Approximation Algorithms for Network Design with Metric
Costs

. *
Joseph Cheriyan
Department of Combinatorics and Optimization
University of Waterloo

jcheriyan@uwaterloo.ca

ABSTRACT

We study undirected networks with edge costs that sat-
isfy the triangle inequality. Let n denote the number of
nodes. We present an O(1)-approximation algorithm for a
generalization of the metric-cost subset k-node-connectivity
problem. Our approximation guarantee is proved via lower
bounds that apply to the simple edge-connectivity version
of the problem, where the requirements are for edge-disjoint
paths rather than for openly node-disjoint paths. A corol-
lary is that, for metric costs and for each k = 1,2, ..., n—1,
there exists a k-node connected graph whose cost is within a
factor of 24 of the cost of any simple k-edge connected graph.
This resolves an open question in the area. Based on our
O(1)-approximation algorithm, we present an O(log rmax)-
approximation algorithm for the node-connectivity surviv-
able network design problem where rma.x denotes the maxi-
mum requirement over all pairs of nodes. Our results con-
trast with the case of edge costs of zero or one, where Ko-
rtsarz et al. [20] recently proved, assuming NP¢ quasi-P, a

1—e
hardness-of-approximation lower bound of 2'°6" "™ for the
subset k-node-connectivity problem, where ¢ denotes a small
positive number.

Categories and Subject Descriptors

F.2 [Analysis of Algorithms and Problem Complex-
ity]: General

General Terms
Algorithms, Theory

Keywords

Graph connectivity, approximation algorithms, metric costs

*Supported in part by NSERC grant OGP0138432.

JrSupported in part by NSERC grant 28833 —04 and FQRNT
grant NC—98649.

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

STOC' 05, May 22-24, 2005, Baltimore, Maryland, USA.

Copyright 2005 ACM 1-58113-960-8/05/000555.00.

Adrian VettaT
Department of Mathematics and Statistics, and
School of Computer Science
McGill University

vetta@math.mcgill.ca

1. INTRODUCTION

A basic problem in network design is to find a minimum-
cost sub-network H of a given network G such that H sat-
isfies some prespecified connectivity requirements. Funda-
mental examples include the minimum spanning tree (MST)
problem and the traveling salesman problem (TSP). By a
network we mean an undirected graph together with non-
negative costs for the edges, and we use n to denote the
number of nodes. Our focus is on networks where the edge
costs are metric; that is, the edge costs satisfy the trian-
gle inequalities. This special case is significant from both
theoretical and practical viewpoints; metric costs arise in
many applications of network design, and perhaps in most
of the obvious ones, such as the design of telecommunication
networks. Our goal is to design and analyse approximation
algorithms for some key problems in network design. More-
over, we resolve a long-standing conjecture on metric graphs,
where by a metric graph we mean a complete graph K, to-
gether with edge-costs that satisfy the triangle inequalities.

We attack the metric-cost node-connectivity survivable net-
work design problem (NC-SNDP). In this problem, we are
given a metric graph, as well as a connectivity requirement
r;; between every pair of nodes i and j. Let rmax denote
max; jev Ti,;. Lhe goal is to find a minimum-cost subgraph
H that satisfies these requirements, that is, H should have
r;,; openly node-disjoint paths between every pair of nodes ¢
and j. There are two well-known special cases of NC-SNDP.
The first is the subset k-node-connectivity problem, where we
are given a set of terminal nodes 7' C V and r; ; = k pre-
cisely if both ¢ and j are in T, otherwise r; ; = 0. The second
is the classical k-node connected spanning subgraph problem
(k-NCSS) where r; ; = k for every pair of nodes; this is the
special case of the subset k-node-connectivity problem with
T = V. We also study a new special case of NC-SNDP that
we call the subset [k, 1.5k]-node-connectivity problem: given
a set of terminal nodes T C V' and an (integer) requirement
r; for each node i € T, where 1 < k < r; < 1.5k, the goal is
to find a minimum-cost subgraph that has min(r;, rj) openly
node-disjoint i, j-paths for every pair of nodes i,j € T.
(Thus the subset k-node-connectivity problem is the spe-
cial case where r; = k, Vi € T.) See Section 4 for more
discussion.

Most network design problems stay NP-hard and APX-
hard even assuming metric costs. This remains true even
for small connectivity requirements; for example, Bern &
Plassmann [3] showed that the Steiner tree problem (the
classical special case of the subset k-node-connectivity prob-

lem with & = 1) is APX-hard even with edge costs of 1
and 2. Over the past decade, there has been significant
research on approximation algorithms for network design,
and there have been some notable successes in the design
of networks that satisty various types of “edge connectiv-
ity” requirements, e.g., Goemans & Williamson [16], and
Jain [17], but from the perspective of approximation algo-
rithms, the design of networks subject to “node connec-
tivity” requirements is a murky area. For example, Kort-
sarz, Krauthgamer & Lee [20] recently proved a hardness-of-

approximation lower bound of 2108" """ for the subset k-node
connectivity problem in graphs with zero-one edge costs,
provided that NP¢ DTIME(n?°%!°9(™)) where, € denotes a
small positive real number. (We give a detailed discussion
on previous work in the area after stating our results.)

We present a 24-approximation algorithm for the met-
ric cost subset k-node-connectivity problem, and then we
generalize this to get an O(1)-approximation algorithm for
the metric cost subset [k, 1.5k]-node connectivity problem.
Modulo P#NP and up to constant factors, these are the
best possible results. These algorithms are deterministic
and combinatorial; they do not use linear programming re-
laxations. Based on this, we present an O(log rmax) approx-
imation algorithm for the metric-cost NC-SNDP. The algo-
rithm for NC-SNDP is based on a linear programming re-
laxation. Also, it uses a 2-approximation algorithm of Goe-
mans & Williamson [16] (see also Agrawal et al. [1]) for the
generalized Steiner tree problem. Moreover, we resolve the
following long-standing conjecture: In a metric graph and
for each k = 1,2,...,n — 1, the minimum cost of a k-node
connected spanning subgraph is within a constant factor of
the minimum cost of a simple k-edge connected spanning
subgraph. Thus, for metric graphs, the requirements of k-
node-connectivity and simple k-edge-connectivity are equiv-
alent for the objective function, up to constant factors. A
similar result holds for requirements of subset [k, 1.5k]-node
connectivity versus subset simple [k, 1.5k]-edge connectiv-
ity.

