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The number of disjoint cocircuits in a matroid is bounded by
its rank. There are, however, matroids with arbitrarily large
rank that do not contain two disjoint cocircuits; consider, for
example, M(Kn) and Un,2n . Also the bicircular matroids B(Kn) have
arbitrarily large rank and have no 3 disjoint cocircuits. We prove
that for each k and n there exists a constant c such that, if M is a
matroid with rank at least c, then either M has k disjoint cocircuits
or M contains a Un,2n-, M(Kn)-, or B(Kn)-minor.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

We prove the following theorem.

Theorem 1.1. There exists a function γ : N
2 → N such that, if M is a matroid with no Un,2n-, M(Kn)-, or

B(Kn)-minor and r(M) � γ (k,n), then M has k disjoint cocircuits.

Here M(Kn) is the cycle matroid of Kn , B(Kn) is the bicircular matroid of Kn (to be defined below),
and N denotes the set of positive integers.

A circuit-cover of a graph G is a set X ⊆ E(G) such that G − X has no circuits. Thus the maximum
number of (edge-)disjoint circuits in a graph is bounded by the minimum size of a circuit cover. This
bound is not tight (consider K4), but Erdös and Pósa in [3] proved that the maximum number of
disjoint circuits is qualitatively related to the minimum size of a circuit cover.

Erdös–Pósa Theorem 1.2. There is a function c : N → N such that, for any graph G, either G has k disjoint
circuits or G has a circuit-cover of size at most c(k).
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Let M be a matroid. A set X ⊆ E(M) intersects each circuit of M if and only if E(M) − X is
independent. So a minimal circuit-cover of M is a basis of M∗ and, hence, the minimum size of
a circuit-cover is r(M∗). Dually, the minimum size of a “cocircuit-cover” in a matroid M is equal
to r(M). The Erdös–Pósa Theorem was generalized to matroids by Geelen, Gerards, and Whittle [4]
who proved the following theorem.

Theorem 1.3. There exists a function c : N
2 → N such that, if M is a matroid with no U2,n- or M(Kn)-minor

and r(M) � c(k,n), then M has k disjoint cocircuits.

The result does not extend to all matroids; there exist matroids with arbitrarily large rank that
have no two disjoint cocircuits. Matroids with no two disjoint cocircuits are referred to as round.
Equivalently, a matroid is round if each of its cocircuits is spanning. The matroid Ur,n , where n � 2r−1
is round. Also, for any positive integer n, M(Kn) is a round matroid. Note that, for a simple graph G ,
the matroid M(G) is round if and only if G is a complete graph.

Let G = (V , E) be a loopless graph. Define a matroid B̃(G) on V ∪ E where V is a basis of B̃(G)

and, for each edge e = uv of G , place e freely on the line spanned by {u, v}. Now B(G) := B̃(G)\V
is the bicircular matroid of G . Bicircular matroids obtain their name from the graphical description
of their circuits; see [8, Prop. 12.1.6]. It is easy to verify that B̃(Kn) is round. The bicircular matroid
B(Kn) is not round, but it has no three disjoint cocircuits.

Our main theorem, Theorem 1.1, is a generalization of Theorem 1.3 and is, in some sense, best
possible. Note that the matroids in each of the classes{

M(Kn): n � 1
}
,

{
B(Kn): n � 1

}
, and

{
Un,2n: n � 1

}
have unbounded rank but they have a bounded number of disjoint cocircuits.

We hope that Theorem 1.1 will help in solving the following unpublished conjecture of Johnson,
Robertson, and Seymour: for any positive integer n there is a positive integer k such that, if M is a matroid
with branch-width at least k, then either M or M∗ has a minor isomorphic to either Un,2n or to the cycle
matroid or the bicircular matroid of an n × n grid.

Our proof of Theorem 1.1 is based, in part, on the techniques developed in [4]. We follow the
notation of Oxley [8].

2. Preliminaries

For a matroid M , we denote by Θ(M) the maximum number of disjoint cocircuits in M . So, M is
round if and only if Θ(M) = 1. The rank-deficiency of a set of elements X ⊆ E(M) is defM(X) = r(M)−
rM(X). We let Γ (M) denote the maximum rank-deficiency among the cocircuits of M . Therefore M is
round if and only if Γ (M) = 0. The two parameters Γ (M) and Θ(M) are related by the inequality

Θ(M) � Γ (M) + 1.

The following result lists hereditary properties of the two parameters; we omit the elementary proof.

Lemma 2.1. Let e be an element of a matroid M. Then

(i) Θ(M/e) � Θ(M) and Γ (M/e) � Γ (M).
(ii) if e is not a coloop, then Θ(M\e) � Θ(M) and Γ (M\e) � Γ (M).

The following lemma gives a sufficient condition for equality in (ii).

Lemma 2.2. Let X be a set of elements in a matroid M such that M|X is uniform and |X | � 2rM(X). Then, for
any e ∈ X, we have Θ(M\e) = Θ(M) and Γ (M\e) = Γ (M).

Proof. Let k = rM(X). Now consider any cocircuit C of M\e. Note that either C or C ∪{e} is a cocircuit
of M . We claim that: if C ∪ {e} is a cocircuit of M, then |X − (C ∪ {e})| � k − 1 and e ∈ clM(C). Indeed, if
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C ∪ {e} is a cocircuit of M , then E(M) − (C ∪ {e}) is a hyperplane and, hence, it can contain at most
k − 1 elements of X . Therefore |X ∩ C | � k and, hence, e ∈ clM(C), as claimed.

Suppose that C is a cocircuit of M\e with defM\e(C) = Γ (M\e). Now, there exists C ′ ∈ {C, C ∪ {e}}
such that C ′ is a cocircuit of M . By the claim, rM(C ′) = rM(C). Hence Γ (M) � defM(C ′) = defM\e(C) =
Γ (M\e). Then, by Lemma 2.1, we have Γ (M) = Γ (M\e).

