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Abstract

We prove that every (6k + 2¢,2k)-connected simple graph contains
k rigid and ¢ connected edge-disjoint spanning subgraphs. This implies
a theorem of Jackson and Jordén [4] and a theorem of Jordén [6] on
packing of rigid spanning subgraphs. Both these results are generaliza-
tions of the classical result of Lovdsz and Yemini [9] saying that every
6-connected graph is rigid for which our approach provides a transparent
proof. Our result also gives two improved upper bounds on the connec-
tivity of graphs that have interesting properties: (1) every 8-connected
graph packs a spanning tree and a 2-connected spanning subgraph; (2)
every 14-connected graph has a 2-connected orientation.

1 Definitions

Let G = (V, E) be a graph. We will use the following connectivity concepts. G
is called connected if for every pair u, v of vertices there is a path from u to v
in G. G is called k-edge-connected if G — F' is connected for all F' C E with
|F| < k—1. G is called k-connected if |V| > k and G — X is connected for
all X C V with |X| < k — 1. For a pair of positive integers (p, q), G is called
(p, g)-connected if G — X is (p — ¢|X|)-edge-connected for all X C V. By
Menger theorem, G is (p, q)-connected if and only if for every pair of disjoint
subsets X, Y of V such that Y #0, X UY # V,

da—x(Y) > p—qlX]. (1)

For a better understanding we mention that G is (6, 2)-connected if G is 6-edge-
connected, G — v is 4-edge-connected for all v € V and G — u — v is 2-edge-
connected for all u, v € V. It follows from the definitions that k-edge-connectivity
is equivalent to (k, k)-connectivity. Moreover, since loops and parallel edges do
not play any role in vertex connectivity, every k-connected graph contains a
spanning (k, 1)-connected simple subgraph. Note also that (k, 1)-connectivity
implies (k, ¢)-connectivity for all ¢ > 1. (Remark that this connectivity concept
is (very slightly) different from the one introduced by Kaneko and Ota [7] since
p is not required to be a multiple of q.)



Let D = (V, A) be a directed graph. D is called strongly connected if for
every ordered pair (u,v) € V x V of vertices there is a directed path from u
to v in D. D is called k-arc-connected if G — F' is strongly connected for all
F C A with |F| < k—1. D is called k-connected if |V| > k and G — X is
strongly connected for all X C V with |X| <k — 1.

For a set X of vertices and a set F of edges, denote Gg the subgraph of G
on vertex set V and edge set F, that is Gp = (V, F) and E(X) the set of edges
of G induced by X. Denote R(G) the rigidity matroid of G on ground-set E
with rank function rg (for a definition we refer the reader to [9]). For F C E,
by a theorem of Lovasz and Yemini [9],

rr(F) =min Y (2|X] - 3), (2)
XeH

where the minimum is taken over all collections H of subsets of V such that
{E(X)NF, X € H} partitions F.

Remark 1. If H achieves the minimum in (2), then each X € H induces a
connected subgraph of Gp.

We will say that G is rigid if rg (E) = 2|V| — 3.

2 Results

Lovéasz and Yemini [9] proved the following sufficient condition for a graph to
be rigid.

Theorem 1 (Lovész and Yemini [9]). Every 6-connected graph is rigid.
Jackson and Jordén [4] proved a sharpenning of Theorem 1.
Theorem 2 (Jackson and Jorddn [4]). Every (6,2)-connected simple graph is
rigid.
Jorddn [6] generalized Theorem 1 and gave a sufficient condition for the

existence of a packing of rigid spanning subgraphs.

Theorem 3 (Jordédn [6]). Let k > 1 be an integer. Fvery 6k-connected graph
contains k edge-disjoint rigid spanning subgraphs.

The main result of this paper contains a common generalization of Theorems
2 and 3. It provides a sufficient condition to have a packing of rigid spanning
subgraphs and spanning trees.

Theorem 4. Let k > 1 and £ > 0 be integers. Every (6k + 2¢,2k)-connected
simple graph contains k rigid spanning subgraphs and £ spanning trees pairwise
edge-disjoint.

Note that in Theorem 2, the connectivity condition is the best possible
since there exist non-rigid (5, 2)-connected graphs (see [9]) and non-rigid (6, 3)-
connected graphs, for an example see Figure 1.



