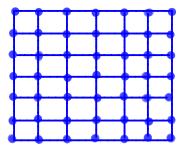
Graph Minors Structure Theorem

Overview

Note: We usually consider H=KE.

G has tree-width s k iff G can be obtained from a set of graphs each with at most k+1 vertices via clique-sams.

Grid Theorem: If tree-width (G) > f(k), then G has a kxk-grid minor.



Equivalently: Let H be a planar graph. If G has no H-minor, then treewidth (G) \$ f(H).

Tangles.

- If J is a tangle of order k in G then each separation of order < k has a unique J-small side, no three J-small sides cover G, and
 - no J-small side is spanning.

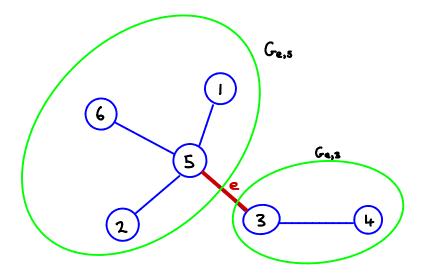
Duality Theorem: If G has tree-width > 10k, then G has a tangle of order k.

Lemma: Kg(X) is the rank-function of a matroid on V(G).

Tree of tangles.

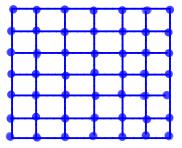
Let J.,..., Jn denote the tangles of order k.

Theorem. There is a tree-decomposition (T,B) with $V(T) = \{1,...,n\}$ such that, for each edge e=ij of T, $(Ge,i, Ge,j) \in T_j$ and $(Ge,j, Ge,i) \in T_i$.

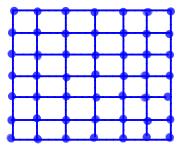


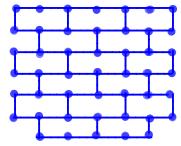
Grids from tangles.

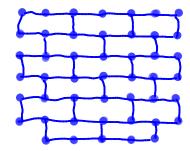
Grid Theorem (refined.) If $Ord(J) \ge f(k)$, then G has a kxk-grid-minor that is controlled by J.



Gridworks







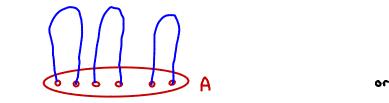
minor

subgraph

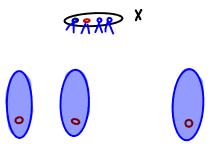
Key Tools.

Gallai's A-Paths Theorem. If A is a set of vertices in a graph G, then either

(1) there exist k disjoint A-paths,



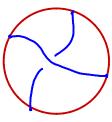
(2) there exists X = V(G) with 1X1<2k such that GX has no A-paths.



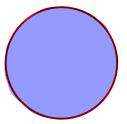
Key Tools.

The Two-Path Theorem: If C is a cycle in a graph G=(KE) then either

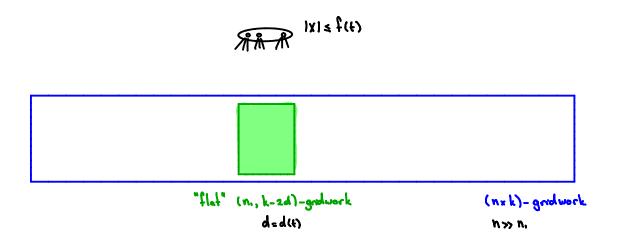
(1) there exist a disjoint pair of paths that cross on C, or



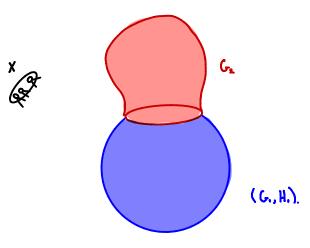
(2) G has a flat embedding in the disc with C in the boundary.



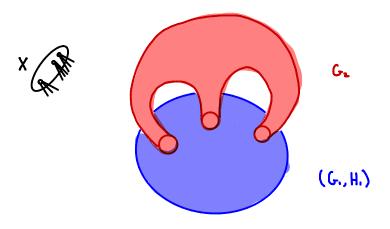
Local structure relative to a gridwork.