Let (C1, . . . , Ct) be a maximum collection of disjoint cocircuits in M\e and, for each i ∈ {1, . . . , t},
let C ′

i ∈ {Ci, Ci ∪ {e}} be a cocircuit of M . By the claim, at most one of the sets (C ′
1, . . . , C ′

t) contains e.
Therefore, Θ(M) � t = Θ(M\e). Then, by Lemma 2.1, we have Θ(M) = Θ(M\e), as required. �

A matroid M is called a-simple if M is loopless and has no Uk,2k-restriction for k = 1,2, . . . ,a. The
following lemma is an immediate consequence of Lemma 2.2.

Lemma 2.3. Let M be a matroid and let a ∈ N. There is a spanning a-simple restriction N of M with Γ (N) =
Γ (M) and Θ(N) = Θ(M).

A simple GF(q)-representable rank-r matroid can be realized as a restriction of the projective ge-
ometry PG(r − 1,q). Thus, it has at most qr−1

q−1 elements. Kung [6] extended this bound to the class of
matroids with no U2,q+2-minor (the shortest line not representable over GF(q)).

Theorem 2.4 (Kung). Let q > 1 be an integer and let M be a simple rank-r matroid with no U2,q+2-minor.
Then ∣∣E(M)

∣∣ � qr − 1

q − 1
.

This bound is attained by a projective geometry when q is a prime power. Excluding uniform
matroids of larger rank will clearly not yield analogous bounds on the number of elements, so we
introduce a new measure of size.

Let a be a positive integer. An a-covering of a matroid M is a collection (X1, . . . , Xm) of subsets of
E(M) with E(M) = X1 ∪ · · · ∪ Xm and rM(Xi) � a for all i. The size of the covering is m. The a-covering
number of M , denoted τa(M), is the minimum size of an a-covering of M . Note that, for a matroid M ,
τ1(M) = |E(si(M))|, where si(M) denotes the simplification of M . If r(M) � a, then τa(M) � 1. Our
first lemma bounds the a-covering number for matroids with rank a + 1.

Lemma 2.5. For a,b ∈ N with b > a, if M is a matroid of rank a + 1 with no Ua+1,b-restriction, then

τa(M) �
(

b − 1

a

)
.

Proof. Let X ⊆ E(M) be maximal with M|X ∼= Ua+1,l . Then l � b − 1 and every point of M is spanned
by one of the rank-a flats of M|X . Hence τa(M) �

( l
a

)
�

(b−1
a

)
. �

The next result extends Kung’s Theorem, although our bound is not sharp.

Theorem 2.6. For a,b ∈ N with b > a, if M is a matroid of rank r � a with no Ua+1,b-minor, then

τa(M) �
(

b − 1

a

)r−a

.

Proof. The proof is by induction on r. The case r = a is trivial since (E(M)) is an a-covering of size 1.
Let r > a and assume that the result holds for rank r − 1. Let x be a non-loop element of M .

Then r(M/x) = r − 1 and by induction τa(M/x) �
(b−1

a

)r−1−a
. Note that τa+1(M) � τa(M/x) and, by

Lemma 2.5, τa(M) �
(b−1

a

)
τa+1(M). Therefore τa(M) �

(b−1
a

)r−a
, as required. �
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For a-simple matroids, the size is proportional to τa:

Lemma 2.7. There exists an integer-valued function σ(a) such that, if a � 1 and M is a-simple, then |E(M)| �
σ(a)τa(M).

Proof. Define σ by

σ(a) =
a∏

k=2

(
2k − 1

k − 1

)
.

Since M has no Uk,2k-restriction for k = 2, . . . ,a, Lemma 2.5 gives

τk−1(M) �
(

2k − 1

k − 1

)
τk(M), k = 2, . . . ,a.

Putting these together, we get |E(M)| = τ1(M) � σ(a)τa(M). �
Lemma 2.8. There exists an integer-valued function ε(n, r,a,b) such that, for a,b,n, r ∈ N with b > a, if
M is a rank-r matroid with no Ua+1,b-minor and |E(M)| � ε(n, r,a,b), then there exists an n-element set
X ⊆ E(M) such that rM(X) � a and M|X is uniform.

Proof. Let m0 = n and, for each i = 1, . . . ,n, let mi = (n−1
i−1

)
mi−1 + 1. Now let l = (b−1

a

)r−a
and let

ε(n, r,a,b) = mal. Let M be a rank-r matroid with no Ua+1,b-minor and with |E(M)| � ε(n, r,a,b).
By Theorem 2.6, M has an a-cover (X1, . . . , Xl). Since |E(M)| � mal, we may assume that |X1| � ma .
Let a′ � a be minimum such that there exists a rank-a′ set X ⊆ X1 with |X | = ma′ . If a′ = 0, then
M|X ∼= U0,n , so we may assume that a′ > 0. Now ma′ >

(n−1
a′−1

)
ma′−1 so, τa′−1(M|X) >

(n−1
a′−1

)
. Then, by

Lemma 2.5, M|X contains a Ua′,n-restriction. �
3. Building density

The first step in the proof of the main theorem is to show that a matroid of large enough rank has
either k disjoint cocircuits or a large minor that is nearly round.

Lemma 3.1. Let g : N → N be a non-decreasing function. There exists a function f g : N → N such that, for
any k ∈ N, if M is a matroid with r(M) � f g(k), then either

(a) M has k disjoint cocircuits or
(b) M has a minor N = M/Y with r(N) � g(Γ (N)).

Proof. Let g be given and define f g as follows: f g(0) = f g(1) = 1 and

f g(k) = g
(

f g(k − 1)
)
, k � 2.

The proof is by induction on k. If r(M) � 1, then M has a cocircuit, so the result holds for k = 0,1.
Now let k � 2 and r(M) � f g(k) = g( f g(k − 1)).

