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Abstract

We prove that the excluded minors for the class of matroids of branch-width k have size at
most (65 —1)/5.
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1. Introduction
We prove the following theorem.

Theorem 1.1. If M is an excluded minor for the class of matroids of branch-width at
most k and k=2, then |[E(M)|< (6K —1)/5.
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Branch-width is a parameter for graphs and for matroids which was introduced by
Robertson and Seymour [4]. Unfortunately, the branch-width of a graph may be
larger than that of its cycle matroid; consider, for example, a path of length 3. So, by
itself, Theorem 1.1 says little about graphs. We expect, however, that the branch-
width of a graph is typically the same as that of its cycle matroid. In particular, it is
conjectured that, if G is a graph with a circuit of length at least 2, then the branch-
width of G is the same as that of its cycle matroid.

Theorem 1.1 implies that the excluded minors for the class of matroids of branch-
width 2 have size at most 7. The matroids of branch-width 2 are precisely the series—
parallel matroids; and the excluded minors for this class are known to be U, 4 and
M (Ky). The excluded minors for the class of matroids of branch-width 3 are studied
by Hall, Oxley, Semple, and Whittle [2]; they show that the excluded minors have
size at most 14.

2. Branch-width

We assume that the reader is familiar with matroid theory; we use the
notation of Oxley [3]. Let M be a matroid. We define the function Ay, by A (X) =
ru(X) +ru(E(IM) —X)—r(M)+1 for X<E(M). This function is submodular,
thatis, Ay (X nY) + Ay (X0 Y)<Ay(X) + iu(Y) forall X, Y S E(M). Also, Ay ()
is monotone under taking minors; that is, if V is a minor of M with X < E(N) then
IN(X)<Am(X). A partition (X, Y) of E(M) is called a separation of order Ay (X)
(note that we do not have conditions on the size of X and Y).

A tree is cubic if its internal vertices all have degree 3. The leaves of a tree are its
degree-1 vertices. A partial branch-decomposition of M is a cubic tree T whose leaves
are labeled by the elements of M. That is, each element of M labels some leaf of T,
but leaves may be unlabeled or multiply labeled. A branch-decomposition is a partial
branch-decomposition without multiply labeled leaves. If 7" is a subgraph of T and
X< E(M) is the set of labels of 77, then we say that T’ displays X. The width of an
edge e of T is defined to be 4)/(X) where X is the set displayed by one of the
components of T\e. The width of T, denoted ¢(T'), is the maximum among the widths
of its edges.

The branch-width of M is the minimum among the widths of all branch-
decompositions of M. Let (4, B) be a partition of E(M). A branching of B is a
partial branch-decomposition of M in which there is a leaf that displays 4 and in
which no other leaf is multiply labeled. We say that B is k-branched if there is a
branching T of B with ¢(7T") <k. Note that, if both 4 and B are k-branched then M
has branch-width at most k.

Lemma 2.1. Let M be a matroid with branch-width k and let (A, B) be a separation
of order Ay (A)<k. If B is not k-branched, then there exists a partition (A1, A>, A3)
of A such that Ay (A;)<Ay(A) for all ie{1,2,3}. (One of Ay, A2 and Az may be
empty.)
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Proof. Suppose that for each partition (A4, A2, A3) of A we have Ay (A4;) = Ay (A) for
some ie{1,2,3}.

2.1.1. If (X1,X>) is a separation of order at most k, then either Ay (BnXy)<k or
AM(B(\XQ)SIC.

Subproof. Considering the partition (AN X;, 40 X5,0) of 4 we see that either
Ip(An X)) =2y (A) or Ay (ANnXy) =7 (A); suppose, Ay(ANXy) =y (A). Hence,
by submodularity, we get Ay(AuX))<iy(Xi)<k. So, iu(BnXy)=
Am(Au X)) <k, as required. O

Let T be a branch-decomposition of M with ¢(7) = k. We may assume that T’
has degree-3 vertices, as otherwise the lemma holds trivially. For the same
reason, we may assume k>2. If v is a vertex of T and e is an edge of T we let X,,
denote the set of elements of M displayed by the component of T\e that does not
contain v.

2.1.2. There exists a degree-3 vertex s of T such that, for each edge e of T,

Subproof. We construct an orientation of 7. Let ¢ be an edge of T, and let u and v be
the ends of e. If 15/ (X,, " B) <k then we orient e from u to v, and if Ay (X., N B)<k
then we orient e from v to u. Thus, by 2.1.1, each edge receives at least one
orientation, maybe two.

First, assume that there exists a node v of T such that every other vertex can be
connected to v by a directed path. As k=2, each edge incident with a leaf has been
oriented away from that leaf. Hence, we may assume that v has degree 3. Then the
claim follows with s = v.

