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1. Introduction

We prove the following theorem.

Theorem 1.1. There exists a function y : N?> — N such that, if M is a matroid with no Uy an-, M(Ky)-, or
B(Ky)-minor and r(M) > y (k, n), then M has k disjoint cocircuits.

Here M(K}) is the cycle matroid of K;, B(Kj,) is the bicircular matroid of K, (to be defined below),
and N denotes the set of positive integers.

A circuit-cover of a graph G is a set X C E(G) such that G — X has no circuits. Thus the maximum
number of (edge-)disjoint circuits in a graph is bounded by the minimum size of a circuit cover. This
bound is not tight (consider Ky4), but Erdés and Pésa in [3] proved that the maximum number of
disjoint circuits is qualitatively related to the minimum size of a circuit cover.

Erdos-Pésa Theorem 1.2. There is a function ¢ : N — N such that, for any graph G, either G has k disjoint
circuits or G has a circuit-cover of size at most c(k).
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Let M be a matroid. A set X C E(M) intersects each circuit of M if and only if E(M) — X is
independent. So a minimal circuit-cover of M is a basis of M* and, hence, the minimum size of
a circuit-cover is r(M*). Dually, the minimum size of a “cocircuit-cover” in a matroid M is equal
to r(M). The Erdos-Pésa Theorem was generalized to matroids by Geelen, Gerards, and Whittle [4]
who proved the following theorem.

Theorem 1.3. There exists a function ¢ : N> — N such that, if M is a matroid with no Uy - or M(K,)-minor
and r(M) > c(k,n), then M has k disjoint cocircuits.

The result does not extend to all matroids; there exist matroids with arbitrarily large rank that
have no two disjoint cocircuits. Matroids with no two disjoint cocircuits are referred to as round.
Equivalently, a matroid is round if each of its cocircuits is spanning. The matroid U, ,, where n > 2r—1
is round. Also, for any positive integer n, M(Ky) is a round matroid. Note that, for a simple graph G,
the matroid M(G) is round if and only if G is a complete graph.

Let G = (V,E) be a loopless graph. Define a matroid B(G) on VUE where V is a basis of B(G)
and, for each edge e = uv of G, place e freely on the line spanned by {u, v}. Now B(G) := B(G)\V
is the bicircular matroid of G. Bicircular matroids obtain their name from the graphical description
of their circuits; see [8, Prop. 12.1.6]. It is easy to verify that B(Ky) is round. The bicircular matroid
B(Ky) is not round, but it has no three disjoint cocircuits.

Our main theorem, Theorem 1.1, is a generalization of Theorem 1.3 and is, in some sense, best
possible. Note that the matroids in each of the classes

{MKp): n>1}, {B(Kn): n>1}, and {Up2n: n>1}

have unbounded rank but they have a bounded number of disjoint cocircuits.

We hope that Theorem 1.1 will help in solving the following unpublished conjecture of Johnson,
Robertson, and Seymour: for any positive integer n there is a positive integer k such that, if M is a matroid
with branch-width at least k, then either M or M* has a minor isomorphic to either Uy 2, or to the cycle
matroid or the bicircular matroid of an n x n grid.

Our proof of Theorem 1.1 is based, in part, on the techniques developed in [4]. We follow the
notation of Oxley [8].

2. Preliminaries

For a matroid M, we denote by ®(M) the maximum number of disjoint cocircuits in M. So, M is
round if and only if ® (M) = 1. The rank-deficiency of a set of elements X C E(M) is defy;(X) =r(M) —
v (X). We let I'(M) denote the maximum rank-deficiency among the cocircuits of M. Therefore M is
round if and only if I"(M) = 0. The two parameters I"(M) and ® (M) are related by the inequality

OM)<I'(M)+1.
The following result lists hereditary properties of the two parameters; we omit the elementary proof.

Lemma 2.1. Let e be an element of a matroid M. Then

(i) ©(M/e) < O(M) and I'(M/e) < I"(M).
(ii) if e is not a coloop, then ® (M\e) > ® (M) and I"(M\e) > I" (M).

The following lemma gives a sufficient condition for equality in (ii).

Lemma 2.2. Let X be a set of elements in a matroid M such that M| X is uniform and | X| > 2ry (X). Then, for
any e € X, we have ©® (M\e) = ©® (M) and I'(M\e) = I" (M).

Proof. Let k =r(X). Now consider any cocircuit C of M\e. Note that either C or CU{e} is a cocircuit
of M. We claim that: if C U {e} is a cocircuit of M, then |X — (C U {e})| <k —1 and e € cly(C). Indeed, if



J. Geelen, K. Kabell / Journal of Combinatorial Theory, Series B 99 (2009) 407-419 409

C U {e} is a cocircuit of M, then E(M) — (C U {e}) is a hyperplane and, hence, it can contain at most
k — 1 elements of X. Therefore |[X N C| >k and, hence, e € cly(C), as claimed.

Suppose that C is a cocircuit of M\e with defy.(C) = I"(M\e). Now, there exists C’ € {C, C U {e}}
such that €’ is a cocircuit of M. By the claim, ry (C") =ry(C). Hence I'(M) > defy (C") = defye (C) =
I'(M\e). Then, by Lemma 2.1, we have I"(M) = I"(M\e).

