

The Erdös–Pósa property for matroid circuits [☆]

Jim Geelen^a, Kasper Kabell^b

^a Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Canada
^b Department of Mathematical Sciences, University of Aarhus, Aarhus, Denmark

ARTICLE INFO

Article history: Received 25 March 2008 Available online 6 September 2008

Keywords: Matroids Erdös–Pósa property Circuits Bicircular matroids

ABSTRACT

The number of disjoint cocircuits in a matroid is bounded by its rank. There are, however, matroids with arbitrarily large rank that do not contain two disjoint cocircuits; consider, for example, $M(K_n)$ and $U_{n,2n}$. Also the bicircular matroids $B(K_n)$ have arbitrarily large rank and have no 3 disjoint cocircuits. We prove that for each k and n there exists a constant c such that, if M is a matroid with rank at least c, then either M has k disjoint cocircuits or M contains a $U_{n,2n}$ -, $M(K_n)$ -, or $B(K_n)$ -minor.

© 2008 Elsevier Inc. All rights reserved.

Journal of Combinatorial

Theory

1. Introduction

We prove the following theorem.

Theorem 1.1. There exists a function $\gamma : \mathbb{N}^2 \to \mathbb{N}$ such that, if M is a matroid with no $U_{n,2n}$ -, $M(K_n)$ -, or $B(K_n)$ -minor and $r(M) \ge \gamma(k, n)$, then M has k disjoint cocircuits.

Here $M(K_n)$ is the cycle matroid of K_n , $B(K_n)$ is the bicircular matroid of K_n (to be defined below), and \mathbb{N} denotes the set of positive integers.

A circuit-cover of a graph G is a set $X \subseteq E(G)$ such that G - X has no circuits. Thus the maximum number of (edge-)disjoint circuits in a graph is bounded by the minimum size of a circuit cover. This bound is not tight (consider K_4), but Erdös and Pósa in [3] proved that the maximum number of disjoint circuits is qualitatively related to the minimum size of a circuit cover.

Erdös–Pósa Theorem 1.2. There is a function $c : \mathbb{N} \to \mathbb{N}$ such that, for any graph *G*, either *G* has *k* disjoint circuits or *G* has a circuit-cover of size at most c(k).

^{*} This research was partially supported by a grant from the Natural Sciences and Engineering Research Council of Canada.

Let *M* be a matroid. A set $X \subseteq E(M)$ intersects each circuit of *M* if and only if E(M) - X is independent. So a minimal circuit-cover of *M* is a basis of M^* and, hence, the minimum size of a circuit-cover is $r(M^*)$. Dually, the minimum size of a "cocircuit-cover" in a matroid *M* is equal to r(M). The Erdös–Pósa Theorem was generalized to matroids by Geelen, Gerards, and Whittle [4] who proved the following theorem.

Theorem 1.3. There exists a function $c : \mathbb{N}^2 \to \mathbb{N}$ such that, if M is a matroid with no $U_{2,n}$ - or $M(K_n)$ -minor and $r(M) \ge c(k, n)$, then M has k disjoint cocircuits.

The result does not extend to all matroids; there exist matroids with arbitrarily large rank that have no two disjoint cocircuits. Matroids with no two disjoint cocircuits are referred to as *round*. Equivalently, a matroid is round if each of its cocircuits is spanning. The matroid $U_{r,n}$, where $n \ge 2r-1$ is round. Also, for any positive integer n, $M(K_n)$ is a round matroid. Note that, for a simple graph G, the matroid M(G) is round if and only if G is a complete graph.

Let G = (V, E) be a loopless graph. Define a matroid $\widetilde{B}(G)$ on $V \cup E$ where V is a basis of $\widetilde{B}(G)$ and, for each edge e = uv of G, place e freely on the line spanned by $\{u, v\}$. Now $B(G) := \widetilde{B}(G) \setminus V$ is the *bicircular matroid* of G. Bicircular matroids obtain their name from the graphical description of their circuits; see [8, Prop. 12.1.6]. It is easy to verify that $\widetilde{B}(K_n)$ is round. The bicircular matroid $B(K_n)$ is not round, but it has no three disjoint cocircuits.

Our main theorem, Theorem 1.1, is a generalization of Theorem 1.3 and is, in some sense, best possible. Note that the matroids in each of the classes

$$\{M(K_n): n \ge 1\}, \{B(K_n): n \ge 1\}, \text{ and } \{U_{n,2n}: n \ge 1\}$$

have unbounded rank but they have a bounded number of disjoint cocircuits.

We hope that Theorem 1.1 will help in solving the following unpublished conjecture of Johnson, Robertson, and Seymour: for any positive integer n there is a positive integer k such that, if M is a matroid with branch-width at least k, then either M or M^* has a minor isomorphic to either $U_{n,2n}$ or to the cycle matroid or the bicircular matroid of an $n \times n$ grid.

Our proof of Theorem 1.1 is based, in part, on the techniques developed in [4]. We follow the notation of Oxley [8].

2. Preliminaries

For a matroid *M*, we denote by $\Theta(M)$ the maximum number of disjoint cocircuits in *M*. So, *M* is round if and only if $\Theta(M) = 1$. The *rank-deficiency* of a set of elements $X \subseteq E(M)$ is $def_M(X) = r(M) - r_M(X)$. We let $\Gamma(M)$ denote the maximum rank-deficiency among the cocircuits of *M*. Therefore *M* is round if and only if $\Gamma(M) = 0$. The two parameters $\Gamma(M)$ and $\Theta(M)$ are related by the inequality

$$\Theta(M) \leqslant \Gamma(M) + 1.$$

The following result lists hereditary properties of the two parameters; we omit the elementary proof.

Lemma 2.1. Let e be an element of a matroid M. Then

(i) $\Theta(M/e) \leq \Theta(M)$ and $\Gamma(M/e) \leq \Gamma(M)$.

(ii) if *e* is not a coloop, then $\Theta(M \setminus e) \ge \Theta(M)$ and $\Gamma(M \setminus e) \ge \Gamma(M)$.

The following lemma gives a sufficient condition for equality in (ii).

Lemma 2.2. Let X be a set of elements in a matroid M such that M|X is uniform and $|X| \ge 2r_M(X)$. Then, for any $e \in X$, we have $\Theta(M \setminus e) = \Theta(M)$ and $\Gamma(M \setminus e) = \Gamma(M)$.

Proof. Let $k = r_M(X)$. Now consider any cocircuit *C* of $M \setminus e$. Note that either *C* or $C \cup \{e\}$ is a cocircuit of *M*. We claim that: if $C \cup \{e\}$ is a cocircuit of *M*, then $|X - (C \cup \{e\})| \le k - 1$ and $e \in cl_M(C)$. Indeed, if

 $C \cup \{e\}$ is a cocircuit of M, then $E(M) - (C \cup \{e\})$ is a hyperplane and, hence, it can contain at most k - 1 elements of X. Therefore $|X \cap C| \ge k$ and, hence, $e \in cl_M(C)$, as claimed.

Suppose that *C* is a cocircuit of $M \setminus e$ with $def_{M \setminus e}(C) = \Gamma(M \setminus e)$. Now, there exists $C' \in \{C, C \cup \{e\}\}$ such that *C'* is a cocircuit of *M*. By the claim, $r_M(C') = r_M(C)$. Hence $\Gamma(M) \ge def_M(C') = def_{M \setminus e}(C) = \Gamma(M \setminus e)$.

