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1. Introduction

For a matroid M we let ε(M) denote the number of points of M; that is ε(M) = |E(si(M))|. We
prove the following theorem.

Theorem 1.1. Let M be a minor-closed class of matroids. Then either

(1) ε(M) � r(M)cM for each M ∈ M,
(2) there is a prime-power q such that ε(M) � cMqr(M) for each M ∈ M, and M contains all GF(q)-

representable matroids, or
(3) M contains arbitrarily long lines.

Here cM is an integer constant depending on M. This result is motivated by the following beau-
tiful conjecture of Kung [4].

Conjecture 1.2 (Kung’s Growth Rate Conjecture). Let M be a minor-closed class of matroids. Then either

(1) ε(M) � cMr(M) for each M ∈ M,
(2) ε(M) � cMr(M)2 for each M ∈ M and M contains all graphic matroids,
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(3) there is a prime-power q such that ε(M) � qr(M)−1
q−1 for each M ∈ M with sufficiently high rank, and M

contains all GF(q)-representable matroids, or
(4) M contains arbitrarily long lines.

For a prime-power q, a simple GF(q)-representable matroid M of rank-r has at most qr−1
q−1 elements,

as M is isomorphic to a restriction of PG(r − 1,q), which has precisely that many elements. Kung
[4] showed that this bound extends from the class of GF(q)-representable matroids to the class of
matroids with no U2,q+2-minor. For any integer l we let U (l) denote the class of matroids with no
U2,l+2-minor.

Theorem 1.3. Let l � 2 be an integer, and let M ∈ U (l) be a rank-r matroid. Then

ε(M) � lr − 1

l − 1
.

If l is not a prime-power, the bound is not sharp. As an immediate consequence of Theorem 1.1,
we get an asymptotic improvement on the bound in that case:

Corollary 1.4. Let l � 2 be an integer and let q be the largest prime-power with q � l. There exists a constant c,
such that if M ∈ U (l) is a rank-r matroid, then ε(M) � cqr .

Kung’s conjecture, if true, would imply that the exact bound is qr−1
q−1 for sufficiently large r (this

easily fails if r = 2 and l > q). This conjecture has only been verified in the first non-prime-power
case l = 6, see Bonin and Kung [2].

We use the notation of Oxley [5], with the exception that we denote the simplification of a ma-
troid M by si(M). For a subset A ⊆ E(M), we write εM(A) = ε(M|A).

2. Long lines

Theorem 1.1 is implied by the following two results.

Theorem 2.1. Let l, n, and q be positive integers with l � q � 2. There exists an integer α such that, if M ∈ U (l)
satisfies ε(M) � αqr(M) , then M contains a PG(n − 1,q′)-minor, for some prime-power q′ > q.

Using the same techniques, we prove the following theorem. For binary matroids it was proved
independently by Sauer [6] and Shelah [7].

Theorem 2.2. Let l and n be positive integers. Then there exist integers a and m such that, if M ∈ U (l) satisfies
ε(M) > ar(M)m, then M contains a PG(n − 1,q′)-minor, for some prime-power q′ .

Note that a may be omitted in the statement of the theorem, since the constant can be compen-
sated for by raising the exponent; we keep the constant to facilitate the proof.

Let M be a matroid. A line L of M is a rank-2 flat of M . The length of L is the number of points
on L, that is εM(L). We call a line L of M long if it has length at least 3. For e ∈ E(M) denote by
δM(e) the number of long lines in M containing e. For an integer q � 2, we say that a line L is q-long,
if L has length at least q + 2. (The following result is tantamount to Lemma 4.1 in [4].)

Lemma 2.3. Let l, q and λ be integers with l � q � 2 and λ � 1. If M ∈ U (l) is minor minimal with ε(M) �
λqr(M) , then

δM(e) � λ

2l
qr(M) for each e ∈ E(M),

and the number of q-long lines of M is at least λ
l+1 qr(M) .
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Proof. Note that, by the minor minimality, M is simple. Consider e ∈ E(M). Let δ+ denote the number
of q-long lines through e, and let δ− = δM(e)− δ+ be the number of long lines through e of length at
most q + 1.