Next, we assume that there is no vertex reachable from every other vertex. Then
there exists a pair of edges e and f and a vertex w on the path connecting e and f such
that neither e nor f is oriented toward w. Let Y, = X,,, Y3 = Xj, and Y, =
E(M) — (YU Y3). Since e and f are oriented away from w, Ay ((You Y3)nB)<k
and Ay (Y3ud)=2Ay((Y uY2)nB)<k. The intersection and union of
(YauY3)nB and Yzud are Y3nB and Y,uY;uAd. So by submodularity,
Iim(Y3snB)<k or 2y (Y10 B) = Ay (Yo u YU A)<k. This contradicts the fact that
neither e nor f is oriented towards w. [

Let s be a vertex satisfying 2.1.2, let e, e;, and e3 be the edges of T incident
with s, and let X; denote X, for each i€ {1,2,3}. Note that A (X;nA4) =y (A) for
some ie{l,2,3}; suppose that Ay (X;nA)=/y(A4). Then, by submodularity,
(X200 X3)NB) = Ay (X1 vA) <Ay (X)) <k. Now construct a branching T of B
by taking a copy of T keeping only the labels from B, subdividing e; with a vertex b,
adding a new leaf « incident with b, and labeling ¢ with A. It is easy to see that
e(T)<k, so B is k-branched. [
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3. (m,f)-connectivity

Letf:Z.—Z, be a function and meZ. . A matroid M is called (m,f)-connected
if whenever (4, B) is a separation of order / where / <m we have either |4|<f (/) or

|B|<f (7).

Lemma 3.1. Let f:Z, > 7, be a nondecreasing function. If e is an element of an
(m,f)-connected matroid M, then M\e or M /e is (m,2f)-connected.

To prove Lemma 3.1, we use the following result stated in [1, (5.2)].

Proposition 3.2. Let e be an element of a matroid M. If (X1, X>) and (Y1, Y,) are
partitions of E(M) — {e} then

Iane(X1) + Zare(Y1) Z A (X1 0 Y1) + A (X200 Ya) = 1

Proof of Lemma 3.1. Suppose the result is false; let (Xj, X3) be a separation in M\e
of order a with | Xi|, |X2|>2f(a), and let (Y, Y>) be a separation in M /e of order b
with |Yi|,|Y2|>2f(b). By symmetry, we may assume that Ay (X;nY))
<Au(XanY;) and that Ay (X170 Y2)<Ay(X2nYy). Thus, by Proposition 3.2,
I(Xi N Yy) < [ “EE | and Ay (X 0 Ya) < | 452 | Moreover, since | X;|>2f(a) and
M is (m,f)-connected, either Ay (XN Y))>a or 1y(X; N Y,)>a. By symmetry, we
may assume that Ay (X;nY;)>a. Thus, | 425 | >4, and so, | “2H | <b. There-
fore, Am(X1nY2)<b. Moreover, by Proposition 3.2 and the fact that
im(XinY)=a+ 1, we have Ay (X>n Y2)<b. Hence, since M is (m,f)-connected,
| Y2 = | Yan Xi| + | Y20 Xa| <2f(b); a contradiction. O

4. Excluded minors

Let g(n) = (6"~! — 1)/5. Note that, g(1) = 0 and g(n) = 6g(n — 1) + 1 for all n> 1.
The following result is the key lemma in the proof of Theorem 1.1, and is of
independent interest.

Lemma 4.1. If M is an excluded minor for the class of matroids of branch-width k> 1
then M is (k + 1, g)-connected.

Proof. For me{l, ..., k}, we will prove that M is (m + 1, g)-connected by induction
on m. It is easy to see that M is (2, g)-connected. Suppose then that m>2 and that M
is (m, g)-connected. Now, suppose that there exists a separation (A4, B) of order m
such that |4|, |B|>g(m) = 6g(m — 1) + 1. Since M has branch-width greater than k,
we may assume that B is not k-branched. Now, let ee 4. By Lemma 3.1 and duality,
we may assume that M /e is (m,2g)-connected. Note that M /e has branch-width k.
Consider any partition (A4y,A42,43) of A—{e}. Since |A|>6g(m—1)+1,
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|4;|>2g(m — 1) for some ie{l,2,3}. Then, since M/e is (m,2g)-connected,
Inmye(Ai)=m=pr/e(A). Therefore, by Lemma 2.1, B is k-branched in M /e. Since
B is not k-branched in M, it must be the case that eecly/(B). (Indeed, if X =B and
e¢cly(B) then Ay (X) = Apr/(X).) Therefore, (4 — {e}, B) is a separation in M /e of
order at most m — 1. However, this contradicts the fact that M/e is (m,2g)-
connected. [

Proof of Theorem 1.1. Let e be an element of M. By Lemmas 4.1 and 3.1 and by
duality, we may assume that M /e is (k + 1, 2g)-connected. Now, M /e has branch-
width k; let T be a branch-decomposition of M /e with &(T) = k. As k>2, matroid
M has at least three elements. Hence T has at least two labeled leaves. As T is cubic,
this implies that 7" has an edge f such that the sets X} and X, displayed by the two
components of T'\f each have at least (|E(M)| — 1)/3 elements. We may assume that
|X1|<|X3|. Then, since M /e is (k+ 1,2g)-connected, we have |X;|<2g(k). Thus,
|E(M)|<6g(k) +1=g(k+1), as required. [
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