We apply two lower bounds on the optimal value of the
subset [k, 1.5k]-connectivity problem. We may assume (with-
out loss of generality) that there exist at least two termi-
nals with the maximum requirement. Hence, every solution
subgraph has at least r; edges incident to each terminal ¢,
because there is another terminal j with r; > r;, so the solu-
tion subgraph must have r; openly node-disjoint i, j-paths.
Our first lower bound comes from the the minimum cost of
a subgraph that has degree > r; for every terminal i. Our
second lower bound comes from the cost of a minimum span-
ning tree of the subgraph induced by the terminals. For any
node i, we use o; or a(i) to denote the sum of the costs of the
r; cheapest edges incident to ¢ in the complete graph, and
for any set of nodes S, we use o(S) to denote), s 0;. We
use the abbreviations MST for minimum-cost spanning tree,
and TSP for the traveling salesman problem. Let mst(T") de-
note the cost of an MST of the subgraph induced by T'. Our
lower bounds are:

(i) 30o(T), and

(ii) £ ms(T).
Note that these lower bounds apply also to the simple edge-
connectivity version of the subset [k, 1.5k]-connectivity prob-
lem, where the requirements are for min(r;, ;) edge-disjoint
paths between every pair of nodes i, j € T'; note that multi-
edges are not allowed in the solution subgraph. See Section 2

for more details. Throughout, we use OPT to denote the cost
of an optimal solution. Next, we state our main results for-
mally.

THEOREM 1. There is a polynomial-time algorithm for
computing a solution to the metric-cost subset k-node con-
nectivity problem of cost

< 100(T) + 4(2) mst(T) < 240P7T.

Consider k-NCSS, the special case of the subset k-node con-
nectivity problem in which the terminal set T is V. Let
k-ECSS be the problem of finding a minimum-cost simple
k-edge connected spanning subgraph. Then our two lower
bounds apply for both k-NCSS and k-ECSS. This gives the

next result.

COROLLARY 2. In a network with metric costs, there is
a k-node connected spanning subgraph whose cost is at most
24 times the minimum cost of a simple k-edge connected
spanning subgraph.

Remarks: For metric graphs, it is well known that there
exists a 2-node connected graph of cost < the cost of any 2-
edge connected graph, but this does not hold for k > 3 (see
[4, Fig.1] and the full version of this paper for examples).
Also, note that the 5 o(V) lower bound for k-ECSS does
not apply for the version where multi-edges are allowed. In
more detail, if multi-edges are allowed, then there exist k-
edge connected graphs H such that any k-node connected
graph has cost > ©(k)c(H). See the full paper for more
details.

THEOREM 3. There is a polynomial-time algorithm for
computing a solution to the metric-cost subset [k, 1.5k]-
node-connectivity problem of cost

<O(1)- (o(T) + g mst(T)) < O(1) - o

Remark: A loose analysis gives a constant factor between 800
and 1000 in the above theorem. Possibly, an approximation
guarantee of < 100 can be obtained by some changes to the
algorithm. We have not attempted to optimise the constants
in the approximation guarantees.

THEOREM 4. There is a polynomial-time algorithm for
computing a solution to the metric-cost NC-SNDP of cost
< O(log rmaz) - OPT.

Previous work

Over the past few decades, there has been significant re-
search on approximation algorithms for network design. For
early work in network design, see for example Dantzig, Ford
& Fulkerson [11]. A celebrated and still unsurpassed result
was Christofides’ %—approximation algorithm for the metric-
cost TSP [8]. Partly motivated by Christofides’ result, there
followed a stream of research on related problems in the de-
sign of metric-cost networks. Most of this research focused
on small connectivity requirements, such as 2-edge connec-
tivity and 2-node connectivity; see Frederickson & Ja'Ja’
[13], Monma & Shallcross [25], Monma, Munson & Pulley-
blank [24], and Bienstock, Brickell & Monma [4]. For con-
stant k, this last paper gives a constant-factor approxima-
tion algorithm for k-NCSS. Moreover, the proof also shows
that for metric graphs and any constant k, there exists a

k-node connected spanning subgraph of K, whose cost is
within a constant factor of the cost of any k-edge connected
spanning subgraph, see [4, Sec.4]. They left open the ques-
tion of extending these results to all k. This was followed
by another burst of research, partly initiated by the work of
Goemans & Bertsimas [14] who presented a logarithmic ap-
proximation algorithm for a general model called the edge-
connectivity survivable network design problem (EC-SNDP)
assuming metric costs. Soon after this, the research focus
changed from metric costs to the more general setting of non-
negative costs. Agrawal, Klein & Ravi [1], and Goemans &
Williamson [16] built on the primal-dual method to obtain
O(1)-approximation algorithms for some special cases of EC-
SNDP with small (i.e., zero and one) connectivity require-
ments. Later, these methods were generalized to EC-SNDP,
albeit with a logarithmic approximation guarantee, by Goe-
mans et al. [15] based on work by Williamson et al. [30].
This line of research culminated with a 2-approximation al-
gorithm for EC-SNDP by Jain [17].

Although there was considerable interest in extending these
methods to the setting of node connectivity, there was lim-
ited success even for rather special cases of NC-SNDP. We
mention a few results and refer the interested reader to
[6] for more references. For the case of non-negative edge
costs, Kortsarz & Nutov [21] and [7] have logarithmic (or
worse) approximation guarantees for the k-NCSS problem.
For metric costs, there is an O(1)-approximation algorithm
due to Khuller & Raghavachari [19], and there are other re-
lated results in [5, 22]. Some explanation for this lack of
good approximation algorithms for NC-SNDP comes from
the recent hardness-of-approximation results of Kortsarz,
Krauthgamer & Lee [20]. Also, see the surveys by Frank
[12], Khuller [18], and Stoer [27], and the book by Vazirani
[29].

We briefly mention the relationship between our work and
the stream of exciting recent results on PTAS’s (polynomial-
time approximation schemes) for related problems. Begin-
ning with the results of Arora [2] on the Euclidean TSP,
many PTAS’s have been obtained for problems in “geomet-
ric network design” where the edge costs come from special
metrics such as the Euclidean metric, see [9, 10, 26] and
the references in those papers. But, modulo P#NP, such
PTAS’s do not exist in the setting of interest to us, namely,
(general) metric costs; this follows from APX-hardness re-
sults in [3, 20, 28].

The rest of the paper is structured as follows. In Sec-
tion 2, we discuss some preliminaries, and give an overview
of our method for the metric-cost subset k-node connectiv-
ity problem. We present a constant-factor approximation
algorithm for the problem in Section 3. Section 4 gives a
constant-factor approximation algorithm for the metric-cost
subset [k, 1.5k]-node connectivity problem. This leads to
an O(log rmax)-approximation algorithm for the metric-cost
NC-SNDP in Section 5.

2. PRELIMINARIES AND AN OVERVIEW
OF THE ALGORITHM FOR SUBSET K-
CONNECTIVITY

Apart from Section 1, we omit the word ‘node’ from terms
such as ‘node-connectivity’ when there is no danger of am-
biguity.