If Γ (M) � f g(k − 1), then let C be a cocircuit of M with defM(C) = Γ (M). Then r(M/C) =
defM(C) � f g(k − 1). If M/C has the desired contraction minor, then we are done. If not, then by
induction M/C has k − 1 disjoint cocircuits. These, together with C , give k disjoint cocircuits of M .

If Γ (M) � f g(k − 1), then as g is non-decreasing, we have r(M) � f g(k) = g( f g(k − 1)) �
g(Γ (M)). �
Lemma 3.2. Let M be a simple matroid with no Ua+1,b-minor, where b > a � 1, and let C be a cocircuit of M

of minimum size. If C1, . . . , Ck are disjoint cocircuits of M\C with |C1| � · · · � |Ck|, then |Ci | � |C |/(a
(b−1

a

))
for each i ∈ {a, . . . ,k}.
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Proof. Let i ∈ {a, . . . ,k}. There exist sets (C ′
1, . . . , C ′

a−1) such that, for each j ∈ {1, . . . ,a − 1}, we have
C ′

j ⊆ C j and the set C ′
j is a cocircuit of M\(C ∪ Ci ∪ C ′

1 ∪ C ′
2 ∪ C ′

j−1). Let F = E(M) − (C ∪ Ci ∪ C ′
1 ∪

· · · ∪ C ′
a−1) and N = M/F . Deleting a cocircuit of a matroid drops its rank by 1, so defM(F ) = a + 1

and, hence, r(N) = a + 1. By Lemma 2.5, τa(N) �
(b−1

a

)
. Moreover, C is a cocircuit of minimum size

in N , so each rank-a flat of N has size at most |E(N) − C | � |C1 ∪ · · · ∪ Ca−1 ∪ Ci | � a|Ci |. Hence
|C | � |E(N)| � a|Ci |

(b−1
a

)
, as required. �

The following lemma is the main result of this section.

Lemma 3.3. There exists an integer-valued function δ(λ,a,b) such that: for any a,b, λ ∈ N with b > a, if M
is a matroid with no Ua+1,b-minor such that Γ (M) � 1

2 r(M), r(M) � δ(λ,a,b), then M has a minor N with
τa(N) > λr(N).

Proof. We define the value δ(λ,a,b) using the functions σ and f gn defined in Lemmas 2.7 and 3.2.

Let κ = 2a
(b−1

a

)
σ(a)λ + a − 1. Now define a sequence of functions gn : N → N. Let g0(m) = 0, and for

n � 1 define gn recursively by

gn(m) = max(2m, δn), where

δn = 2
(

f gn−1 (κ + 1)
)
.

Finally, let δ(λ,a,b) = δn0 where n0 = 2σ(a)λ.
We first prove the following claim.

Claim. For any n � 0, if M is a matroid with no Ua+1,b-minor such that r(M) � gn(Γ (M)), then either

(i) M has a minor N with τa(N) > λr(N), or
(ii) there is a contraction-minor N of M and a collection of sets C1, . . . , Cn ⊆ E(N) such that, for each i ∈

{1, . . . ,n}, the set Ci is a spanning cocircuit of N\(C1 ∪ · · · ∪ Ci−1).

Proof of Claim. Observe that, we lose no generality in replacing contraction-minor with minor in out-
come (ii). We will prove this weaker version of the claim by induction on n. The case n = 0 is trivial,
so assume n � 1 and that the result holds for n − 1. Note that, by Lemma 2.3 and by possibly deleting
elements from M , we may assume that M is a-simple.

Let C1 be a minimum size cocircuit of M , let Y be a basis of M/C1, and let M1 = M/Y \C1. Thus
C1 is a spanning cocircuit of M/Y . Then

r(M/Y ) = rM(C1) � r(M) − Γ (M) � 1

2
r(M) � 1

2
gn

(
Γ (M)

)
� 1

2
δn.

Now

r(M1) = r(M/Y ) − 1 � 1

2
gn

(
Γ (M)

) − 1 = f gn−1

(
δ(λ,a,b)κ

)
.

So, by Lemma 3.1, we have one of the following two cases.

Case 1. M1 has κ disjoint cocircuits.

Every cocircuit of M1 = M\C1/Y is a cocircuit of M\C1, so M\C1 has κ disjoint cocircuits, say
C∗

1, . . . , C∗
κ . We may assume that |C∗

1 | � · · · � |C∗
κ |. Since Γ (M) � 1

2 r(M), we have |C1| � rM(C1) �
1
2 r(M). By Lemmas 2.7 and 3.2,

σ(a)τa(M) �
∣∣E(M)

∣∣ >
∣∣C∗

a

∣∣ + · · · + ∣∣C∗
κ

∣∣ � (κ − a + 1)
r(M)

2a
(b−1

a

) = σ(a)λr(M),

as required.
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Case 2. M1 has a contraction-minor M2 with r(M2) � gn−1(Γ (M2)).

In this case the claim easily follows by applying the induction hypothesis to M2. �
We are now ready to prove the lemma. Note that, by Lemma 2.3 and by possibly deleting elements

from M , we may assume that M is a-simple. By the claim, either we are done or we find a minor
N of M and a sequence of sets C1, . . . , Cn0 ⊆ E(N) such that, for each i ∈ {1, . . . ,n0}, the set Ci
is a spanning cocircuit of N\(C1 ∪ · · · ∪ Ci−1). We may assume that each of the sets C1, . . . , Cn0 is
independent in N and that r(N) = n0. Therefore∣∣E(N)

∣∣ = n0 + (n0 − 1) + · · · + 1 = n0 + 1

2
r(N).

We claim that N is a-simple. Consider any restriction N|W of N , and let i be minimum such that
W ∩ Ci is non-empty. Note that Ci ∩ W contains a cocircuit of N|W . Then N|W has an independent
cocircuit. However Uk,2k does not have an independent cocircuit, and hence N is a-simple as claimed.