Weak Structure Theorem. Let G be a graph with no $H_{t-minor}$ and let T be a tangle of order = O(t,r), then there is a (G,T)-structure $(X, D, G_{t}, G_{t}, H_{t}, T_{t})$ where $D = \Sigma(0,0;1)$ is a disc, $|X| \leq \xi(t)$, and T, is r-representative.

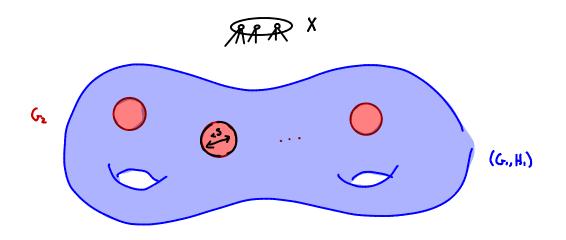


Corollary. Let G be a graph with no Ke-minor and let T be a tangle of order $\Rightarrow O(t,r)$, then there is a (G,T)-structure $(X, \Sigma, G, G_{2}, H, T,)$ where $\Sigma = \Sigma(0, 0; 1)$ is a sphere with $I_{S} \in \{t\}$ holes, $IXI = m \leq \xi(t)$, T, has representativity $r \Rightarrow r(t,m)$ and each vertex in X has n(t,m) neighbours in G. whose pairwise distance is at least d(t,m).



Graph Minors Structure Theorem. Let G be a graph with no $k_{i-minor}$ and let T be a tangle with order O(t,r). Then there is a localized (G, T)-structure $(X, \Sigma, G_i, G_i, H_i, T_i)$ such that: (i) $\Sigma = \Sigma(h, c; l)$ where $2h \cdot c \leq 2l^{2}$ and $l \leq l(t)$, (ii) T_i is r-representative, (iii) $|X| \leq m(t)$, and

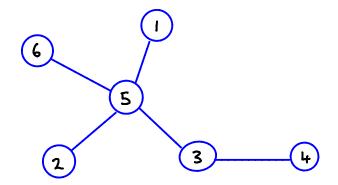
(iv) each hole has tension at most s(t).



Tree of tangles.

Let J.,..., Jn denote the tangles of order k.

Theorem. There is a tree-decomposition (T,B) with $V(T) = \{1,...,n\}$ such that, for each edge e=ij of T, $(Ge,i, Ge,j) \in T_j$ and $(Ge,j, Ge,i) \in T_i$.

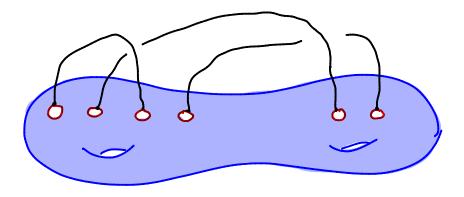


Finding a Ke-minor. (High genus.)

Theorem A. If $G \hookrightarrow \Sigma(h, c)$ where $2h+c \in \{2t^n, 2t^{-1}\}$ and G has representativity at least r(t), then G has a k_k -minor.

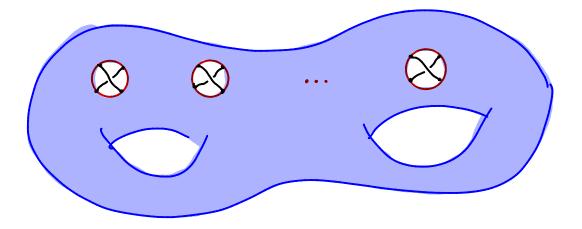
Finding a Ke-minor. (Many far apart long jumps)

Theorem B. Let (G_1, G_2) be a separation in a graph G, let $G_1 \leftarrow \Sigma = \Sigma(h, c; l)$ where $2h \leftarrow s \ge l^{\alpha}$, let Ji be an r-representative tangle in Gi where $r \ge r(l)$, and let $P_1, ..., P_m$ be disjoint paths in G2 with ends in 2m distinct holes where $m \ge m(l)$. Then G has a K_2 -minor.