Let the input graph be G = (V, E). We denote the nodes

by numbers i = 1,2, ... n, and for nodes i,j the edge be-
tween them is denoted ij. The cost of an edge ij € E is de-
noted c;i; or ¢(i, 7). The costs are said to be metric if the tri-
angle inequality holds: ¢(v, w) < ¢(v,u)+c(u, w), Yu,v,w €
V. Whenever we assume metric costs, we also assume that
G is the complete graph. Let k be an integer such that
n > k > 1 (k may be a function of n). For a pair of
nodes i, j, let k(7, j) denote the maximum number of openly
node-disjoint 4, j-paths. Recall that T denotes the set of
terminal nodes. We use n' to denote |T'|, and we assume
T={1,...,n'}.

Let us formalize the lower bounds (i) and (ii) for the subset
[k, 1.5k]-connectivity problem stated in Section 1. For each
terminal node i, let I'; denote the set of 7; nearest neighbours
of 4; by convention, i € I';. (Thus |I';| =r; and Vz € T';,y &
['; U {i}, ciy > ciz.) Then note that o; denotes Zzeri Ciz-
Also, for each terminal node ¢, let p; denote o;/r;, namely,
the average cost of an edge from ¢ to one of its r; nearest
neighbours. Note that each terminal node ¢ has at least
r; neighbours in an optimal subgraph, thus opT > 1o(T).
This gives the first lower bound. Next, we claim that opT >
Lmst(T). In more detail, we have opPT > LECOPT(T,2k) >
£ mst(T), where ECOPT(T, A) denotes the minimum cost of a
A-edge connected subgraph of G[T] (allowing multi-edges).
To see this, start with a graph corresponding to oPT, and
take two copies per edge to get an Eulerian multi-graph
H' that is 2k-edge connected on T, then apply the Lovéasz-
Mader splitting-off theorem [23, Ex.6.51], [12], to eliminate
all nodes of V —T from H' to get a 2k-edge connected multi-
graph on the node set 7' that has cost > ECOPT(T', 2k); then
we apply the well-known fact that EcopT(T, X) > 3 mst(T).
For metric costs, splitting off edges does not increase the
cost. This gives the second lower bound: opT > £mst(T).

Figure 1: A key special case of the algorithm. Here,
k=6,T ={1,2,3,4}, and the sets {i} UT'; (indicated
by dotted blobs) for i € T are pairwise disjoint. The
tracks Q1,Q2, Qs are indicated by circles.

We first give an overview of our method for subset k-
connectivity by describing a key special case where k is
even, say k = 2{, and the sets {i} UT; of the terminals
i are pairwise disjoint (that is, ({i} UL;) N ({j} UTly) =
0, Vi # j € T). Arbitrarily name the nodes in I'; as

i1,42,...,1g, Vi € T. Construct a cheap cycle Q on the
terminals using the well-known MST-doubling heuristic for
the TSP. (Start with an MST of the subgraph induced by 7,
replace each edge by two copies, and shortcut the resulting
connected Eulerian graph to get a cycle Q with V(Q) =T
and ¢(Q) < 2mst(T).) Let the sequence of terminals on
Q be 1,2,...,n',1 (renumber the nodes if needed). For
each 7 = 1,...,¢, construct a cycle Qr “parallel” to @

where QT = 17‘, 1Z+T, 27’7 2£+T, 37’7 3[4_7'7 A 7’!1”7'7 n’“_-,-, 17‘.
(Informally, start with the cycle 17,27,...,n 7,17, then
for each ¢ = 1,...,n' insert the node i, 7 between nodes

ir and (¢ + 1)7; see Figure 1;) Let us refer to these cy-
cles as tracks. It can be seen that a track Q7 has cost
e(Qr) < (@) + X, 2(c(é,ir) + c(iyierr)) (see the sec-
ond subroutine below), and the total cost of the tracks is
Zf,.:l c(Qr) < £-¢(Q) + 20(T). Finally, for each termi-
nal 7 € T, we add the k edges ii1,442,...,1i,. The result-
ing subgraph is our solution graph H; it has cost ¢(H) <
20 - mst(T) + 30(T) < 20PT + 60PT = 80PT. Note that
each terminal has precisely two neighbours in each track.
Thus H satisfies the connectivity requirements, because for
every pair of terminals 7,j(i # j), each of the k/2 tracks
contributes 2 openly disjoint ¢, j paths.

The algorithm uses the following two subroutines. Note
that the solution graph H is simple, so when we add edges
to H we do so without creating multi-edges.

e The first subroutine copies a specified set of neighbours
of a terminal i to another terminal v (possibly, v is
adjacent to i). More precisely, given a terminal ¢ and
a specified set of neighbours of ¢, call it N;, and another
terminal v, the subroutine adds an edge vz to H for
each node z € N; (without creating multi-edges or
loops in H). After this step, x(i,v) > |N;| in H. The
cost of the new edges is < [Ni| c(i,v) + 37, c v, c(i, 2);
moreover, if there is a positive real number 7 such that
> sen, c(i,z) < voi, then the cost of the new edges is
<IN (i, v) + 0.

e The other subroutine starts with a cycle containing
a terminal ¢ and inserts new node(s) into the cycle.
Given a cycle ', a terminal i in @', and a node = ¢
V(Q"), we first add two copies of the edge iz to Q'
to get a connected Eulerian graph. Then we shortcut
this Eulerian graph (as in the MST-doubling heuristic
for the TSP) to obtain a new cycle) with node set
V(Q") U {x}. The increase in cost is < 2¢(i, z).

It is important for our analysis to get good upper bounds
on the costs of the tracks. Note that the tracks are pairwise
node disjoint; thus each terminal is in at most one track.
But, for upper-bounding the track costs, we use the following
accounting trick. Consider any track Q7. We assume that
the track initially consists of all the terminals, thus V(Qr) =
T, and using the MST-doubling heuristic we have ¢(Qr) <
2mst(T"). Subsequently, the algorithm may insert new nodes
into the track — such insertions occur while we are processing
some terminal — thus for inserting node = while processing
terminal 7 the cost ¢(Qr) increases by < 2c¢(i, z). Possibly,
z may be another terminal — in that case, we implicitly
remove z from ()7 and then insert = via the double-edge iz.
At the end of the execution, we keep only those terminals
that were explicitly inserted into (J+ and remove all the
other terminals from @r; clearly, this does not increase the

cost ¢(Q7). Note that this “historical view” of Qr is only
needed for upper-bounding the cost. Other than this, it may
be easier to view the tracks as being pairwise node disjoint
all through the execution, and this is the viewpoint we use
in presenting the detailed algorithm.

3. THE ALGORITHM FOR SUBSET
K-CONNECTIVITY

This section is devoted to an algorithm and proof for The-
orem 1. The detailed algorithm follows. An analysis of the
cost of the edges added to H (the solution graph) is given
after the algorithm. A terminal may be in two states ac-
tive or inactive. Initially, all the terminals are active. Let ¢
denote [k/2]. Initially, H is the graph consisting of all the
terminal nodes and no edges, thus H = (T, ().

