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Abstract

We prove that the excluded minors for the class of matroids of branch-width k have size at

most ð6k � 1Þ=5:
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1. Introduction

We prove the following theorem.

Theorem 1.1. If M is an excluded minor for the class of matroids of branch-width at

most k and kX2; then jEðMÞjpð6k � 1Þ=5:
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Branch-width is a parameter for graphs and for matroids which was introduced by
Robertson and Seymour [4]. Unfortunately, the branch-width of a graph may be
larger than that of its cycle matroid; consider, for example, a path of length 3. So, by
itself, Theorem 1.1 says little about graphs. We expect, however, that the branch-
width of a graph is typically the same as that of its cycle matroid. In particular, it is
conjectured that, if G is a graph with a circuit of length at least 2, then the branch-
width of G is the same as that of its cycle matroid.
Theorem 1.1 implies that the excluded minors for the class of matroids of branch-

width 2 have size at most 7. The matroids of branch-width 2 are precisely the series–
parallel matroids; and the excluded minors for this class are known to be U2;4 and

MðK4Þ: The excluded minors for the class of matroids of branch-width 3 are studied
by Hall, Oxley, Semple, and Whittle [2]; they show that the excluded minors have
size at most 14.

2. Branch-width

We assume that the reader is familiar with matroid theory; we use the
notation of Oxley [3]. Let M be a matroid. We define the function lM by lMðX Þ ¼
rMðX Þ þ rMðEðMÞ � XÞ � rðMÞ þ 1 for XDEðMÞ: This function is submodular;
that is, lMðX-YÞ þ lMðX,YÞplMðXÞ þ lMðY Þ for all X ;YDEðMÞ: Also, lMð�Þ
is monotone under taking minors; that is, if N is a minor of M with XDEðNÞ then
lNðX ÞplMðX Þ: A partition ðX ;YÞ of EðMÞ is called a separation of order lMðXÞ
(note that we do not have conditions on the size of X and Y ).
A tree is cubic if its internal vertices all have degree 3. The leaves of a tree are its

degree-1 vertices. A partial branch-decomposition of M is a cubic tree T whose leaves
are labeled by the elements of M: That is, each element of M labels some leaf of T ;
but leaves may be unlabeled or multiply labeled. A branch-decomposition is a partial
branch-decomposition without multiply labeled leaves. If T 0 is a subgraph of T and
XDEðMÞ is the set of labels of T 0; then we say that T 0 displays X : The width of an
edge e of T is defined to be lMðXÞ where X is the set displayed by one of the
components of T\e: The width of T ; denoted eðTÞ; is the maximum among the widths
of its edges.
The branch-width of M is the minimum among the widths of all branch-

decompositions of M: Let ðA;BÞ be a partition of EðMÞ: A branching of B is a
partial branch-decomposition of M in which there is a leaf that displays A and in
which no other leaf is multiply labeled. We say that B is k-branched if there is a
branching T of B with eðTÞpk: Note that, if both A and B are k-branched then M

has branch-width at most k:

Lemma 2.1. Let M be a matroid with branch-width k and let ðA;BÞ be a separation

of order lMðAÞpk: If B is not k-branched, then there exists a partition ðA1;A2;A3Þ
of A such that lMðAiÞolMðAÞ for all iAf1; 2; 3g: (One of A1; A2 and A3 may be

empty.)
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Proof. Suppose that for each partition ðA1;A2;A3Þ of A we have lMðAiÞXlMðAÞ for
some iAf1; 2; 3g:

2.1.1. If ðX1;X2Þ is a separation of order at most k; then either lMðB-X1Þpk or

lMðB-X2Þpk:

Subproof. Considering the partition ðA-X1;A-X2; |Þ of A we see that either
lMðA-X1ÞXlMðAÞ or lMðA-X2ÞXlMðAÞ; suppose, lMðA-X1ÞXlMðAÞ: Hence,
by submodularity, we get lMðA,X1ÞplMðX1Þpk: So, lMðB-X2Þ ¼
lMðA,X1Þpk; as required. &

Let T be a branch-decomposition of M with eðTÞ ¼ k: We may assume that T

has degree-3 vertices, as otherwise the lemma holds trivially. For the same
reason, we may assume kX2: If v is a vertex of T and e is an edge of T we let Xev

denote the set of elements of M displayed by the component of T\e that does not
contain v:

2.1.2. There exists a degree-3 vertex s of T such that, for each edge e of T ;
lMðXes-BÞpk:

Subproof. We construct an orientation of T : Let e be an edge of T ; and let u and v be
the ends of e: If lMðXev-BÞpk then we orient e from u to v; and if lMðXeu-BÞpk

then we orient e from v to u: Thus, by 2.1.1, each edge receives at least one
orientation, maybe two.
First, assume that there exists a node v of T such that every other vertex can be

connected to v by a directed path. As kX2; each edge incident with a leaf has been
oriented away from that leaf. Hence, we may assume that v has degree 3. Then the
claim follows with s ¼ v:
Next, we assume that there is no vertex reachable from every other vertex. Then

there exists a pair of edges e and f and a vertex w on the path connecting e and f such
that neither e nor f is oriented toward w: Let Y1 ¼ Xew; Y3 ¼ Xfw; and Y2 ¼
EðMÞ � ðY1,Y3Þ: Since e and f are oriented away from w; lMððY2,Y3Þ-BÞpk

and lMðY3,AÞ ¼ lMððY1,Y2Þ-BÞpk: The intersection and union of
ðY2,Y3Þ-B and Y3,A are Y3-B and Y2,Y3,A: So by submodularity,
lMðY3-BÞpk or lMðY1-BÞ ¼ lMðY2,Y3,AÞpk: This contradicts the fact that
neither e nor f is oriented towards w: &