Let (Cq,...,C¢) be a maximum collection of disjoint cocircuits in M\e and, for each i € {1,...,t},
let C; € {C;, C; U {e}} be a cocircuit of M. By the claim, at most one of the sets (C}, ..., C;) contains e.
Therefore, ® (M) >t = ®(M\e). Then, by Lemma 2.1, we have ® (M) = ®(M\e), as required. O

A matroid M is called a-simple if M is loopless and has no Uy yk-restriction for k=1,2,...,a. The
following lemma is an immediate consequence of Lemma 2.2.

Lemma 2.3. Let M be a matroid and let a € N. There is a spanning a-simple restriction N of M with I'(N) =
' (M) and ®(N) = & (M).

A simple GF(q)-representable rank-r matroid can be realized as a restriction of the projective ge-
ometry PG(r — 1, q). Thus, it has at most 2%11 elements. Kung [6] extended this bound to the class of
matroids with no Uy q12-minor (the shortest line not representable over GF(q)).

Theorem 2.4 (Kung). Let q > 1 be an integer and let M be a simple rank-r matroid with no U3 ¢, »-minor.
Then

r_
]E(M)}gu.
q—1

This bound is attained by a projective geometry when q is a prime power. Excluding uniform
matroids of larger rank will clearly not yield analogous bounds on the number of elements, so we
introduce a new measure of size.

Let a be a positive integer. An a-covering of a matroid M is a collection (X1, ..., X;;) of subsets of
E(M) with E(M) = X1 U---UX;;; and ry(X;) < a for all i. The size of the covering is m. The a-covering
number of M, denoted 7,(M), is the minimum size of an a-covering of M. Note that, for a matroid M,
71 (M) = |E(si(M))|, where si(M) denotes the simplification of M. If r(M) < a, then t,(M) < 1. Our
first lemma bounds the a-covering number for matroids with rank a + 1.

Lemma 2.5. For a, b € N with b > q, if M is a matroid of rank a + 1 with no U, p-restriction, then
b—-1
(M) < P E

Proof. Let X C E(M) be maximal with M|X = Ug41,. Then I <b —1 and every point of M is spanned
by one of the rank-a flats of M|X. Hence 74(M) < (C’l) < (”_1). o

a

The next result extends Kung’'s Theorem, although our bound is not sharp.

Theorem 2.6. For a, b € N with b > q, if M is a matroid of rank r > a with no Uy p-minor, then
b _ -l r—a
(M) < < a ) .

Proof. The proof is by induction on r. The case r =a is trivial since (E(M)) is an a-covering of size 1.
Let r > a and assume that the result holds for rank r — 1. Let x be a non-loop element of M.

—1—
Then r(M/x) =1 — 1 and by induction 74(M/x) < (b;l)r ?. Note that Tar1(M) < 7o(M/x) and, by
Lemma 2.5, 74(M) < (b;1)fa+] (M). Therefore t,(M) < (b;1)r_a, as required. O
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For a-simple matroids, the size is proportional to g:

Lemma 2.7. There exists an integer-valued function o (a) such that, ifa > 1 and M is a-simple, then |[E(M)| <
o(@)tg(M).

Proof. Define o by

& 2k—1
0(0)21_[(,:_1)‘

k=2
Since M has no Uy yk-restriction for k=2,...,a, Lemma 2.5 gives
2k —1
Tk—1(M) < k-1 (M), k=2,....a

Putting these together, we get |[E(M)| =11(M) <o (a)to(M). O

Lemma 2.8. There exists an integer-valued function €(n,r,a, b) such that, for a,b,n,r € N with b > q, if
M is a rank-r matroid with no U4 p-minor and |E(M)| > €(n, r, a, b), then there exists an n-element set
X C E(M) such that rp(X) < a and M| X is uniform.

Proof. Let mg =n and, for each i =1,...,n, let m; = ('l?:]])m,-_] + 1. Now let [ = (b?)ria and let
€(n,r,a,b) =mgl. Let M be a rank-r matroid with no Ug4q p-minor and with [E(M)| > €(n,r,a,b).
By Theorem 2.6, M has an a-cover (Xi, ..., X)). Since |E(M)| > mgl, we may assume that |X1| > mq.

Let @’ < a be minimum such that there exists a rank-a’ set X C X; with |X| =mg. If a’ =0, then
M|X = Ugp, so we may assume that a’ > 0. Now my > (2/_—]1)”70’—1 s0, Ty_1(M|X) > (('::11) Then, by
Lemma 2.5, M|X contains a Uy p-restriction. O

3. Building density

The first step in the proof of the main theorem is to show that a matroid of large enough rank has
either k disjoint cocircuits or a large minor that is nearly round.

Lemma 3.1. Let g : N — N be a non-decreasing function. There exists a function fg : N — N such that, for
any k € N, if M is a matroid with r(M) > fg(k), then either

(a) M has k disjoint cocircuits or
(b) M has a minor N = M/Y withr(N) > g(I"(N)).