(1) [DE-ACTIVATE TERMINALS AND CONSTRUCT DISJOINT
BALLS FOR ACTIVE TERMINALS]
Renumber the terminals as 1,2,...,n’ by increasing
value of p; thus py < pp < <.
Note: p, < p; iff op < 0.
Scan the terminals in the order 1,2,...,n/, and skip
the current terminal if it is inactive. For an active
terminal 4, construct the set B; = {j | ¢(7,) < ap,},
where we choose a = 2. For each active terminal v > 1,
if ¢iv < (ap; + Bap,), where we fix = 2, then make
v inactive, and record 7 as the parent of v by assigning
p(v) = i. (The aim is to ensure that the sets B; of
active terminals 4 are pairwise disjoint.)

Note that ¢ € B; and |B;| > 1+ (1 — i)k =1+ %
(Otherwise, we have > k/a = k/2 nodes z in I'; with
c(i,z) > ap; = ao; [k, so these nodes contribute > o;
to > ,er, c(i;z).) Hence, |B; — {i}| > . Also note
that p1,,,y < p, for each inactive terminal v.

Choose the £ nodes in B; nearest to 7 and name them as
il,ig, e ,i(such that C(i,il) S C(i,iz) S s S C(i,iz).

(2) [CONSTRUCT ¢ TRACKS ON THE DISJOINT BALLS]
After step (1), let T denote the set of active terminals
and let n* = |T*|. If n* < 3, then apply step (2') and
stop. Otherwise, construct a cheap cycle () on the ac-
tive terminals by applying the MST-doubling heuristic
for the TSP to the subgraph induced by T”. Renum-
ber the terminals such that Q = 1,2,...,n",1, that

is, the active terminals get the numbers in {1,...,n"}
according to their ordering in (). Construct ¢ tracks
QI,Q27-~~,QZ7 where track QT = 1T,2T,...,TL;-, 17

(r=1,...,¢). Add all the tracks (but not the cycle
Q@) to H. The cost of the tracks constructed in this
step is analysed in Proposition 6 below.

(2') [SPECIAL HANDLING FOR 1 OR 2 ACTIVE TERMINALS]
Skip this step if n* > 3. Suppose n* = 1. Let the
active terminal be 7. Add all the edges iv,v € I';, and
then for each inactive terminal j, copy the set I'; of
neighbours of 7 to j. The resulting graph H satisfies
the connectivity requirements.

Suppose n* = 2. Let the active terminals be h, i, with
on < oi. Add all the edges hq,q € Ty, and iv,v € T';.
Then add a matching M of maximum size between the
nodes in I';— (', U{h}) and in ', —(T';U{i}); now, each
matching edge qv (say ¢ € I'y, — {i} and v € I'; — {h})

3)

gives an h,i path, namely, h,q,v,i. Finally, for each
inactive terminal j, copy the set I',(;) of neighbours of
p(j) to j. The resulting graph H satisfies the connec-
tivity requirements.

[AUGMENT DISJOINT BALLS AND ASSIGN TOKEN ARCS]
In summary, this step scans the active terminals ¢ and
augments each “ball” B; to get an “augmented ball”
Bj (that ideally has |B;| > r; + 1 = k + 1) such that
these augmented balls are pairwise disjoint. The ob-
vious construction for B} is to start with B; and then
add some nodes from I'; — B;, but then the augmented
balls may intersect. We “de-intersect” two intersecting
sets B, and B/, while preserving the balls B and B;,
by assigning so-called token arcs to the active termi-
nals such that for each active terminal i, |Bj| plus the
number of token arcs assigned to i is > r; +1 =k + 1.
Consider one special case: suppose that h and i are ac-
tive terminals and node q is in B}, N B} but ¢ € By UB;.
Then we compare the costs of the edges hq and ig and
“replace” the costlier edge, say iq, by a token arc whose
cost we fix to be 3c;y; that is, we remove ¢ from Bj
and instead assign to ¢ a token arc with cost 3c;q. The
details follow.

Renumber the terminals so that the active terminals
i in order of increasing u; values are 1,2,..., n*, and
scan the active terminals in this order. Start the scan
of i € T* by defining B, := B; if I'; C B;, and B :=
I'; otherwise. If B} is disjoint from B), for all active
terminals h < ¢, then continue with the next active
terminal, otherwise, for each active terminal h < i
with Bj, N B} # 0, examine the nodes ¢ in B}, N B} in
any order. Note that p, < p,.

(a) Suppose q € Bj. Then note that ¢ ¢ B; and
ciq > ap; > ap,. Remove g from Bj and give to i
a token arc (i, h) with cost 3c¢;q. (Later, this token
arc will be replaced by an edge ¢z where x € By;
note that the cost of iz is < ciq + chg + Cha <
cig + 2ap;, < 3ciq.)

(b) Otherwise, ¢ € B}, — By,. Suppose q € B;. Then
note that cpq +cig > cni > (apy, + Bap;) (the last
inequality holds because both h, i are active), and
cig < ap;, hence, chy > ap, + p,;) (recall that
B = 2). Remove g from B} and give to h a token
arc (h,i) with cost 3cp,. (Later, this token arc
will be replaced by an edge hz, z € B;, of cost
< ChgtcCigtcCia < chgt+2ap; < chg+2chg < 3chg-)

(c) Suppose q € B}, — By, and q € B} — B;. Then we
compare c;q and cpgq.

If ¢iq > chy, then remove g from Bj and give to i a
token arc (i, h) with cost 3c;y. (Later, this token
arc will be replaced by an edge iz, © € By, of cost
< Cig + Chq + Cha < 2¢iq + apy, < 3ciq, where the
last inequality holds because ciq > ap; > ap,.)
Otherwise, we have ¢;q < cpng. Then we remove
q from Bj, and give to h a token arc (h,i) with
cost 3cpy. (Later, this token arc will be replaced
by an edge hx, x € Bj, of cost < cpg + Cig + Ciz <
2¢hg +ap; < 3chg, where the last inequality holds
because chq + Ciqg > cni > (ap, + Bap;) (asin (b)
above), hence, chq > §(py, + Bu;) > oy, (recall
that 8 = 2).)

After step (3), note that the cost of a token arc (i, j)
depends on the cost of the associated edge ig and is
3¢iq.

(4) [ATTACH ACTIVE TERMINALS TO TRACKS]
In summary, this step scans each active terminal ¢ and
adds edges from ¢ to the tracks such that each track
Q-,7=1,...,]k/2], gets two neighbours of 7, and the
last track Q¢ gets > 1 neighbour of i.

First add edges from i to each of i1,1i2,..
mark the nodes i1,12,...,1, as used.