Finding a Ky-minor. (Many far apart crossings)

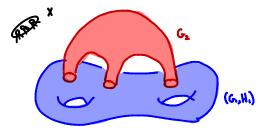
Theorem B. Let (6,6) be a separation in a graph G, let G. = Z=Z(h.c;1) with holes h.s., he where 2h+c \$ 2t² and 13/(1), let J. be an r-representative tangle in G. where r3 r(t), and let Pi,..., Pi, O1,..., Qi be disjoint paths where Pi and Qi cross on the hole hi for if \$ 1,..., \$?. Then G has a K+-minor.



Proof of the Graph Minors Structure Theorem.

Let G be a graph with no Ke-minor, let J be a tangle in G, and let
(X, E, G, Gz, H, J, J) be a (G, J)-structure where
$$Z = Z(h, c; J)$$
 such that:
(1) $2h + c \leq 2t^2$,
(2) $|X| = M \leq m(t)$,
(3) $J \leq J(2h + c, m, t)$,
(4) J, has representativity $r \geq r(2h + c, l, m, t)$,
(5) each vertex veX has $n(2h + c, l, m, t)$ neighbours in G whose pairwise distance
in (G, H, J) is at least $d(2h + c, l, m, t)$, and
(6) For each hole h of Σ either there is a path in G from h to another hole, or
there are two disjoint paths in G that cross on h and whose ends form a J,-independent set.

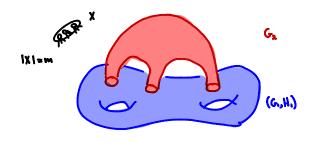
The functions are decreasing in aluc, m, and I and increasing in t.



Maximality Conditions

Among all such
$$(G, J)$$
-structures we choose (X, Z, G, G_1, H_1, J) such that:
(a) $2h+c$ is maximum
(b) m is maximum subject to (a), and
(c) I is maximum subject to (b).

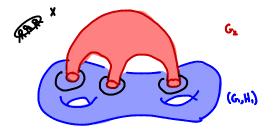
Note that: 2h+c < 2f^e-1, (by Theorem A) m < m(t), (by Theorem B) 1 < l(2h+c, m, t). (by the maximality Conditions)



Ilh,c;l)

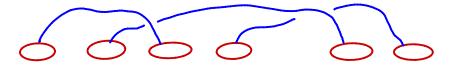
Disembedding.

Let $h_{1,...,h_{R}}$ be the holes in Σ , and for each $i \in \{1,...,1\}$, let C_i be a cycle at distance $\xi_i(2h+c,l,m,t)$ around hole h_i . Now let $(X, \Sigma, G'_i, G'_i, H'_i, J')$ be obtained from $(X, \Sigma, G, G_i, H_i, J_i)$ by disembedding (G_i, H_i) around each hole h_i out to C_i , so that C_i is in the boundary of h_i .



Theorem. Let $C_1, ..., C_k$ be cycles in a graph G. Then either (i) There exist distinct i, je $\{1,...,1\}$ such that $K_k(V(C_i), V(C_j)) \gg p$.

(2) There exist disjoint paths P.,.., R. with ends in 29 distinct cycles among C.,.., Ce,



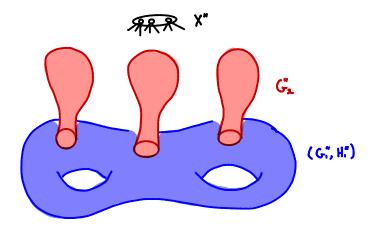
۲ کو

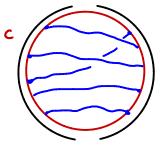
0r

(3) There exists $X \leq V(G)$ with $|X| \leq 4pq^2 + 2q$ such that there is no path in GXX that connects two of C1,..., Ce.

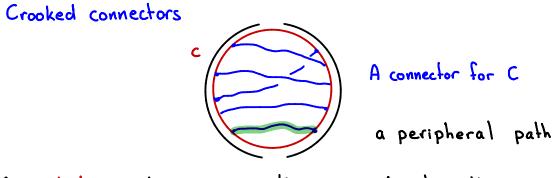
A localized (G,J)-structure.