When contracting e, each line L containing e becomes a point, and so |L| − 2 points on L other
than e are lost. The number of points destroyed is

ε(M) − ε(M/e) � 1 + δ−(q − 1) + δ+(l − 1).

By the minimality of M , we have

ε(M) − ε(M/e) > λqr(M) − λqr(M)−1 = λ(q − 1)qr(M)−1.

The above inequalities together yield

δ−(q − 1) + δ+(l − 1) � λ(q − 1)qr(M)−1. (2.1)

In particular, inequality (2.1) gives

δM(e) = δ− + δ+ � λ
q − 1

l − 1
qr(M)−1,

which easily implies the first claim of the lemma.
Again, by the minimality of M ,

δ− + δ+ � ε(M/e) < λqr(M)−1. (2.2)

Now notice that if δ+ = 0, then the inequalities (2.1) and (2.2) contradict. So we must have δ+ > 0.
Since this holds for all e ∈ E(M) and since lines have at most l + 1 elements, the number of q-long
lines of M is at least ε(M)/(l + 1). This gives the second claim. �
Lemma 2.4. Let l, q and λ be integers with l � q � 2 and λ � 1. Let M ∈ U (l) and let e be a non-loop ele-
ment of M. If A ⊆ E(M) − e satisfies εM(A) � λqrM (A) , then there exists X ⊆ A such that e /∈ clM(X) and
εM(X) � λ

l qrM (X) .

Proof. We may assume that A is minimal with εM(A) � λqrM (A) . This implies that M|A is simple. We
may also assume that E(M) = A ∪ {e} and that A spans e, as otherwise we are done.

Choose a flat W not containing e, with rM(W ) = r(M) − 2. Let H0, H1, . . . , Hm be the hyperplanes
of M containing W where e ∈ H0. It is easy to see that the (H0 − W , . . . , Hm − W ) is a partition
of E(M) − W . Also, si(M/W ) � U2,m+1 and, since M ∈ U (l), we have m � l.

By the minimality of A, |H0 ∩ A| < λqr(M)−1 and, hence,

|A − H0| > λ(q − 1)qr(M)−1.

The sets H1 − H0, . . . , Hm − H0 partition A − H0, so there exists k ∈ {1, . . . ,m} with

|Hk − H0| � 1

m
|A − H0| > λ

l
(q − 1)qr(M)−1.

Taking X = Hk gives the desired result. �
3. Pyramids

We now define some intermediate structures that we shall build on our way to constructing a
projective geometry.

Definition 3.1. If {b1, . . . ,bn} is a basis of a matroid M and, for each i ∈ {2, . . . ,n} the point bi is on a
long line with each point of clM({b1, . . . ,bi−1}), then we call (M;b1, . . . ,bn) a pyramid; the elements
b1, . . . ,bn are called joints. A pyramid is q-strong if each pair of joints spans a q-long line.

Definition 3.2. Let M be a matroid with a basis B ∪{b1, . . . ,bn}. We call (M, B;b1, . . . ,bn) an (n, λ,q)-
prepyramid if
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• F = clM(B) satisfies εM(F ) � λqrM (F ) , and
• for each i = 1, . . . ,n, bi is on a long line with every point of clM(B ∪ {b1, . . . ,bi−1}).

Note that any pyramid is 1-strong. A prepyramid is a pyramid “on top of ” a dense flat.

Lemma 3.3. If l, n, q, and λ are integers with λ � 1 and l � q � 2, and M ∈ U (l) satisfies ε(M) � λl2nqr(M) ,
then M has an (n, λ,q)-prepyramid as a minor.

Proof. The proof is by induction on n. The case n = 0 is trivial, so suppose n > 0 and that the result
holds for n − 1. We may assume that M is minor minimal with ε(M) � λl2nqr(M) . In particular M is
simple.