Then for each 7 = 1,2,...,|k/2], do the following.
If an unused token arc (i, h) is available, then choose
it, mark it as used, and add the edge ih.; note that
h, is in Bj, and is the “first neighbour” of h in track
Q@-; also, note that c(i, h,) is < the cost of the token
arc (i, h). If no unused token arcs are available, then
choose an unused node g € B}, mark it as used, insert
q into track @,, and add the edge iq. (Note that the
number of token arcs given to i plus |Bj| is > k + 1,
hence, this step will find |k/2| token arcs or unused
nodes, excluding the nodes 41,142, ...,14.)

For each active terminal 7, let N; denote the set of
neighbours of ¢ in the tracks, just after step (4) is ap-
plied to i.

., 4¢; also,

(5) [ATTACH INACTIVE TERMINALS TO TRACKS]
Finally, “attach” the inactive terminals to the tracks.
Note that an inactive terminal may be already in one
of the tracks. For each inactive terminal j, copy the
set of neighbours N, ;) of the parent p(j) to j.

PropoOSITION 5. The graph constructed in step (2') has
cost < 160PT.

PROOF. Suppose n* =1, and let i be the (unique) active
terminal. Then c¢(H) < oi + > ;cp g (keij +0i) < 0i +
Yier_r- (klap;+Bap;)+oi) <oi+dcr o (a(1+8)o;+
0;) < To(T) < 140PT (we have o = 2,3 = 2, and we used
oi; < o for an inactive terminal j).

Suppose n* = 2, and let 4, h be the two active terminals.
Then recall that M denotes a matching of maximum size
between the nodes in I'; — (I', U{h}) and in 'y, — (I'; U {});
note that an edge qv € M (say, ¢ € I'p,v € I';) has cost
< chg+chi+civ, hence, (M) < op+0;+k-mst(T); the other
edges in H contribute a cost of < on+0i+3 0 e (214
B)oj + o) (as in the analysis for n* = 1) hence, ¢(H) <
To(T) + k- mst(T") < 160PT. m|

PROPOSITION 6. (i) The total cost of the edges added by
step (4) and incident to an active terminal i is < 4o;. (i) At
the end of step (4), the total cost of the £ tracks is

< 20-mst(T) + 40(T").

PROOF. For an active terminal i, the total cost of the
token arcs (i, h) given to i is < 30;. The cost of the edges
added that are incident to ¢, but excluding the cost due to
the token arcs, is < ao; if |B;| > k+1 (in this case, B} = B;
and no token arcs are given to i), and is < erri Ciz < 0
otherwise. Thus the total cost of the added edges incident
to i is < max(aoi, o; + 30;) < 4o;.

The total cost of the ¢ tracks (that were constructed in
step (2) and modified in step (4)) is < 2¢- mst(T) + 4o (7).

To see this, first consider the term 2¢- mst(T). Recall (from
Section 2) the accounting trick we use for upper-bounding
the cost of a track; due to this, we take the upper bound
on the cost of @ (the cheap cycle on T™ in step (2)) to be
2mst(T") rather than 2mst(T"). Summed over ¢ tracks, this
gives 2¢ - mst(T). For the second term, note that i € T~
contributes < quB; 2¢(i,q), and this is < 2k(ap,;) if I'; C

B; (then B} = B;), and < 20; otherwise (then B; =T;). O

PROPOSITION 7. The edges added by step (5) and inci-
dent to the inactive terminals have total cost < 100(T—T7).

PROOF. Suppose the cost of the added edges incident to
an active terminal i is < yo;. (From Proposition 6, we have
v = 4.) Then the cost of the edges added for an inactive
terminal j with parent i is < k-ci; +y0; < k(ap, + Bap;) +
voi < (a(B + 1) + ¥)oj, using the fact that o,;) < oj.
Thus the total cost of the edges added in this step is <
100(T —T), using a = 2,8 =2,v =4. O

Proor orF THEOREM 1. By the above propositions, the total
cost of H is < 20-mst(T)+40(T*)+~vo(T*)+100(T-T") <
(k+ 1)mst(T) + 8o (1) + 100(T — T*) < (k + 1)mst(T) +
100(T) < (2 + 2)opT + 200PT < 240PT.

We claim that the graph H has the required connectivity
property, namely, k(i,5) > k,Vi # j € T. To see this,
consider any pair of terminals ¢, j and consider any one track
Q-. Suppose that either 7 is in (-, or 7 is not in - but has
two neighbours in @-. Suppose the same statement holds for
j (thatis, jisin @, or j is not in), but has two neighbours
in @;). Then, @, (together with the edges from i and j to
Q) contributes two openly disjoint 4, j paths. Similarly, @~
contributes one i,j path if both i and j either are in Q-
or have a neighbour in ;. By construction, each active
terminal has two neighbours in each of the tracks @), for
7=1,...,|k/2], and has a neighbour in @; similarly, each
inactive terminal is either in @), or has two neighbours in Q-
for 7 =1,...,|k/2], and is in @, or has a neighbour in Q.
Then, for any two terminals ¢ and j, H has k openly disjoint
i, j paths, since each of the tracks Q. for 7 =1,..., k/2],
contributes two openly disjoint 4, j paths, Q; contributes an
i, 7 path, and these k paths together are openly disjoint. O

4. THE ALGORITHM FOR SUBSET
[K, 1.5K]-CONNECTIVITY

In this section, we extend the methods of the previous
section to obtain an O(1)-approximation algorithm for the
the subset [k, 1.5k]-connectivity problem. The main contri-
bution of this section is the following result concerning a
restricted case of Theorem 3. Due to space constraints, we
defer the proof to the full paper.

THEOREM 8. Let k be an integer multiple of 4, thus k =0
(mod 4). There is polynomial-time algorithm for computing
a solution to the metric-cost subset [k, 1.5k]-connectivity
problem of cost < O(1) - opT. O

Remark: A loose analysis gives a constant factor between 800
and 900 in the above theorem.

Theorem 3 follows by combining this theorem with Theo-
rem 1. To see this, suppose that k # 0 (mod 4) (otherwise,

we are done). Let k > k denote the next integer multiple of

4; clearly, k — k < 3. Then for each p= kk+1,.. k-1,
we apply the algorithm in Theorem 1 to the following in-
stance II(p) of the subset p-connectivity problem to obtain
a solution subgraph H(p): we take the requirement of a
terminal i in I(p) to be r; = 0 if r; < p, and we take
r; = p if r; > p; the rest of the instance stays the same.
Finally, we apply the algorithm of this section to the in-
stance of subset [k, 1.5k]-connectivity where we take the
requirement of a terminal i to be r; = 0 if r; < k, and we
take r; = r; if 7; > k; the rest of the instance stays the
same. Let H' be solution subgraph. Then, for the original
instance (of subset [k, 1.5k]-connectivity), we output the so-
lution subgraph H* = H(k)UH(k+1)U---UH(k —1)UH’
whose cost is at most O(1)opT. To see that H* satisfies the
connectivity requirements, note that for every pair of ter-
minals ¢, j, one of the subgraphs forming H* (namely, one
of H(k),H(k+1),...,H(k — 1), H') has min(r;, r;) openly
disjoint ¢, j-paths.