Let $(C_1, ..., C_t)$ be a maximum collection of disjoint cocircuits in $M \setminus e$ and, for each $i \in \{1, ..., t\}$, let $C'_i \in \{C_i, C_i \cup \{e\}\}$ be a cocircuit of M. By the claim, at most one of the sets $(C'_1, ..., C'_t)$ contains e. Therefore, $\Theta(M) \ge t = \Theta(M \setminus e)$. Then, by Lemma 2.1, we have $\Theta(M) = \Theta(M \setminus e)$, as required. \Box

A matroid *M* is called *a-simple* if *M* is loopless and has no $U_{k,2k}$ -restriction for k = 1, 2, ..., a. The following lemma is an immediate consequence of Lemma 2.2.

Lemma 2.3. Let *M* be a matroid and let $a \in \mathbb{N}$. There is a spanning *a*-simple restriction *N* of *M* with $\Gamma(N) = \Gamma(M)$ and $\Theta(N) = \Theta(M)$.

A simple GF(q)-representable rank-r matroid can be realized as a restriction of the projective geometry PG(r-1, q). Thus, it has at most $\frac{q^r-1}{q-1}$ elements. Kung [6] extended this bound to the class of matroids with no $U_{2,q+2}$ -minor (the shortest line not representable over GF(q)).

Theorem 2.4 (Kung). Let q > 1 be an integer and let M be a simple rank-r matroid with no $U_{2,q+2}$ -minor. Then

$$\left|E(M)\right| \leqslant \frac{q^r-1}{q-1}.$$

This bound is attained by a projective geometry when q is a prime power. Excluding uniform matroids of larger rank will clearly not yield analogous bounds on the number of elements, so we introduce a new measure of size.

Let *a* be a positive integer. An *a*-covering of a matroid *M* is a collection (X_1, \ldots, X_m) of subsets of E(M) with $E(M) = X_1 \cup \cdots \cup X_m$ and $r_M(X_i) \leq a$ for all *i*. The *size* of the covering is *m*. The *a*-covering number of *M*, denoted $\tau_a(M)$, is the minimum size of an *a*-covering of *M*. Note that, for a matroid *M*, $\tau_1(M) = |E(si(M))|$, where si(M) denotes the simplification of *M*. If $r(M) \leq a$, then $\tau_a(M) \leq 1$. Our first lemma bounds the *a*-covering number for matroids with rank a + 1.

Lemma 2.5. For $a, b \in \mathbb{N}$ with b > a, if M is a matroid of rank a + 1 with no $U_{a+1,b}$ -restriction, then

$$\tau_a(M) \leqslant \binom{b-1}{a}.$$

Proof. Let $X \subseteq E(M)$ be maximal with $M|X \cong U_{a+1,l}$. Then $l \leq b-1$ and every point of M is spanned by one of the rank-*a* flats of M|X. Hence $\tau_a(M) \leq \binom{l}{a} \leq \binom{b-1}{a}$. \Box

The next result extends Kung's Theorem, although our bound is not sharp.

Theorem 2.6. For $a, b \in \mathbb{N}$ with b > a, if M is a matroid of rank $r \ge a$ with no $U_{a+1,b}$ -minor, then

$$\tau_a(M) \leqslant \binom{b-1}{a}^{r-a}.$$

Proof. The proof is by induction on *r*. The case r = a is trivial since (E(M)) is an *a*-covering of size 1.

Let r > a and assume that the result holds for rank r - 1. Let x be a non-loop element of M. Then r(M/x) = r - 1 and by induction $\tau_a(M/x) \leq {\binom{b-1}{a}}^{r-1-a}$. Note that $\tau_{a+1}(M) \leq \tau_a(M/x)$ and, by Lemma 2.5, $\tau_a(M) \leq {\binom{b-1}{a}} \tau_{a+1}(M)$. Therefore $\tau_a(M) \leq {\binom{b-1}{a}}^{r-a}$, as required. \Box For *a*-simple matroids, the size is proportional to τ_a :

Lemma 2.7. There exists an integer-valued function $\sigma(a)$ such that, if $a \ge 1$ and M is a-simple, then $|E(M)| \le \sigma(a)\tau_a(M)$.

Proof. Define σ by

$$\sigma(a) = \prod_{k=2}^{a} \binom{2k-1}{k-1}.$$

Since *M* has no $U_{k,2k}$ -restriction for k = 2, ..., a, Lemma 2.5 gives

$$\tau_{k-1}(M) \leqslant \binom{2k-1}{k-1} \tau_k(M), \quad k=2,\ldots,a.$$

Putting these together, we get $|E(M)| = \tau_1(M) \leq \sigma(a)\tau_a(M)$. \Box

Lemma 2.8. There exists an integer-valued function $\epsilon(n, r, a, b)$ such that, for $a, b, n, r \in \mathbb{N}$ with b > a, if M is a rank-r matroid with no $U_{a+1,b}$ -minor and $|E(M)| \ge \epsilon(n, r, a, b)$, then there exists an n-element set $X \subseteq E(M)$ such that $r_M(X) \le a$ and M|X is uniform.

Proof. Let $m_0 = n$ and, for each i = 1, ..., n, let $m_i = \binom{n-1}{i-1}m_{i-1} + 1$. Now let $l = \binom{b-1}{a}^{r-a}$ and let $\epsilon(n, r, a, b) = m_a l$. Let M be a rank-r matroid with no $U_{a+1,b}$ -minor and with $|E(M)| \ge \epsilon(n, r, a, b)$. By Theorem 2.6, M has an a-cover $(X_1, ..., X_l)$. Since $|E(M)| \ge m_a l$, we may assume that $|X_1| \ge m_a$. Let $a' \le a$ be minimum such that there exists a rank-a' set $X \subseteq X_1$ with $|X| = m_{a'}$. If a' = 0, then $M|X \cong U_{0,n}$, so we may assume that a' > 0. Now $m_{a'} > \binom{n-1}{a'-1}m_{a'-1}$ so, $\tau_{a'-1}(M|X) > \binom{n-1}{a'-1}$. Then, by Lemma 2.5, M|X contains a $U_{a',n}$ -restriction. \Box

3. Building density

The first step in the proof of the main theorem is to show that a matroid of large enough rank has either *k* disjoint cocircuits or a large minor that is nearly round.

Lemma 3.1. Let $g : \mathbb{N} \to \mathbb{N}$ be a non-decreasing function. There exists a function $f_g : \mathbb{N} \to \mathbb{N}$ such that, for any $k \in \mathbb{N}$, if M is a matroid with $r(M) \ge f_g(k)$, then either

- (a) M has k disjoint cocircuits or
- (b) *M* has a minor N = M/Y with $r(N) \ge g(\Gamma(N))$.

Proof. Let *g* be given and define f_g as follows: $f_g(0) = f_g(1) = 1$ and

$$f_{g}(k) = g(f_{g}(k-1)), \quad k \ge 2$$

The proof is by induction on k. If $r(M) \ge 1$, then M has a cocircuit, so the result holds for k = 0, 1. Now let $k \ge 2$ and $r(M) \ge f_g(k) = g(f_g(k - 1))$.

