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Abstract

We prove that every (6k + 2`, 2k)-connected simple graph contains
k rigid and ` connected edge-disjoint spanning subgraphs. This implies
a theorem of Jackson and Jordán [4] and a theorem of Jordán [6] on
packing of rigid spanning subgraphs. Both these results are generaliza-
tions of the classical result of Lovász and Yemini [9] saying that every
6-connected graph is rigid for which our approach provides a transparent
proof. Our result also gives two improved upper bounds on the connec-
tivity of graphs that have interesting properties: (1) every 8-connected
graph packs a spanning tree and a 2-connected spanning subgraph; (2)
every 14-connected graph has a 2-connected orientation.

1 Definitions

Let G = (V,E) be a graph. We will use the following connectivity concepts. G
is called connected if for every pair u, v of vertices there is a path from u to v
in G. G is called k-edge-connected if G− F is connected for all F ⊆ E with
|F | ≤ k − 1. G is called k-connected if |V | > k and G − X is connected for
all X ⊂ V with |X| ≤ k − 1. For a pair of positive integers (p, q), G is called
(p, q)-connected if G − X is (p − q|X|)-edge-connected for all X ⊂ V . By
Menger theorem, G is (p, q)-connected if and only if for every pair of disjoint
subsets X,Y of V such that Y 6= ∅, X ∪ Y 6= V ,

dG−X(Y ) ≥ p− q|X|. (1)

For a better understanding we mention that G is (6, 2)-connected if G is 6-edge-
connected, G − v is 4-edge-connected for all v ∈ V and G − u − v is 2-edge-
connected for all u, v ∈ V. It follows from the definitions that k-edge-connectivity
is equivalent to (k, k)-connectivity. Moreover, since loops and parallel edges do
not play any role in vertex connectivity, every k-connected graph contains a
spanning (k, 1)-connected simple subgraph. Note also that (k, 1)-connectivity
implies (k, q)-connectivity for all q ≥ 1. (Remark that this connectivity concept
is (very slightly) different from the one introduced by Kaneko and Ota [7] since
p is not required to be a multiple of q.)
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Let D = (V,A) be a directed graph. D is called strongly connected if for
every ordered pair (u, v) ∈ V × V of vertices there is a directed path from u
to v in D. D is called k-arc-connected if G− F is strongly connected for all
F ⊆ A with |F | ≤ k − 1. D is called k-connected if |V | > k and G − X is
strongly connected for all X ⊂ V with |X| ≤ k − 1.

For a set X of vertices and a set F of edges, denote GF the subgraph of G
on vertex set V and edge set F, that is GF = (V, F ) and E(X) the set of edges
of G induced by X. Denote R(G) the rigidity matroid of G on ground-set E
with rank function rR (for a definition we refer the reader to [9]). For F ⊆ E,
by a theorem of Lovász and Yemini [9],

rR(F ) = min
∑
X∈H

(2|X| − 3), (2)

where the minimum is taken over all collections H of subsets of V such that
{E(X) ∩ F,X ∈ H} partitions F .

Remark 1. If H achieves the minimum in (2), then each X ∈ H induces a
connected subgraph of GF .

We will say that G is rigid if rR(E) = 2|V | − 3.

2 Results

Lovász and Yemini [9] proved the following sufficient condition for a graph to
be rigid.

Theorem 1 (Lovász and Yemini [9]). Every 6-connected graph is rigid.

Jackson and Jordán [4] proved a sharpenning of Theorem 1.

Theorem 2 (Jackson and Jordán [4]). Every (6, 2)-connected simple graph is
rigid.

Jordán [6] generalized Theorem 1 and gave a sufficient condition for the
existence of a packing of rigid spanning subgraphs.

Theorem 3 (Jordán [6]). Let k ≥ 1 be an integer. Every 6k-connected graph
contains k edge-disjoint rigid spanning subgraphs.

The main result of this paper contains a common generalization of Theorems
2 and 3. It provides a sufficient condition to have a packing of rigid spanning
subgraphs and spanning trees.

Theorem 4. Let k ≥ 1 and ` ≥ 0 be integers. Every (6k + 2`, 2k)-connected
simple graph contains k rigid spanning subgraphs and ` spanning trees pairwise
edge-disjoint.

Note that in Theorem 2, the connectivity condition is the best possible
since there exist non-rigid (5, 2)-connected graphs (see [9]) and non-rigid (6, 3)-
connected graphs, for an example see Figure 1.
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Figure 1: A (6, 3)-connected non-rigid graphG = (V,E). The collectionH of the
four grey vertex-sets partitions E. Hence, by (2), RG(E) ≤

∑
X∈H(2|X|− 3) =

4(2× 8− 3) = 52 < 53 = 2× 28− 3 = 2|V | − 3. Thus G is not rigid. The reader
can easily check that G is (6, 3)-connected.

