The Traveling Tournament Problem: Complexity Aspects

by Joseph Cheriyan, C&O Dept., U.Waterloo (based on joint work with Salomon Bendayan & Kevin Cheung)

Salomon Bendayan (2022). The Traveling Tournament Problem. UWSpace. http://hdl.handle.net/10012/18553

Traveling Tournament Problem

(Easton, Nemhauser, Trick 2001)

Given *n* teams (*n* is even) and inter-team metric distances (i.e., $n \times n$ matrix *D* of inter-team distances satisfying the triangle inequality) find a tournament (i.e., a double round-robin schedule) such that

- each pair of teams i, j plays two games, one at home-venue of i and one at home-venue of j,
- the total distance travelled is minimized (assume "round-trip travel" for each team, that starts & ends at home-venue).

Notes:

Number of rounds = number of days = 2(n-1)OBJ: min $\sum_{\text{TEAM } i}$ (distance traveled by i over 2(n-1) days)

TTP: Example with n = 6 teams

TTP: Example with n = 6 teams

Team	1	2	3	4	5	6
Dayl						
1	@5	C4	<u>e6</u>	2	1	3
2	6	5	4	e3	C2	C1
3	2	@1	<u>@</u> 5	@6	3	4
4	@ 3	@6	1	5	@4	2
5	4	3	@2	@1	6	@ 5
G	5	4	6	C 2	@1	@3
7	@6	@5	C4	3	2	1
8	<u>e</u> 2	1	5	6	@3	@4
9	3	6	@1	୧୨	4	@2
10	C4	C3	2	1	C6	5
Trips by Team1:					Trips	by Team6:
© (1)	3	0			Q.	Gr 3
5	E.)			GL	·

(E) < E)</p> э

TTP: Questions

Is there a poly-time algorithm for optimally solving TTP?

Is there a PTAS (i.e., poly-time approximation scheme) for solving TTP?

TTP: Results

 (Bhattacharyya'09, ORL'16) (unrestricted) TTP is NP-hard.
 (⇒ ∄ poly-time algorithm, assuming P ≠ NP)

(BCC) (unrestricted) TTP is APX-hard. (⇒ *A* PTAS, assuming P ≠ NP)

TTP: Results & Open Question

▶ (Bhattacharyya'09, ORL'16) (unrestricted) TTP is NP-hard. (⇒ A poly-time algorithm, assuming P ≠ NP)
▶ (BCC) (unrestricted) TTP is APX-hard. (⇒ A PTAS, assuming P ≠ NP)

- ► (Thielen, Westphal TCS'11) 3-restricted TTP is NP-hard.
- ► (**Open**) 3-restricted TTP is APX-hard?

- Let c > 5 be a constant.
- G is a complete graph on n vertices, with edge costs in {1,2}, v is a designated vertex of G.
- ► G^(c) is the "one sum" of c copies of G with common vertex v, it has c(n − 1) + 1 vertices.
- G' is the metric completion of $G^{(c)}$.

Figure: Small example: G' from G with c = 3.

- ► G is a complete graph on n vertices, with edge costs in {1,2}, v is a designated vertex of G.
- G' is the metric completion of $G^{(c)}$, where $G^{(c)}$ is the "one sum" of c (c > 5) copies of G with common vertex v.
- ▶ Claim: an optimal TSP tour on G has cost $K \iff$ an optimal TSP tour on G' has cost cK.

Figure: Small example: G' from G with c = 3.

- G is a complete graph on n vertices, with edge costs in {1,2}, v is a designated vertex of G.
 K := cost of optimal TSP tour of G.
- G' is the metric completion of G^(c), where G^(c) is the "one sum" of c (c > 5) copies of G with common vertex v.
 cK := cost of optimal TSP tour of G',
 m := |V(G')| = c(n-1) + 1.
- Construct a new graph *H* by adding vertex *u* to *G'*, and connecting *u* to all vertices of *G'* with edges of cost w_u = (cK − 1)/2.
- Construct the TTP instance on H by placing 2 teams at v (the central vertex of G'), one team at every other vertex of G', and (m + 1)(10m − 1) teams at u to get n' = 10m(m + 1) teams in total.

Lemma

H has a feasible TTP solution of cost $\leq 20m(m+1)cK$.

- Construct a new graph H by adding vertex u to G', and connecting u to all vertices of G' with edges of cost w_u.
- Construct the TTP instance on H by placing 2 teams at v (the central vertex of G'), one team at every other vertex of G', and (m + 1)(10m − 1) teams at u to get n' = 10m(m + 1) teams in total.

Lemma

H has a feasible *TTP* solution of $cost \le 20m(m+1)cK$. Proof.

- Partition the teams into 10m groups, each of size m + 1.
- Group 1 := the m + 1 teams placed on G'.
- DRR schedule consists of batch of intra-group games (with 2m games) followed by batch of inter-group games.