Proof. Let g be given and define fg as follows: fg(0) = fg(1) =1 and

fe)=g(fek—1), k=2

The proof is by induction on k. If r(M) > 1, then M has a cocircuit, so the result holds for k=0, 1.
Now let k > 2 and r(M) > fg(k) = g(fg(k — 1)).

If '(M) > fg(k — 1), then let C be a cocircuit of M with defy(C) = I"(M). Then r(M/C) =
defy (C) > fg(k —1). If M/C has the desired contraction minor, then we are done. If not, then by
induction M/C has k — 1 disjoint cocircuits. These, together with C, give k disjoint cocircuits of M.

If m(M) < fg(k — 1), then as g is non-decreasing, we have r(M) > fg(k) = g(fo(k — 1)) >
g(rrM)). o

Lemma 3.2. Let M be a simple matroid with no Ug 1 p-minor, where b > a > 1, and let C be a cocircuit of M
of minimum size. If C1, . .., Cy are disjoint cocircuits of M\C with |C1| < --- < |Ck|, then |C;| > |C|/(a(bg1))
foreachie{a,... k}.
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Proof. Let i € {a, ..., k}. There exist sets (C’,..., C[I_1) such that, for each je{1,...,a— 1}, we have
C; C Cj and the set C} is a cocircuit of M\(CUC; UCj UC) UC}_]). Let F=EM)—(CUGUCjU
---UC;_;) and N = M/F. Deleting a cocircuit of a matroid drops its rank by 1, so defy(F) =a+ 1

and, hence, r(N) =a+ 1. By Lemma 2.5, 7,(N) < (bgl). Moreover, C is a cocircuit of minimum size
in N, so each rank-a flat of N has size at most |[E(N) — C| < |C; U ---U Cq_1 U Cj| < a|C;j|. Hence
ICI < |E(N)| <a|C,<|(b;l), as required. O

The following lemma is the main result of this section.

Lemma 3.3. There exists an integer-valued function § (A, a, b) such that: for any a, b, > € N with b > a, if M
is a matroid with no Ug4q p-minor such that I'(M) < %r(M), r(M) > 8(A,a,b), then M has a minor N with
Ta(N) > AT(N).

Proof. We define the value §(2,a,b) using the functions o and fg, defined in Lemmas 2.7 and 3.2.

Let k = 2a(b;1)a(a)x +a — 1. Now define a sequence of functions g, : N — N. Let go(m) =0, and for
n > 1 define g, recursively by

gn(m) = max(2m, é,), where

Sn=2(fg,_,(k +1).

Finally, let (A, a, b) = 8,, where ng =20 (a)X.
We first prove the following claim.

Claim. For any n > 0, if M is a matroid with no U4 p-minor such that r(M) > g,(I"(M)), then either

(i) M has a minor N with t,(N) > Ar(N), or
(ii) there is a contraction-minor N of M and a collection of sets Cy, ..., Cn € E(N) such that, for each i €
{1,...,n}, the set C; is a spanning cocircuit of N\(C1 U ---U Cj_1).

Proof of Claim. Observe that, we lose no generality in replacing contraction-minor with minor in out-
come (ii). We will prove this weaker version of the claim by induction on n. The case n =0 is trivial,
so assume n > 1 and that the result holds for n — 1. Note that, by Lemma 2.3 and by possibly deleting
elements from M, we may assume that M is a-simple.

Let C; be a minimum size cocircuit of M, let Y be a basis of M/Cq, and let M; = M/Y\Cy. Thus
C; is a spanning cocircuit of M/Y. Then

r(M/Y)=ry(C1) >2r(M) — I'(M) > %r(M) > %gn(F(M)) > %(Sn-
Now
1
r(M))=r(M/Y)—1> 5gn(r(zvl)) —1=fg, (8, a,b)x).

So, by Lemma 3.1, we have one of the following two cases.
Case 1. M1 has « disjoint cocircuits.

Every cocircuit of My = M\Cy/Y is a cocircuit of M\Cy, so M\Cy has k disjoint cocircuits, say
Ci....,C¢. We may assume that |[C]]| < --- < [Cg|. Since I'(M) < %r(M), we have |C1]| > ry(Cq) =
1r(M). By Lemmas 2.7 and 3.2,

r(M)
2a(b71)

a

o @w(M) > [EM)| > |Ch| 4+ |CE| > (e —a+ 1) = o @Ar(M),

as required.
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Case 2. M1 has a contraction-minor M, with r(M3) > gn—1(I" (M3)).
In this case the claim easily follows by applying the induction hypothesis to M. O

We are now ready to prove the lemma. Note that, by Lemma 2.3 and by possibly deleting elements
from M, we may assume that M is a-simple. By the claim, either we are done or we find a minor

N of M and a sequence of sets Cy,...,Cy, € E(N) such that, for each i € {1,...,no}, the set C;
is a spanning cocircuit of N\(Cq U---U Cj—_1). We may assume that each of the sets Cq,..., Cp, is
independent in N and that r(N) = ng. Therefore
no+1
|[E(N)|=no+mo—1 4 +1= 5 r(N).