If $\Gamma(M) \ge f_g(k-1)$, then let *C* be a cocircuit of *M* with def_{*M*}(*C*) = $\Gamma(M)$. Then $r(M/C) = \text{def}_M(C) \ge f_g(k-1)$. If M/C has the desired contraction minor, then we are done. If not, then by induction M/C has k-1 disjoint cocircuits. These, together with *C*, give *k* disjoint cocircuits of *M*.

If $\Gamma(M) \leq f_g(k-1)$, then as g is non-decreasing, we have $r(M) \geq f_g(k) = g(f_g(k-1)) \geq g(\Gamma(M))$. \Box

Lemma 3.2. Let M be a simple matroid with no $U_{a+1,b}$ -minor, where $b > a \ge 1$, and let C be a cocircuit of M of minimum size. If C_1, \ldots, C_k are disjoint cocircuits of $M \setminus C$ with $|C_1| \le \cdots \le |C_k|$, then $|C_i| \ge |C|/(a\binom{b-1}{a})$ for each $i \in \{a, \ldots, k\}$.

Proof. Let $i \in \{a, ..., k\}$. There exist sets $(C'_1, ..., C'_{a-1})$ such that, for each $j \in \{1, ..., a-1\}$, we have $C'_j \subseteq C_j$ and the set C'_j is a cocircuit of $M \setminus (C \cup C'_1 \cup C'_2 \cup C'_{j-1})$. Let $F = E(M) - (C \cup C_i \cup C'_1 \cup C'_{a-1})$ and N = M/F. Deleting a cocircuit of a matroid drops its rank by 1, so def_M(F) = a + 1 and, hence, r(N) = a + 1. By Lemma 2.5, $\tau_a(N) \leq {b-1 \choose a}$. Moreover, C is a cocircuit of minimum size in N, so each rank-a flat of N has size at most $|E(N) - C| \leq |C_1 \cup \cdots \cup C_{a-1} \cup C_i| \leq a|C_i|$. Hence $|C| \leq |E(N)| \leq a|C_i| {b-1 \choose a}$, as required. \Box

The following lemma is the main result of this section.

Lemma 3.3. There exists an integer-valued function $\delta(\lambda, a, b)$ such that: for any $a, b, \lambda \in \mathbb{N}$ with b > a, if M is a matroid with no $U_{a+1,b}$ -minor such that $\Gamma(M) \leq \frac{1}{2}r(M)$, $r(M) \geq \delta(\lambda, a, b)$, then M has a minor N with $\tau_a(N) > \lambda r(N)$.

Proof. We define the value $\delta(\lambda, a, b)$ using the functions σ and f_{g_n} defined in Lemmas 2.7 and 3.2. Let $\kappa = 2a\binom{b-1}{a}\sigma(a)\lambda + a - 1$. Now define a sequence of functions $g_n : \mathbb{N} \to \mathbb{N}$. Let $g_0(m) = 0$, and for $n \ge 1$ define g_n recursively by

 $g_n(m) = \max(2m, \delta_n)$, where

 $\delta_n = 2(f_{g_{n-1}}(\kappa+1)).$

Finally, let $\delta(\lambda, a, b) = \delta_{n_0}$ where $n_0 = 2\sigma(a)\lambda$.

We first prove the following claim.

Claim. For any $n \ge 0$, if M is a matroid with no $U_{a+1,b}$ -minor such that $r(M) \ge g_n(\Gamma(M))$, then either

- (i) *M* has a minor *N* with $\tau_a(N) > \lambda r(N)$, or
- (ii) there is a contraction-minor N of M and a collection of sets $C_1, \ldots, C_n \subseteq E(N)$ such that, for each $i \in \{1, \ldots, n\}$, the set C_i is a spanning cocircuit of $N \setminus (C_1 \cup \cdots \cup C_{i-1})$.

Proof of Claim. Observe that, we lose no generality in replacing *contraction-minor* with *minor* in outcome (ii). We will prove this weaker version of the claim by induction on *n*. The case n = 0 is trivial, so assume $n \ge 1$ and that the result holds for n - 1. Note that, by Lemma 2.3 and by possibly deleting elements from *M*, we may assume that *M* is *a*-simple.

Let C_1 be a minimum size cocircuit of M, let Y be a basis of M/C_1 , and let $M_1 = M/Y \setminus C_1$. Thus C_1 is a spanning cocircuit of M/Y. Then

$$r(M/Y) = r_M(\mathcal{C}_1) \ge r(M) - \Gamma(M) \ge \frac{1}{2}r(M) \ge \frac{1}{2}g_n(\Gamma(M)) \ge \frac{1}{2}\delta_n.$$

Now

$$r(M_1) = r(M/Y) - 1 \ge \frac{1}{2}g_n\big(\Gamma(M)\big) - 1 = f_{g_{n-1}}\big(\delta(\lambda, a, b)\kappa\big).$$

So, by Lemma 3.1, we have one of the following two cases.

Case 1. M_1 has κ disjoint cocircuits.

Every cocircuit of $M_1 = M \setminus C_1 / Y$ is a cocircuit of $M \setminus C_1$, so $M \setminus C_1$ has κ disjoint cocircuits, say $C_1^*, \ldots, C_{\kappa}^*$. We may assume that $|C_1^*| \leq \cdots \leq |C_{\kappa}^*|$. Since $\Gamma(M) \leq \frac{1}{2}r(M)$, we have $|C_1| \geq r_M(C_1) \geq \frac{1}{2}r(M)$. By Lemmas 2.7 and 3.2,

$$\sigma(a)\tau_a(M) \ge \left| E(M) \right| > \left| C_a^* \right| + \dots + \left| C_\kappa^* \right| \ge (\kappa - a + 1) \frac{r(M)}{2a\binom{b-1}{a}} = \sigma(a)\lambda r(M),$$

as required.

Case 2. M_1 has a contraction-minor M_2 with $r(M_2) \ge g_{n-1}(\Gamma(M_2))$.

In this case the claim easily follows by applying the induction hypothesis to M_2 . \Box

We are now ready to prove the lemma. Note that, by Lemma 2.3 and by possibly deleting elements from M, we may assume that M is a-simple. By the claim, either we are done or we find a minor N of M and a sequence of sets $C_1, \ldots, C_{n_0} \subseteq E(N)$ such that, for each $i \in \{1, \ldots, n_0\}$, the set C_i is a spanning cocircuit of $N \setminus (C_1 \cup \cdots \cup C_{i-1})$. We may assume that each of the sets C_1, \ldots, C_{n_0} is independent in N and that $r(N) = n_0$. Therefore

$$|E(N)| = n_0 + (n_0 - 1) + \dots + 1 = \frac{n_0 + 1}{2}r(N)$$

We claim that *N* is *a*-simple. Consider any restriction N|W of *N*, and let *i* be minimum such that $W \cap C_i$ is non-empty. Note that $C_i \cap W$ contains a cocircuit of N|W. Then N|W has an independent cocircuit. However $U_{k,2k}$ does not have an independent cocircuit, and hence *N* is *a*-simple as claimed.

Finally, by Lemma 2.7,

$$\sigma(a)\tau_a(N) \ge \left| E(N) \right| > \frac{n_0}{2}r(N) = \sigma(a)\lambda r(N),$$

and the result follows. \Box

4. Arranging circuits

In this section we derive technical "Ramsey-like" results concerning arrangements of low rank sets in a matroid.