Figure 1: A (6, 3)-connected non-rigid graph G = (V, E'). The collection H of the
four grey vertex-sets partitions . Hence, by (2), Ra(E) <3 vy (2|1X[-3) =
4(2x8—-3) =52 <53 =2x28—3=2|V|—3. Thus G is not rigid. The reader
can easily check that G is (6, 3)-connected.

Let us see some corollaries of the previous results. Theorem 4 applied for
k =1 and ¢ = 0 provides Theorem 2. Since 6k-connectivity implies (6k, 2k)-
connectivity of a simple spanning subgraph, Theorem 4 implies Theorem 3.

One can easily derive from the rank function of R(G) that rigid graphs with
at least 3 vertices are 2-connected (see Lemma 2.6 in [5]). Thus, Theorem 4
gives the following corollary.

Corollary 1. Let k > 1 and £ > 0 be integers. Every (6k + 2¢,2k)-connected
simple graph contains k 2-connected and £ connected edge-disjoint spanning sub-
graphs.

Corollary 1 allows us to improve two results of Jordan. The first one deals
with the following conjecture of Kriesell, see in [6].

Conjecture 1 (Kriesell). For every positive integer A there exists a (smallest)
f(X) such that every f(\)-connected graph G contains a spanning tree T for
which G — E(T') is A-connected.

As Jordén pointed out in [6], Theorem 3 answers this conjecture for A = 2
by showing that f(2) < 12. Corollary 1 applied for k¥ = 1 and ¢ = 1 directly
implies that f(2) <8

Corollary 2. Every 8-connected graph G contains a spanning tree T' such that
G — E(T) is 2-connected.

The other improvement deals with the following conjecture of Thomassen
[10].

Conjecture 2 (Thomassen [10]). For every positive integer \ there exists a
(smallest) g(\) such that every g(\)-connected graph G has a A-connected ori-
entation.

By applying Theorem 3 and an orientation result of Berg and Jordéan [1],
Jordén proved in [6] the conjecture for A = 2 by showing that ¢g(2) < 18.



Corollary 1 allows us to prove a general result that implies ¢g(2) < 14. For this
purpose, we use a result of Kirdly and Szigeti [8].

Theorem 5 (Kirdly and Szigeti [8]). An Eulerian graph G = (V,E) has an
Eulerian orientation D such that D — v is k-arc-connected for all v € V if and
only if G — v is 2k-edge-connected for all v € V.

Corollary 1 and Theorem 5 imply the following corollary which gives the
claimed bound for k = 1.

Corollary 3. FEuvery simple (12k + 2, 2k)-connected graph G has an orientation
D such that D — v is k-arc-connected for allv € V.

Proof. Let G = (V, E) be a simple (12k 4 2, 2k)-connected graph. By Theorem
5 it suffices to prove that G contains an Eulerian spanning subgraph H such
that H — v is 2k-edge-connected for all v € V. By Corollary 1, G contains 2k
2-connected spanning subgraphs H; = (V, E;),i = 1,...,2k and a spanning tree
F pairwise edge-disjoint. Define H' = (V,U? E;). For all i = 1,...,2k, since
H; is 2-connected, H; — v is connected; hence H' — v is 2k-edge-connected for
all v € V. Denote T the set of vertices of odd degree in H'. We say that F’ is a
T-join if the set of odd degree vertices of G/ coincides with T'. It is well-known
that the connected graph F' contains a T-join. Thus adding the edges of this
T-join to H' provides the required spanning subgraph of G. ]

Finally we mention that the following conjecture of Frank, that would give a
necessary and sufficient condition for a graph to have a 2-connected orientation,
would imply that g(2) < 4.

Conjecture 3 (Frank [3]). A graph has a 2-connected orientation if and only
if it is (4,2)-connected.