We claim that N is a-simple. Consider any restriction N|W of N, and let i be minimum such that

W N C; is non-empty. Note that C; N W contains a cocircuit of N|W. Then N|W has an independent

cocircuit. However Uy x does not have an independent cocircuit, and hence N is a-simple as claimed.
Finally, by Lemma 2.7,

o (@7 (N) > [E(N)| > r;—or(N) =0 (@Ar(N),

and the result follows. O

4. Arranging circuits

In this section we derive technical “Ramsey-like” results concerning arrangements of low rank sets
in a matroid.
A collection (A1, ..., Ay) of sets in a matroid M is skew if

rM(A1) + -+ (Ap) =M (A1 U---UAp).

A book in M is a pair (F,.A) such that the sets (A — F: A € .A) are skew in M/F. We are interested
in books where ry;(F) is small.

Lemma 4.1. There exists an integer-valued function o1(n,r,a,b) such that: for any a,b,r,n € N with
b >a, if M is a matroid with no Ugy1 p-minor, F is a collection of sets of rank at most r in E(M), and
|F| > aq(n, 7, a,b), then M contains a book (F, A) such that ry (F) < ar?, | Al =n, and A C F.

Proof. We begin by recalling Ramsey’s Theorem (see [9] or [1, 9.1.4]). There exists an integer-valued
function R(n, c, k) such that, for any n,c,k € N, if X is a set of size R(n, c, k) and we assign each n-element
subset of X one of c colours, then there is a k-element subset Y of X such that each n-element subset of Y
receives the same colour.

Let n,r,a,b be as given. Now, let s, =0, I, =n, and, for i =r—1,r—2,..., 1, we recursively define
h—1\"Sia u;
Si =Sit1 +lit1, Ui:< a ) , li:n(r—i)’
Let m = sy + ;. So, we have 0 =s; < s,_1 < --- < §1 < m. Next, define numbers ko, ..., ky as fol-
lows. Now let k;, =m and, for i=m,m —1,...,1, we recursively define k;_; = R(i, r, k;). Finally, let

ai(n,r,a,b) =rk;.
Let M and F be as given. Let Fo = F and ap = 0. We shall iteratively construct sequences

Fo2F12F2---2Fn and aqp<ay<ay<---<dapm

such that, fori=1,...,m, |Fj| =k;, and if 7' C F; with |F’'| =i, then ry(F’) = a;. This clearly holds
for Fo. Let i > 1, assume that F;_q1 and a;_ satisfy the above. Note that ry(F’) € {a;_1 + 1, ...,
aij_1 +r}, for any i-element subset F’' C F;_;. This defines an r-colouring of the i-element subsets
of Fij_1. Since |Fi_1| =ki_1 = R(i, 1, k;), there exists F; C F;_1 such that every i-element subset of F;
has the same rank, say a;.
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For eachi=1,...,m, let bj = a; — a;—1. Notice that, by submodularity, this gives a non-increasing
sequence

rzbiz2by>---2by>1.

Hence, by definition of the pairs (s;, l;), there exists an ' € {1, ...,r}, such that bgy1 =---=bsyy =71,
where s =5 and | =1.. If r' = by, then any collection of n members Xi,..., X; € Fn will be skew
and, hence, (@, {X1, ..., Xy}) is a book. Therefore we may assume that r’ < by.

Choose distinct sets Zy,...,Zs, X1,...,X; € Fp and let F=Z;U---U Z;. Since bs11 =bgy =71,
we have a book (F,{X1,...,X;}) of width <sr. For i =1,...,l, choose a maximal independent set
B; C X; that is skew to F, and expand this set to a basis B; U B; of X; in M. Thus |B;| =1 and
|Bi|=r—T1.

Let M' =M/(B1U---UBs) and B=BqU---UBs. Then B; C clyy (F), and thus ryy (B) < ryy (F) < sr.

Let (W1,..., Wy) be a minimal a-covering of M’|B. By Theorem 2.6, we have
b _ 1 sr—a
u=1(M'|B) < ( . ) =up.
For each i € {1,...,1}, choose an r-element subset I; C {1,...,u} such that B; € Uj¢;, W;. There are

(¥) < (") possible choices for I;, and [ =n("""). By a majority argument, there exists an n-element
set ] € {1,...,1} and an r-element set I C {1,...,u} such that I; = I for each i € J. By possibly
re-ordering the X;’s and the W;’s we can assume that By,...,Bp C W U---UW,. Let W =W ;U
---UW,. Then (W, {X1,..., Xy} is a book in M" and ryy (W) <ra. Let W’ be a basis of M’|W. Each
element in W’ is contained in one of the sets X1, ..., X|, then there is a set X that is the union of at
most |W’| of the sets (X1, ..., X;) such that W’ C Xy. Then, it is easy to verify that (Xo, {X1,..., Xn})

is a book in M and ry(Xo) <ar?. O
The following lemma refines the outcome of Lemma 4.1 in the case that F is a collection circuits.

Lemma 4.2. There exists an integer-valued function o3 (I, m) such that: for any I, m,n € Nwithn > ax (I, m),
if (F,{Cy...,Cy}) is a book in a matroid M where

(a) Cq,...Cy are circuits of M,
(b) 1 <ry(FUCG;) —ry(F) <ry(Gy) foralli, and
() rm(F) <m,

then M has an M (K j)-minor where the series classes are contained in distinct sets in (C1, ..., Cp).

