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Traveling Tournament Problem

(Easton, Nemhauser, Trick 2001)

Given n teams (n is even) and inter-team metric
distances (i.e., n × n matrix D of inter-team distances
satisfying the triangle inequality) find a tournament
(i.e., a double round-robin schedule) such that

▶ each pair of teams i , j plays two games, one at
home-venue of i and one at home-venue of j ,

▶ the total distance travelled is minimized
(assume “round-trip travel” for each team, that
starts & ends at home-venue).

Notes:
Number of rounds = number of days = 2(n − 1)
OBJ: min

∑
team i

(
distance traveled by i over 2(n − 1) days

)



TTP: Example with n = 6 teams



TTP: Example with n = 6 teams



TTP: Questions

▶ Is there a poly-time algorithm for optimally solving TTP?

▶ Is there a PTAS (i.e., poly-time approximation scheme) for
solving TTP?



TTP: Results

▶ (Bhattacharyya’09, ORL’16)
(unrestricted) TTP is NP-hard.

( =⇒ ̸ ∃ poly-time algorithm, assuming P ̸= NP)

▶ (BCC) (unrestricted) TTP is APX-hard.
( =⇒ ̸ ∃ PTAS, assuming P ̸= NP)



TTP: Results & Open Question

▶ (Bhattacharyya’09, ORL’16)
(unrestricted) TTP is NP-hard.

( =⇒ ̸ ∃ poly-time algorithm, assuming P ̸= NP)

▶ (BCC) (unrestricted) TTP is APX-hard.
( =⇒ ̸ ∃ PTAS, assuming P ̸= NP)

▶ (Thielen, Westphal TCS’11) 3-restricted TTP is NP-hard.

▶ (Open) 3-restricted TTP is APX-hard?



Bhattacharyya/BCC construction: uTTP is NP-hard
▶ Let c > 5 be a constant.
▶ G is a complete graph on n vertices, with edge costs in

{1, 2}, v is a designated vertex of G .
▶ G (c) is the “one sum” of c copies of G

with common vertex v , it has c(n − 1) + 1 vertices.
▶ G ′ is the metric completion of G (c).
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Figure: Small example: G ′ from G with c = 3.



Bhattacharyya/BCC construction: uTTP is NP-hard
▶ G is a complete graph on n vertices, with edge costs in

{1, 2}, v is a designated vertex of G .
▶ G ′ is the metric completion of G (c), where G (c) is the “one

sum” of c (c > 5) copies of G with common vertex v .
▶ Claim: an optimal TSP tour on G has cost K ⇐⇒

an optimal TSP tour on G ′ has cost cK .
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Bhattacharyya/BCC construction: uTTP is NP-hard
▶ G is a complete graph on n vertices, with edge costs in

{1, 2}, v is a designated vertex of G .
K := cost of optimal TSP tour of G .

▶ G ′ is the metric completion of G (c), where G (c) is the “one
sum” of c (c > 5) copies of G with common vertex v .
cK := cost of optimal TSP tour of G ′,
m := |V (G ′)| = c(n − 1) + 1.

▶ Construct a new graph H by adding vertex u to G ′, and
connecting u to all vertices of G ′ with edges of cost
wu = (cK − 1)/2.

▶ Construct the TTP instance on H by placing 2 teams at v
(the central vertex of G ′), one team at every other vertex of
G ′, and (m + 1)(10m − 1) teams at u to get
n′ = 10m(m + 1) teams in total.

Lemma
H has a feasible TTP solution of cost ≤ 20m(m + 1)cK.



Bhattacharyya/BCC construction: uTTP is NP-hard
▶ Construct a new graph H by adding vertex u to G ′, and

connecting u to all vertices of G ′ with edges of cost wu.
▶ Construct the TTP instance on H by placing 2 teams at v

(the central vertex of G ′), one team at every other vertex of
G ′, and (m + 1)(10m − 1) teams at u to get
n′ = 10m(m + 1) teams in total.

Lemma
H has a feasible TTP solution of cost ≤ 20m(m + 1)cK.

Proof.
▶ Partition the teams into 10m groups, each of size m + 1.

▶ Group 1 := the m + 1 teams placed on G ′.

▶ DRR schedule consists of batch of intra-group games (with
2m games) followed by batch of inter-group games.

▶ Claim: Cost of DRR schedule

≤ 8m(m+1)+

(
(m+1)2wu+(10m−1)

(
(m+1)2wu+mcK

))
.



TTP: Example with 4 groups



TTP: Example with 4 groups



Bhattacharyya/BCC construction: uTTP is NP-hard

Lemma: H has a feasible TTP solution of cost ≤ 20m(m + 1)cK .
Proof of lemma:

▶ Partition the teams into 10m groups, each of size m + 1.

▶ Group 1 := the m + 1 teams placed on G ′.