A collection (A_1, \ldots, A_n) of sets in a matroid M is skew if

$$r_M(A_1) + \cdots + r_M(A_n) = r_M(A_1 \cup \cdots \cup A_n).$$

A book in *M* is a pair (F, \mathcal{A}) such that the sets $(A - F: A \in \mathcal{A})$ are skew in M/F. We are interested in books where $r_M(F)$ is small.

Lemma 4.1. There exists an integer-valued function $\alpha_1(n, r, a, b)$ such that: for any $a, b, r, n \in \mathbb{N}$ with b > a, if M is a matroid with no $U_{a+1,b}$ -minor, \mathcal{F} is a collection of sets of rank at most r in E(M), and $|\mathcal{F}| \ge \alpha_1(n, r, a, b)$, then M contains a book (F, \mathcal{A}) such that $r_M(F) \le ar^2$, $|\mathcal{A}| = n$, and $\mathcal{A} \subseteq \mathcal{F}$.

Proof. We begin by recalling Ramsey's Theorem (see [9] or [1, 9.1.4]). There exists an integer-valued function R(n, c, k) such that, for any $n, c, k \in \mathbb{N}$, if X is a set of size R(n, c, k) and we assign each n-element subset of X one of c colours, then there is a k-element subset Y of X such that each n-element subset of Y receives the same colour.

Let n, r, a, b be as given. Now, let $s_r = 0$, $l_r = n$, and, for i = r - 1, r - 2, ..., 1, we recursively define

$$s_i = s_{i+1} + l_{i+1}, \qquad u_i = {\binom{b-1}{a}}^{rs_i - a}, \qquad l_i = n {\binom{u_i}{r-i}}.$$

Let $m = s_1 + l_1$. So, we have $0 = s_r < s_{r-1} < \cdots < s_1 < m$. Next, define numbers k_0, \ldots, k_m as follows. Now let $k_m = m$ and, for $i = m, m - 1, \ldots, 1$, we recursively define $k_{i-1} = R(i, r, k_i)$. Finally, let $\alpha_1(n, r, a, b) = rk_1$.

Let *M* and \mathcal{F} be as given. Let $\mathcal{F}_0 = \mathcal{F}$ and $a_0 = 0$. We shall iteratively construct sequences

$$\mathcal{F}_0 \supseteq \mathcal{F}_1 \supseteq \mathcal{F}_2 \supseteq \cdots \supseteq \mathcal{F}_m$$
 and $a_0 < a_1 < a_2 < \cdots < a_m$

such that, for i = 1, ..., m, $|\mathcal{F}_i| = k_i$, and if $\mathcal{F}' \subseteq \mathcal{F}_i$ with $|\mathcal{F}'| = i$, then $r_M(\mathcal{F}') = a_i$. This clearly holds for \mathcal{F}_0 . Let $i \ge 1$, assume that \mathcal{F}_{i-1} and a_{i-1} satisfy the above. Note that $r_M(\mathcal{F}') \in \{a_{i-1} + 1, ..., a_{i-1} + r\}$, for any *i*-element subset $\mathcal{F}' \subseteq \mathcal{F}_{i-1}$. This defines an *r*-colouring of the *i*-element subsets of \mathcal{F}_{i-1} . Since $|\mathcal{F}_{i-1}| = k_{i-1} = R(i, r, k_i)$, there exists $\mathcal{F}_i \subseteq \mathcal{F}_{i-1}$ such that every *i*-element subset of \mathcal{F}_i has the same rank, say a_i .

For each i = 1, ..., m, let $b_i = a_i - a_{i-1}$. Notice that, by submodularity, this gives a non-increasing sequence

 $r \ge b_1 \ge b_2 \ge \cdots \ge b_m \ge 1.$

Hence, by definition of the pairs (s_i, l_i) , there exists an $r' \in \{1, ..., r\}$, such that $b_{s+1} = \cdots = b_{s+l} = r'$, where $s = s_{r'}$ and $l = l_{r'}$. If $r' = b_1$, then any collection of n members $X_1, ..., X_n \in \mathcal{F}_m$ will be skew and, hence, $(\emptyset, \{X_1, ..., X_n\})$ is a book. Therefore we may assume that $r' < b_1$.

Choose distinct sets $Z_1, \ldots, Z_s, X_1, \ldots, X_l \in \mathcal{F}_m$ and let $F = Z_1 \cup \cdots \cup Z_s$. Since $b_{s+1} = b_{s+l} = r'$, we have a book $(F, \{X_1, \ldots, X_l\})$ of width $\leq sr$. For $i = 1, \ldots, l$, choose a maximal independent set $\overline{B}_i \subseteq X_i$ that is skew to F, and expand this set to a basis $B_i \cup \overline{B}_i$ of X_i in M. Thus $|\overline{B}_i| = r'$ and $|B_i| = r - r'$.

Let $M' = M/(\overline{B}_1 \cup \cdots \cup \overline{B}_s)$ and $B = B_1 \cup \cdots \cup B_s$. Then $B_i \subseteq cl_{M'}(F)$, and thus $r_{M'}(B) \leq r_{M'}(F) \leq sr$. Let (W_1, \ldots, W_u) be a minimal *a*-covering of M'|B. By Theorem 2.6, we have

$$u = \tau_a(M'|B) \leqslant \binom{b-1}{a}^{sr-a} = u_{r'}$$

For each $i \in \{1, ..., l\}$, choose an r-element subset $I_i \subseteq \{1, ..., u\}$ such that $B_i \subseteq \bigcup_{j \in I_i} W_j$. There are $\binom{u}{r} \leq \binom{u_{r'}}{r}$ possible choices for I_i , and $l = n\binom{u_{r'}}{r}$. By a majority argument, there exists an n-element set $J \subseteq \{1, ..., l\}$ and an r-element set $I \subseteq \{1, ..., u\}$ such that $I_i = I$ for each $i \in J$. By possibly re-ordering the X_i 's and the W_j 's we can assume that $B_1, ..., B_n \subseteq W_1 \cup \cdots \cup W_r$. Let $W = W_1 \cup \cdots \cup W_r$. Then $(W, \{X_1, ..., X_n\})$ is a book in M' and $r_{M'}(W) \leq ra$. Let W' be a basis of M'|W. Each element in W' is contained in one of the sets $X_1, ..., X_l$, then there is a set X_0 that is the union of at most |W'| of the sets $(X_1, ..., X_l)$ such that $W' \subseteq X_0$. Then, it is easy to verify that $(X_0, \{X_1, ..., X_n\})$ is a book in M and $r_M(X_0) \leq ar^2$. \Box

The following lemma refines the outcome of Lemma 4.1 in the case that \mathcal{F} is a collection circuits.

Lemma 4.2. There exists an integer-valued function $\alpha_2(l, m)$ such that: for any $l, m, n \in \mathbb{N}$ with $n \ge \alpha_2(l, m)$, if $(F, \{C_1, \ldots, C_n\})$ is a book in a matroid M where

- (a) C_1, \ldots, C_n are circuits of M,
- (b) $1 \leq r_M(F \cup C_i) r_M(F) < r_M(C_i)$ for all *i*, and

(c) $r_M(F) \leq m$,

then M has an $M(K_{2,l})$ -minor where the series classes are contained in distinct sets in (C_1, \ldots, C_n) .