Finally, by Lemma 2.7,

σ(a)τa(N) �
∣∣E(N)

∣∣ >
n0

2
r(N) = σ(a)λr(N),

and the result follows. �
4. Arranging circuits

In this section we derive technical “Ramsey-like” results concerning arrangements of low rank sets
in a matroid.

A collection (A1, . . . , An) of sets in a matroid M is skew if

rM(A1) + · · · + rM(An) = rM(A1 ∪ · · · ∪ An).

A book in M is a pair (F , A) such that the sets (A − F : A ∈ A) are skew in M/F . We are interested
in books where rM(F ) is small.

Lemma 4.1. There exists an integer-valued function α1(n, r,a,b) such that: for any a,b, r,n ∈ N with
b > a, if M is a matroid with no Ua+1,b-minor, F is a collection of sets of rank at most r in E(M), and
|F | � α1(n, r,a,b), then M contains a book (F , A) such that rM(F ) � ar2 , |A| = n, and A ⊆ F .

Proof. We begin by recalling Ramsey’s Theorem (see [9] or [1, 9.1.4]). There exists an integer-valued
function R(n, c,k) such that, for any n, c,k ∈ N, if X is a set of size R(n, c,k) and we assign each n-element
subset of X one of c colours, then there is a k-element subset Y of X such that each n-element subset of Y
receives the same colour.

Let n, r,a,b be as given. Now, let sr = 0, lr = n, and, for i = r − 1, r − 2, . . . ,1, we recursively define

si = si+1 + li+1, ui =
(

b − 1

a

)rsi−a

, li = n

(
ui

r − i

)
.

Let m = s1 + l1. So, we have 0 = sr < sr−1 < · · · < s1 < m. Next, define numbers k0, . . . ,km as fol-
lows. Now let km = m and, for i = m,m − 1, . . . ,1, we recursively define ki−1 = R(i, r,ki). Finally, let
α1(n, r,a,b) = rk1.

Let M and F be as given. Let F0 = F and a0 = 0. We shall iteratively construct sequences

F0 ⊇ F1 ⊇ F2 ⊇ · · · ⊇ Fm and a0 < a1 < a2 < · · · < am

such that, for i = 1, . . . ,m, |Fi | = ki , and if F ′ ⊆ Fi with |F ′| = i, then rM(F ′) = ai . This clearly holds
for F0. Let i � 1, assume that Fi−1 and ai−1 satisfy the above. Note that rM(F ′) ∈ {ai−1 + 1, . . . ,

ai−1 + r}, for any i-element subset F ′ ⊆ Fi−1. This defines an r-colouring of the i-element subsets
of Fi−1. Since |Fi−1| = ki−1 = R(i, r,ki), there exists Fi ⊆ Fi−1 such that every i-element subset of Fi
has the same rank, say ai .
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For each i = 1, . . . ,m, let bi = ai − ai−1. Notice that, by submodularity, this gives a non-increasing
sequence

r � b1 � b2 � · · · � bm � 1.

Hence, by definition of the pairs (si, li), there exists an r′ ∈ {1, . . . , r}, such that bs+1 = · · · = bs+l = r′ ,
where s = sr′ and l = lr′ . If r′ = b1, then any collection of n members X1, . . . , Xn ∈ Fm will be skew
and, hence, (∅, {X1, . . . , Xn}) is a book. Therefore we may assume that r′ < b1.

Choose distinct sets Z1, . . . , Zs , X1, . . . , Xl ∈ Fm and let F = Z1 ∪ · · · ∪ Zs . Since bs+1 = bs+l = r′ ,
we have a book (F , {X1, . . . , Xl}) of width � sr. For i = 1, . . . , l, choose a maximal independent set
Bi ⊆ Xi that is skew to F , and expand this set to a basis Bi ∪ Bi of Xi in M . Thus |Bi | = r′ and
|Bi | = r − r′ .

Let M ′ = M/(B1 ∪· · ·∪ Bs) and B = B1 ∪· · ·∪ Bs . Then Bi ⊆ clM′ (F ), and thus rM′ (B) � rM′ (F ) � sr.
Let (W1, . . . , Wu) be a minimal a-covering of M ′|B . By Theorem 2.6, we have

u = τa(M ′|B) �
(

b − 1

a

)sr−a

= ur′ .

For each i ∈ {1, . . . , l}, choose an r-element subset Ii ⊆ {1, . . . , u} such that Bi ⊆ ∪ j∈Ii W j . There are(u
r

)
�

(ur′
r

)
possible choices for Ii , and l = n

(ur′
r

)
. By a majority argument, there exists an n-element

set J ⊆ {1, . . . , l} and an r-element set I ⊆ {1, . . . , u} such that Ii = I for each i ∈ J . By possibly
re-ordering the Xi

′s and the W j
′s we can assume that B1, . . . , Bn ⊆ W1 ∪ · · · ∪ Wr . Let W = W1 ∪

· · · ∪ Wr . Then (W , {X1, . . . , Xn}) is a book in M ′ and rM′ (W ) � ra. Let W ′ be a basis of M ′|W . Each
element in W ′ is contained in one of the sets X1, . . . , Xl , then there is a set X0 that is the union of at
most |W ′| of the sets (X1, . . . , Xl) such that W ′ ⊆ X0. Then, it is easy to verify that (X0, {X1, . . . , Xn})
is a book in M and rM(X0) � ar2. �

The following lemma refines the outcome of Lemma 4.1 in the case that F is a collection circuits.

Lemma 4.2. There exists an integer-valued function α2(l,m) such that: for any l,m,n ∈ N with n � α2(l,m),
if (F , {C1 . . . , Cn}) is a book in a matroid M where

(a) C1, . . . Cn are circuits of M,
(b) 1 � rM(F ∪ Ci) − rM(F ) < rM(Ci) for all i, and
(c) rM(F ) � m,

then M has an M(K2,l)-minor where the series classes are contained in distinct sets in (C1, . . . , Cn).