Let s be a vertex satisfying 2.1.2, let e1; e2; and e3 be the edges of T incident
with s; and let Xi denote Xeis for each iAf1; 2; 3g: Note that lMðXi-AÞXlMðAÞ for
some iAf1; 2; 3g; suppose that lMðX1-AÞXlMðAÞ: Then, by submodularity,

lMððX2,X3Þ-BÞ ¼ lMðX1,AÞplMðX1Þpk: Now construct a branching T̂ of B

by taking a copy of T keeping only the labels from B; subdividing e1 with a vertex b;
adding a new leaf a incident with b; and labeling a with A: It is easy to see that

eðT̂Þpk; so B is k-branched. &
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3. ðm; f Þ-connectivity

Let f : Zþ-Zþ be a function and mAZþ: A matroid M is called ðm; f Þ-connected
if whenever ðA;BÞ is a separation of order c where com we have either jAjpf ðcÞ or
jBjpf ðcÞ:

Lemma 3.1. Let f : Zþ-Zþ be a nondecreasing function. If e is an element of an

ðm; f Þ-connected matroid M; then M\e or M=e is ðm; 2f Þ-connected.

To prove Lemma 3.1, we use the following result stated in [1, (5.2)].

Proposition 3.2. Let e be an element of a matroid M: If ðX1;X2Þ and ðY1;Y2Þ are

partitions of EðMÞ � feg then

lM\eðX1Þ þ lM=eðY1ÞXlMðX1-Y1Þ þ lMðX2-Y2Þ � 1:

Proof of Lemma 3.1. Suppose the result is false; let ðX1;X2Þ be a separation in M\e

of order a with jX1j; jX2j42f ðaÞ; and let ðY1;Y2Þ be a separation in M=e of order b

with jY1j; jY2j42f ðbÞ: By symmetry, we may assume that lMðX1-Y1Þ
plMðX2-Y2Þ and that lMðX1-Y2ÞplMðX2-Y1Þ: Thus, by Proposition 3.2,

lMðX1-Y1ÞpIaþbþ1
2

m and lMðX1-Y2ÞpIaþbþ1
2

m:Moreover, since jX1j42f ðaÞ and
M is ðm; f Þ-connected, either lMðX1-Y1Þ4a or lMðX1-Y2Þ4a: By symmetry, we

may assume that lMðX1-Y1Þ4a: Thus, Iaþbþ1
2

m4a; and so, Iaþbþ1
2

mpb: There-

fore, lMðX1-Y2Þpb: Moreover, by Proposition 3.2 and the fact that
lMðX1-Y1ÞXa þ 1; we have lMðX2-Y2Þpb: Hence, since M is ðm; f Þ-connected,
jY2j ¼ jY2-X1j þ jY2-X2jp2f ðbÞ; a contradiction. &

4. Excluded minors

Let gðnÞ ¼ ð6n�1 � 1Þ=5:Note that, gð1Þ ¼ 0 and gðnÞ ¼ 6gðn � 1Þ þ 1 for all n41:
The following result is the key lemma in the proof of Theorem 1.1, and is of
independent interest.

Lemma 4.1. If M is an excluded minor for the class of matroids of branch-width kX1
then M is ðk þ 1; gÞ-connected.

Proof. For mAf1;y; kg; we will prove that M is ðm þ 1; gÞ-connected by induction
on m: It is easy to see thatM is ð2; gÞ-connected. Suppose then that mX2 and thatM

is ðm; gÞ-connected. Now, suppose that there exists a separation ðA;BÞ of order m

such that jAj; jBj4gðmÞ ¼ 6gðm � 1Þ þ 1: Since M has branch-width greater than k;
we may assume that B is not k-branched. Now, let eAA: By Lemma 3.1 and duality,
we may assume that M=e is ðm; 2gÞ-connected. Note that M=e has branch-width k:
Consider any partition ðA1;A2;A3Þ of A � feg: Since jAj46gðm � 1Þ þ 1;
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jAij42gðm � 1Þ for some iAf1; 2; 3g: Then, since M=e is ðm; 2gÞ-connected,
lM=eðAiÞXmXlM=eðAÞ: Therefore, by Lemma 2.1, B is k-branched in M=e: Since

B is not k-branched in M; it must be the case that eAclMðBÞ: (Indeed, if XDB and
eeclMðBÞ then lMðXÞ ¼ lM=eðX Þ:) Therefore, ðA � feg;BÞ is a separation inM=e of

order at most m � 1: However, this contradicts the fact that M=e is ðm; 2gÞ-
connected. &

Proof of Theorem 1.1. Let e be an element of M: By Lemmas 4.1 and 3.1 and by
duality, we may assume that M=e is ðk þ 1; 2gÞ-connected. Now, M=e has branch-
width k; let T be a branch-decomposition of M=e with eðTÞ ¼ k: As kX2; matroid
M has at least three elements. Hence T has at least two labeled leaves. As T is cubic,
this implies that T has an edge f such that the sets X1 and X2 displayed by the two
components of T\f each have at least ðjEðMÞj � 1Þ=3 elements. We may assume that
jX1jpjX2j: Then, since M=e is ðk þ 1; 2gÞ-connected, we have jX1jp2gðkÞ: Thus,
jEðMÞjp6gðkÞ þ 1 ¼ gðk þ 1Þ; as required. &
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