5. THE ALGORITHM FOR NODE-
CONNECTIVITY SNDP

This section presents a proof of Theorem 4, based on (the
algorithms in) Theorems 1, 3. For the sake of motivation,
let us obtain an O(log rmag)-approximation algorithm for
a restricted version of NC-SNDP where every terminal has
a requirement r; and every pair of terminals 4,7 has the
requirement 7; ; = min(r;,7;). The method is similar to the
method for proving Theorem 3 from Theorems 1 and 8.

Let opT denote the optimal value of the instance (of re-
stricted NC-SNDP). First, for each p =1,2,...,7, we apply
the algorithm in Theorem 1 to the following instance II(p) of
the subset p-connectivity problem to obtain a solution sub-
graph H(p): we take the requirement of a terminal i in II(p)
tober; =0ifr; < p, and we take r; = pif r; > p; the rest of
the instance stays the same. By Theorem 1, the cost of H(p)
is O(1) - opT1. After this, we repeatedly apply the algorithm
in Theorem 8 to solve an instance (specified below) of sub-
set [p, 1.5p]-connectivity, where p is an integer multiple of 4
(p=28,12,16,24, ..., details later), to obtain a solution sub-
graph H'(p). The instances of subset [p, 1.5p]-connectivity
are as follows: we take the requirement of a terminal i to
be r; = 0if r; < p, we take 7, = r; if p < r; < 1.5p, and
we take 7, = 1.5p if r; > 1.5p. By Theorem 8, the cost of
H'(p) is O(1) - opT. We start with p = 8, and we iterate
until rmaee < 1.5p; after each iteration, we update p to the
largest integer multiple of 4 that is < 1.5 times the previous
p. Clearly, the number of iterations is O(log rmaz). Finally,
we output the solution subgraph H™ for the instance (of
restricted NC-SNDP); H* is the union of all the solution
subgraphs H(p), p = 1,...,7, and H'(p), p = 8,12,....
Thus H”* is the union of O(logrmaz) subgraphs such that
each of these subgraphs has cost O(1) - OPT, and so H™ has
cost O(log Tmaz) - OPT. To see that H™ satisfies the con-
nectivity requirements, note that for every pair of terminals
i, j, one of the subgraphs forming H* has min(r;, r;) openly
disjoint 4, j-paths, namely, the subgraph H(min(r;, r;)) if
min(r;, ;) < 7, otherwise, any subgraph H'(p) where p sat-
isfies p < min(r;,r;) < 1.5p.

Our algorithm for metric-cost NC-SNDP is similar to the
algorithm described above for the restricted version of NC-
SNDP. Let II* be an instance of NC-SNDP, and let opT
denote its optimal value. We use kf to denote an integer

multiple of 4 such that rmez < 1.5k5. We repeatedly ap-
ply the algorithm of Theorem 1 (for subset k-connectivity)
for k = 1,...,7, and derived instances II(1),...,II(7) to
obtain solution subgraphs H(1),..., H(7). Then we repeat-
edly apply the algorithm of Theorem 8 (for subset [k, 1.5k]-
connectivity) for k = 8,12,16,24,...,k% and derived in-
stances IT'(8), I1'(12), . .., IT' (k) to obtain solution subgraphs
H'(8), H'(12),...,H'(k'). We start these iterations with
k = 8, and we iterate until k = k7; after each iteration, we
update k to the largest integer multiple of 4 that is < 1.5
times the previous k. The construction of the derived in-
stances II(p) and IT'(k) is described below.

Finally, we output the solution subgraph H™ for IT*; H" is
the union of all the solution subgraphs H(k), k =1,...,7,
and H'(k), k = 8,12,...,k%; we call these solution sub-
graphs the constituent subgraphs of H*. Below, we prove
that the cost of each of the constituent subgraphs is at most
O(1) -opr. Clearly, the number of iterations is O(log rmaz)-
Thus H* is the union of O(log rmaz) subgraphs such that
each of these subgraphs has cost O(1) - oPT, and so H™ has
cost O(log Tmaz) OPT. Below, we prove that H* satisfies the
connectivity requirements, because for every pair of termi-
nals 4, j, one of the constituent subgraphs of H* has > r; ;
openly disjoint 4, j-paths.

We define the derived instances via a well-studied problem
in network design, namely, the generalized Steiner tree prob-
lem, which is as follows: we are given a graph G = (V, E),
edge costs ¢, and ¢ sets of terminal nodes ﬁl,ﬁg, Cee ﬁé;
the goal is to compute an (approximately) minimum-cost
forest F' of G such that each terminal set D,,,m =1,...,4,
is contained in a (connected) component of F'. Goemans and
Williamson [16], based on earlier work by Agrawal et al. [1],
gave 2-approximation algorithms for this problem based on
the primal-dual method.

Here is the construction for one of the derived instances
IT'(k); recall that this is an instance of the subset [k, 1.5k]-
connectivity problem, where k is a fixed parameter. We start
from II" and construct a requirements graph R with node
set T and edge set E(R) as follows. For each terminal pair
i,j with k < r;; < 1.5k (i.e., the requirement for the pair
is within the valid range for our derived instance), we add
the edge ij to R. Denote the node sets of the (connected)
components of R by ﬁl,ﬁz,...,.bé. Next, we define an
instance II(gst) of the generalized Steiner tree problem on
the graph G with edge costs ¢ (here, G, ¢ are as in IT"), and
with terminal sets ﬁl, ﬁg, e ,ﬁq. We solve this auxiliary
problem II(gst) by applying the primal-dual algorithm of
Goemans and Williamson [16]. Let F C E(G) be the forest
computed by the Goemans-Williamson algorithm, and let
Fi, F, ..., F, denote the partition of F' into connected com-
ponents. Let the set of terminals in the component of F,, be
denoted by D, m = 1,...,g; thus each set Dy, is the union
of one or more of the terminal sets D1, Ds, ..., D;. For each
m = 1,...,q, we define an instance II,,(k) of the subset
[k, 1.5k]-connectivity problem as follows: the graph G and
the edge costs ¢ are as in IT*; the set of terminal nodes is Dy,
and the requirement 7, of a terminal ¢ € D,, is defined to be
max(r;; : {i,5} € E(R)); clearly, k < r; < 1.5k, Vi € D,,.
We take the derived instance II'(k) to be the disjoint union
of these instances II,,, (k), m = 1,...,q, i.e., we assume that
each instance II;, (k) has its own copy of G and c¢. To solve
IT'(k), we take each m = 1,...,q, and apply the algorithm

in Theorem 8 separately to IT,, (k) to obtain a solution sub-
graph, call it H,, (k). (These instances II,, (k) are pairwise
disjoint, and we solve them separately, one by one.) Then
we take the union of the subgraphs Hi(k),..., H,,(k) and
call it H'(k); this is the solution subgraph of IT' (k). The cost
of the subgraphs H,(k), m = 1,...,q, is analysed below.