Claim: Cost of DRR schedule

$$\leq 8m(m+1) + \left((m+1)2w_u + (10m-1)((m+1)2w_u + mcK) \right).$$

TTP: Example with 4 groups

- na (

Lemma: *H* has a feasible TTP solution of cost $\leq 20m(m+1)cK$. **Proof of lemma**:

- > Partition the teams into 10m groups, each of size m + 1.
- Group 1 := the m + 1 teams placed on G'.
- DRR schedule consists of batch of intra-group games (with 2m games) followed by batch of inter-group games.
 - Intra-group games: All groups, except Group 1, are located at *u* and incur zero cost. Each team in Group 1 plays *m* Away-games and incurs cost ≤ (2c_{max})m = 8m (c_{max} = max_{e∈G'}(c_e) = 4). Group 1 has (m + 1) teams, hence, total cost ≤ (2c_{max})m(m + 1) = 8m(m + 1).

Bhattacharyya/BCC construction: uTTP is NP-hard: Proof of lemma

- Partition the teams into 10m groups, each of size m + 1. Group 1 := the m + 1 teams placed on G'.
- DRR schedule consists of batch of intra-group games (with 2m games) followed by batch of inter-group games.
 - Intra-group games:
 - ▶ Inter-group games, Part 1: Construct an "outer" Single Round-Robin (SRR) schedule on the 10*m* groups. Each "outer" game between Groups *i*, *j* maps to (m + 1) games where each team of Group *i* plays against all (m + 1) teams of Group *j* (i.e., edge-coloring of $K_{m+1,m+1}$ by (m + 1)colors), and

Group *i* plays @Home \iff each team of Group *i* plays @Home. **Cost analysis**: Assume: Group 1 plays none of its games @Home (each of the (m + 1) teams of Group 1 visits vertex *u*, plays all its games at *u*, then returns to *G'*). Total cost: $\leq (m + 1)2w_u$.

Inter-group games, Part 2:

Bhattacharyya/BCC construction: uTTP is NP-hard Lemma: H has a feasible TTP solution of cost $\leq 20m(m+1)cK$. Proof of lemma:

- Partition the teams into 10m groups, each of size m + 1.
- Group 1 := the m + 1 teams placed on G'.
- DRR schedule consists of batch of intra-group games (with 2m games) followed by batch of inter-group games.
 - Intra-group games:
 - Inter-group games, Part 1:
 - Inter-group games, Part 2: Similar to Part 1, but flip Home-Away designations for the "outer" Single Round-Robin (SRR) schedule on the 10*m* groups.
 Cost analysis: Assume: Group 1 plays Home (each of the teams at vertex *u* visits the vertices of *G'* according to an optimal TSP tour of *G'*, then returns to *u*).
 Cost incurred by each group at vertex *u*: (*m*+1)2*w_u* + (*m*+1)*cK* − *cK*.
 Total cost: ≤ (10*m* − 1)(2*w_u*(*m*+1)+m*cK*).

Lemma

H has a feasible TTP solution of $cost \leq 20m(m+1)cK$.

Proof of lemma:

- ▶ Partition the teams into 10m groups, each of size m + 1.
- Group 1 := the m + 1 teams placed on G'.
- DRR schedule consists of batch of intra-group games (with 2m games) followed by batch of inter-group games.
 - Intra-group games:
 - $Cost \leq 8m(m+1).$
 - Inter-group games, Part 1:
 - $Cost \leq (m+1)2w_u$.
 - Inter-group games, Part 2:

 $\mathsf{Cost} \leq (10m-1)(2w_u(m+1)+mcK).$

► Claim: Cost of DRR schedule $\leq 8m(m+1) + \left((m+1)2w_u + (10m-1)((m+1)2w_u + mcK) \right).$

Recall: Input graph G has edge-costs of 1 or 2. K := cost of an optimal TSP tour of G.

Lemma

H has a feasible TTP solution of $cost \leq 20m(m+1)cK$.

Lemma

Suppose the cost of an optimal TSP tour of G is $\geq K + 1$. Then, any feasible TTP solution of H has cost > 20m(m+1)cK.

L-reductions . . . for APX-hardness

L-reduction from optimization problem Π_1 to optimization problem Π_2 :

Intent (informal): α -approximation algorithm $\implies f(\alpha)$ -approximation algorithm for Π_2 for Π_1 , for some linear function f()

Suppose there is an L-reduction from Π_1 to Π_2 , and suppose Π_1 has **no** β -approximation algorithm (for some $\beta \ge 1$), then

 Π_2 has **no** $f^{-1}(\beta)$ -approximation algorithm.