Choose an element bn ∈ E(M), and let A ⊆ E(M) − bn be the set of elements on long lines
through bn . By Lemma 2.3,

|A| � 2δM(bn) � λl2n

l
qr(M).

By Lemma 2.4, there exists a set X ⊆ A with bn /∈ clM(X) and

|X | � λl2n

l2
qrM (X) = λl2(n−1)qrM (X).

By the induction hypothesis M|X has an (n − 1, λ,q)-prepyramid as a minor. Thus, M has an
(n, λ,q)-prepyramid, as required. �
4. Getting a strong pyramid

For a matroid M , we call sets A1, . . . , An ⊆ E(M) skew if rM(
⋃

i Ai) = ∑
i rM(Ai). This is analogous

to subspaces of a vector-space forming a direct sum.
We shall need a limit on the total number of lines of a matroid in U (l). Let ml(n) denote the

maximum number of lines of a rank-n matroid in U (l); note that ml(n) is non-decreasing. From The-
orem 1.3 we easily get the following crude upper bound:

ml(n) �
( ln−1

l−1

2

)
.

Lemma 4.1. There exists an integer-valued function θ1(s, λ, l) such that the following holds: If l, q, s, and λ are
positive integers with l � q � 2, and M ∈ U (l) satisfies ε(M) � θ1(s, λ, l)qr(M) , then either

• M has a minor N with s skew q-long lines, or
• M has a minor N with a non-loop element e ∈ E(N) such that the number of q-long lines through e in N

is at least λqr(N) .

Proof. Define θ1(1, λ, l) = 1 and for s � 2,

θ1(s, λ, l) = (l + 1)4(s − 1)ml(2s − 1)λ.

We may assume that M is minor minimal with ε(M) � θ1(s, λ, l)qr(M) . Let L denote the collection
of q-long lines in M . By Lemma 2.3,

|L| � θ1(s, λ, l)

l + 1
qr(M).

In the case s = 1 we are now done, since |L| > 0, so assume s � 2 in the following.
If L contains s skew lines, then we are done, so assume this is not the case. Pick a maximal set

of skew lines from L and let F be the flat spanned by these lines in M . Let t = rM(F ) � 2(s − 1). Let
L′ ⊆ L be the lines not contained in F . Then, by the definition of θ1(s, λ, l),

|L′| � |L| − ml(t) � |L|.
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Let B be a basis of F in M . For each L ∈ L′ pick BL ⊆ B with |BL | = t − 1, such that BL and L are
skew (this can be done by expanding a basis of L to a basis of L ∪ B). By a majority argument, there
is a subcollection L′′ ⊆ L′ with the sets BL = B0 identical for L ∈ L′′ and such that

|L′′| � 1

t
|L′|.

Let e be the single element in B − B0 and let N = M/B0. Then each line L ∈ L′′ spans a q-long line
through e in N . Two lines L1, L2 ∈ L′′ give rise to the same line in N if clM(B0 ∪ L1) = clM(B0 ∪ L2).
Hence, the number of q-long lines through e in N is at least

|L′′|
ml(t + 1)

.

By concatenating the inequalities, we get the desired result. �
We now use the previous lemma to construct a strong pyramid. This is done in exactly the same

way as a prepyramid was constructed in Lemma 3.3.

Lemma 4.2. There exists an integer-valued function θ(s,n, l) such that the following holds: If l, n, s and q are
positive integers with l � q � 2, and M ∈ U (l) satisfies ε(M) � θ(s,n, l)qr(M) , then either

• M has a minor N with s skew q-long lines, or
• M has a rank-n minor N, such that N is a q-strong pyramid.

Proof. Let θ(s,1, l) = 1, and for n � 2 define θ recursively by

θ(s,n, l) = θ1
(
s, lθ(s,n − 1, l), l

)
.

The proof is by induction on n, the case n = 1 being trivial. Suppose n � 2 and that M does not
have a minor with s skew q-long lines.

By Lemma 4.1, M has a minor M ′ with a non-loop element bn , such that the number of q-long
lines through bn is at least

lθ(s,n − 1, l)qr(M′).

