4, based on (thealgorithms in) Theorems 1, 3. For the sake of motivation,let us obtain an O(log rmax)-approximation algorithm fora restri
ted version of NC-SNDP where every terminal hasa requirement ri and every pair of terminals i; j has therequirement ri;j = min(ri; rj). The method is similar to themethod for proving Theorem 3 from Theorems 1 and 8.Let opt denote the optimal value of the instan
e (of re-stri
ted NC-SNDP). First, for ea
h � = 1; 2; : : : ; 7, we applythe algorithm in Theorem 1 to the following instan
e �(�) ofthe subset �-
onne
tivity problem to obtain a solution sub-graph H(�): we take the requirement of a terminal i in �(�)to be r0i = 0 if ri < �, and we take r0i = � if ri � �; the rest ofthe instan
e stays the same. By Theorem 1, the 
ost of H(�)is O(1) �opt. After this, we repeatedly apply the algorithmin Theorem 8 to solve an instan
e (spe
i�ed below) of sub-set [�; 1:5�℄-
onne
tivity, where � is an integer multiple of 4(� = 8; 12; 16; 24; : : : , details later), to obtain a solution sub-graph H 0(�). The instan
es of subset [�; 1:5�℄-
onne
tivityare as follows: we take the requirement of a terminal i tobe r0i = 0 if ri < �, we take r0i = ri if � � ri � 1:5�, andwe take r0i = 1:5� if ri > 1:5�. By Theorem 8, the 
ost ofH 0(�) is O(1) � opt. We start with � = 8, and we iterateuntil rmax � 1:5�; after ea
h iteration, we update � to thelargest integer multiple of 4 that is � 1:5 times the previous�. Clearly, the number of iterations is O(log rmax). Finally,we output the solution subgraph H� for the instan
e (ofrestri
ted NC-SNDP); H� is the union of all the solutionsubgraphs H(�), � = 1; : : : ; 7, and H 0(�), � = 8; 12; : : : .Thus H� is the union of O(log rmax) subgraphs su
h thatea
h of these subgraphs has 
ost O(1) � opt, and so H� has
ost O(log rmax) � opt. To see that H� satis�es the 
on-ne
tivity requirements, note that for every pair of terminalsi; j, one of the subgraphs forming H� has min(ri; rj) openlydisjoint i; j-paths, namely, the subgraph H(min(ri; rj)) ifmin(ri; rj) � 7, otherwise, any subgraph H 0(�) where � sat-is�es � � min(ri; rj) � 1:5�.Our algorithm for metri
-
ost NC-SNDP is similar to thealgorithm des
ribed above for the restri
ted version of NC-SNDP. Let �� be an instan
e of NC-SNDP, and let optdenote its optimal value. We use kf to denote an integer



multiple of 4 su
h that rmax � 1:5kf . We repeatedly ap-ply the algorithm of Theorem 1 (for subset k-
onne
tivity)for k = 1; : : : ; 7, and derived instan
es �(1); : : : ;�(7) toobtain solution subgraphs H(1); : : : ; H(7). Then we repeat-edly apply the algorithm of Theorem 8 (for subset [k; 1:5k℄-
onne
tivity) for k = 8; 12; 16; 24; : : : ; kf and derived in-stan
es �0(8), �0(12); : : : ;�0(kf ) to obtain solution subgraphsH 0(8), H 0(12); : : : ; H 0(kf ). We start these iterations withk = 8, and we iterate until k = kf ; after ea
h iteration, weupdate k to the largest integer multiple of 4 that is � 1:5times the previous k. The 
onstru
tion of the derived in-stan
es �(�) and �0(k) is des
ribed below.Finally, we output the solution subgraph H� for ��; H� isthe union of all the solution subgraphs H(k), k = 1; : : : ; 7,and H 0(k), k = 8; 12; : : : ; kf ; we 
