CO749 Assignment 5 Due: November 30

Problem 1: Let G be a simple 3-connected graph, let H be a subgraph of G, and let (H_1, H_2) be a separation of H such that:

- (i) H is a subdivision of a simple 3-connected graph, and
- (ii) each vertex in $V(H_1) \cap V(H_2)$ has degree at least 3 in H.

Prove that, if G_1 is the union of H together with all bridges of (G, H) that have an attachment in $V(H_1) \setminus V(H_2)$, then G_1 is the subdivision of a simple 3-connected graph.

Problem 2: (This fixes a result that I made a mess of in the lectures.) Let H, G_1, \ldots, G_k be subgraphs of a graph G such that

- (i) each of H, G_1, \ldots, G_k is a subdivision of a simple 3-connected graph,
- (ii) for each $i \in \{1, ..., k\}$, the graph G_i is the union of H with some collection of bridges of (G, H),
- (iii) $G = G_1 \cup \cdots \cup G_k$, and
- (iv) $G_i \cup G_j$ is planar for any $i, j \in \{1, \ldots, k\}$.

Show that G is planar.

Problem 3: Let C be a circuit in a graph G, let P_1, \ldots, P_k be a crooked connector, and let Q_1 and Q_2 be disjoint attachments for P_1, \ldots, P_k . Show that either

- (i) there is a crooked connector P'_1, \ldots, P'_k with either $E(Q_1) \subseteq E(P'_1 \cup \cdots \cup P'_k) \subseteq E(P_1 \cup \cdots \cup P_k \cup Q_1)$ or $E(Q_2) \subseteq E(P'_1 \cup \cdots \cup P'_k) \subseteq E(P_1 \cup \cdots \cup P_k \cup Q_2)$, or
- (ii) there is a crooked connector P'_1, \ldots, P'_{k+1} with $E(Q_1 \cup Q_2) \subseteq E(P'_1 \cup \cdots \cup P'_{k+1}) \subseteq E(P_1 \cup \cdots \cup P_k \cup Q_1 \cup Q_2).$