Let A ⊆ E(M ′) − bn be the set of elements on q-long lines through bn . Lemma 2.4 gives a set X ⊆ A
with bn /∈ clM′ (X), such that

εM′ (X) � θ(s,n − 1, l)qrM′ (X).

By induction, M ′|X has a q-strong rank-(n − 1) pyramid as a minor. Thus M ′ has a q-strong rank-n
pyramid-minor. �
Lemma 4.3. If l, n, q, and λ are positive integers with l � q � 2, and λ � θ(

(n
2

)
,n, l), and (M, B;b1, . . . ,bn) is

an (n, λ,q)-prepyramid with M ∈ U (l), then M has a rank-n q-strong pyramid as a minor.

Proof. Let F = clM(B). We may assume that M|F does not have a rank-n q-strong pyramid minor.
Then, by Lemma 4.2, M|F has a contraction-minor M|F/Y containing

(n
2

)
skew q-long lines. Let

M ′ = M/Y , F ′ = F − clM(Y ), and let L be a collection of
(n

2

)
skew q-long lines in M ′|F ′; denote

these lines by (Li j: 1 � i < j � n). Now, for each 1 � i < j � n, we take two distinct elements ei j
and e ji in Li j . By the definition of a prepyramid, there exist elements f i j and f ji such that {bi, f i j, ei j}
and {b j, f ji, e ji} are triangles. Let Sb := {b1, . . . ,bn}, Se = {ei j: 1 � i � n, 1 � j � n, i �= j}, and
S f = { f i j: 1 � i � n, 1 � j � n, i �= j}. Recall that, by the definition of a prepyramid, F and Sb
are skew. Then, since Y ⊆ F , M ′| clM′ (Sb) is a pyramid and F ′ and Sb are skew in M ′ . Hence Sb ∪ Se

is an independent set in M ′ . Moreover, each pair {ei j, f i j} is in series in M ′|(Sb ∪ Se ∪ S f ), and hence
Sb ∪ S f is independent in M ′ . Therefore, M ′/S f is a rank-n q-strong pyramid. �
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5. Projective geometries

Let (M;b1, . . . ,bn) be a pyramid, and, for each i, let Hi = clM({b1, . . . ,bi}). We call (M;b1, . . . ,bn)

modular if, for each i � 2 and each x, y ∈ Hi − Hi−1 with rM({x, y}) = 2, the line through x and y
intersects Hi−1 in a point.

The first step towards getting a projective geometry minor of a pyramid will be to find a modular
pyramid.

Lemma 5.1. If l, q, and m are positive integers with l � 2, and M ∈ U (l) is a q-strong pyramid with r(M) �
ml(

m
2) , then M has a rank-m modular q-strong pyramid minor N.

Proof. Let m be a fixed positive integer. To each pyramid in U (l), (N;a1, . . . ,an) of rank n � m, we
assign a vector

Q (N;a1, . . . ,an) = (
εN (H2), . . . , εN (Hm−1)

) ∈ Zm−2,

where Hk = clN ({a1, . . . ,ak}). By Theorem 1.3, the number of values that Q (N) can attain is bounded
by

m−1∏
k=2

lk − 1

l − 1
�

m−1∏
k=2

lk � l(
m
2).

We shall also consider the lexicographic ordering on Zm−2 defined by: (a1, . . . ,am−2) <LEX (b1, . . . ,

bm−2) if there is k ∈ {1, . . . ,m − 2}, such that ai = bi for i = 1, . . . ,k − 1 and ak < bk . This is a total
order.

Let (N;a1, . . . ,an) with n � 2m be a pyramid in U (l). Assume that the pyramid (N|Hm;a1, . . . ,am)

is not modular. We now describe an operation that gives a minor of N with an increased
value of Q (·) in the above order. There exist i � m and an element y ∈ Hi − Hi−1, such that
εN/y(clN/y({a1, . . . ,ai−1})) > εN (Hi−1). Let k be the least integer in {2, . . . , i − 1} such that

εN/y
(
clN/y

({a1, . . . ,ak}
))

> εN (Hk).