Proof. Let oy (I, m) =m(l+ 1). We prove the result by induction on m. The result is easy when m = 1.
Then we assume that m > 1 and that the result holds for smaller m.

Consider a book (F,{Cq,...,Cp}) satisfying the hypotheses. For each i € {1,...,n}, by possibly
contracting some elements of C;, we may assume that ry(C; U F) =ry(F) + 1.

Choose elements e, f € C, — cly(F). Then, for each i € {1,...,n — 1}, choose an element
zi € C; —cly(F) and let C{ C C; be a circuit of M/{e, f} that contains z;. Note that n — 1 =1+n’'
where n’ > a(I,m — 1). Then by possibly reordering C’,...,C we have one of the two following
cases.

’
n—1’

Case 1. |Cj|=---=|C]| =2.
Then the restriction of M/ f\e to C; U---UCy, is isomorphic to M(K3 ).
Case 2. [C],...,|C,| > 2.

Note that ry e (F) <m — 1, so the result follows by induction. O
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The following result is a direct corollary of Lemmas 4.1 and 4.2; we skip the proof.

Lemma 4.3. There exists an integer-valued function a3 (s, I, a, b) such that: fora,b,l,s e Nwithb > a, if M is
amatroid with no U, p-minor and C is a set of circuits of M of rank at most a+ 1, withry (C) > a3(s, I, a, b),
then either

(i) there exist s skew circuits C1,...,Cs € C, or
(ii) M has an M (K3 )-minor where the series classes are contained in distinct sets in C.

5. Building a nest

A point in a matroid is a rank-1 flat and a line is a rank-2 flat; we call a line long if it contains at
least 3 points. We shall assemble many long lines in a clique-like structure. We first build intermedi-
ate structures called nests.

Definition 5.1. A matroid M is a nest if M has a basis B = {bq,..., by} such that, for each pair of
indices i, j € {1,...,n}, with i < j, the set {b;,b;} spans a long line in M/{b1, ..., b;_1}. The elements
in B are called the joints of the nest M.

It is easy to verify that M(Ky) is a nest; take the edges incident to a fixed vertex of K, as the
joints.

For t € N we say that M is t-round if I'(M) < t. Note that t-roundedness is preserved under
contractions. The main result of this section is the following.

Lemma 5.2. There exists an integer-valued function v(n,t,a, b) such that: for any a,b,n,t € N with a > b,
if M is a t-round matroid with no U1 p-minor and r(M) > v(n, t, a, b), then M has a rank-n nest as a minor.

We obtain a nest by finding one joint at a time using the next lemma.

Lemma 5.3. There exists an integer-valued function vy (m, t, a, b) such that: for any a,b, m,t € Nwith b > q,
if M is a t-round matroid with no Uy p-minor, r(M) > vi(m, t,a,b) and B is a basis of M, then M has an
M (K2,m)-minor such that each series class contains an element of B.

We start by deriving Lemma 5.2 from Lemma 5.3.

Proof of Lemma 5.2. Let t be fixed. Let v(1,t,a,b) =1 and for n > 2 define v recursively by
v(n,t,a,b)y=vi(v(n—1,t,a,b) +2,t,a,b).
To facilitate induction we prove the stronger statement:

If M is a t-round matroid with no Ugq1 p-minor, r(M) > v(n, t,a, b) and B is a basis of M, then M has a
rank-n nest M/Y as a minor, with joints contained in B.

The proof is by induction on n. For n =1 the result is trivial, as any rank-1 matroid is a nest.
Let n > 2 and assume the result holds for n — 1. Let M and B be given as above and let m =
v(in—1,t,a,b) + 2.

By Lemma 5.3, M has an M (K3 n)-minor such that each series class contains an element of B. Let
{b1,e} be one of the series classes of M(K2m) with by € B and let B C B be an (m — 1)-element
set containing an element from each of the other series-classes of M(K2 ;). We may assume that
M (K m) is a spanning restriction of M/Y;.

Let Ny =M/(Y1 U{e}) and N/] = N1/bq. Since t-roundness is preserved under contractions, Ni is
t-round. Moreover r(N}) =v(n —1,t,a,b) so, by induction, N{ has a rank-(n — 1) nest N> as a minor
with joints By € By — by.
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We may assume that Ny =N} /Y. Now let Y =Y UY; and N=M/Y, so N = N/by. It is easy to
verify that N is a nest with joints {b1}UB;. O

A set X C E(M) is connected if M|X is connected. We denote by 77 (M) the minimum m such that
there exists a collection (X1, ..., X;) of connected sets of rank at most a in M such that X;U---U Xy,
contains all non-loop elements of M. Clearly t$ (M) > 7,(M). Note also, that a loopless rank-a matroid
M has at most a connected components, so t§ (M) < atq(M). Therefore

Ta(M) < 75 (M) < ate(M).

We need a technical lemma before we prove Lemma 5.3.

Lemma 5.4. Let M be a matroid with no Uq1 ,-minor, where b > a, let e € E(M), and let F be the collection
of all connected rank-(a + 1) sets in M containing e. If r); (F) =n, then

tE(M) — £ (M/e) <a2(b;1) ) +1.