3 Proofs

To prove Theorem 4 we need to introduce two other matroids on the edge set
E of G. Denote C(G) the circuit matroid of G on ground-set F with rank
function r¢ given by (3). Let n be the number of vertices in G, that isn = |V|.
For F C E, denote ¢(GF) the number of connected components of Gp, it is
well known that,

re(F)=n—c(Gp). (3)

To have k rigid spanning subgraphs and ¢ spanning trees pairwise edge-
disjoint in G, we must find k basis in R(G) and ¢ basis in C(G) pairwise disjoint.
To do that we will need the following matroid. For k£ > 1 and ¢ > 0, define
M. ¢(G) as the matroid on ground-set E, obtained by taking the matroid union
of k copies of the rigidity matroid R(G) and ¢ copies of the circuit matroid C(G).
Let 7aq,,, be the rank function of My ¢(G). By a theorem of Edmonds [2], for
the rank of matroid unions,

TMM(E):Igg%krR(F)+€rc(F)+|E\F|. (4)

In [6], Jorddn used the matroid My o(G) to prove Theorem 3 and pointed
out that using My, ;(G) one could prove a theorem on packing of rigid spanning



subgraphs and spanning trees. We tried to fulfill this gap by following the
proof of [6] but we failed. To achieve this aim we had to find a new proof
technique. Let us first demonstrate this technique by giving a transparent proof
for Theorems 1 and 2.

Proof of Theorem 1. By (2), there exists a collection G of subsets of V' such
that {£(X), X € G} partitions £ and rr(E) = Yy 5(2[X|—3). If V € G then
rr(E) > 2|V| — 3 hence G is rigid. So in the following we may assume that
Vég.

Let H={X € G:|X| >3} and F = Jyy E(X). We define, for X € H,
the border of X as Xp = X N (Uyen—xY) and the proper part of X as X; =
X\ Xpand H' ={X eH: X;#0}.

Since every edge of F is induced by an element of H, for X € H', by
definition of X, no edge of F contributes to dg_x,(Xr); and for a vertex
v € V —V(H), no edge of F contributes to dg(v). Thus, since for X € H/,
Xr # 0 and X; UXp = X # V, by 6-connectivity of G, we have |E \
F|l = %(erw da—x,(X1) + Zveva(y) da(v)) = %(ZXGH’(G - |Xsl) +
2vevovin 0) Z 3IH| = Xxeq Xl +3(IV] = [V(H)]).

Since for X € H\ H', |Xp| = |X| > 3, we have > 42| X] - 3) =
Doxen 2XT = 3H| + 31H| = 31H!| = Xy 2X| = Xxera [XBl = 3[H].

Since G is simple, by Remark 1 every X € G of size 2 induces exactly one
edge. Hence, by the above inequalities, we have » (2| X[=3) = D x4 (2] X[~
B FIENFI = xen 2 X = Xxen | Xpl +3(V] = [V(H)]) = (X xen 21 X1] +
Yoxen Xl =2lVA)) + (VI = VA +2[V] = 2|V].

To see the last inequality, let v € V(#H). Then v € V and hence n— |V (H)| >
0. If v belongs to exactly one X’ € H, then v € X/; so v contributes 2 in
Y xen 21X1|. If v belongs to at least two X', X" € H, then v € X} and
v € Xp; so v contributes at least 2 in )y, |Xp| and hence )y 4, 2[X;| +
S wen Xl — 2V (H)| 2 0.

Hence 2|V| — 3 > rr(E) > 2|V|, a contradiction. |

Proof of Theorem 2. Note that in the lower bound on |E \ F|, dg—x,(X1) >
6 —| X | can be replaced by dg_x,(X1) > 6 —2|X |, and the same proof works.
This means that instead of 6-connectivity, we used in fact (6, 2)-connectivity. M

Proof of Theorem 4. Suppose that there exist integers k,¢ and a graph G =
(V,E) contradicting the theorem. We use the matroid My, defined above.
Choose F a smallest-size set of edges that minimizes the right hand side of (4).
By (2), we can define H a collection of subsets of V' such that {E(X)NF, X € H}
partitions I and rgr (F) = )y, (2|X| — 3). Since G is a counterexample and
by (2) and (3),

k(2n—3)+L(n—1) > rum, (B) =k Y (21X|-3)+L(n—c(GF))+|E\F|. (5)
XeH

By k > 1, G is connected, thus, by (5), V ¢ H. Recall the notations, for X € H,
X =XnN (UYE”H—XY) and X; = X \ Xp and the definition H' = {X €
H : X1 # 0}. Denote K the set of connected components of G intersecting no



set of H'. By Remark 1, for X € H’, X induces a connected subgraph of G,
thus a connected component of G intersecting X € H’ contains X and is the
only connected component of G containing X. So by definition of K,

[H'| > e(Gr) = IK|. (6)
Let us first show a lower bound on |E \ F|.
Claim 1. |E\ F| > k(3|7-l’ =Y xen | XBl+ 3|IC> + le(GF).