Proof. Let α2(l,m) = m(l + 1). We prove the result by induction on m. The result is easy when m = 1.
Then we assume that m > 1 and that the result holds for smaller m.

Consider a book (F , {C1, . . . , Cn}) satisfying the hypotheses. For each i ∈ {1, . . . ,n}, by possibly
contracting some elements of Ci , we may assume that rM(Ci ∪ F ) = rM(F ) + 1.

Choose elements e, f ∈ Cn − clM(F ). Then, for each i ∈ {1, . . . ,n − 1}, choose an element
zi ∈ Ci − clM(F ) and let C ′

i ⊆ Ci be a circuit of M/{e, f } that contains zi . Note that n − 1 = l + n′
where n′ � α2(l,m − 1). Then by possibly reordering C ′

1, . . . , C ′
n−1, we have one of the two following

cases.

Case 1. |C ′
1| = · · · = |C ′

l | = 2.

Then the restriction of M/ f \e to C ′
1 ∪ · · · ∪ C ′

n is isomorphic to M(K2,l).

Case 2. |C ′
1|, . . . , |C ′

n′ | > 2.

Note that rM/e, f (F ) � m − 1, so the result follows by induction. �
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The following result is a direct corollary of Lemmas 4.1 and 4.2; we skip the proof.

Lemma 4.3. There exists an integer-valued function α3(s, l,a,b) such that: for a,b, l, s ∈ N with b > a, if M is
a matroid with no Ua+1,b-minor and C is a set of circuits of M of rank at most a+1, with rM(C) � α3(s, l,a,b),
then either

(i) there exist s skew circuits C1, . . . , Cs ∈ C , or
(ii) M has an M(K2,l)-minor where the series classes are contained in distinct sets in C .

5. Building a nest

A point in a matroid is a rank-1 flat and a line is a rank-2 flat; we call a line long if it contains at
least 3 points. We shall assemble many long lines in a clique-like structure. We first build intermedi-
ate structures called nests.

Definition 5.1. A matroid M is a nest if M has a basis B = {b1, . . . ,bn} such that, for each pair of
indices i, j ∈ {1, . . . ,n}, with i < j, the set {bi,b j} spans a long line in M/{b1, . . . ,bi−1}. The elements
in B are called the joints of the nest M .

It is easy to verify that M(Kn) is a nest; take the edges incident to a fixed vertex of Kn as the
joints.

For t ∈ N we say that M is t-round if Γ (M) � t . Note that t-roundedness is preserved under
contractions. The main result of this section is the following.

Lemma 5.2. There exists an integer-valued function ν(n, t,a,b) such that: for any a,b,n, t ∈ N with a > b,
if M is a t-round matroid with no Ua+1,b-minor and r(M) � ν(n, t,a,b), then M has a rank-n nest as a minor.

We obtain a nest by finding one joint at a time using the next lemma.

Lemma 5.3. There exists an integer-valued function ν1(m, t,a,b) such that: for any a,b,m, t ∈ N with b > a,
if M is a t-round matroid with no Ua+1,b-minor, r(M) � ν1(m, t,a,b) and B is a basis of M, then M has an
M(K2,m)-minor such that each series class contains an element of B.

We start by deriving Lemma 5.2 from Lemma 5.3.

Proof of Lemma 5.2. Let t be fixed. Let ν(1, t,a,b) = 1 and for n � 2 define ν recursively by

ν(n, t,a,b) = ν1
(
ν(n − 1, t,a,b) + 2, t,a,b

)
.

To facilitate induction we prove the stronger statement:

If M is a t-round matroid with no Ua+1,b-minor, r(M) � ν(n, t,a,b) and B is a basis of M, then M has a
rank-n nest M/Y as a minor, with joints contained in B.

The proof is by induction on n. For n = 1 the result is trivial, as any rank-1 matroid is a nest.
Let n � 2 and assume the result holds for n − 1. Let M and B be given as above and let m =
ν(n − 1, t,a,b) + 2.

By Lemma 5.3, M has an M(K2,m)-minor such that each series class contains an element of B . Let
{b1, e} be one of the series classes of M(K2,m) with b1 ∈ B and let B ′ ⊆ B be an (m − 1)-element
set containing an element from each of the other series-classes of M(K2,m). We may assume that
M(K2,m) is a spanning restriction of M/Y1.

Let N1 = M/(Y1 ∪ {e}) and N ′
1 = N1/b1. Since t-roundness is preserved under contractions, N ′

1 is
t-round. Moreover r(N ′

1) = ν(n − 1, t,a,b) so, by induction, N ′
1 has a rank-(n − 1) nest N2 as a minor

with joints B2 ⊆ B1 − b1.
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We may assume that N2 = N ′
1/Y2. Now let Y = Y1 ∪ Y2 and N = M/Y , so N2 = N/b1. It is easy to

verify that N is a nest with joints {b1} ∪ B2. �
A set X ⊆ E(M) is connected if M|X is connected. We denote by τ c

a (M) the minimum m such that
there exists a collection (X1, . . . , Xm) of connected sets of rank at most a in M such that X1 ∪· · ·∪ Xm

contains all non-loop elements of M . Clearly τ c
a (M) � τa(M). Note also, that a loopless rank-a matroid

M has at most a connected components, so τ c
a (M) � aτa(M). Therefore

τa(M) � τ c
a (M) � aτa(M).

We need a technical lemma before we prove Lemma 5.3.

Lemma 5.4. Let M be a matroid with no Ua+1,b-minor, where b > a, let e ∈ E(M), and let F be the collection
of all connected rank-(a + 1) sets in M containing e. If rM(F ) = n, then

τ c
a (M) − τ c

a (M/e) � a2
(

b − 1

a

)n−a

+ 1.