all these solution sub-graphs the 
onstituent subgraphs of H�. Below, we provethat the 
ost of ea
h of the 
onstituent subgraphs is at mostO(1) �opt. Clearly, the number of iterations is O(log rmax).Thus H� is the union of O(log rmax) subgraphs su
h thatea
h of these subgraphs has 
ost O(1) � opt, and so H� has
ost O(log rmax)�opt. Below, we prove that H� satis�es the
onne
tivity requirements, be
ause for every pair of termi-nals i; j, one of the 
onstituent subgraphs of H� has � ri;jopenly disjoint i; j-paths.We de�ne the derived instan
es via a well-studied problemin network design, namely, the generalized Steiner tree prob-lem, whi
h is as follows: we are given a graph G = (V;E),edge 
osts 
, and q̂ sets of terminal nodes D̂1; D̂2; : : : ; D̂q̂ ;the goal is to 
ompute an (approximately) minimum-
ostforest F of G su
h that ea
h terminal set D̂m;m = 1; : : : ; q̂;is 
ontained in a (
onne
ted) 
omponent of F . Goemans andWilliamson [16℄, based on earlier work by Agrawal et al. [1℄,gave 2-approximation algorithms for this problem based onthe primal-dual method.Here is the 
onstru
tion for one of the derived instan
es�0(k); re
all that this is an instan
e of the subset [k; 1:5k℄-
onne
tivity problem, where k is a �xed parameter. We startfrom �� and 
onstru
t a requirements graph R with nodeset T and edge set E(R) as follows. For ea
h terminal pairi; j with k � ri;j � 1:5k (i.e., the requirement for the pairis within the valid range for our derived instan
e), we addthe edge ij to R. Denote the node sets of the (
onne
ted)
omponents of R by D̂1; D̂2; : : : ; D̂q̂ . Next, we de�ne aninstan
e �(gst) of the generalized Steiner tree problem onthe graph G with edge 
osts 
 (here, G; 
 are as in ��), andwith terminal sets D̂1; D̂2; : : : ; D̂q̂. We solve this auxiliaryproblem �(gst) by applying the primal-dual algorithm ofGoemans and Williamson [16℄. Let F � E(G) be the forest
omputed by the Goemans-Williamson algorithm, and letF1; F2; : : : ; Fq denote the partition of F into 
onne
ted 
om-ponents. Let the set of terminals in the 
omponent of Fm bedenoted by Dm, m = 1; : : : ; q; thus ea
h set Dm is the unionof one or more of the terminal sets D̂1; D̂2; : : : ; D̂q̂ . For ea
hm = 1; : : : ; q, we de�ne an instan
e �0m(k) of the subset[k; 1:5k℄-
onne
tivity problem as follows: the graph G andthe edge 
osts 
 are as in ��; the set of terminal nodes is Dm,and the requirement r0i of a terminal i 2 Dm is de�ned to bemax(ri;j : fi; jg 2 E(R)); 
learly, k � r0i � 1:5k; 8i 2 Dm.We take the derived instan
e �0(k) to be the disjoint unionof these instan
es �0m(k), m = 1; : : : ; q, i.e., we assume thatea
h instan
e �0m(k) has its own 
opy of G and 
. To solve�0(k), we take ea
h m = 1; : : : ; q, and apply the algorithm

in Theorem 8 separately to �0m(k) to obtain a solution sub-graph, 
all it H 0m(k). (These instan
es �0m(k) are pairwisedisjoint, and we solve them separately, one by one.) Thenwe take the union of the subgraphs H 01(k); : : : ; H 0m(k) and
all it H 0(k); this is the solution subgraph of �0(k). The 
ostof the subgraphs H 0m(k), m = 1; : : : ; q, is analysed below.Our reasons for using the auxiliary problem �(gst) forde�ning the instan
