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Traveling Tournament Problem
(Easton, Nemhauser, Trick 2001)

Given n teams (n is even) and inter-team metric
distances (i.e., n X n matrix D of inter-team distances
satisfying the triangle inequality) find a tournament
(i.e., a double round-robin schedule) such that

» each pair of teams i/, plays two games, one at

home-venue of i and one at home-venue of j,
» the total distance travelled is minimized

(assume “round-trip travel” for each team, that

starts & ends at home-venue).
Notes:
Number of rounds = number of days = 2(n — 1)
OBJ: min)_

TEAM | (distance traveled by i over 2(n — 1) days)



TTP: Example with n = 6 teams
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TTP: Example with n = 6 teams
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TTP: Questions

» |s there a poly-time algorithm for optimally solving TTP?

» |s there a PTAS (i.e., poly-time approximation scheme) for
solving TTP?



TTP: Results

» (Bhattacharyya'09, ORL'16)
(unrestricted) TTP is NP-hard.
( = A poly-time algorithm, assuming P # NP)

» (BCC) (unrestricted) TTP is APX-hard.
(= A PTAS, assuming P # NP)



TTP: Results & Open Question

» (Bhattacharyya'09, ORL'16)
(unrestricted) TTP is NP-hard.
( = A poly-time algorithm, assuming P # NP)
» (BCC) (unrestricted) TTP is APX-hard.
(= A PTAS, assuming P # NP)

» (Thielen, Westphal TCS'11)  3-restricted TTP is NP-hard.
» (Open) 3-restricted TTP is APX-hard?



Bhattacharyya/BCC construction: uTTP is NP-hard

» Let ¢ > 5 be a constant.
» G is a complete graph on n vertices, with edge costs in
{1,2}, v is a designated vertex of G.
» G is the “one sum” of ¢ copies of G
with common vertex v, it has ¢(n — 1) + 1 vertices.
» G’ is the metric completion of G(©).
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Figure: Small example: G’ from G with ¢ = 3.



Bhattacharyya/BCC construction: uTTP is NP-hard

» G is a complete graph on n vertices, with edge costs in
{1,2}, v is a designated vertex of G.

» G’ is the metric completion of G(€), where G(©) is the “one
sum” of ¢ (¢ > 5) copies of G with common vertex v.

» Claim: an optimal TSP tour on G has cost K <=

an optimal TSP tour on G’ has cost cK.
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Figure: Small example: G’ from G with ¢ = 3.
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Bhattacharyya/BCC construction: uTTP is NP-hard

» G is a complete graph on n vertices, with edge costs in
{1,2}, v is a designated vertex of G.

K := cost of optimal TSP tour of G.

» G’ is the metric completion of G, where G(9) is the “one
sum” of ¢ (¢ > 5) copies of G with common vertex v.
cK := cost of optimal TSP tour of G’,
m:=|V(G')| =c(n—1)+ 1.

» Construct a new graph H by adding vertex u to G’, and
connecting u to all vertices of G’ with edges of cost
w, = (cK — 1)/2.

» Construct the TTP instance on H by placing 2 teams at v
(the central vertex of G’), one team at every other vertex of
G’, and (m+ 1)(10m — 1) teams at u to get
n" = 10m(m + 1) teams in total.

Lemma
H has a feasible TTP solution of cost < 20m(m + 1)cK.



Bhattacharyya/BCC construction: uTTP is NP-hard

» Construct a new graph H by adding vertex u to G’, and
connecting u to all vertices of G’ with edges of cost w,,.

» Construct the TTP instance on H by placing 2 teams at v
(the central vertex of G’), one team at every other vertex of
G’, and (m+ 1)(10m — 1) teams at u to get

n" = 10m(m + 1) teams in total.
Lemma

H has a feasible TTP solution of cost < 20m(m + 1)cK.
Proof.

» Partition the teams into 10m groups, each of size m + 1.
» Group 1 := the m+ 1 teams placed on G’.

» DRR schedule consists of batch of intra-group games (with
2m games) followed by batch of inter-group games.

» Claim: Cost of DRR schedule
< 8m(m+1)+ ((m+1)2wu—|—(10m—1)((m—l—l)ZWu—l—mcK)).

l



TTP: Example with 4 groups
/
DRR schedule for H=u®G
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TTP: Example with 4 groups ,
DRR schedule for H=udG
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Bhattacharyya/BCC construction: uTTP is NP-hard

Lemma: H has a feasible TTP solution of cost < 20m(m + 1)cK.
Proof of lemma:

P Partition the teams into 10m groups, each of size m + 1.
» Group 1 := the m+ 1 teams placed on G’.