Proof. Let $\alpha_2(l, m) = m(l+1)$. We prove the result by induction on *m*. The result is easy when m = 1. Then we assume that m > 1 and that the result holds for smaller *m*.

Consider a book $(F, \{C_1, \ldots, C_n\})$ satisfying the hypotheses. For each $i \in \{1, \ldots, n\}$, by possibly contracting some elements of C_i , we may assume that $r_M(C_i \cup F) = r_M(F) + 1$.

Choose elements $e, f \in C_n - \operatorname{cl}_M(F)$. Then, for each $i \in \{1, ..., n-1\}$, choose an element $z_i \in C_i - \operatorname{cl}_M(F)$ and let $C'_i \subseteq C_i$ be a circuit of $M/\{e, f\}$ that contains z_i . Note that n-1 = l + n' where $n' \ge \alpha_2(l, m-1)$. Then by possibly reordering $C'_1, ..., C'_{n-1}$, we have one of the two following cases.

Case 1. $|C'_1| = \cdots = |C'_l| = 2.$

Then the restriction of $M/f \setminus e$ to $C'_1 \cup \cdots \cup C'_n$ is isomorphic to $M(K_{2,l})$.

Case 2. $|C'_1|, \ldots, |C'_{n'}| > 2.$

Note that $r_{M/e, f}(F) \leq m - 1$, so the result follows by induction. \Box

The following result is a direct corollary of Lemmas 4.1 and 4.2; we skip the proof.

Lemma 4.3. There exists an integer-valued function $\alpha_3(s, l, a, b)$ such that: for $a, b, l, s \in \mathbb{N}$ with b > a, if M is a matroid with no $U_{a+1,b}$ -minor and C is a set of circuits of M of rank at most a + 1, with $r_M(C) \ge \alpha_3(s, l, a, b)$, then either

- (i) there exist s skew circuits $C_1, \ldots, C_s \in C$, or
- (ii) *M* has an $M(K_{2,l})$ -minor where the series classes are contained in distinct sets in C.

5. Building a nest

A *point* in a matroid is a rank-1 flat and a *line* is a rank-2 flat; we call a line *long* if it contains at least 3 points. We shall assemble many long lines in a clique-like structure. We first build intermediate structures called *nests*.

Definition 5.1. A matroid *M* is a *nest* if *M* has a basis $B = \{b_1, \ldots, b_n\}$ such that, for each pair of indices $i, j \in \{1, \ldots, n\}$, with i < j, the set $\{b_i, b_j\}$ spans a long line in $M/\{b_1, \ldots, b_{i-1}\}$. The elements in *B* are called the *joints* of the nest *M*.

It is easy to verify that $M(K_n)$ is a nest; take the edges incident to a fixed vertex of K_n as the joints.

For $t \in \mathbb{N}$ we say that *M* is *t*-round if $\Gamma(M) \leq t$. Note that *t*-roundedness is preserved under contractions. The main result of this section is the following.

Lemma 5.2. There exists an integer-valued function v(n, t, a, b) such that: for any $a, b, n, t \in \mathbb{N}$ with a > b, if M is a t-round matroid with no $U_{a+1,b}$ -minor and $r(M) \ge v(n, t, a, b)$, then M has a rank-n nest as a minor.

We obtain a nest by finding one joint at a time using the next lemma.

Lemma 5.3. There exists an integer-valued function $v_1(m, t, a, b)$ such that: for any $a, b, m, t \in \mathbb{N}$ with b > a, if M is a t-round matroid with no $U_{a+1,b}$ -minor, $r(M) \ge v_1(m, t, a, b)$ and B is a basis of M, then M has an $M(K_{2,m})$ -minor such that each series class contains an element of B.

We start by deriving Lemma 5.2 from Lemma 5.3.

Proof of Lemma 5.2. Let *t* be fixed. Let v(1, t, a, b) = 1 and for $n \ge 2$ define v recursively by

 $\nu(n, t, a, b) = \nu_1 \big(\nu(n-1, t, a, b) + 2, t, a, b \big).$

To facilitate induction we prove the stronger statement:

If M is a t-round matroid with no $U_{a+1,b}$ -minor, $r(M) \ge v(n, t, a, b)$ and B is a basis of M, then M has a rank-n nest M/Y as a minor, with joints contained in B.

The proof is by induction on *n*. For n = 1 the result is trivial, as any rank-1 matroid is a nest. Let $n \ge 2$ and assume the result holds for n - 1. Let *M* and *B* be given as above and let $m = \nu(n - 1, t, a, b) + 2$.

By Lemma 5.3, *M* has an $M(K_{2,m})$ -minor such that each series class contains an element of *B*. Let $\{b_1, e\}$ be one of the series classes of $M(K_{2,m})$ with $b_1 \in B$ and let $B' \subseteq B$ be an (m - 1)-element set containing an element from each of the other series-classes of $M(K_{2,m})$. We may assume that $M(K_{2,m})$ is a spanning restriction of M/Y_1 .

Let $N_1 = M/(Y_1 \cup \{e\})$ and $N'_1 = N_1/b_1$. Since *t*-roundness is preserved under contractions, N'_1 is *t*-round. Moreover $r(N'_1) = v(n-1, t, a, b)$ so, by induction, N'_1 has a rank-(n-1) nest N_2 as a minor with joints $B_2 \subseteq B_1 - b_1$.

We may assume that $N_2 = N'_1/Y_2$. Now let $Y = Y_1 \cup Y_2$ and N = M/Y, so $N_2 = N/b_1$. It is easy to verify that N is a nest with joints $\{b_1\} \cup B_2$. \Box

A set $X \subseteq E(M)$ is connected if M|X is connected. We denote by $\tau_a^c(M)$ the minimum m such that there exists a collection (X_1, \ldots, X_m) of connected sets of rank at most a in M such that $X_1 \cup \cdots \cup X_m$ contains all non-loop elements of M. Clearly $\tau_a^c(M) \ge \tau_a(M)$. Note also, that a loopless rank-a matroid M has at most a connected components, so $\tau_a^c(M) \le a\tau_a(M)$. Therefore

$$\tau_a(M) \leqslant \tau_a^c(M) \leqslant a\tau_a(M)$$

We need a technical lemma before we prove Lemma 5.3.

Lemma 5.4. Let M be a matroid with no $U_{a+1,b}$ -minor, where b > a, let $e \in E(M)$, and let \mathcal{F} be the collection of all connected rank-(a + 1) sets in M containing e. If $r_M(\mathcal{F}) = n$, then

$$\tau_a^c(M) - \tau_a^c(M/e) \leq a^2 \binom{b-1}{a}^{n-a} + 1$$

Proof. We may assume that *M* is simple. Let $(X_1, ..., X_k)$ be a minimal *a*-covering of *M*/*e* by connected sets. We shall construct an *a*-covering of *M* by connected sets. For each $i \in X_i$, either $r_M(X_i) = r_{M/e}(X_i)$ or $r_M(X_i) = r_{M/e}(X_i) + 1$. If $r_M(X_i) = r_{M/e}(X_i)$, then X_i is a connected set in *M* with rank at most *a*; let $X'_i = X_i$. If $r_M(X_i) = r_{M/e}(X_i) + 1$, then $X_i \cup \{e\}$ is a connected set in *M* with rank at most *a* + 1; let $X'_i = X_i \cup \{e\}$.