e �0(k) may be seen from the follow-ing example. Suppose that k is large (say k = pn) andthe edges in E(R) form a mat
hing say ffs1; t1g; fs2; t2g,: : : ; fsq̂; tq̂gg, say q̂ = �(n). Moreover, suppose that Ghas a 
ut Æ(S) su
h that ea
h edge in this 
ut is expen-sive, and some of the edges in E(R) have both ends in Sand the remaining edges in E(R) have both ends in V � S.Say the optimal solution 
onsists of two disjoint subgraphs,one 
ontained in the subgraph indu
ed by S and the other
ontained in the subgraph indu
ed by V � S. Then we
annot take �0(k) to be a single instan
e with terminalset fs1; : : : ; sq̂; t1; : : : ; tq̂g, be
ause then every solution sub-graph will have � k edges from the expensive 
ut Æ(S).Also, we 
annot take �0(k) to 
onsist of q̂ separate sub-instan
es with one sub-instan
e for ea
h 
onne
ted 
ompo-nent of R = (T;E(R)), be
ause the optimal values of thesesub-instan
es may sum to q̂ �opt, and the solution subgraph
omputed by our algorithm may have 
ost as high as this(assuming that the algorithm returns the union of the so-lution subgraphs of these q̂ sub-instan
es). We get aroundthis diÆ
ulty by using the Goemans-Williamson algorithmto merge the 
onne
ted 
omponents of R = (T;E(R)) intoappropriate \
lusters" and then we 
onstru
t a separatesub-instan
e for ea
h of these \
lusters" (these are the sub-instan
es that we 
alled �01(k); : : : ;�0q(k)). The key pointis that (i) these sub-instan
es have pairwise disjoint termi-nal sets D1; : : : ; Dq, hen
e, the sum of the �() lower-bounds(used in Theorem 8), namely, Pqm=1 �(Dm), is � the �()lower-bound of ��, and (ii) the following proof (whi
h isbased on the 2 approximation guarantee of Goemans andWilliamson) shows that the sum of the mst() lower-boundsfor these sub-instan
es, namely, Pqm=1 mst(Dm), is � O(1)times the mst() lower-bound of ��. Also, for ea
h sub-instan
e, the solution subgraph has 
ost within an O(1) fa
-tor of the sum of its �() and mst() lower-bounds. Hen
e, theunion of the solution subgraphs of these sub-instan
es has
ost within an O(1) fa
tor of the optimal value of ��.The 
onstru
tion of the instan
es �(�), � = 1; : : : ; 7, issimilar to that of the instan
es �0(k). We start with R =(T;E(R)) where E(R) 
onsists of terminal pairs fi; jg withri;j = �. Then we obtain a family of pairwise disjoint sub-instan
es �1(�);�2(�); : : : and these sub-instan
es togetherform �(�).Proof of Theorem 4. Re
all that �� denotes the instan
eof NC-SNDP, opt denotes the optimal value of ��, and H�denotes the solution subgraph of �� found by our algorithm.The goal is to analyze the 
ost of the 
onstituent subgraphsof H� and show that ea
h has 
ost � O(1) �opt, and then toshow that H� satis�es the 
onne
tivity requirements. Theproof is based on the following LP (linear programming) re-laxation P � of �� that interprets ea
h requirement ri;j as arequirement for ri;j edge-disjoint i; j paths. Thus the opti-mal value of P � gives a lower bound on opt. The LP has avariable xe, 0 � xe � 1, for ea
h edge e 2 E; the intentionis that ea
h feasible solution H of �� gives a zero-one ve
tor



x 2 RE that satis�es two 
onditions: xe = 1 i� e 2 H, and xsatis�es the 
onstraints of the LP (though feasible zero-onesolutions of the LP may not give feasible solutions of ��).P � : z� = minPe2E 