» DRR schedule consists of batch of intra-group games (with 2m
games) followed by batch of inter-group games.

» Intra-group games: All groups, except Group 1, are
located at v and incur zero cost. Each team in Group 1
plays m Away-games and incurs cost < (2¢max)m = 8m
(Cmax = maXeEG’(Ce) = 4‘)-

Group 1 has (m+ 1) teams, hence, total cost
< (2¢max)m(m + 1) = 8m(m + 1).



Bhattacharyya/BCC construction: uTTP is NP-hard: Proof of lemma

» Partition the teams into 10m groups, each of size m + 1.
Group 1 := the m + 1 teams placed on G’.

» DRR schedule consists of batch of intra-group games (with 2m
games) followed by batch of inter-group games.

» Intra-group games:

» Inter-group games, Part 1: Construct an “outer” Single
Round-Robin (SRR) schedule on the 10m groups. Each
“outer” game between Groups i, j maps to (m+ 1) games
where each team of Group i plays against all (m + 1) teams
of Group j (i.e., edge-coloring of Kimi1.m+1 by (m+1)
colors), and
Group i plays @Home <= each team of Group i plays @Home.
Cost analysis: Assume: Group 1 plays none of its games
©@Home (each of the (m + 1) teams of Group 1 visits
vertex u, plays all its games at u, then returns to G).

Total cost: < (m+ 1)2w,.
» Inter-group games, Part 2:



Bhattacharyya/BCC construction: uTTP is NP-hard
Lemma: H has a feasible TTP solution of cost < 20m(m + 1)cK.
Proof of lemma:

» Partition the teams into 10m groups, each of size m + 1.
» Group 1 := the m+ 1 teams placed on G'.

» DRR schedule consists of batch of intra-group games (with 2m
games) followed by batch of inter-group games.

» Intra-group games:

» Inter-group games, Part 1:

> Inter-group games, Part 2: Similar to Part 1, but flip
Home-Away designations for the “outer” Single
Round-Robin (SRR) schedule on the 10m groups.
Cost analysis: Assume: Group 1 plays Home (each of the
teams at vertex u visits the vertices of G’ according to an
optimal TSP tour of G’, then returns to u).
Cost incurred by each group at vertex u:
(m+1)2w, + (m+ 1)cK — cK.
Total cost: < (10m — 1)(2w,(m + 1) + mcK).



Bhattacharyya/BCC construction: uTTP is NP-hard

Lemma
H has a feasible TTP solution of cost < 20m(m + 1)cK.
Proof of lemma:
» Partition the teams into 10m groups, each of size m + 1.
» Group 1 := the m+ 1 teams placed on G’.
» DRR schedule consists of batch of intra-group games (with

2m games) followed by batch of inter-group games.
» Intra-group games:
Cost <8m(m+1).
» Inter-group games, Part 1:
Cost < (m+ 1)2w,.
» Inter-group games, Part 2:
Cost < (10m — 1)(2wy(m + 1) + mcK).
» Claim: Cost of DRR schedule

< 8m(m+1)+ ((m+1)2wu+(10m—1)((m+1)2wu+mcK)) :



Bhattacharyya/BCC construction: uTTP is NP-hard

Recall: Input graph G has edge-costs of 1 or 2.
K := cost of an optimal TSP tour of G.

Lemma
H has a feasible TTP solution of cost < 20m(m + 1)cK.

Lemma
Suppose the cost of an optimal TSP tour of G is > K + 1.
Then, any feasible TTP solution of H has cost > 20m(m+ 1)cK.



L-reductions ... for APX-hardness

L-reduction from optimization problem [1; to optimization
problem [15:

Intent (informal):
a-approximation algorithm = f(«)-approximation algorithm
for I, for M4,

for some linear function f()

Suppose there is an L-reduction from [1; to l,, and

suppose [1; has no (-approximation algorithm (for some 5 > 1),
then

M, has no f~1(3)-approximation algorithm.



