CO749 Assignment 2 Due: October 19

Problem 1: Prove that the following are equivalent:

- (a) Each minor-closed class of graphs has only finitely many excluded minors (up to isomorphism).
- (b) There are only countably many minor-closed classes of graphs.
- (c) For any minor-closed class of graphs the membership testing problem is decidable.

Problem 2: Let \mathcal{T} be a tangle in a graph G, let $(G_1, G_2) \in \mathcal{T}$, and let $X = V(G_1 \cap G_2)$. Prove that, if $V(G_1)$ is \mathcal{T} -closed and $|X| = \kappa_{\mathcal{T}}(V(G_1))$, then X is a highly connected set in G_2 .

Problem 3: Let X and Y be vertex sets in a graph G and let P_1, \ldots, P_k be disjoint (X, Y)-paths in G where $P_1 = (v_0, v_1, \ldots, v_t)$. Show that, if $\kappa_{G-v_i}(X, Y) < k$ for each $i \in \{1, \ldots, t-1\}$, then there is a k-dissection (H_1, \ldots, H_t) such that

- (i) $X \subseteq V(H_1)$ and $Y \subseteq V(H_t)$, and
- (ii) $v_i \in V(H_i \cap H_{i+1})$ for each $i \in \{1, \dots, t-1\}$.

Problem 4: Let $t, n \in \mathbb{Z}_+$ and let k = k(t, n), where k(t, n) is a function of your choosing. Let $S_1, \ldots, S_t, T_1, \ldots, T_t$ be sets of vertices in a graph G such that $\kappa_G(S_i, T_i) \ge k$ for each $i \in \{i, \ldots, t\}$. Show that either

- (i) there are disjoint paths P_1, \ldots, P_t where P_i is an (S_i, T_i) -path for each $i \in \{1, \ldots, t\}$, or
- (ii) G has an $n \times n$ -grid-minor.

Problem 5: Let $n \in \mathbb{Z}_+$ and let k = k(n) be a function of your choosing. Let \mathcal{T} be a tangle in G and let H be a minor of G that is isomorphic to a square grid. Show that, if $\kappa_{\mathcal{T}}(V(H)) \ge k$, then G has a minor H' isomorphic to the $n \times n$ -grid such that V(H') is \mathcal{T} -independent.