Our reasons for using the auxiliary problem II(gst) for
defining the instance II'(k) may be seen from the follow-
ing example. Suppose that k is large (say k = \/n) and
the edges in E(R) form a matching say {{s1,t:}, {s2,t2},
.., {sq,t4}}, say ¢ = O(n). Moreover, suppose that G
has a cut §(S) such that each edge in this cut is expen-
sive, and some of the edges in F(R) have both ends in S
and the remaining edges in E(R) have both ends in V — S.
Say the optimal solution consists of two disjoint subgraphs,
one contained in the subgraph induced by S and the other
contained in the subgraph induced by V — S. Then we
cannot take II'(k) to be a single instance with terminal
set {s1,.. .,t;}, because then every solution sub-
graph will have > k edges from the expensive cut 4(S).
Also, we cannot take IT'(k) to consist of § separate sub-
instances with one sub-instance for each connected compo-
nent of R = (T, E(R)), because the optimal values of these
sub-instances may sum to ¢-OPT, and the solution subgraph
computed by our algorithm may have cost as high as this
(assuming that the algorithm returns the union of the so-
lution subgraphs of these ¢ sub-instances). We get around
this difficulty by using the Goemans-Williamson algorithm
to merge the connected components of R = (T, E(R)) into
appropriate “clusters” and then we construct a separate
sub-instance for each of these “clusters” (these are the sub-
instances that we called II}(k),...,II;(k)). The key point
is that (i) these sub-instances have pairwise disjoint termi-
nal sets D1,..., Dg, hence, the sum of the o() lower-bounds
(used in Theorem 8), namely, > ¢ _ (D), is < the o()
lower-bound of IT*, and (ii) the following proof (which is
based on the 2 approximation guarantee of Goemans and
Williamson) shows that the sum of the mst() lower-bounds
for these sub-instances, namely, Y2 _, mst(Dm), is < O(1)
times the mst() lower-bound of II*. Also, for each sub-
instance, the solution subgraph has cost within an O(1) fac-
tor of the sum of its () and mst() lower-bounds. Hence, the
union of the solution subgraphs of these sub-instances has
cost within an O(1) factor of the optimal value of II*.

The construction of the instances II(p), p = 1,...,7, is
similar to that of the instances II'(k). We start with R =
(T, E(R)) where E(R) consists of terminal pairs {3, j} with
ri,; = p. Then we obtain a family of pairwise disjoint sub-
instances I1; (p), [I2(p), ... and these sub-instances together
form TI(p).

., 8, t1, ..

Proor oF THEOREM 4. Recall that IT* denotes the instance
of NC-SNDP, opT denotes the optimal value of IT*, and H~
denotes the solution subgraph of II* found by our algorithm.
The goal is to analyze the cost of the constituent subgraphs
of H* and show that each has cost < O(1)-opT, and then to
show that H™ satisfies the connectivity requirements. The
proof is based on the following LP (linear programming) re-
laxation P of IT* that interprets each requirement r; ; as a
requirement for r; ; edge-disjoint 4, 7 paths. Thus the opti-
mal value of P* gives a lower bound on opT. The LP has a
variable z., 0 < z. < 1, for each edge e € E; the intention
is that each feasible solution H of II* gives a zero-one vector

z € RF that satisfies two conditions: z. = 1 iffe € H,and z
satisfies the constraints of the LP (though feasible zero-one
solutions of the LP may not give feasible solutions of IT*).

P
2" = min); . Cele
subject to
z(d(S)) max{r;; : i€ S,j¢ S}, VSCV

>
ze > 0, VeeFE

Focus on one of the derived instances IT'(k) and its asso-
ciated generalized Steiner tree instance II(gst). We use the
notation from the construction of IT'(k) given above. Goe-
mans and Williamson [16] proved that the cost of the forest
computed by their algorithm is < 2 times the optimal value
z(gst) of the following LP relaxation P(gst) of II(gst). The
LP has a variable z., 0 < z. < 1, for each edge e € E;
the intention is that each feasible solution F' of II(gst) cor-
responds to a zero-one vector 2z € RP that satisfies two
conditions: z. = 1 iff e € F, and x satisfies the constraints
of the LP.

P(gst) :
z(gst) = min) . cexe
subject to
2((S) > 1, ¥YSCV:3m=1,...,:
0#SNDy # Dm
ze > 0, VeeFE

A key observation is that k - z(gst) < oprT. To see this,
note that multiplying the right-hand-side of any constraint
of the LP P(gst) by k gives a constraint that is valid for
the LP P*. (This follows because whenever we have a con-
straint z(6(S)) > 1 in the LP P(gst), then the node set
S separates two terminals v, w such that the requirements
graph R has an v, w-path consisting of terminal-pairs {4, j}
such that r;; > k; since the v, w-path of R “crosses” S,
one of the terminal-pairs {7, j} in the v, w-path “crosses”
S, therefore, max{r; ; i € S,57 ¢ S} > k, hence, the
constraint “z(d(S)) > k” is a valid constraint for the LP
P*.) Consequently, for every feasible solution z* of the LP
P*, we see that tz" is a feasible solution of the LP P(gst).
Moreover, if z* is an optimal solution of the LP P*, then
we have z(gst) < %c(x*) = %z* < %OPT, or equivalently,
k- z(gst) < opT.

Focus on the cost of the solution subgraph H' (k) = Hj (k)U
Hy(k)U---UHg(k), and note that for each m =1,...,q the
cost of H,, (k) is O(k) - mst(Dy) + O(1) - 0(Dm) (by Theo-
rem 8), where D,,, denotes the terminal set of H,, (k). Then
the cost of H'(k) is

O(k) - > mst(Dy) + 0(1) - Y o(Dy)

q

< O(k)- Y e(Fu) +0(1) - o(T)

(since mst(Dm) < 2¢(Fr), Ym=1,...,q)
< Ok)-c(F)+0(1)-a(T)
< 0Q1)-opr+0(1)-0(T)

(since c¢(F) < 2z(gst) and z(gst) < oPT/k)
< 0O(1)-opT.

A similar analysis for the solution subgraphs H (1), H(2),
..., H(7) shows that each has cost < O(1) - OPT.

Thus our claim for the cost of the solution subgraph H™
follows: ¢(H™) = O(log rmaz) - OPT.