exesubje
t tox(Æ(S)) � maxfri;j : i 2 S; j 62 Sg; 8S � Vxe � 0; 8e 2 EFo
us on one of the derived instan
es �0(k) and its asso-
iated generalized Steiner tree instan
e �(gst). We use thenotation from the 
onstru
tion of �0(k) given above. Goe-mans and Williamson [16℄ proved that the 
ost of the forest
omputed by their algorithm is � 2 times the optimal valuez(gst) of the following LP relaxation P (gst) of �(gst). TheLP has a variable xe, 0 � xe � 1, for ea
h edge e 2 E;the intention is that ea
h feasible solution F of �(gst) 
or-responds to a zero-one ve
tor x 2 RE that satis�es two
onditions: xe = 1 i� e 2 F , and x satis�es the 
onstraintsof the LP.P (gst) : z(gst) = minPe2E 
exesubje
t tox(Æ(S)) � 1; 8S � V : 9m = 1; : : : ; q̂ :; 6= S \ D̂m 6= D̂mxe � 0; 8e 2 EA key observation is that k � z(gst) � opt. To see this,note that multiplying the right-hand-side of any 
onstraintof the LP P (gst) by k gives a 
onstraint that is valid forthe LP P �. (This follows be
ause whenever we have a 
on-straint x(Æ(S)) � 1 in the LP P (gst), then the node setS separates two terminals v; w su
h that the requirementsgraph R has an v; w-path 
onsisting of terminal-pairs fi; jgsu
h that ri;j � k; sin
e the v; w-path of R \
rosses" S,one of the terminal-pairs fi; jg in the v; w-path \
rosses"S, therefore, maxfri;j : i 2 S; j 62 Sg � k, hen
e, the
onstraint \x(Æ(S)) � k" is a valid 
onstraint for the LPP �.) Consequently, for every feasible solution x� of the LPP �, we see that 1kx� is a feasible solution of the LP P (gst).Moreover, if x� is an optimal solution of the LP P �, thenwe have z(gst) � 1k 
(x�) = 1k z� � 1kopt, or equivalently,k � z(gst) � opt.Fo
us on the 
ost of the solution subgraphH 0(k) =H 01(k)[H 02(k)[ � � � [H 0q(k), and note that for ea
h m = 1; : : : ; q the
ost of H 0m(k) is O(k) �mst(Dm) +O(1) � �(Dm) (by Theo-rem 8), where Dm denotes the terminal set of H 0m(k). Thenthe 
ost of H 0(k) isO(k) � qXm=1mst(Dm) +O(1) � qXm=1�(Dm)� O(k) � qXm=1 
(Fm) +O(1) � �(T )(sin
e mst(Dm) � 2
(Fm); 8m = 1; : : : ; q)� O(k) � 
(F ) +O(1) � �(T )� O(1) � opt+O(1) � �(T )(sin
e 
(F ) � 2z(gst) and z(gst) � opt=k)� O(1) � opt:

A similar analysis for the solution subgraphs H(1), H(2),: : : ; H(7) shows that ea
h has 
ost � O(1) � opt.Thus our 
laim for the 
ost of the solution subgraph H�follows: 
(H�) = O(log rmax) � opt.Finally, let us verify that H� satis�es the 
onne
tivity re-quirements. Consider any pair of terminals i; j and theirrequirement ri;j . Assume that ri;j � 8 (otherwise, we aredone by a similar but simpler analysis). Fo
us on an itera-tion of the algorithm that �xes the parameter k su
h thatk � ri;j � 1:5k. In that iteration, the requirements graphR has the edge fi; jg, hen
e, both i; j must be 
ontained inone of the terminal sets D1; : : : ; Dq , say D1. Now, 
onsiderthe sub-instan
e �01(k) and its solution subgraph H 01(k) andnote that H 01(k) must have � ri;j openly disjoint i; j-pathsbe
ause both r0i and r0j are � ri;j (here, r0i and r0j denotethe requirements of i and j in �01(k)) Thus, H� has � ri;jopenly disjoint i; j-paths.This 
ompletes the proof of Theorem 4. 2A
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