Proof. We may assume that M is simple. Let (X1, . . . , Xk) be a minimal a-covering of M/e by
connected sets. We shall construct an a-covering of M by connected sets. For each i ∈ Xi , either
rM(Xi) = rM/e(Xi) or rM(Xi) = rM/e(Xi) + 1. If rM(Xi) = rM/e(Xi), then Xi is a connected set in M
with rank at most a; let X ′

i = Xi . If rM(Xi) = rM/e(Xi) + 1, then Xi ∪ {e} is a connected set in M with
rank at most a + 1; let X ′

i = Xi ∪ {e}.
By possibly reordering the sets, we may assume that X1, . . . , Xm have rank a + 1 in M and that

Xm+1, . . . , Xk have rank at most a. By Lemma 2.5, for i = 1, . . . ,m, we have

τ c
a

(
M

∣∣X ′
i

)
� aτa

(
M

∣∣X ′
i

)
� a

(
b − 1

a

)
.

Therefore

τ c
a (M) � ma

(
b − 1

a

)
+ (k − m) + 1 � ma

(
b − 1

a

)
+ τ c

a (M/e) + 1.

We may assume that m � 1. Let M ′ = (M/e)|(X1 ∪ · · · ∪ Xm). Note that (X1, . . . , Xm) is a minimal
a-covering of M ′ by connected sets and that r(M ′) � n − 1. Hence, by Theorem 2.6,

m = τ c
a (M ′) � aτa(M ′) � a

(
b − 1

a

)n−1−a

.

Now the result follows by combining the two inequalities displayed above. �
Let M be a matroid, k ∈ N and let B ⊆ E(M). We say that B k-dominates M , if for any element

x ∈ E(M) there is a set W ⊆ B with |W | � k such that x ∈ clM(W ). A k-dominating set clearly has to
be spanning. It is easily verified that: if B, Y ⊆ E(M) and B k-dominates M , then B − Y k-dominates
M/Y .

Proof of Lemma 5.3. Let m, t,a and b be given, and define the following constants,

r4 = α3(m + 1,m,a,b), l = m + r4, r3 = α3(2, l + 1,a,b),

λ = a2
(

b − 1

a

)r3−a

+ 1, r1 = max
(
2t, δ(λ,a,b)

)
,

and let us define ν1(m, t,a,b) = ν1 = σ(a)
(b−1

a

)r1−a
. Let M and B be as given.

By Lemma 2.2 and the fact that B is a basis, there is an a-simple spanning restriction of M that
contains B . Let N1 be a minimal minor of M such that N1 is t-round and a-simple, and B ⊆ E(N1).
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We claim that B (a + 1)-dominates N1. Consider any element f ∈ E(N1) − B . Since N1 is t-round,
N1/ f is too. By our choice of N1, the minor (N1/ f )|B cannot be a-simple. Since N1 is simple, N1/ f
is loopless. Then, since (N1/ f )|B is not a-simple, there is a set W ⊆ B , with (N1/ f )|W ∼= Uk,2k, for
some k ∈ {1, . . . ,a}. Then rN1 (W ) � a + 1. However, since N1 is a-simple, N1|W �= (N1/e)|W and,
hence, e ∈ clN1 (W ). Thus B (a + 1)-dominates N1 as claimed.

By Lemma 2.7, we have

σ(a)τa(N1) �
∣∣E(N1)

∣∣ � |B| = r(M) � ν1,

and so, τa(N1) �
(b−1

a

)r1−a
. Then, by Theorem 2.6, we have r(N1) � r1.

By the definition of r1, we have Γ (N1) � t � 1
2 r(N1) and r(N1) � δ(λ,a,b). Then, by Lemma 3.3,

there is a minor N2 of N1 with τa(N2) > λr(N2). We may assume that N2 = N1/Y1. Thus τ c
a (N2) >

λr(N2). Let Y2 ⊆ E(N2) be maximal such that

τ c
a (N2/Y2) > λr(N2/Y2),

and let N3 = N2/Y2. Since Y2 was chosen to be maximal, N3 is loopless. Choose any element e ∈
E(N3). Then,

τ c
a (N3) − τ c

a (N3/e) > λr(N3) − λr(N3/e) = λ.

Let F denote the collection of all connected rank-(a + 1) sets in N3 containing e, and let n = rN3 (F ).

By Lemma 5.4, we have λ < a2
(b−1

a

)n−a + 1, and, by the definition of λ, this yields n � r3.
Denote by C the collection of all circuits of N3 of rank at most a + 1 containing e. For each X ∈ F

and non-loop y ∈ X − {e}, since X is connected, there exists a circuit C ⊆ X containing e and y, so
C ∈ C . Hence, rN3 (C) � n.

Note that n � r3 = α3(2, l + 1,a,b) and that no two circuits in C are skew. Then, by Lemma 4.3,
there is an M(K2,l+1)-minor of N3. Let {e, f }, {h1,h′

1}, . . . , {hl,h′
l} be the series classes of M(K2,l).

Since l = m + r4, by possibly reordering, we may assume that none of h1, . . . ,hr4 is contained in B .
We may assume that M(K2,l) is a spanning restriction of N3/Y3; let N4 = N3/(Y3 ∪ { f }). By the

remark preceding the proof, B ∩ E(N4) (a + 1)-dominates N4. So, for each i ∈ {1, . . . , r4}, hi is in
the closure of a subset of B of rank at most a + 1. Choose a circuit Ci of N4 containing hi , with
rN4 (Ci) � a+1 and Ci ⊆ B ∪{hi}. Since {h1, . . . ,hr4} is independent, rN4(∪i Ci) � r4 = α3(m+1,m,a,b).
Then, by Lemma 4.3, we get one of the following two cases.