▶ DRR schedule consists of batch of intra-group games (with 2m
games) followed by batch of inter-group games.

▶ Intra-group games: All groups, except Group 1, are
located at u and incur zero cost. Each team in Group 1
plays m Away-games and incurs cost ≤ (2cmax)m = 8m
(cmax = maxe∈G ′(ce) = 4).
Group 1 has (m + 1) teams, hence, total cost
≤ (2cmax)m(m + 1) = 8m(m + 1).



Bhattacharyya/BCC construction: uTTP is NP-hard: Proof of lemma

▶ Partition the teams into 10m groups, each of size m + 1.
Group 1 := the m + 1 teams placed on G ′.

▶ DRR schedule consists of batch of intra-group games (with 2m
games) followed by batch of inter-group games.

▶ Intra-group games:
▶ Inter-group games, Part 1: Construct an “outer” Single

Round-Robin (SRR) schedule on the 10m groups. Each
“outer” game between Groups i , j maps to (m + 1) games
where each team of Group i plays against all (m+ 1) teams
of Group j (i.e., edge-coloring of Km+1,m+1 by (m + 1)
colors), and
Group i plays @Home ⇐⇒ each team of Group i plays @Home.
Cost analysis: Assume: Group 1 plays none of its games
@Home (each of the (m + 1) teams of Group 1 visits
vertex u, plays all its games at u, then returns to G ′).
Total cost: ≤ (m + 1)2wu.

▶ Inter-group games, Part 2:



Bhattacharyya/BCC construction: uTTP is NP-hard
Lemma: H has a feasible TTP solution of cost ≤ 20m(m + 1)cK .
Proof of lemma:

▶ Partition the teams into 10m groups, each of size m + 1.

▶ Group 1 := the m + 1 teams placed on G ′.

▶ DRR schedule consists of batch of intra-group games (with 2m
games) followed by batch of inter-group games.

▶ Intra-group games:
▶ Inter-group games, Part 1:
▶ Inter-group games, Part 2: Similar to Part 1, but flip

Home-Away designations for the “outer” Single
Round-Robin (SRR) schedule on the 10m groups.
Cost analysis: Assume: Group 1 plays Home (each of the
teams at vertex u visits the vertices of G ′ according to an
optimal TSP tour of G ′, then returns to u).
Cost incurred by each group at vertex u:
(m + 1)2wu + (m + 1)cK − cK .
Total cost: ≤ (10m − 1)(2wu(m + 1) +mcK ).

▶ Claim: Cost of DRR schedule

≤ 8m(m+1)+

(
(m+1)2wu +(10m−1)

(
(m+1)2wu +mcK

))
.



Bhattacharyya/BCC construction: uTTP is NP-hard

Lemma
H has a feasible TTP solution of cost ≤ 20m(m + 1)cK.

Proof of lemma:
▶ Partition the teams into 10m groups, each of size m + 1.
▶ Group 1 := the m + 1 teams placed on G ′.
▶ DRR schedule consists of batch of intra-group games (with

2m games) followed by batch of inter-group games.
▶ Intra-group games:

Cost ≤ 8m(m + 1).
▶ Inter-group games, Part 1:

Cost ≤ (m + 1)2wu.
▶ Inter-group games, Part 2:

Cost ≤ (10m − 1)(2wu(m + 1) +mcK ).

▶ Claim: Cost of DRR schedule

≤ 8m(m+1)+

(
(m+1)2wu+(10m−1)

(
(m+1)2wu+mcK

))
.



Bhattacharyya/BCC construction: uTTP is NP-hard

Recall: Input graph G has edge-costs of 1 or 2.
K := cost of an optimal TSP tour of G .

Lemma
H has a feasible TTP solution of cost ≤ 20m(m + 1)cK.

Lemma
Suppose the cost of an optimal TSP tour of G is ≥ K + 1.
Then, any feasible TTP solution of H has cost > 20m(m+ 1)cK.



L-reductions . . . for APX-hardness

L-reduction from optimization problem Π1 to optimization
problem Π2:

Intent (informal):
α-approximation algorithm
for Π2

=⇒ f (α)-approximation algorithm
for Π1,
for some linear function f ()

Suppose there is an L-reduction from Π1 to Π2, and
suppose Π1 has no β-approximation algorithm (for some β ≥ 1),
then
Π2 has no f −1(β)-approximation algorithm.



L-reductions . . . for APX-hardness

L-reduction from optimization problem Π1 to optimization
problem Π2:

Definition
Given two optimization problems Π1 and Π2, we say we have an
L-reduction from Π1 to Π2 if for some parameters a, b > 0:

1. For each instance I1 of Π1 we can compute in polynomial
time an instance I2 of Π2.

2. OPT(I2) ≤ a ·OPT(I1).

3. Given a solution of value V2 to I2, we can compute in
polynomial time a solution of value V1 to I1 such that

|OPT(I1)− V1| ≤ b · |OPT(I2)− V2|



L-reductions . . . for APX-hardness
Fact:
▶ Suppose there is an L-reduction, with parameters a, b, from

minimization problem Π1 to minimization problem Π2, and
▶ suppose there is an α-approximation algorithm for Π2,
▶ then there is an (1 + ab(α− 1))-approximation algorithm for

Π1.