By possibly reordering the sets, we may assume that X_1, \ldots, X_m have rank a + 1 in M and that X_{m+1}, \ldots, X_k have rank at most a. By Lemma 2.5, for $i = 1, \ldots, m$, we have

$$\tau_a^c(M|X_i') \leqslant a\tau_a(M|X_i') \leqslant a\binom{b-1}{a}.$$

Therefore

$$\tau_a^c(M) \leqslant ma\binom{b-1}{a} + (k-m) + 1 \leqslant ma\binom{b-1}{a} + \tau_a^c(M/e) + 1.$$

We may assume that $m \ge 1$. Let $M' = (M/e)|(X_1 \cup \cdots \cup X_m)$. Note that (X_1, \ldots, X_m) is a minimal *a*-covering of M' by connected sets and that $r(M') \le n - 1$. Hence, by Theorem 2.6,

$$m = \tau_a^c(M') \leqslant a\tau_a(M') \leqslant a \binom{b-1}{a}^{n-1-a}$$

Now the result follows by combining the two inequalities displayed above. \Box

Let *M* be a matroid, $k \in \mathbb{N}$ and let $B \subseteq E(M)$. We say that *B k*-dominates *M*, if for any element $x \in E(M)$ there is a set $W \subseteq B$ with $|W| \leq k$ such that $x \in cl_M(W)$. A *k*-dominating set clearly has to be spanning. It is easily verified that: if $B, Y \subseteq E(M)$ and *B k*-dominates *M*, then B - Y *k*-dominates *M*/*Y*.

Proof of Lemma 5.3. Let *m*, *t*, *a* and *b* be given, and define the following constants,

$$r_{4} = \alpha_{3}(m+1, m, a, b), \qquad l = m + r_{4}, \qquad r_{3} = \alpha_{3}(2, l+1, a, b),$$
$$\lambda = a^{2} {\binom{b-1}{a}}^{r_{3}-a} + 1, \qquad r_{1} = \max(2t, \delta(\lambda, a, b)),$$

and let us define $\nu_1(m, t, a, b) = \nu_1 = \sigma(a) {\binom{b-1}{a}}^{r_1-a}$. Let *M* and *B* be as given.

By Lemma 2.2 and the fact that *B* is a basis, there is an *a*-simple spanning restriction of *M* that contains *B*. Let N_1 be a minimal minor of *M* such that N_1 is *t*-round and *a*-simple, and $B \subseteq E(N_1)$.

We claim that B (a + 1)-dominates N_1 . Consider any element $f \in E(N_1) - B$. Since N_1 is t-round, N_1/f is too. By our choice of N_1 , the minor $(N_1/f)|B$ cannot be a-simple. Since N_1 is simple, N_1/f is loopless. Then, since $(N_1/f)|B$ is not a-simple, there is a set $W \subseteq B$, with $(N_1/f)|W \cong U_{k,2k}$, for some $k \in \{1, ..., a\}$. Then $r_{N_1}(W) \leq a + 1$. However, since N_1 is a-simple, $N_1|W \neq (N_1/e)|W$ and, hence, $e \in cl_{N_1}(W)$. Thus B (a + 1)-dominates N_1 as claimed.

By Lemma 2.7, we have

$$\sigma(a)\tau_a(N_1) \ge |E(N_1)| \ge |B| = r(M) \ge \nu_1,$$

and so, $\tau_a(N_1) \ge {\binom{b-1}{a}}^{r_1-a}$. Then, by Theorem 2.6, we have $r(N_1) \ge r_1$.

By the definition of r_1 , we have $\Gamma(N_1) \leq t \leq \frac{1}{2}r(N_1)$ and $r(N_1) \geq \delta(\lambda, a, b)$. Then, by Lemma 3.3, there is a minor N_2 of N_1 with $\tau_a(N_2) > \lambda r(N_2)$. We may assume that $N_2 = N_1/Y_1$. Thus $\tau_a^c(N_2) > \lambda r(N_2)$. Let $Y_2 \subseteq E(N_2)$ be maximal such that

$$\tau_a^c(N_2/Y_2) > \lambda r(N_2/Y_2),$$

and let $N_3 = N_2/Y_2$. Since Y_2 was chosen to be maximal, N_3 is loopless. Choose any element $e \in E(N_3)$. Then,

$$\tau_a^c(N_3) - \tau_a^c(N_3/e) > \lambda r(N_3) - \lambda r(N_3/e) = \lambda.$$

Let \mathcal{F} denote the collection of all connected rank-(a + 1) sets in N_3 containing e, and let $n = r_{N_3}(\mathcal{F})$. By Lemma 5.4, we have $\lambda < a^2 {\binom{b-1}{a}}^{n-a} + 1$, and, by the definition of λ , this yields $n \ge r_3$.

Denote by C the collection of all circuits of N_3 of rank at most a + 1 containing e. For each $X \in \mathcal{F}$ and non-loop $y \in X - \{e\}$, since X is connected, there exists a circuit $C \subseteq X$ containing e and y, so $C \in C$. Hence, $r_{N_3}(C) \ge n$.

Note that $n \ge r_3 = \alpha_3(2, l+1, a, b)$ and that no two circuits in C are skew. Then, by Lemma 4.3, there is an $M(K_{2,l+1})$ -minor of N_3 . Let $\{e, f\}, \{h_1, h'_1\}, \ldots, \{h_l, h'_l\}$ be the series classes of $M(K_{2,l})$. Since $l = m + r_4$, by possibly reordering, we may assume that none of h_1, \ldots, h_{r_4} is contained in B.

We may assume that $M(K_{2,l})$ is a spanning restriction of N_3/Y_3 ; let $N_4 = N_3/(Y_3 \cup \{f\})$. By the remark preceding the proof, $B \cap E(N_4)$ (a + 1)-dominates N_4 . So, for each $i \in \{1, ..., r_4\}$, h_i is in the closure of a subset of B of rank at most a + 1. Choose a circuit C_i of N_4 containing h_i , with $r_{N_4}(C_i) \leq a + 1$ and $C_i \subseteq B \cup \{h_i\}$. Since $\{h_1, ..., h_{r_4}\}$ is independent, $r_{N_4}(\cup_i C_i) \geq r_4 = \alpha_3(m+1, m, a, b)$. Then, by Lemma 4.3, we get one of the following two cases.

Case 1. There are m + 1 skew circuits among $C_1 \dots, C_{r_4}$ in N_4 .

The union of some *m* of these m + 1 circuits is skew to the set $\{e\}$ in N_4 . After possibly reordering we may assume $C_1, \ldots, C_m, \{e\}$ are skew. Now N_4 restricted to the union of the sets $((C_i - \{h_i\}) \cup \{h'_i\})$: $i = 1, \ldots, m$) is isomorpic to the cycle matroid of a subdivision of $M(K_{2,m})$; moreover each of the series classes contains an element of *B*. Thus we obtain the required $M(K_{2,m})$ -minor.

Case 2. There is an $M(K_{2,m})$ minor of N_4 such that each series class of $M(K_{2,m})$ is contained in one of $C_1 \ldots, C_{r_4}$.