Proof. We may assume that M is simple. Let (Xi,...,X;) be a minimal a-covering of M/e by
connected sets. We shall construct an a-covering of M by connected sets. For each i € X;, either
v (Xi) =Tmse(Xi) or ry(Xi) =1mze(X;) + 1. If ry(X;) = ryje(X;), then X; is a connected set in M
with rank at most a; let X! = X;. If riy(Xi) =rmye(Xi) + 1, then X; U {e} is a connected set in M with
rank at most a +1; let X] = X; U {e}.

By possibly reordering the sets, we may assume that Xi,..., X;y have rank a+ 1 in M and that
Xm+1, - - - » Xi have rank at most a. By Lemma 2.5, for i =1, ..., m, we have

b—1
s ([x) <am(mlx) <a(* ).
Therefore
b—1 b—1
7o (M) <ma . +k-m+1<ma . +ti(M/e)+1.

We may assume that m > 1. Let M’ = (M/e)|(X; U---U Xp,). Note that (X1,..., X;y) is a minimal
a-covering of M’ by connected sets and that r(M’) <n — 1. Hence, by Theorem 2.6,

h—1 n—1-a
o 4 4
m:ta(M)éara(M)ga( a ) .
Now the result follows by combining the two inequalities displayed above. O

Let M be a matroid, k € N and let B C E(M). We say that B k-dominates M, if for any element
x € E(M) there is a set W C B with |W| <k such that x € cly;(W). A k-dominating set clearly has to
be spanning. It is easily verified that: if B, Y € E(M) and B k-dominates M, then B — Y k-dominates
M/Y.

Proof of Lemma 5.3. Let m, t,a and b be given, and define the following constants,

ra=a3(m+1,m,a,b), l=m+ry4, r3=a3(2,l+1,a,b),

b—1\""C
A:a2< . ) +1, r1 =max(2t,8(x, a, b)),

and let us define v{(m, t, a, b) = v :a(a)(bgl)r] ~* Let M and B be as given.
By Lemma 2.2 and the fact that B is a basis, there is an a-simple spanning restriction of M that
contains B. Let Ny be a minimal minor of M such that Ny is t-round and a-simple, and B C E(Ny).
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We claim that B (a + 1)-dominates N1. Consider any element f € E(N1) — B. Since N is t-round,
N1/ f is too. By our choice of N1, the minor (N1/f)|B cannot be a-simple. Since N is simple, N1/ f
is loopless. Then, since (N1/f)|B is not a-simple, there is a set W C B, with (N1/f)|W = Uy ., for
some k € {1,...,a}. Then ry,(W) < a+ 1. However, since N; is a-simple, N{|W # (N1/e)|W and,
hence, e € cly, (W). Thus B (a+ 1)-dominates Ny as claimed.

By Lemma 2.7, we have

0 (@Ta(N1) > |E(ND)| > |Bl=r(M) > vy,
and so, 74(Np) > (b;1)r1 ~ Then, by Theorem 2.6, we have r(N1) >ry.

By the definition of r{, we have I'(N1) <t < %r(Nl) and r(N1) > é(A,a,b). Then, by Lemma 3.3,
there is a minor Ny of Ny with 74(N2) > Ar(N3). We may assume that N, = Ny/Y;. Thus t{(Ny) >
AT(N>). Let Yo € E(N3) be maximal such that

74 (N2/Y2) > Ar(N2/Y2),

and let N3 = N/Y;. Since Y, was chosen to be maximal, N3 is loopless. Choose any element e €
E(N3). Then,

7 (N3) — t{(N3/e) > Ar(N3) — Ar(N3/e) = A.

Let F denote the collection of all connected rank-(a + 1) sets in N3 containing e, and let n =rn, (F).

By Lemma 5.4, we have A < a2 (bgl)nia +1, and, by the definition of A, this yields n > rs.

Denote by C the collection of all circuits of N3 of rank at most a + 1 containing e. For each X € F
and non-loop y € X — {e}, since X is connected, there exists a circuit C C X containing e and y, so
C eC. Hence, ryn;(C) > n.

Note that n >r3 =w3(2,1+ 1,a,b) and that no two circuits in C are skew. Then, by Lemma 4.3,
there is an M(Ky y1)-minor of Ns. Let {e, f}, {h1,h{}, ..., {h, hj} be the series classes of M(Ky).
Since | =m + ry4, by possibly reordering, we may assume that none of hy, ..., hy, is contained in B.

We may assume that M(K ) is a spanning restriction of N3/Y3; let N4 = N3/(Y3 U{f}). By the
remark preceding the proof, B N E(N4) (a + 1)-dominates N4. So, for each i € {1,...,r4}, h; is in
the closure of a subset of B of rank at most a + 1. Choose a circuit C; of N4 containing h;, with
v, (Ci) <a+1 and C; € BU({h;}. Since {hy, ..., hy,} is independent, rn,(U;C;) >4 =a3(m+1,m,a, b).

Then, by Lemma 4.3, we get one of the following two cases.

Case 1. There are m + 1 skew circuits among Cy ..., Cr, in Ng.