L-reductions ... for APX-hardness

L-reduction from optimization problem [1; to optimization
problem [15:

Definition
Given two optimization problems [1; and [1,, we say we have an
L-reduction from [1; to [, if for some parameters a, b > 0:
1. For each instance /; of [1; we can compute in polynomial
time an instance /, of I,.
3. Given a solution of value V, to /, we can compute in
polynomial time a solution of value V; to /; such that

|OPT(L) — Vi| < b- |OPT(h) — V|



L-reductions ... for APX-hardness
Fact:

>

>
>

Suppose there is an L-reduction, with parameters a, b, from
minimization problem [1; to minimization problem [1,, and

suppose there is an a-approximation algorithm for [1,,

then there is an (1 + ab(« — 1))-approximation algorithm for
M.

Instance /; of Ty — instance /, of IM5.
Compute solution S, to h of value V, < a OPT(h).
“Map” S, to a solution S; of /; of value Vi such that

Vi < OPT(h) + b(Va — OPT(h))
< OPT(h) + b(a OPT(k) — OPT(k))
= OPT(h)(1 + ab(a — 1))



TTP is APX-hard: L-reduction from m(m + 1)®TSP(1,2)

» L-reduction from I1; to My, where

» [y is the “m(m + 1)®TSP" on input graph G which has
edge-costs of 1 or 2.
OBJ = m(m + 1) times cost of an optimal TSP tour of G,
where m=c(n—1)+1and n=|V(G)|.

» [, is TTP on the graph H.

(Recall: G’ is the metric-completion of G(©) where G(9) s

the “one-sum” of ¢ > 5 copies of G with common vertex v.
H is obtained from G’ by adding a new vertex u, adding the
edges ux, for all vertices x of G’, and taking the cost of each

new edge to be w, = (cK — 1)/2.)



TTP is APX-hard: L-reduction from m(m + 1)®TSP(1,2)

» L-reduction from Iy to My, where

> My is the “m(m+ 1)®TSP” on G (edge-costs € {1,2}).
OBJ = m(m + 1) times cost of an optimal TSP tour of G.

» [1, is TTP on the graph H.

Recall the three conditions for an L-reduction with parameters
a,b>0:

1. For each instance /; of 1; we can compute in polynomial
time an instance & of 5.

2. OPT(k) < a- OPT(h).

3. Given a solution of value V, to /,, we can compute in
polynomial time a solution of value V; to /; such that

|IOPT(L) — Vi| < b- |OPT(k) — Vs|



TTP is APX-hard: L-reduction from m(m + 1)®TSP(1,2)

» L-reduction from [1; to 5, where

> My is the “m(m+ 1)®TSP” on G (edge-costs € {1,2}).
OBJ = m(m + 1) times cost of an optimal TSP tour of G.

» [, is TTP on the graph H.

Recall the third conditions for an L-reduction with parameters

a,b>0:
Given a solution of value V5 to /,, we can compute in polynomial
time a solution of value V; to /; such that

IOPT(L) — Vi| < b- [OPT(h) — V|

Lemma

Given a TTP schedule S of H with additive slack A (i.e.,
cost(S) — OPTrrp(H) < A),

one can construct a TSP tour T of G with additive slack < 10A
(i.e., cost(T) — OPT1sp(G) < 10A).



TTP is APX-hard: L-reduction from m(m + 1)®TSP(1,2)
» L-reduction from [1; to I,, where
> My is the “m(m+ 1)®TSP” on G (edge-costs € {1,2}).
OBJ = m(m + 1) times cost of an optimal TSP tour of G.

» [l is TTP on the graph H.

Lemma

Given a TTP schedule S of H with additive slack A (i.e.,

COSt(S) - OPTTTP(H) S A),

one can construct a TSP tour T of G with additive slack < 10A

(i.e., cost(T) — OPT1sp(G) < 10A).

Claim

Given an optimal TTP schedule S of H,

one can construct a TSP tour T of G that is optimal.

Claim

Given a non-optimal TTP schedule S of H,

one can construct a TSP tour T of G such that

cost(T) — OPT1sp(G) < 10 (cost(S) — OPT rrp(H)).



TTP: Results & Open Question

» (BCC) (unrestricted) TTP is APX-hard.
(= A PTAS, assuming P # NP)

» (Open) 3-restricted TTP is APX-hard?
(Thielen, Westphal TCS'11) proved 3-restricted TTP is
NP-hard.

» Prove Hardness-of-Approximation results for other variants
of TTP.

» Design improved approximation algorithms for variants of
TTP.

» Concorde-Plus to optimally solve TTP instances with 100
teams?



