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ABSTRACT: We correct a minor but disturbing mistake in our article “James F. Geelen, A.M.H.

Gerards and Geoff Whittle. Branch-width and well-quasi-ordering in matroids and graphs”, Journal

on Combinatorial Theory, Series B 84 (2002), 270-290”.

On page 275 of [1], in the proof of Theorem 2.1, we write: “As the sets displayed by edges in

T are pairwise either disjoint or comparable by inclusion, it is straightforward to show that

this means that A does not split W .” As Matthias Kriesell kindly pointed out to us, the

first half of this sentence is, ofcourse, incorrect. It should read: “As any two sets displayed

by edges in T are either disjoint, or cover S, or are comparable by inclusion”. Although this

patch makes the argument correct, we here give the entire proof of Theorem 2.1 with the full

argument of why “A does not split W .” For notations see [1].

(2.1) Theorem: An integer valued symmetric submodular function with branch-width n has

a linked branch-decomposition of width n.

Proof: Let λ be an integer valued symmetric submodular function with branch-width n. For

each branch-decomposition T of λ we define Tk to be the forest in T induced by the edges

with width at least k. (Edge induced subgraphs have no isolated nodes.) For a graph H

we denote by e(H) the number of edges in H and by c(H) the number of components of H.

If T and R are two branch-decompositions of λ we write T < R if there exist a number k

such that either e(Tk) < e(Rk) or e(Tk) = e(Rk) and c(Tk) > c(Rk), and such that for each

k′ > k: e(Tk′) = e(Rk′) and c(Tk′) = c(Rk′). This defines a partial order on the branch-

decompositions of λ. Choose a minimal element T in this partial order. Note that T has

width n. We claim that T is linked. Assume not. Choose an unlinked pair of edges f and g

in T . Clearly, f 6= g. Let F be the set displayed by the component of T \ f not containing g,
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Figure 1: Proof of Theorem 2.1

and G the set displayed by the component of T \ g not containing f . Let x be the end vertex

of f and y be the end vertex of g such that the xy-path P in T does not contain f or g.

We say that a subset X of S splits a subset Y of S if Y ∩X and Y \X are both nonempty.

Note that X splitting Y does not imply Y splitting X. Choose a subset A of S \G containing

F with λ(A) = λ(F, G) such that A splits as few subsets of S displayed by edges in T as

possible. Define a new tree T̂ as follows (see Figure 1): take a copy T+ of the component of

T \ g containing f , and a copy T− of the component of T \ f containing g; connect T+ with

T− by a new edge a joining the copy of y in T+ to the copy of x in T−.

We turn T̂ into a branch-decomposition of λ as follows: Each element s of S—which is a

leaf of T—is identified with its copy in T+ if s ∈ A and with its copy in T− otherwise.

(2.1.1) Let e be an edge in T and ê be one of its copies in T̂ . Then λ(ê) ≤ λ(e), with equality

only if e has at most one copy in T̂λ(A)+1.

In order to prove this, by symmetry, we may assume that ê lies in T+. Let W be the set
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displayed by the component of T \ e not containing y. Then, λ(e) = λ(W ) and λ(ê) =

λ(W ∩ A). Combined with submodularity this yields λ(ê) + λ(W ∪ A) ≤ λ(e) + λ(A) =

λ(e)+λ(F, G) ≤ λ(e)+λ(W ∪A). Hence λ(ê) ≤ λ(e), with equality only if λ(W ∪A) = λ(A).

Suppose from now on that λ(ê) = λ(e). Then λ(W ∪ A) = λ(A) = λ(F, G). As the

sets displayed by edges in T are pairwise either disjoint or comparable by inclusion, it is

straightforward to show that this means that A does not split W .

We prove that A does not split W . Suppose it does. By the choice of A we know that ← begin of

new textW ∪ A splits at least as many sets displayed by edges in T as A does. So as W ∪ A does

not split W , there exists a set Y displayed by an edge in T that is split by W ∪ A but

not by A. Then W splits Y and Y does not meet A. As A splits W that means that

W\Y 6= ∅. As Y and W are both displayed by edges in T and as W splits Y that implies

that Y ∪ W = E. So A ⊆ W . Hence W contains F . Moreover, as ê lies in T+, the

choice of W is such that it lies in S\G. Hence, as f and g are not linked in T , we have

λ(F, G) < λ(W ) = λ(e) = λ(ê) = λ(W ∩ A) = λ(A) (as A ⊆ W ). This contradicts that

λ(A) = λ(F, G). So A does not split W indeed. ← end of

new textSo at least one of W ∩ A and W \ A is empty. Note that, by combining symmetry and

submodularity, 2λ(B) = λ(B) + λ(S \ B) ≥ λ(∅) + λ(S) = 2λ(∅) for each B ⊆ S. So either

λ(W ∩A) ≤ λ(A) or λ(W \A) ≤ λ(A). Recall that λ(ê) = λ(W ∩A) and note that if e has a

second copy e∗ in T̂ , so in T−, then λ(e∗) = λ(W ∪A) = λ(A) if e ∈ P and λ(e∗) = λ(W \A)

if e 6∈ P . Hence, at most one of ê and e∗ lies in T̂λ(A)+1. Thus (2.1.1) follows.

Let p the smallest integer greater than λ(A) such that e(Tk) = e(T̂k) for k > p. For each

k ≥ p, it follows from (2.1.1) that each edge of Tk is copied at most once in T̂k. Moreover,

λ(a) = λ(A), hence a 6∈ T̂k for k > λ(A). So if k ≥ p, then e(Tk) ≥ e(T̂k) and c(Tk) ≤ c(T̂k)

whenever e(Tk) = e(T̂k). However T̂ 6< T , so in fact e(Tk) = e(T̂k) and c(Tk) = c(T̂k) for

k ≥ p. Thus also Tp and T̂p have the same number of edges, which by definition of p implies

that p = λ(A)+1. Moreover, as c(T̂λ(A)+1) = c(Tλ(A)+1), each component of Tλ(A)+1 is copied

entirely and as one component in T̂λ(A)+1. In particular this is the case for the component

of Tλ(A)+1 containing P , which lies entirely in Tλ(A)+1. This is absurd: f has a copy only in

T+, g has a copy only in T− and a is not in Tλ(A)+1. So T is linked, indeed. 2
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