L-reductions . . . for APX-hardness

L-reduction from optimization problem Π_1 to optimization problem Π_2 :

Definition

Given two optimization problems Π_1 and Π_2 , we say we have an L-reduction from Π_1 to Π_2 if for some parameters a, b > 0:

- 1. For each instance I_1 of Π_1 we can compute in polynomial time an instance I_2 of Π_2 .
- 2. $OPT(I_2) \leq a \cdot OPT(I_1)$.
- 3. Given a solution of value V_2 to I_2 , we can compute in polynomial time a solution of value V_1 to I_1 such that

$$|\operatorname{OPT}(I_1) - V_1| \le b \cdot |\operatorname{OPT}(I_2) - V_2|$$

L-reductions ... for APX-hardness

Fact:

- Suppose there is an L-reduction, with parameters a, b, from minimization problem Π₁ to minimization problem Π₂, and
- ▶ suppose there is an α -approximation algorithm for Π_2 ,
- then there is an $(1 + ab(\alpha 1))$ -approximation algorithm for Π_1 .
- Instance I_1 of $\Pi_1 \implies$ instance I_2 of Π_2 .
- Compute solution S_2 to I_2 of value $V_2 \leq \alpha \operatorname{OPT}(I_2)$.
- "Map" S_2 to a solution S_1 of I_1 of value V_1 such that

$$\begin{split} V_1 &\leq \operatorname{OPT}(I_1) + b(V_2 - \operatorname{OPT}(I_2)) \\ &\leq \operatorname{OPT}(I_1) + b(\alpha \operatorname{OPT}(I_2) - \operatorname{OPT}(I_2)) \\ &= \operatorname{OPT}(I_1)(1 + ab(\alpha - 1)) \end{split}$$

- L-reduction from Π_1 to Π_2 , where
- ▶ Π_1 is the " $m(m+1) \otimes TSP$ " on input graph *G* which has edge-costs of 1 or 2.

OBJ = m(m+1) times cost of an optimal TSP tour of G, where m = c(n-1) + 1 and n = |V(G)|.

 \blacktriangleright Π_2 is TTP on the graph *H*.

(Recall: G' is the metric-completion of $G^{(c)}$, where $G^{(c)}$ is the "one-sum" of c > 5 copies of G with common vertex v. H is obtained from G' by adding a new vertex u, adding the edges ux, for all vertices x of G', and taking the cost of each new edge to be $w_u = (cK - 1)/2$.)

- L-reduction from Π_1 to Π_2 , where
- Π_1 is the " $m(m+1) \otimes TSP$ " on G (edge-costs $\in \{1, 2\}$). OBJ = m(m+1) times cost of an optimal TSP tour of G.
- \blacktriangleright Π_2 is TTP on the graph *H*.

Recall the three conditions for an L-reduction with parameters a, b > 0:

- 1. For each instance I_1 of Π_1 we can compute in polynomial time an instance I_2 of Π_2 .
- 2. $\operatorname{OPT}(I_2) \leq a \cdot \operatorname{OPT}(I_1)$.
- 3. Given a solution of value V_2 to I_2 , we can compute in polynomial time a solution of value V_1 to I_1 such that

$$|\operatorname{OPT}(I_1) - V_1| \le b \cdot |\operatorname{OPT}(I_2) - V_2|$$

- L-reduction from Π_1 to Π_2 , where
- Π_1 is the " $m(m+1) \otimes TSP$ " on G (edge-costs $\in \{1, 2\}$). OBJ = m(m+1) times cost of an optimal TSP tour of G.

$$\blacktriangleright$$
 Π_2 is TTP on the graph *H*.

Recall the third conditions for an L-reduction with parameters a, b > 0:

Given a solution of value V_2 to I_2 , we can compute in polynomial time a solution of value V_1 to I_1 such that

$$|\operatorname{OPT}(I_1) - V_1| \le b \cdot |\operatorname{OPT}(I_2) - V_2|$$

Lemma

Given a TTP schedule S of H with additive slack Δ (i.e., $cost(S) - OPT_{TTP}(H) \leq \Delta$), one can construct a TSP tour T of G with additive slack $\leq 10\Delta$ (i.e., $cost(T) - OPT_{TSP}(G) \leq 10\Delta$).

- L-reduction from Π_1 to Π_2 , where
- Π_1 is the " $m(m+1) \otimes TSP$ " on G (edge-costs $\in \{1, 2\}$). OBJ = m(m+1) times cost of an optimal TSP tour of G.
- $\blacktriangleright \Pi_2 \text{ is TTP on the graph } H.$

Lemma

Given a TTP schedule S of H with additive slack Δ (i.e., $cost(S) - OPT_{TTP}(H) \leq \Delta$),

one can construct a TSP tour T of G with additive slack $\leq 10\Delta$ (i.e., $cost(T) - OPT_{TSP}(G) \leq 10\Delta$).

Claim

Given an **optimal** TTP schedule S of H,

one can construct a TSP tour T of G that is optimal.

Claim

Given a **non-optimal** TTP schedule S of H,

one can construct a TSP tour T of G such that

 $cost(T) - OPT_{TSP}(G) \leq 10 (cost(S) - OPT_{TTP}(H)).$

TTP: Results & Open Question

(BCC) (unrestricted) TTP is APX-hard.
 (⇒ *A* PTAS, assuming P ≠ NP)

- (Open) 3-restricted TTP is APX-hard? (Thielen, Westphal TCS'11) proved 3-restricted TTP is NP-hard.
- Prove Hardness-of-Approximation results for other variants of TTP.
- Design improved approximation algorithms for variants of TTP.
- Concorde-Plus to optimally solve TTP instances with 100 teams?