Proof. For X € H', X; # () and X; U Xp = X # V. Thus by (6k + 2¢, 2k)-
connectivity of G, for X € H' and for K € K,

da-xp5(XT)
da(K)

> (6k+20) — 2k| X 5|, (7)
> 6k + 20 (8)
Since every edge of F' is induced by an element of H and by definition of X7, for
X € H’, no edge of F contributes to dg_x,(Xs). Each K € K is a connected
component of the graph G, thus no edge of F' contributes to dg(K). Hence,
by (7), (8), (6) and ¢ > 0, we obtain the required lower bound on |E \ F]|,

1
[ENF| = 2( Z de-xp(Xr) + Z dG(K)>
XeH KeK
1 i
> S| (6F+ 20 - 2k > |Xp|+ (6 +20)|K|
XeH!
> k(3|7-t’|— Z |XB|+3|K> +£(|H’|+|/C|)
XeH!
> k(3|7-t’|— > |XB|—|—3|IC> + Le(Gr). n
XeH

Claim 2. 3 vy [ X8| = 3([H| = [H]).

Proof. By definition of H', Xp = X for all X € H\H'. So to prove the claim it
suffices to show that every X € H satisfies | X| > 3. Suppose there exists Y € H
such that |Y| = 2. By Remark 1 and since G is simple, ¥ induces exactly one
edge e. Define F” = F —e and H” = H — Y. Note that {E(X)NF", X € H"}
partitions F”’, hence by (2) and the choice of H,

rr(F") < Y (21X|=3) = rg(F) = (2Y| = 3) = rr(F) — 1. (9)
XeH"”

Note also that ¢(Gp) > ¢(GF), thus by (3) and ¢ > 0,
lre(F") < tre(F). (10)

Since |F"| < |F|, the choice of F' implies that F” doesn’t minimizes the right
hand side of (4). Hence by (9), (10), the definition of F”, |Y| =2, and k > 1,



we have the following contradiction:
0 < (krR(F”) +lre(F") + |E\ F”|) - (krR(F) +lre(F)+ |E\ F|>

= k(rR(F”) TR(F)> +f(7’c(F") - TC(F)> + (|E\FN - |E\F|)>

—k+ 0+ |{e}]

<
< 0. n

To finish the proof we show the following inequality with a simple counting
argument.

Claim 3. 2/K| + 3y oy 21X1| + S en | X 5] > 20

Proof. Let v € V. If v belongs to no X € H, then {v} € K and v contributes 2
in 2|K|. If v belongs to exactly one X’ € H, then v € X} and v contributes 2
in ) yey 21X1|. If v belongs to at least two X', X" € H, then v € X,v € X3
and v contributes at least 2 in )y, [Xp|. The claim follows. [ |

Thus we get, by Claims 1, 2 and 3,

kY @2IX|=3)+ |[E\ F|+n—c(Gr))

XeH
>k Z 2| X| — 3k|H| + k<3H’| - Z | Xp|+ 3|IC|> +le(Gr) +£4(n — c(GF))
XeH XeH

> k( Z 21X | —3|H|+ 3|H'| — Z | XB| +3IC|> +In

XeH XeH’
> k( > 2IX| - > X5 +2|/c> +¢n

XeH XeH
> k<2|IC| + 32X+ > |XB|> +tn

XeH XeH

> 2kn + In.
By k> 1 and £ > 0, this contradicts (5). [ |

Remark that the proof actually shows that if G is simple and (6k + 2¢, 2k)-
connected and if F' C E is such that |F| < 3k+/¢, then G’ = (V, E\ F) contains
k rigid spanning subgraphs and ¢ spanning trees pairwise edge disjoint.
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