▶ Instance I1 of Π1 =⇒ instance I2 of Π2.
▶ Compute solution S2 to I2 of value V2 ≤ α OPT(I2).
▶ “Map” S2 to a solution S1 of I1 of value V1 such that

V1 ≤ OPT(I1) + b(V2 −OPT(I2))

≤ OPT(I1) + b
(
α OPT(I2)−OPT(I2)

)
= OPT(I1)(1 + ab(α− 1))



TTP is APX-hard: L-reduction from m(m + 1)⊗TSP(1,2)

▶ L-reduction from Π1 to Π2, where

▶ Π1 is the “m(m + 1)⊗TSP” on input graph G which has
edge-costs of 1 or 2.
OBJ = m(m + 1) times cost of an optimal TSP tour of G ,
where m = c(n − 1) + 1 and n = |V (G )|.

▶ Π2 is TTP on the graph H .

(
Recall: G ′ is the metric-completion of G (c), where G (c) is

the “one-sum” of c > 5 copies of G with common vertex v .
H is obtained from G ′ by adding a new vertex u, adding the
edges ux , for all vertices x of G ′, and taking the cost of each

new edge to be wu = (cK − 1)/2.
)



TTP is APX-hard: L-reduction from m(m + 1)⊗TSP(1,2)

▶ L-reduction from Π1 to Π2, where

▶ Π1 is the “m(m + 1)⊗TSP” on G
(
edge-costs ∈ {1, 2}

)
.

OBJ = m(m + 1) times cost of an optimal TSP tour of G .

▶ Π2 is TTP on the graph H .

Recall the three conditions for an L-reduction with parameters
a, b > 0:

1. For each instance I1 of Π1 we can compute in polynomial
time an instance I2 of Π2.

2. OPT(I2) ≤ a ·OPT(I1).

3. Given a solution of value V2 to I2, we can compute in
polynomial time a solution of value V1 to I1 such that

|OPT(I1)− V1| ≤ b · |OPT(I2)− V2|



TTP is APX-hard: L-reduction from m(m + 1)⊗TSP(1,2)

▶ L-reduction from Π1 to Π2, where

▶ Π1 is the “m(m + 1)⊗TSP” on G
(
edge-costs ∈ {1, 2}

)
.

OBJ = m(m + 1) times cost of an optimal TSP tour of G .

▶ Π2 is TTP on the graph H .

Recall the third conditions for an L-reduction with parameters
a, b > 0:
Given a solution of value V2 to I2, we can compute in polynomial
time a solution of value V1 to I1 such that

|OPT(I1)− V1| ≤ b · |OPT(I2)− V2|

Lemma
Given a TTP schedule S of H with additive slack ∆ (i.e.,
cost(S)−OPTTTP(H) ≤ ∆),
one can construct a TSP tour T of G with additive slack ≤ 10∆
(i.e., cost(T )−OPTTSP(G ) ≤ 10∆).



TTP is APX-hard: L-reduction from m(m + 1)⊗TSP(1,2)
▶ L-reduction from Π1 to Π2, where
▶ Π1 is the “m(m + 1)⊗TSP” on G

(
edge-costs ∈ {1, 2}

)
.

OBJ = m(m + 1) times cost of an optimal TSP tour of G .
▶ Π2 is TTP on the graph H .

Lemma
Given a TTP schedule S of H with additive slack ∆ (i.e.,
cost(S)−OPTTTP(H) ≤ ∆),
one can construct a TSP tour T of G with additive slack ≤ 10∆
(i.e., cost(T )−OPTTSP(G ) ≤ 10∆).

Claim
Given an optimal TTP schedule S of H,
one can construct a TSP tour T of G that is optimal.

Claim
Given a non-optimal TTP schedule S of H,
one can construct a TSP tour T of G such that
cost(T )−OPTTSP(G ) ≤ 10 (cost(S)−OPTTTP(H)).



TTP: Results & Open Question

▶ (BCC) (unrestricted) TTP is APX-hard.
( =⇒ ̸ ∃ PTAS, assuming P ̸= NP)

▶ (Open) 3-restricted TTP is APX-hard?
(Thielen, Westphal TCS’11) proved 3-restricted TTP is
NP-hard.

▶ Prove Hardness-of-Approximation results for other variants
of TTP.

▶ Design improved approximation algorithms for variants of
TTP.

▶ Concorde-Plus to optimally solve TTP instances with 100
teams?