By the theorem, there is a localized (G, J) - structure $(X^*, Z, G^*, G^*, H, J, J^*)$ such that $|X^*| \leq \widetilde{m}(2h+c, t)$ and J^* has representativity $\gg r^*(2h+g, m, l, t)$. We may assume that $C' = G^*, h$; is a cycle.

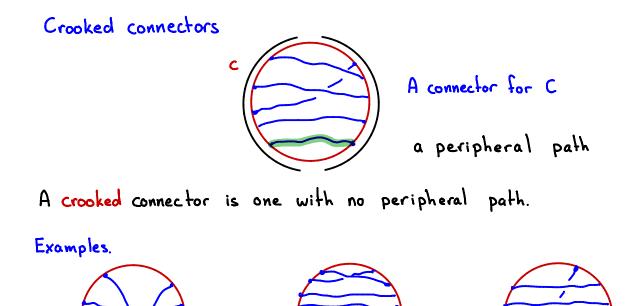




A connector for C



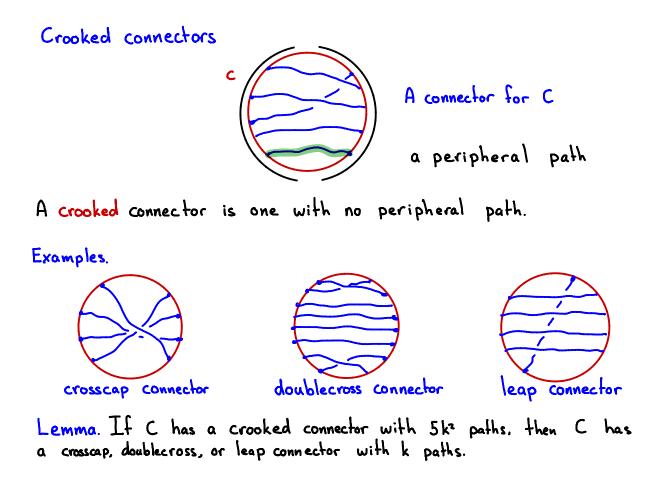
A crooked connector is one with no peripheral path.



crosscap connector

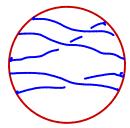
doublecross connector

leap connector

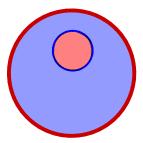


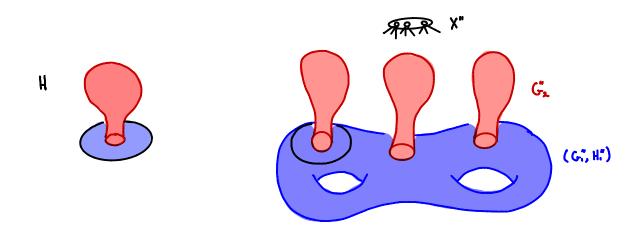
Connector Theorem. Let C be a cycle in a graph G and let k >> 7. Then either:

(1) (C, C) has a crooked connector with k paths, or

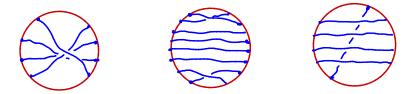


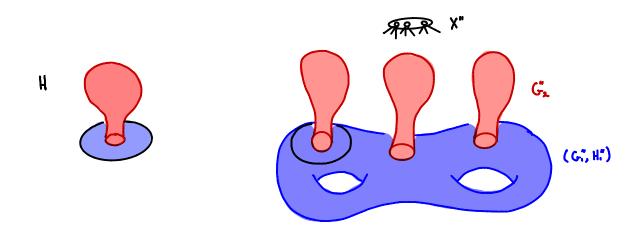
(2) (G,C) has a cylindrical embedding with tension < 19 k.



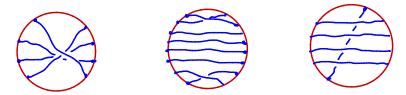


If (H, C) has a crooked connector with k(t) paths, then we get a better (C, J) - structure - contradiction.





If (H, C) has a crooked connector with k(t) paths, then we get a better (G, J) - structure - contradiction.



So, by the Connector Theorem, each hole in (X", Z, G", G", H", J") has tension at most 19kit).