Case 1. There are m + 1 skew circuits among C1 . . . , Cr4 in N4.

The union of some m of these m + 1 circuits is skew to the set {e} in N4. After possibly reordering
we may assume C1, . . . , Cm, {e} are skew. Now N4 restricted to the union of the sets ((Ci −{hi})∪{h′

i}:
i = 1, . . . ,m) is isomorpic to the cycle matroid of a subdivision of M(K2,m); moreover each of the
series classes contains an element of B . Thus we obtain the required M(K2,m)-minor.

Case 2. There is an M(K2,m) minor of N4 such that each series class of M(K2,m) is contained in one
of C1 . . . , Cr4 .

In this case we are done since each of C1, . . . , Cr4 contains at most one element not in B . �
6. Cleaning a nest

The goal of this section is to further refine nests. A Dowling clique is a matroid M with ground set
{b1, . . . ,bn} ∪ {ei j: 1 � i < j � n} such that {b1, . . . ,bn} is a basis and, for each 1 � i < j � n, the set
{bi,b j, ei j} is a triangle. We call the elements b1, . . . ,bn the joints of M . These matroids are related to
Dowling Geometries [2].

The proof of the following theorem is based on ideas introduced by Kung [5].
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Lemma 6.1. There exists an integer-valued function φ(n,a,b) such that: for any a,b,n ∈ N with b > a, if M is
a nest of rank at least φ(n,a,b) with no Ua+1,b-minor, then M contains a rank-n Dowling clique as a minor.

Proof. Recall that α1 and ε are defined in Lemmas 4.1 and 2.8. Let t2 = (2a)nn, t1 = t2 +a, s1 = n+a3,
and s = α1(s1,a,a,b). Now, let ws = t2 and, for each i = s, . . . ,1, let wi−1 = ε(wi, s,a,b). Let t0 = w0
and, finally, let φ(n,a,b) = s + t0.

Let M be a rank-(s + t0) nest. We start the proof by moving to a different structure whose labeling
is disassociated with that of the nest; this will allow us the freedom to relabel later.

Claim 1. There is a restriction M0 of M and a partition (A, C∗
1, . . . , C∗

t0
) such that rM0 (A) = s and, for each

i ∈ {1, . . . , t0}, the set C∗
i is an independent (s + 1)-element cocircuit of M0 that spans A.

Proof of Claim. Let the joints be a1, . . . ,as,b1, . . . ,bt0 . For each i ∈ {1, . . . , s} and j ∈ {1, . . . , t0}, there
is an element ei j ∈ E(M) and a circuit Cij of M such that ai,b j, ei j ∈ Cij ⊆ {a1, . . . ,ai} ∪ {b j, ei j}.
Now let A = {a1, . . . ,as} and, for each j ∈ {1, . . . , t0}, let C∗

j = {e1 j, . . . , esj} ∪ {b j}. Finally let M0 be
the restriction of M to the union of (A, C∗

1, . . . , C∗
s ). It is straightforward to verify that the claim is

satisfied by M0, A, and C∗
1, . . . , C∗

t0
. �

For each i ∈ {1, . . . , t0}, let C∗
i = {e1 j, . . . , esj} ∪ {b j}. Let B = {b1, . . . ,bt0 } and let M1 = M/B .

Note that A is a basis of M1 and, hence, r(M1) = s. For each i ∈ {1, . . . , s} and j ∈ {1, . . . , t0}, let
Sij = {eik: k = 1, . . . , j}. Note that t0 = w0 and, for each i ∈ {1, . . . , s}, wi−1 = ε(wi, s,a,b). Therefore,
by Lemma 2.8 and possibly reordering, we may assume that: for each i = 1, . . . , s, rM1 (Siwi ) � a and
M1|Siwi is uniform. Now t1 = ws , so:

Claim 2. For each i = 1, . . . , s, rM1 (Sit1 ) � a and M1|Sit1 is uniform.

Recall that t1 = t2 + a. Let M2 = M/{bt2+1, . . . ,bt2 } and, for each i ∈ {1, . . . ,a}, let Xi = {e(t2+i)k:
k = 1, . . . , j}. Note that, for each i = 1, . . . , s0, Xi ⊆ clM2 (A), rM2 (Xi) � a, and Xi spans the uniform
matroid M1|Sit1 .

By Lemma 4.1 and by possibly reordering, we may assume that:

Claim 3. There is a set F ⊆ X1 ∪ · · · ∪ Xs with rM2 (F ) � a3 such that (F , {X1, . . . , Xs1 }) is a book in M2 .

Note that {et11, . . . , et1s} is an independent set of M2 that spans A and et1 i ∈ Xi , for each
i ∈ {1, . . . , s}. Therefore F spans at most a3 of the sets (X1, . . . , Xs1). Now, s1 = n + a3, so, by pos-
sibly reordering, we may assume that F spans none of (X1, . . . , Xn). For each i ∈ {1, . . . ,n}, choose
a maximal independent set Yi ⊆ Xi in M2/F .

Recall that, for each i ∈ {1, . . . ,n}, Xi spans M1|Sit1 . Moreover, Xi is not spanned by F . Therefore,
since M1|Sit1 is a uniform matroid of rank at most a, F spans fewer than a points in M1|Sit1 . For each
j ∈ {1, . . . , t2}, if ei j �∈ clM1 (F ), then there is a circuit C in M2/F such that b j, ei j ∈ C ⊆ Y1 ∪ {b j, ei j}
and C ∩ Yi �= ∅. Now t2 = (2a)nn (this number is bigger than necessary), so by a majority argument
and possibly reordering, we may assume that:

Claim 4. For each i ∈ {1, . . . ,n} there is an element fi ∈ Yi such that, for each j ∈ {1, . . . ,n}, there is a circuit C
in M2/F with b j, ei j, f i ∈ C ⊆ X1 ∪ {b j, ei j}.