Finally, let us verify that H™ satisfies the connectivity re-
quirements. Consider any pair of terminals i,j and their
requirement r; ;. Assume that r; ; > 8 (otherwise, we are
done by a similar but simpler analysis). Focus on an itera-
tion of the algorithm that fixes the parameter k such that
k < r;; < 1.5k. In that iteration, the requirements graph
R has the edge {3, j}, hence, both i, j must be contained in
one of the terminal sets D,..., Dgy, say D:. Now, consider
the sub-instance IT} (k) and its solution subgraph Hj (k) and
note that Hi(k) must have > r; ; openly disjoint i, j-paths
because both r} and rj are > r;; (here, r; and rj denote
the requirements of i and j in I1}(k)) Thus, H* has > r;
openly disjoint 7, j-paths.

This completes the proof of Theorem 4. m|

Acknowledgments. We thank Bill Cunningham, Michel
Goemans, Balaji Raghavachari, Ram Ravi, and Santosh Vem-
pala for useful discussions over the years.

6. REFERENCES

[1] A.Agrawal, P.Klein and R.Ravi, “When trees collide : An
approximation algorithm for the generalized Steiner
problem on networks,” SIAM Journal on Computing, 24,
445-456, 1995. Preliminary version in Proc. ACM STOC,
1991.

S.Arora, “Polynomial-time approximation schemes for

Euclidean TSP and other geometric problems,” Journal of

the ACM, 45, 753-782, 1998.

[3] M.Bern and P.Plassmann, “The Steiner problem with edge
lengths 1 and 2,” Information Processing Letters, 32,
171-176, 1989.

[4] D.Bienstock, E.Brickell and C.Monma, “On the structure

of minimum-weight k-connected spanning networks,”

SIAM J. Discrete Math., 3, 320 329, 1990.

J.Cheriyan, T.Jordan and Z.Nutov, “On rooted

node-connectivity problems,” Algorithmica, 30, 353-375,

2001.

[6] J.Cheriyan, S.Vempala and A.Vetta, “Approximation
algorithms for minimum-cost k-vertex connected
subgraphs,” Proc. 34jth ACM STOC, New York, 306 312,
2002.

[7] J.Cheriyan, S.Vempala and A.Vetta, “An approximation
algorithm for the minimum-cost k-vertex connected
subgraph,” SIAM Journal on Computing, 32, 1050 1055,
2003.

[8] N.Christofides, “Worst case analysis of a new heuristic for
the traveling salesman problem,” Report 388, Graduate
School of Industrial Administration, Carnegie Mellon
University, Pittsburgh, 1976.

[9] A.Czumaj and A.Lingas, “On approximability of the
minimum-cost k-connected spanning subgraph problem,”
Proc. 10th Ann. ACM-SIAM Symposium on Discrete
Algorithms, 281-290, 1999.

[10] A.Czumaj, A.Lingas and H.Zhao, “Polynomial-time
approximation schemes for the Euclidean survivable
network design problem,” Proc. 29th ICALP, LNCS 2380,
973 984, 2002.

[11] G.B.Dantzig, L.R.Ford and D.R.Fulkerson, “Solution of a
large-scale traveling-salesman problem,” Operations
Research 2, 393 410, 1954.

[12] A.Frank, “Connectivity augmentation problems in network
design,” in Mathematical Programming: State of the Art
1994, (Eds. J. R. Birge and K. G. Murty), The University
of Michigan, Ann Arbor, MI, 34 63, 1994.

[2

[5

(13]

[14]

(15]

[16]

(17]

(18]

(19]

(20]

(21]

[22]

23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

G.L.Frederickson and J.Ja’Ja’, “On the relationship
between the biconnectivity augmentation and traveling
salesman problems,” Theor. Comp. Sci. 19, 189-201, 1982.
M.Goemans and D.J.Bertsimas, “Survivable networks,
linear programming relaxations and the parsimonious
property,” Mathematical Programming, 60, 145-166, 1993.
M.Goemans, A.Goldberg, S.Plotkin, D.Shmoys, E.Tardos
and D.Williamson, “Improved approximation algorithms
for network design problems,” Proc. 5th Ann. ACM-SIAM
Symposium on Discrete Algorithms, 223 232, 1994.
M.Goemans and D.Williamson, “A general approximation
technique for constrained forest problems,” SIAM Journal
on Computing, 24, 296-317, 1995.

K.Jain, “A factor 2 approximation algorithm for the
generalized Steiner network problem,” Combinatorica,
21(1), 39-60, 2001. Preliminary version in Proc. 39th
IEEE FOCS, 1998.

S.Khuller, “Approximation algorithms for finding highly
connected subgraphs,” in Approzimation algorithms for
NP-hard problems, Ed. D.S.Hochbaum, PWS publishing
co., Boston, 1996.

S.Khuller and B.Raghavachari, “Improved approximation
algorithms for uniform connectivity problems,” Journal of
Algorithms 21, 434 450, 1996.

G.Kortsarz, R.Krauthgamer and J.R.Lee, “Hardness of
approximation for vertex-connectivity network design
problems,” SIAM J. Computing 33, 704 720, 2004.
G.Kortsarz and Z.Nutov, “Approximating k-node
connected subgraphs via critical graphs,” Proc. 36th ACM
STOC, June 2004.

G.Kortsarz and Z.Nutov, “Approximating node
connectivity problems via set covers,” Algorithmica 37,
75-92, 2003. Preliminary version in APPROX,
Approzimation algorithms for combinatorial optimization,
Springer, LNCS 1913, 194-205, 2000.

L.Lovész, Combinatorial Problems and Exercises,
North-Holland, Amsterdam, and Akadémiai Kiado,
Budapest, 1979.

C.L.Monma, B.S.Munson and W.R.Pulleyblank,
“Minimum-weight two-connected spanning networks,”
Mathematical Programming 46, 153-171, 1990.
C.L.Monma and D.F.Shallcross, “Methods for designing
communication networks with certain two-connectivity
survivability constraints,” Operations Research 37,
531-541, 1989.

J.S.B.Mitchell, “Guillotine subdivisions approximate
polygonal subdivisions: a simple polynomial-time
approximation scheme for geometric TSP, k-MST, and
related problems,” SIAM J. Computing 28, 1298 1309,
1999.

M.Stoer, Design of Survivable Networks, Lecture Notes in
Mathematics 1531, Springer-Verlag, Berlin, 1992.
L.Trevisan, “When Hamming meets Euclid: the
approximability of geometric TSP and MST,” SIAM
Journal on Computing, 30, 475-485, 2001.

V.V.Vazirani, Approzximation Algorithms, Springer-Verlag,
Berlin, 2001.

D.Williamson, M.Goemans, M.Mihail and V.Vazirani, “A
primal-dual approximation algorithm for generalized
Steiner network problems,” Combinatorica 15, 435-454,
1995.