In this case we are done since each of C_1, \ldots, C_{r_4} contains at most one element not in *B*.

6. Cleaning a nest

The goal of this section is to further refine nests. A *Dowling clique* is a matroid *M* with ground set $\{b_1, \ldots, b_n\} \cup \{e_{ij}: 1 \le i < j \le n\}$ such that $\{b_1, \ldots, b_n\}$ is a basis and, for each $1 \le i < j \le n$, the set $\{b_i, b_j, e_{ij}\}$ is a triangle. We call the elements b_1, \ldots, b_n the *joints* of *M*. These matroids are related to Dowling Geometries [2].

The proof of the following theorem is based on ideas introduced by Kung [5].

Lemma 6.1. There exists an integer-valued function $\phi(n, a, b)$ such that: for any $a, b, n \in \mathbb{N}$ with b > a, if M is a nest of rank at least $\phi(n, a, b)$ with no $U_{a+1,b}$ -minor, then M contains a rank-n Dowling clique as a minor.

Proof. Recall that α_1 and ϵ are defined in Lemmas 4.1 and 2.8. Let $t_2 = (2a)^n n$, $t_1 = t_2 + a$, $s_1 = n + a^3$, and $s = \alpha_1(s_1, a, a, b)$. Now, let $w_s = t_2$ and, for each i = s, ..., 1, let $w_{i-1} = \epsilon(w_i, s, a, b)$. Let $t_0 = w_0$ and, finally, let $\phi(n, a, b) = s + t_0$.

Let *M* be a rank- $(s + t_0)$ nest. We start the proof by moving to a different structure whose labeling is disassociated with that of the nest; this will allow us the freedom to relabel later.

Claim 1. There is a restriction M_0 of M and a partition $(A, C_1^*, \ldots, C_{t_0}^*)$ such that $r_{M_0}(A) = s$ and, for each $i \in \{1, \ldots, t_0\}$, the set C_i^* is an independent (s + 1)-element cocircuit of M_0 that spans A.

Proof of Claim. Let the joints be $a_1, \ldots, a_s, b_1, \ldots, b_{t_0}$. For each $i \in \{1, \ldots, s\}$ and $j \in \{1, \ldots, t_0\}$, there is an element $e_{ij} \in E(M)$ and a circuit C_{ij} of M such that $a_i, b_j, e_{ij} \in C_{ij} \subseteq \{a_1, \ldots, a_i\} \cup \{b_j, e_{ij}\}$. Now let $A = \{a_1, \ldots, a_s\}$ and, for each $j \in \{1, \ldots, t_0\}$, let $C_j^* = \{e_{1j}, \ldots, e_{sj}\} \cup \{b_j\}$. Finally let M_0 be the restriction of M to the union of $(A, C_1^*, \ldots, C_s^*)$. It is straightforward to verify that the claim is satisfied by M_0 , A, and $C_1^*, \ldots, C_{t_0}^*$. \Box

For each $i \in \{1, ..., t_0\}$, let $C_i^* = \{e_{1j}, ..., e_{sj}\} \cup \{b_j\}$. Let $B = \{b_1, ..., b_{t_0}\}$ and let $M_1 = M/B$. Note that A is a basis of M_1 and, hence, $r(M_1) = s$. For each $i \in \{1, ..., s\}$ and $j \in \{1, ..., t_0\}$, let $S_{ij} = \{e_{ik}: k = 1, ..., j\}$. Note that $t_0 = w_0$ and, for each $i \in \{1, ..., s\}$, $w_{i-1} = \epsilon(w_i, s, a, b)$. Therefore, by Lemma 2.8 and possibly reordering, we may assume that: for each i = 1, ..., s, $r_{M_1}(S_{iw_i}) \leq a$ and $M_1|S_{iw_i}$ is uniform. Now $t_1 = w_s$, so:

Claim 2. For each i = 1, ..., s, $r_{M_1}(S_{it_1}) \leq a$ and $M_1|S_{it_1}$ is uniform.

Recall that $t_1 = t_2 + a$. Let $M_2 = M/\{b_{t_2+1}, \ldots, b_{t_2}\}$ and, for each $i \in \{1, \ldots, a\}$, let $X_i = \{e_{(t_2+i)k}: k = 1, \ldots, j\}$. Note that, for each $i = 1, \ldots, s_0$, $X_i \subseteq cl_{M_2}(A)$, $r_{M_2}(X_i) \leq a$, and X_i spans the uniform matroid $M_1|S_{it_1}$.

By Lemma 4.1 and by possibly reordering, we may assume that:

Claim 3. There is a set $F \subseteq X_1 \cup \cdots \cup X_s$ with $r_{M_2}(F) \leq a^3$ such that $(F, \{X_1, \ldots, X_{s_1}\})$ is a book in M_2 .

Note that $\{e_{t_11}, \ldots, e_{t_1s}\}$ is an independent set of M_2 that spans A and $e_{t_1i} \in X_i$, for each $i \in \{1, \ldots, s\}$. Therefore F spans at most a^3 of the sets (X_1, \ldots, X_{s_1}) . Now, $s_1 = n + a^3$, so, by possibly reordering, we may assume that F spans none of (X_1, \ldots, X_n) . For each $i \in \{1, \ldots, n\}$, choose a maximal independent set $Y_i \subseteq X_i$ in M_2/F .

Recall that, for each $i \in \{1, ..., n\}$, X_i spans $M_1|S_{it_1}$. Moreover, X_i is not spanned by F. Therefore, since $M_1|S_{it_1}$ is a uniform matroid of rank at most a, F spans fewer than a points in $M_1|S_{it_1}$. For each $j \in \{1, ..., t_2\}$, if $e_{ij} \notin cl_{M_1}(F)$, then there is a circuit C in M_2/F such that $b_j, e_{ij} \in C \subseteq Y_1 \cup \{b_j, e_{ij}\}$ and $C \cap Y_i \neq \emptyset$. Now $t_2 = (2a)^n n$ (this number is bigger than necessary), so by a majority argument and possibly reordering, we may assume that:

Claim 4. For each $i \in \{1, ..., n\}$ there is an element $f_i \in Y_i$ such that, for each $j \in \{1, ..., n\}$, there is a circuit C in M_2/F with $b_j, e_{ij}, f_i \in C \subseteq X_1 \cup \{b_j, e_{ij}\}$.

Let $M_3 = M_2/(F \cup (Y_1 - \{f_1\}) \cup \cdots \cup (Y_n - \{f_n\}))$. Then $\{f_1, \ldots, f_n\} \cup \{b_1, \ldots, b_n\}$ is independent and, for each $i, j \in \{1, \ldots, n\}$, the set $\{f_i, e_{ij}, b_j\}$ is a triangle of M_3 . Then the restriction of $M_3/\{e_{11}, \ldots, e_{nn}\}$ to $\{b_1, \ldots, b_n\} \cup \{e_{ij}: 1 \leq i < j \leq n\}$ is a Dowling clique. \Box

7. Cliques

It remains to show that any Dowling clique of sufficiently large rank contains either $M(K_n)$ or $B(K_n)$ as a minor. We need the following theorem of Mader [7].

Mader's Theorem 7.1. There is an integer valued function $\lambda(n)$ such that: for any $n \in \mathbb{N}$, if G is a simple graph with $|E(M)| > \lambda(n)|V(M)|$, then G has a K_n -minor.