Let us see some corollaries of the previous results. Theorem 4 applied for
k = 1 and ` = 0 provides Theorem 2. Since 6k-connectivity implies (6k, 2k)-
connectivity of a simple spanning subgraph, Theorem 4 implies Theorem 3.

One can easily derive from the rank function of R(G) that rigid graphs with
at least 3 vertices are 2-connected (see Lemma 2.6 in [5]). Thus, Theorem 4
gives the following corollary.

Corollary 1. Let k ≥ 1 and ` ≥ 0 be integers. Every (6k + 2`, 2k)-connected
simple graph contains k 2-connected and ` connected edge-disjoint spanning sub-
graphs.

Corollary 1 allows us to improve two results of Jordán. The first one deals
with the following conjecture of Kriesell, see in [6].

Conjecture 1 (Kriesell). For every positive integer λ there exists a (smallest)
f(λ) such that every f(λ)-connected graph G contains a spanning tree T for
which G− E(T ) is λ-connected.

As Jordán pointed out in [6], Theorem 3 answers this conjecture for λ = 2
by showing that f(2) ≤ 12. Corollary 1 applied for k = 1 and ` = 1 directly
implies that f(2) ≤ 8.

Corollary 2. Every 8-connected graph G contains a spanning tree T such that
G− E(T ) is 2-connected.

The other improvement deals with the following conjecture of Thomassen
[10].

Conjecture 2 (Thomassen [10]). For every positive integer λ there exists a
(smallest) g(λ) such that every g(λ)-connected graph G has a λ-connected ori-
entation.

By applying Theorem 3 and an orientation result of Berg and Jordán [1],
Jordán proved in [6] the conjecture for λ = 2 by showing that g(2) ≤ 18.
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Corollary 1 allows us to prove a general result that implies g(2) ≤ 14. For this
purpose, we use a result of Király and Szigeti [8].

Theorem 5 (Király and Szigeti [8]). An Eulerian graph G = (V,E) has an
Eulerian orientation D such that D − v is k-arc-connected for all v ∈ V if and
only if G− v is 2k-edge-connected for all v ∈ V .

Corollary 1 and Theorem 5 imply the following corollary which gives the
claimed bound for k = 1.

Corollary 3. Every simple (12k+2, 2k)-connected graph G has an orientation
D such that D − v is k-arc-connected for all v ∈ V .

Proof. Let G = (V,E) be a simple (12k + 2, 2k)-connected graph. By Theorem
5 it suffices to prove that G contains an Eulerian spanning subgraph H such
that H − v is 2k-edge-connected for all v ∈ V . By Corollary 1, G contains 2k
2-connected spanning subgraphs Hi = (V,Ei), i = 1, . . . , 2k and a spanning tree
F pairwise edge-disjoint. Define H ′ = (V,∪2k

i=1Ei). For all i = 1, . . . , 2k, since
Hi is 2-connected, Hi − v is connected; hence H ′ − v is 2k-edge-connected for
all v ∈ V . Denote T the set of vertices of odd degree in H ′. We say that F ′ is a
T -join if the set of odd degree vertices of GF ′ coincides with T. It is well-known
that the connected graph F contains a T -join. Thus adding the edges of this
T -join to H ′ provides the required spanning subgraph of G.

Finally we mention that the following conjecture of Frank, that would give a
necessary and sufficient condition for a graph to have a 2-connected orientation,
would imply that g(2) ≤ 4.

Conjecture 3 (Frank [3]). A graph has a 2-connected orientation if and only
if it is (4, 2)-connected.

3 Proofs

To prove Theorem 4 we need to introduce two other matroids on the edge set
E of G. Denote C(G) the circuit matroid of G on ground-set E with rank
function rC given by (3). Let n be the number of vertices in G, that is n = |V |.
For F ⊆ E, denote c(GF ) the number of connected components of GF , it is
well known that,

rC(F ) = n− c(GF ). (3)

To have k rigid spanning subgraphs and ` spanning trees pairwise edge-
disjoint in G, we must find k basis in R(G) and ` basis in C(G) pairwise disjoint.
To do that we will need the following matroid. For k ≥ 1 and ` ≥ 0, define
Mk,`(G) as the matroid on ground-set E, obtained by taking the matroid union
of k copies of the rigidity matroid R(G) and ` copies of the circuit matroid C(G).
Let rMk,` be the rank function of Mk,`(G). By a theorem of Edmonds [2], for
the rank of matroid unions,

rMk,`
(E) = min

F⊆E
krR(F ) + `rC(F ) + |E \ F |. (4)

In [6], Jordán used the matroid Mk,0(G) to prove Theorem 3 and pointed
out that using Mk,`(G) one could prove a theorem on packing of rigid spanning
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subgraphs and spanning trees. We tried to fulfill this gap by following the
proof of [6] but we failed. To achieve this aim we had to find a new proof
technique. Let us first demonstrate this technique by giving a transparent proof
for Theorems 1 and 2.