The union of some m of these m+ 1 circuits is skew to the set {e} in N4. After possibly reordering
we may assume Cq, ..., Cp, {e} are skew. Now N4 restricted to the union of the sets ((C; — {hi})U{hg}:
i=1,...,m) is isomorpic to the cycle matroid of a subdivision of M(K> ;); moreover each of the

series classes contains an element of B. Thus we obtain the required M (K3 p)-minor.

Case 2. There is an M (K2 ;) minor of N4 such that each series class of M(K32 ) is contained in one
of C] ...,Cr4.

In this case we are done since each of Cq, ..., Cr, contains at most one element not in B. O

6. Cleaning a nest

The goal of this section is to further refine nests. A Dowling clique is a matroid M with ground set
{b1,...,bn}U{eij: 1<i < j<n} such that {by,..., by} is a basis and, for each 1 <i < j <n, the set
{bi,bj, ej;} is a triangle. We call the elements b1, ..., b, the joints of M. These matroids are related to
Dowling Geometries [2].

The proof of the following theorem is based on ideas introduced by Kung [5].
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Lemma 6.1. There exists an integer-valued function ¢ (n, a, b) such that: for any a,b,n e Nwith b > q, if M is
a nest of rank at least ¢ (n, a, b) with no U, p-minor, then M contains a rank-n Dowling clique as a minor.

Proof. Recall that oy and € are defined in Lemmas 4.1 and 2.8. Let t; = (2a)™n, t; =ty +a, s =n+a°,
and s = a1(s1,a,a,b). Now, let wg =t and, for eachi=s,..., 1, let w;_1 =€(wj,s,a,b). Let to = wyg
and, finally, let ¢ (n,a, b) =s + to.

Let M be a rank-(s +tp) nest. We start the proof by moving to a different structure whose labeling
is disassociated with that of the nest; this will allow us the freedom to relabel later.

Claim 1. There is a restriction Mo of M and a partition (A, C7}, ..., C{) such that ry,(A) = s and, for each
ie{l,...,to}, theset C is an independent (s + 1)-element cocircuit of Mg that spans A.

Proof of Claim. Let the joints be ay,...,as,b1,...,by,. Foreachie{1,...,s} and je({1,...,to}, there
is an element e;; € E(M) and a circuit Cj; of M such that a;,bj,e;; € Gjj C {ar,...,a;} U {bj, ejj}.
Now let A ={a1,...,as} and, for each j e {1,...,to}, let C;‘.‘ ={e1j,...,esj} U {b;}. Finally let Mo be
the restriction of M to the union of (A, C7,...,C¥). It is straightforward to verify that the claim is
satisfied by My, A, and CT,...,C;‘O. O

For each i e {1,...,to}, let Cf = {e1j,...,esj} U {bj}. Let B ={by,...,by} and let My = M/B.
Note that A is a basis of M; and, hence, r(M1) =s. For each i € {1,...,s} and j € {1,...,to}, let
Sij={ei: k=1,..., j}. Note that to = wg and, for each i e {1,...,s}, wi_1 =€(wj, s,a,b). Therefore,
by Lemma 2.8 and possibly reordering, we may assume that: foreachi=1,...,s, ry, (Siw;) < aand
M1|Siw; is uniform. Now t; = wy, so:

Claim 2. Foreachi=1,...,s,rm,(Sit;) < a and M1|Sj, is uniform.

Recall that t; =t +a. Let My = M/{bt,41,...,bs,} and, for each i € {1,...,a}, let X; = {e(,+iy:
k=1,...,j}. Note that, for each i =1,...,50, X; € clm,(A), rm,(Xi) <a, and X; spans the uniform
matroid M1|Sj,.

By Lemma 4.1 and by possibly reordering, we may assume that:

Claim 3. Thereisaset F € X1 U---U X withry, (F) < a3 such that (F, {X1, ..., Xs,}) is a book in M.

Note that {e¢1,...,es} is an independent set of M, that spans A and e;; € X;, for each
ie{1,...,s}. Therefore F spans at most a® of the sets (X1,..., Xs;). Now, sy =n + a3, so, by pos-
sibly reordering, we may assume that F spans none of (Xi,..., X;). For each i € {1,...,n}, choose

a maximal independent set Y; € X; in My/F.

Recall that, for each i € {1,...,n}, X; spans M1|S;,. Moreover, X; is not spanned by F. Therefore,
since M1|Sj¢, is a uniform matroid of rank at most a, F spans fewer than a points in M1|S;,. For each
jef1,...,t2}, if ej; &cly, (F), then there is a circuit C in M/F such that bj,e;j € C C Y1 U {bj, ej;}
and CNY; #@. Now t; = (2a)"n (this number is bigger than necessary), so by a majority argument
and possibly reordering, we may assume that:

Claim 4. Foreachi € {1, ..., n} thereis an element f; € Y; such that, foreach j € {1, ...,n}, thereis a circuit C
in Ma/F with bj, ejj, fieCCXquU {bj, eij}.