Now let B ′ = (a1, . . . ,ak,ai+1, . . . ,an) and define

N ′ = N/y| clN/y(B ′).
It is easily verified that (N ′; B ′) is a pyramid. It has a higher value in the order Q (N;a1, . . . ,an) <LEX
Q (N ′; B ′), and rank r(N ′) � r(N) − m. Also, since N is q-strong, N ′ is q-strong.

Now, let M ∈ U (l) be a pyramid, with r(M) � ml(
m
2) . By the bound on the number of possible

values of Q (·), the process of repeating the above operation must terminate with a rank-m modular
pyramid minor. �

The projective geometries PG(n − 1,q) are examples of projective spaces. We shall not define this
concept in general, only state that a matroid is a projective space if every line has at least three
points, and every pair of coplanar lines intersect.

The following theorem is the finite case of what is known as the Fundamental Theorem of Pro-
jective Geometry (see [3, pp. 27, 28] for a detailed account of the theorem and [1, Chapter VII] for a
proof). The result does not hold in rank 3.

Theorem 5.2. Every finite projective space of rank n � 4 is isomorphic to PG(n − 1,q′) for some prime-
power q′ .

In the next lemma we use the theorem to identify a projective geometry in a modular pyramid.

Lemma 5.3. There exists an integer-valued function ψ(n, l) such that the following holds: If l, n and q are
positive integers with l � 2 and n � 4, and M ∈ U (l) is a modular q-strong pyramid with r(M) � ψ(n, l), then
M has a PG(n − 1,q′)-restriction for some prime-power q′ > q.
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Proof. Define ψ(n, l) = (l − 1)(n − 1)+ 2. Let (M;b1, . . . ,br) be a modular pyramid, where r = r(M) �
ψ(n, l). Assume that M is simple. Let Hi = clM({b1, . . . ,bi}), for i = 1, . . . , r.

Notice first, that every line L ⊆ Hr−1 has length at least 3, since otherwise, looking at the plane
spanned by L and br , we find a contradiction to the modularity of M .

Define numbers m2, . . . ,mr−1, by mi = min{|L|: L ⊆ Hi}, where the minimum is over all lines of M
contained in Hi . This sequence is clearly descending,

l + 1 � m2 � m3 � · · · � mr−1 � 3.

Since r − 2 � (l − 1)(n − 1), by a majority argument there exists k, such that mk = mk+n−2; let m = mk .
Choose a line L∗ ⊆ Hk with |L∗| = m, and let p1, p2 ∈ L∗ be different elements. Let p3 = bk+1, . . . , pn =
bk+n−2. We define the minor N = M| clM({p1, . . . , pn}). By construction, N is a modular pyramid. Let
Fi = clN ({p1, . . . , pi}) for each i.

We claim that every line in N has length m. Clearly, there are no shorter lines. Suppose the claim
fails and let i be minimal, such that there is a line L ⊆ Fi with |L| > m. We must have i > 2, since
F2 = L∗ has length m. Choose an element x ∈ Fi − Fi−1, not on L. Now, by modularity each element
in L is on a line through x that intersects Fi−1 in a point. This gives |L| colinear points in Fi−1,
contradicting the minimality of i.

Observe, that as M is a q-strong pyramid, m � q + 2, since N contains the line spanned by bk+1
and bk+2 which is a q-long line of M .

To prove that N is a projective space, we show that coplanar lines intersect. Let L1 and L2 be
coplanar lines of N and let P = clN (L1 ∪ L2). Let i be minimal with P ⊆ Fi . If L1 is contained in Fi−1,
then L2 must intersect L1 by the modularity of N . The case that L2 is contained in Fi−1 is similar.
Suppose L1, L2 � Fi−1, and assume that L1 and L2 do not intersect. Let x ∈ L2 − Fi−1. Each point on
L1 is on a line through x than intersects Fi−1 in a point. These, together with the point of intersection
of L2 and Fi−1 account for m + 1 points of P ∩ Fi−1, a contradiction.