Proof of Theorem 1. By (2), there exists a collection G of subsets of V such
that {E(X), X ∈ G} partitions E and rR(E) =

∑
X∈G(2|X|−3). If V ∈ G then

rR(E) ≥ 2|V | − 3 hence G is rigid. So in the following we may assume that
V /∈ G.

Let H = {X ∈ G : |X| ≥ 3} and F =
⋃

X∈H E(X). We define, for X ∈ H,
the border of X as XB = X ∩ (∪Y ∈H−XY ) and the proper part of X as XI =
X \XB and H′ = {X ∈ H : XI 6= ∅}.

Since every edge of F is induced by an element of H, for X ∈ H′, by
definition of XI , no edge of F contributes to dG−XB

(XI); and for a vertex
v ∈ V − V (H), no edge of F contributes to dG(v). Thus, since for X ∈ H′,
XI 6= ∅ and XI ∪ XB = X 6= V , by 6-connectivity of G, we have |E \
F | ≥ 1

2 (
∑

X∈H′ dG−XB (XI) +
∑

v∈V−V (H) dG(v)) ≥ 1
2 (
∑

X∈H′(6 − |XB |) +∑
v∈V−V (H) 6) ≥ 3|H′| −

∑
X∈H′ |XB |+ 3(|V | − |V (H)|).

Since for X ∈ H \ H′, |XB | = |X| ≥ 3, we have
∑

X∈H(2|X| − 3) =∑
X∈H 2|X| − 3|H| + 3|H′| − 3|H′| ≥

∑
X∈H 2|X| −

∑
X∈H\H′ |XB | − 3|H′|.

Since G is simple, by Remark 1 every X ∈ G of size 2 induces exactly one
edge. Hence, by the above inequalities, we have

∑
X∈G(2|X|−3) =

∑
X∈H(2|X|−

3) + |E \ F | ≥
∑

X∈H 2|X| −
∑

X∈H |XB |+ 3(|V | − |V (H)|) = (
∑

X∈H 2|XI |+∑
X∈H |XB | − 2|V (H)|) + (|V | − |V (H)|) + 2|V | ≥ 2|V |.

To see the last inequality, let v ∈ V (H). Then v ∈ V and hence n−|V (H)| ≥
0. If v belongs to exactly one X ′ ∈ H, then v ∈ X ′

I ; so v contributes 2 in∑
X∈H 2|XI |. If v belongs to at least two X ′, X ′′ ∈ H, then v ∈ X ′

B and
v ∈ X ′′

B ; so v contributes at least 2 in
∑

X∈H |XB | and hence
∑

X∈H 2|XI | +∑
X∈H |XB | − 2|V (H)| ≥ 0.
Hence 2|V | − 3 ≥ rR(E) ≥ 2|V |, a contradiction.

Proof of Theorem 2. Note that in the lower bound on |E \ F |, dG−XB
(XI) ≥

6−|XB | can be replaced by dG−XB
(XI) ≥ 6−2|XB |, and the same proof works.

This means that instead of 6-connectivity, we used in fact (6, 2)-connectivity.

Proof of Theorem 4. Suppose that there exist integers k, ` and a graph G =
(V,E) contradicting the theorem. We use the matroid Mk,` defined above.
Choose F a smallest-size set of edges that minimizes the right hand side of (4).
By (2), we can defineH a collection of subsets of V such that {E(X)∩F,X ∈ H}
partitions F and rR(F ) =

∑
X∈H(2|X| − 3). Since G is a counterexample and

by (2) and (3),

k(2n−3)+`(n−1) > rMk,`
(E) = k

∑
X∈H

(2|X|−3)+`(n−c(GF ))+ |E \F |. (5)

By k ≥ 1, G is connected, thus, by (5), V /∈ H. Recall the notations, for X ∈ H,
XB = X ∩ (∪Y ∈H−XY ) and XI = X \ XB and the definition H′ = {X ∈
H : XI 6= ∅}. Denote K the set of connected components of GF intersecting no
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set of H′. By Remark 1, for X ∈ H′, X induces a connected subgraph of GF ,
thus a connected component of GF intersecting X ∈ H′ contains X and is the
only connected component of GF containing X. So by definition of K,

|H′| ≥ c(GF )− |K|. (6)

Let us first show a lower bound on |E \ F |.