Let M3 = My/(FU (Y1 — {fih U---U Yy — {fa}). Then {f1,..., fa} U {b1,...,by} is indepen-
dent and, for each i,j e {1,...,n}, the set {fj,e;,b;} is a triangle of M3. Then the restriction of
Ms/{e1n, ..., em} to {b1,...,bp}U{e;j: 1<i < j<n}isaDowling clique. O
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7. Cliques

It remains to show that any Dowling clique of sufficiently large rank contains either M(Ky) or
B(K,) as a minor. We need the following theorem of Mader [7].

Mader’s Theorem 7.1. There is an integer valued function A(n) such that: for any n € N, if G is a simple graph
with |[E(M)| > A(n)|V (M)|, then G has a K;,,-minor.

Let M be a matroid and let G = (V, E) be a loopless graph. We call G a Dowling representation of
M if E(M) =V UE, V is a basis of M, and, for each e € E with ends u and v, the set {e,u, v} is a
triangle of M. The following lemma helps us to recognize graphic matroids. The result is well-known
and can easily be derived from a result of Seymour [10], we omit the proof.

Lemma 7.2. Let G = (V, E) be a simple connected graph and let M be a matroid. If G is a Dowling representa-
tion of M and V is a cocircuit of M, then M|E = M(G).

We also need to recognize bicircular matroids. The following lemma is also well-known, and again,
we skip the proof.

Lemma 7.3. Let G = (V, E) be a loopless graph and let M be a matroid. If G is a Dowling representation of M
and, for each circuit C in G, E(C) is independent in M, then M|E = B(G) (in fact M = B(G)).

We are ready for the final step in the proof of the main theorem.

Lemma 7.4. There exists an integer-valued function y (n) such that, if M is a Dowling clique with rank at least
¥ (n), then M contains an M(Ky)- or B(Ky)-minor.

Proof. Let m =n!, | =2mA(n), and vy (n) =nl. Let M be a Dowling clique of rank nl and let G = (V, E)
be a Dowling representation of M; thus G = K,;. Let Tq,..., T, be vertex disjoint trees of G each
having [ vertices. For each 1<i < j <n, let E;; denote the set of all edges of G having one end in
V(T;) and the other end in V (T}), let G;; be the subgraph of G with vertex set V(T;) UV (T;) and edge
set E;j U E(T;) U E(T;), and let M;; = M|(V(G;j) U E(Gjj)). Thus Gjj is a Dowling representation M;;.
Note that M;;/(E(T;) U E(T;)) is a loopless matroid with rank 2, and that V(T;) and V(T}) are both
points of M;;/(E(T;) U E(T})).

Claim 1. For each 1 <i < j <n, if M;j/(E(T;) U E(T;)) has at most m + 2 points, then M;; contains an
M (Ky)-minor.

Proof. Let M’ = M;;/(E(T;) U E(T})). If M’ has at most m + 2 points, then there is a point X C Ej;
of M’ with |X| =I[2/m. Let G” be the spanning supgraph of Gij with edge set E(T1) UE(T2) U X and
let M” = M;;|(V(G”) U E(G")). Now G” is connected and V(G") is a cocircuit in M” (since it is a
cocircuit in M”/(E(T;) U E(T}))). Then, by Lemma 7.2, M"|E(G"”) = M(G"). Moreover, |E(G")| > |X| >
I2/m > x(n)2l = A(n)|V (G")|, so, by Mader’s Theorem, G” contains a K,-minor. O

Now consider the matroid M/(E(T1)U---U E(Ty)). By Claim 1, we may assume that:

Claim 2. There exists a simple minor N of M with a basis B = {bq, ..., by} such that, foreach 1 <i < j <n,
the elements {b;, b;} spans an (m + 3)-point line in N.

For each 1 <i < j<n, let Wi; =cIy({b;, bj}) —{b;, bj}. Thus |W;j| > m+1. Let W denote the union
of the sets W;;. We may assume that E(N) = BUW. Now let H = (B, W) be a Dowling representation
of N. Note that a simple graph on n vertices has at most n! distinct circuits. Therefore we can build
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a sequence (Hg, H1, ..., H(;)) of simple spanning subgraphs of H such that, for each i € {1,..., (g)}
|E(H;)| =1 and, if C is a circuit of H;, then E(C) is independent in N. Then, by Lemma 7.3, N|E(H(g))
is isomorphic to B(K,). O

Finally, we restate and prove Theorem 1.1.

Theorem 7.5. There exists an integer-valued function y (k,n) such that: for any k,n € N, if M is a matroid
with r(M) > y (k,n), then either M has k disjoint cocircuits or M has a minor isomorphic to Up 2, M(Kp) or
B(Kp).

Proof. Since M(Ky) is trivial, we may assume that n > 2. Recall that the functions v, ¢, v, and fg
are defined in Lemmas 74, 6.1, 5.2, and 3.1. Let m = ¢ (¥ (n),n — 1, 2n). Now define g: N — N by
g(t) =v(m,t,n—1,2n). Finally y (k,n) = fg (k).

Let M be a matroid such that r(M) > y(k,n), M has no Up;-minor and M does not have k
disjoint cocircuits. By Lemma 3.1, M has a minor N with r(N) > g(I"(N)). Then, by Lemmas 5.2, 6.1
and 7.4, we obtain an M(Ky)- or a B(Kp)-minor of N. O
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