Let M3 = M2/(F ∪ (Y1 − { f1}) ∪ · · · ∪ (Yn − { fn})). Then { f1, . . . , fn} ∪ {b1, . . . ,bn} is indepen-
dent and, for each i, j ∈ {1, . . . ,n}, the set { f i, ei j,b j} is a triangle of M3. Then the restriction of
M3/{e11, . . . , enn} to {b1, . . . ,bn} ∪ {ei j: 1 � i < j � n} is a Dowling clique. �
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7. Cliques

It remains to show that any Dowling clique of sufficiently large rank contains either M(Kn) or
B(Kn) as a minor. We need the following theorem of Mader [7].

Mader’s Theorem 7.1. There is an integer valued function λ(n) such that: for any n ∈ N, if G is a simple graph
with |E(M)| > λ(n)|V (M)|, then G has a Kn-minor.

Let M be a matroid and let G = (V , E) be a loopless graph. We call G a Dowling representation of
M if E(M) = V ∪ E , V is a basis of M , and, for each e ∈ E with ends u and v , the set {e, u, v} is a
triangle of M . The following lemma helps us to recognize graphic matroids. The result is well-known
and can easily be derived from a result of Seymour [10], we omit the proof.

Lemma 7.2. Let G = (V , E) be a simple connected graph and let M be a matroid. If G is a Dowling representa-
tion of M and V is a cocircuit of M, then M|E = M(G).

We also need to recognize bicircular matroids. The following lemma is also well-known, and again,
we skip the proof.

Lemma 7.3. Let G = (V , E) be a loopless graph and let M be a matroid. If G is a Dowling representation of M
and, for each circuit C in G, E(C) is independent in M, then M|E = B(G) (in fact M = B̃(G)).

We are ready for the final step in the proof of the main theorem.

Lemma 7.4. There exists an integer-valued function ψ(n) such that, if M is a Dowling clique with rank at least
ψ(n), then M contains an M(Kn)- or B(Kn)-minor.

Proof. Let m = n!, l = 2mλ(n), and ψ(n) = nl. Let M be a Dowling clique of rank nl and let G = (V , E)

be a Dowling representation of M; thus G ∼= Knl . Let T1, . . . , Tn be vertex disjoint trees of G each
having l vertices. For each 1 � i < j � n, let Eij denote the set of all edges of G having one end in
V (Ti) and the other end in V (T j), let Gij be the subgraph of G with vertex set V (Ti)∪ V (T j) and edge
set Eij ∪ E(Ti) ∪ E(T j), and let Mij = M|(V (Gij) ∪ E(Gij)). Thus Gij is a Dowling representation Mij .
Note that Mij/(E(Ti) ∪ E(T j)) is a loopless matroid with rank 2, and that V (Ti) and V (T j) are both
points of Mij/(E(Ti) ∪ E(T j)).

Claim 1. For each 1 � i < j � n, if Mij/(E(Ti) ∪ E(T j)) has at most m + 2 points, then Mij contains an
M(Kn)-minor.

Proof. Let M ′ = Mij/(E(Ti) ∪ E(T j)). If M ′ has at most m + 2 points, then there is a point X ⊆ Eij

of M ′ with |X | = l2/m. Let G ′′ be the spanning supgraph of Gij with edge set E(T1) ∪ E(T2) ∪ X and
let M ′′ = Mij |(V (G ′′) ∪ E(G ′′)). Now G ′′ is connected and V (G ′′) is a cocircuit in M ′′ (since it is a
cocircuit in M ′′/(E(Ti) ∪ E(T j))). Then, by Lemma 7.2, M ′′|E(G ′′) = M(G ′′). Moreover, |E(G ′′)| > |X | �
l2/m � λ(n)2l = λ(n)|V (G ′′)|, so, by Mader’s Theorem, G ′′ contains a Kn-minor. �

Now consider the matroid M/(E(T1) ∪ · · · ∪ E(Tn)). By Claim 1, we may assume that:

Claim 2. There exists a simple minor N of M with a basis B = {b1, . . . ,bn} such that, for each 1 � i < j � n,
the elements {bi,b j} spans an (m + 3)-point line in N.

For each 1 � i < j � n, let W ij = clN ({bi,b j})−{bi,b j}. Thus |W ij| � m+1. Let W denote the union
of the sets W ij . We may assume that E(N) = B ∪ W . Now let H = (B, W ) be a Dowling representation
of N . Note that a simple graph on n vertices has at most n! distinct circuits. Therefore we can build
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a sequence (H0, H1, . . . , H(n
2)

) of simple spanning subgraphs of H such that, for each i ∈ {1, . . . ,
(n

2

)},
|E(Hi)| = i and, if C is a circuit of Hi , then E(C) is independent in N . Then, by Lemma 7.3, N|E(H(n

2)
)

is isomorphic to B(Kn). �
Finally, we restate and prove Theorem 1.1.

Theorem 7.5. There exists an integer-valued function γ (k,n) such that: for any k,n ∈ N, if M is a matroid
with r(M) � γ (k,n), then either M has k disjoint cocircuits or M has a minor isomorphic to Un,2n, M(Kn) or
B(Kn).

Proof. Since M(K1) is trivial, we may assume that n � 2. Recall that the functions ψ , φ, ν , and f g

are defined in Lemmas 7.4, 6.1, 5.2, and 3.1. Let m = φ(ψ(n),n − 1,2n). Now define g : N → N by
g(t) = ν(m, t,n − 1,2n). Finally γ (k,n) = f g(k).

Let M be a matroid such that r(M) � γ (k,n), M has no Un,2n-minor and M does not have k
disjoint cocircuits. By Lemma 3.1, M has a minor N with r(N) � g(Γ (N)). Then, by Lemmas 5.2, 6.1
and 7.4, we obtain an M(Kn)- or a B(Kn)-minor of N . �
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