Claim 1. |E \ F | ≥ k

(
3|H′| −

∑
X∈H′ |XB |+ 3|K|

)
+ `c(GF ).

Proof. For X ∈ H′, XI 6= ∅ and XI ∪ XB = X 6= V . Thus by (6k + 2`, 2k)-
connectivity of G, for X ∈ H′ and for K ∈ K,

dG−XB
(XI) ≥ (6k + 2`)− 2k|XB |, (7)

dG(K) ≥ 6k + 2`. (8)

Since every edge of F is induced by an element of H and by definition of XI , for
X ∈ H′, no edge of F contributes to dG−XB (XI). Each K ∈ K is a connected
component of the graph GF , thus no edge of F contributes to dG(K). Hence,
by (7), (8), (6) and ` ≥ 0, we obtain the required lower bound on |E \ F |,

|E \ F | ≥ 1

2

( ∑
X∈H′

dG−XB
(XI) +

∑
K∈K

dG(K)

)
≥ 1

2

(
(6k + 2`)|H′| − 2k

∑
X∈H′

|XB |+ (6k + 2`)|K|
)

≥ k

(
3|H′| −

∑
X∈H′

|XB |+ 3|K|
)
+ `

(
|H′|+ |K|

)
≥ k

(
3|H′| −

∑
X∈H′

|XB |+ 3|K|
)
+ `c(GF ).

Claim 2.
∑

X∈H\H′ |XB | ≥ 3(|H| − |H′|).

Proof. By definition of H′, XB = X for all X ∈ H\H′. So to prove the claim it
suffices to show that every X ∈ H satisfies |X| ≥ 3. Suppose there exists Y ∈ H
such that |Y | = 2. By Remark 1 and since G is simple, Y induces exactly one
edge e. Define F ′′ = F − e and H′′ = H− Y . Note that {E(X) ∩ F ′′, X ∈ H′′}
partitions F ′′, hence by (2) and the choice of H,

rR(F ′′) ≤
∑

X∈H′′

(2|X| − 3) = rR(F )− (2|Y | − 3) = rR(F )− 1. (9)

Note also that c(GF ′′) ≥ c(GF ), thus by (3) and ` ≥ 0,

`rC(F
′′) ≤ `rC(F ). (10)

Since |F ′′| < |F |, the choice of F implies that F ′′ doesn’t minimizes the right
hand side of (4). Hence by (9), (10), the definition of F ′′, |Y | = 2, and k ≥ 1,
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we have the following contradiction:

0 <

(
krR(F ′′) + `rC(F

′′) + |E \ F ′′|
)
−

(
krR(F ) + `rC(F ) + |E \ F |

)
= k

(
rR(F ′′)− rR(F )

)
+ `

(
rC(F

′′)− rC(F )

)
+

(
|E \ F ′′| − |E \ F |)

)
≤ −k + 0 + |{e}|
≤ 0.

To finish the proof we show the following inequality with a simple counting
argument.

Claim 3. 2|K|+
∑

X∈H 2|XI |+
∑

X∈H |XB | ≥ 2n.

Proof. Let v ∈ V . If v belongs to no X ∈ H, then {v} ∈ K and v contributes 2
in 2|K|. If v belongs to exactly one X ′ ∈ H, then v ∈ X ′

I and v contributes 2
in

∑
X∈H 2|XI |. If v belongs to at least two X ′, X ′′ ∈ H, then v ∈ X ′

B , v ∈ X ′′
B

and v contributes at least 2 in
∑

X∈H |XB |. The claim follows.

Thus we get, by Claims 1, 2 and 3,

k
∑
X∈H

(2|X| − 3) + |E \ F |+ `(n− c(GF ))

≥ k
∑
X∈H

2|X| − 3k|H|+ k

(
3|H′| −

∑
X∈H′

|XB |+ 3|K|
)
+ `c(GF ) + `(n− c(GF ))

≥ k

( ∑
X∈H

2|X| − 3|H|+ 3|H′| −
∑

X∈H′

|XB |+ 3|K|
)
+ `n

≥ k

( ∑
X∈H

2|X| −
∑
X∈H

|XB |+ 2|K|
)
+ `n

≥ k

(
2|K|+

∑
X∈H

2|XI |+
∑
X∈H

|XB |
)
+ `n

≥ 2kn+ `n.

By k ≥ 1 and ` ≥ 0, this contradicts (5).

Remark that the proof actually shows that if G is simple and (6k + 2`, 2k)-
connected and if F ⊆ E is such that |F | ≤ 3k+ `, then G′ = (V,E \F ) contains
k rigid spanning subgraphs and ` spanning trees pairwise edge disjoint.
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