Let *M* be a matroid and let G = (V, E) be a loopless graph. We call *G* a *Dowling representation* of *M* if $E(M) = V \cup E$, *V* is a basis of *M*, and, for each $e \in E$ with ends *u* and *v*, the set $\{e, u, v\}$ is a triangle of *M*. The following lemma helps us to recognize graphic matroids. The result is well-known and can easily be derived from a result of Seymour [10], we omit the proof.

Lemma 7.2. Let G = (V, E) be a simple connected graph and let M be a matroid. If G is a Dowling representation of M and V is a cocircuit of M, then M|E = M(G).

We also need to recognize bicircular matroids. The following lemma is also well-known, and again, we skip the proof.

Lemma 7.3. Let G = (V, E) be a loopless graph and let M be a matroid. If G is a Dowling representation of M and, for each circuit C in G, E(C) is independent in M, then M|E = B(G) (in fact $M = \widetilde{B}(G)$).

We are ready for the final step in the proof of the main theorem.

Lemma 7.4. There exists an integer-valued function $\psi(n)$ such that, if M is a Dowling clique with rank at least $\psi(n)$, then M contains an $M(K_n)$ - or $B(K_n)$ -minor.

Proof. Let m = n!, $l = 2m\lambda(n)$, and $\psi(n) = nl$. Let M be a Dowling clique of rank nl and let G = (V, E) be a Dowling representation of M; thus $G \cong K_{nl}$. Let T_1, \ldots, T_n be vertex disjoint trees of G each having l vertices. For each $1 \le i < j \le n$, let E_{ij} denote the set of all edges of G having one end in $V(T_i)$ and the other end in $V(T_j)$, let G_{ij} be the subgraph of G with vertex set $V(T_i) \cup V(T_j)$ and edge set $E_{ij} \cup E(T_i) \cup E(T_j)$, and let $M_{ij} = M|(V(G_{ij}) \cup E(G_{ij}))$. Thus G_{ij} is a Dowling representation M_{ij} . Note that $M_{ij}/(E(T_i) \cup E(T_j))$ is a loopless matroid with rank 2, and that $V(T_i)$ and $V(T_j)$ are both points of $M_{ij}/(E(T_i) \cup E(T_j))$.

Claim 1. For each $1 \le i < j \le n$, if $M_{ij}/(E(T_i) \cup E(T_j))$ has at most m + 2 points, then M_{ij} contains an $M(K_n)$ -minor.

Proof. Let $M' = M_{ij}/(E(T_i) \cup E(T_j))$. If M' has at most m + 2 points, then there is a point $X \subseteq E_{ij}$ of M' with $|X| = l^2/m$. Let G'' be the spanning supgraph of G_{ij} with edge set $E(T_1) \cup E(T_2) \cup X$ and let $M'' = M_{ij}|(V(G'') \cup E(G''))$. Now G'' is connected and V(G'') is a cocircuit in M'' (since it is a cocircuit in $M''/(E(T_i) \cup E(T_j)))$. Then, by Lemma 7.2, M''|E(G'') = M(G''). Moreover, $|E(G'')| > |X| \ge l^2/m \ge \lambda(n) 2l = \lambda(n) |V(G'')|$, so, by Mader's Theorem, G'' contains a K_n -minor. \Box

Now consider the matroid $M/(E(T_1) \cup \cdots \cup E(T_n))$. By Claim 1, we may assume that:

Claim 2. There exists a simple minor N of M with a basis $B = \{b_1, ..., b_n\}$ such that, for each $1 \le i < j \le n$, the elements $\{b_i, b_j\}$ spans an (m + 3)-point line in N.

For each $1 \le i < j \le n$, let $W_{ij} = cl_N(\{b_i, b_j\}) - \{b_i, b_j\}$. Thus $|W_{ij}| \ge m+1$. Let W denote the union of the sets W_{ij} . We may assume that $E(N) = B \cup W$. Now let H = (B, W) be a Dowling representation of N. Note that a simple graph on n vertices has at most n! distinct circuits. Therefore we can build

418

a sequence $(H_0, H_1, \ldots, H_{\binom{n}{2}})$ of simple spanning subgraphs of H such that, for each $i \in \{1, \ldots, \binom{n}{2}\}$, $|E(H_i)| = i$ and, if C is a circuit of H_i , then E(C) is independent in N. Then, by Lemma 7.3, $N|E(H_{\binom{n}{2}})$ is isomorphic to $B(K_n)$. \Box

Finally, we restate and prove Theorem 1.1.

Theorem 7.5. There exists an integer-valued function $\gamma(k, n)$ such that: for any $k, n \in \mathbb{N}$, if M is a matroid with $r(M) \ge \gamma(k, n)$, then either M has k disjoint cocircuits or M has a minor isomorphic to $U_{n,2n}$, $M(K_n)$ or $B(K_n)$.

Proof. Since $M(K_1)$ is trivial, we may assume that $n \ge 2$. Recall that the functions ψ , ϕ , ν , and f_g are defined in Lemmas 7.4, 6.1, 5.2, and 3.1. Let $m = \phi(\psi(n), n - 1, 2n)$. Now define $g : \mathbb{N} \to \mathbb{N}$ by $g(t) = \nu(m, t, n - 1, 2n)$. Finally $\gamma(k, n) = f_g(k)$.

Let *M* be a matroid such that $r(M) \ge \gamma(k, n)$, *M* has no $U_{n,2n}$ -minor and *M* does not have *k* disjoint cocircuits. By Lemma 3.1, *M* has a minor *N* with $r(N) \ge g(\Gamma(N))$. Then, by Lemmas 5.2, 6.1 and 7.4, we obtain an $M(K_n)$ - or a $B(K_n)$ -minor of *N*. \Box

Acknowledgments

We thank the referees for their diligence and for their helpful comments.

References

- [1] R. Diestel, Graph Theory, Springer-Verlag, New York, 1997.
- [2] T.A. Dowling, A class of geometric lattices based on finite groups, J. Combin. Theory Ser. B 14 (1973) 61-86.
- [3] P. Erdös, L. Pósa, On independent circuits contained in graphs, Canad. J. Math. 17 (1965) 347–352.
- [4] J.F. Geelen, A.M.H. Gerards, G.P. Whittle, Disjoint cocircuits in matroids with large rank, J. Combin. Theory Ser. B 87 (2003) 270–279.
- [5] J.P.S. Kung, The long-line graph of a combinatorial geometry. I. Excluding $M(K_4)$ and the (q + 2)-point line as minors, Quart. J. Math. Oxford 39 (1988) 223–234.
- [6] J.P.S. Kung, Extremal matroid theory, in: N. Robertson, P.D. Seymour (Eds.), Graph Structure Theory, Amer. Math. Soc., Providence, RI, 1993, pp. 21–61.
- [7] W. Mader, Homomorphieeigenschaften und mittlere Kantendichte von Graphen, Math. Ann. 174 (1967) 265-268.
- [8] J.G. Oxley, Matroid Theory, Oxford University Press, New York, 1992.
- [9] F.P. Ramsey, On a problem for formal logic, Proc. London Math. Soc. (2) 30 (1930) 264-286.
- [10] P.D. Seymour, Recognizing graphic matroids, Combinatorica 1 (1981) 75-88.