Finally by Theorem 5.2, N is isomorphic to PG(n − 1,q′), and we must have m = q′ + 1. �
Theorem 2.1 is now proved by applying Lemmas 3.3, 4.3, 5.1 and 5.3 in succession. The bound α

in the theorem, depending on n and l becomes

α = λl2n′
,

where λ = θ(
(n′

2

)
,n′, l), n′ = ml(

m
2) , and m = ψ(max(n,4), l).

6. Proof of the polynomial bound

We now turn to Theorem 2.2. To prove the theorem, by the previous results, we just need to get a
large pyramid. This is done in the same way that we obtained a prepyramid in Lemma 3.3, the proof
of which rested on Lemmas 2.3 and 2.4. The arguments are the same, only the calculations differ. The
following result parallels Lemma 2.4.

Lemma 6.1. Let l, λ, and n be positive integers with l � 2. Let M ∈ U (l) and let e be a non-loop element of M.
If A ⊆ E(M) − e satisfies εM(A) > λrM(A)n, then there exists X ⊆ A such that e /∈ clM(X) and εM(X) >
λn
l rM(X)n−1 .

Proof. The proof mimics the proof of Lemma 2.4. We may assume that A is minimal with εM(A) >

λrM(A)n , implying that M|A is simple. We also assume that E(M) = A ∪ {e} and that A spans e, as
otherwise we are done.

Choose a flat W not containing e, with rM(W ) = r(M) − 2, and let H0, H1, . . . , Hm be the hyper-
planes of M containing W where e ∈ H0. Then si(M/e) � U2,m+1 and so m � l, since M ∈ U (l).

By the minimality of A, |H0 ∩ A| � λ(r(M) − 1)n and thus

|A − H0| > λ
(
r(M)n − (

r(M) − 1
)n)

� λn
(
r(M) − 1

)n−1
,
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where we have used the inequality (x+1)n −xn � nxn−1 for a non-negative number x. Since (H1 − H0,

. . . , Hm − H0) is a partition of A − H0, there exists i � 1 such that

|Hi − A| � 1

m
|A − H0| > λn

l

(
r(M) − 1

)n−1
.

Taking X = Hi gives the desired result. �
In the following lemma a pyramid is constructed.

Lemma 6.2. There exists an integer-valued function φ(n, l) such that the following holds: If l and n are positive
integers with l � 2, and M ∈ U (l) has ε(M) > φ(n, l)r(M)2(n−1) , then M has a rank-n pyramid minor.

Proof. Let φ(1, l) = 1, and for n � 2 define

φ(n, l) = l2φ(n − 1, l)

4n − 6
.

The proof is by induction on n. The case n = 1 is trivial, so assume n � 2, and that the result holds
for n − 1. We write φ = φ(n, l) for brevity.

Let r = r(M), and let k = 2(n − 1). We may assume that M is minimal with ε(M) > φrk . Choose an
element e of M . Then ε(M/e) � φ(r − 1)k and

ε(M) − ε(M/e) > φ
(
rk − (r − 1)k) � φrk−1.

When contracting e, |L| − 2 points other than e are lost from each line L containing e. Hence ε(M) −
ε(M/e) � 1 + (l − 1)δM(e) and

(l − 1)δM(e) � φrk−1.

Let A ⊆ E(M) − e be the set of points on long lines through e. Then |A| � 2δM(e) >
2φ
l rk−1. The

previous lemma now gives a set X ⊆ A, with e /∈ clM(X) and

|X | > 2φ(k − 1)

l2
rM(X)k−2 = φ(n − 1, l)rM(X)2(n−2).

Applying the induction hypothesis to M|X we get a minor of M|X that is a rank-(n − 1) pyramid.
Thus, M has a rank-n pyramid minor. �

When l � 2, Theorem 2.2 now follows from Lemmas 6.2, 5.1 and 5.3. For the case l = 1, note that a
simple matroid M in U (1) has no circuits, and thus |E(M)| = r(M). So, taking a = m = 1, the condition
of the theorem is never satisfied.
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