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Abstract

We prove that, for any finite field F and positive integer n; there exists an integer l such that

if M is a simple F-representable matroid with no MðKnÞ-minor, then jEðMÞjplrðMÞ:
r 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

We prove the following conjecture of Kung [5].

Theorem 1.1. For any finite field F and graph G there exists an integer l such that, if M

is a simple F-representable matroid with no MðGÞ-minor, then jEðMÞjplrðMÞ:

Note that it suffices to consider the case that G is a clique. Kung [3,4] proved
Theorem 1.1 in the case that G ¼ K4 and F is any finite field and in the case that
G ¼ K5 and F ¼ GFð2Þ:

For the remainder of the introduction we focus primarily on the class of binary
matroids. Theorem 1.1 shows that, in the class of simple binary matroids with no
MðKnÞ-minor, the number of elements grows linearly with the rank. Note that, if we
consider all (simple) binary matroids this growth rate becomes exponential. Also, if
we exclude a non-graphic matroid instead of MðKnÞ; then the growth rate is at least
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quadratic (since the class will contain all graphic matroids); Kung conjectures that
this is the correct order of magnitude.

Conjecture 1.2 (Kung [5]). For any binary matroid N there exists an integer l such

that, if M is a simple binary matroid with no N-minor, then jEðMÞjplrðMÞ2:

To prove this conjecture it would suffice to consider the case that N is a binary
projective geometry. Kung has analogous conjectures for other finite fields, but for
fields of non-prime order there are complications. For example, all binary matroids
are in the class of GFð4Þ-representable matroids with no U2;4-minor.

Restricted to the class of graphic matroids, Theorem 1.1 specializes to the
following theorem of Mader [7].

Theorem 1.3 (Mader). For any graph H there exists an integer l such that, if G is a

simple graph with no H-minor, then jEðGÞjpljVðGÞj:

Mader’s theorem readily implies the following theorem of Wagner [9].

Theorem 1.4 (Wagner). For any positive integer n there exists an integer l such that,
if G is a graph with no Kn-minor, then G has chromatic number at most l:

Let M be a simple rank-m GFðqÞ-representable matroid. Consider a representa-
tion of M as a restriction of PGðm � 1; qÞ: The critical exponent of M is the
minimum of rðMÞ � rðUÞ among all subspaces U of PGðm � 1; qÞ disjoint with M:
The critical exponent of M is not dependent on the particular GFðqÞ-representation
of M; see [6]. The critical exponent of a representable matroid is closely related to the
chromatic number of a graph (see, for example, [6]), and there is an analogue of
Wagner’s theorem for representable matroids. Kung [5] conjectured the following
result and showed that it is implied by Theorem 1.1.

Theorem 1.5. For any finite field F and integer n there exists an integer l such that, if

M is an F-representable matroid with no MðKnÞ-minor, then the critical exponent of M

is at most l:

Kung’s argument [5] is short, but non-trivial, so we repeat it here. By Theorem 1.1,
there is an integer l such that, for any simple F-representable matroid M with no
MðKnÞ-minor, jEðMÞjplrðMÞ: Let M be a simple rank-m F-representable matroid
with no MðKnÞ-minor. Consider M as a restriction of PGðm � 1; qÞ; where q denotes
the size of F: By our choice of l; jX jplrMðX Þ for each set XDEðMÞ: Then, by the
Matroid Partition Theorem [1], EðMÞ can be partitioned into l independent sets.
Given any one of these independent sets, we can find a hyperplane of PGðm � 1; qÞ
disjoint from it. Intersecting all such hyperplanes, we obtain a subspace U of
PGðm � 1; qÞ disjoint from M with rðUÞXrðMÞ � l: Hence, the critical exponent of
M is at most l:
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2. Matroids with no U2;qþ2-minor

We assume that the reader is familiar with standard definitions in matroid theory.
We use the notation of Oxley [8], with the exception that we denote the simple
matroid canonically associated with the matroid M by siðMÞ:

While we are primarily interested in GFðqÞ-representable matroids, we prove the
following extension of Theorem 1.1 that was also conjectured by Kung [5].

Theorem 2.1. For any positive integers n and q there exists an integer l such that, if M

is a simple matroid with no U2;qþ2- or MðKnÞ-minor, then jEðMÞjplrðMÞ:

If q is a prime power, then U2;qþ2 is the shortest line that is not GFðqÞ-
representable. For any positive integer q we define UðqÞ to be the class of matroids
with no U2;qþ2-minor. It is well-known that a simple rank-r GFðqÞ-representable
matroid has at most qr�1

q�1
elements; Kung [5] showed that the same bound holds for

matroids in UðqÞ:

Lemma 2.2. For any integers rX0 and qX2; if MAUðqÞ is a simple rank-r matroid,

then jEðMÞjpqr�1
q�1

:

The generality gained in extending Theorem 1.1 to Theorem 2.1 comes at the cost
of increasing the constant l: (This is of little concern, since the constants we obtain
are tremendously large in either case.) We shall require an upper bound on the
number of hyperplanes avoiding an element e of a rank-r matroid M: If M is GFðqÞ-
representable, then, by considering PGðr � 1; qÞ; we see that there are at most qr�1

such hyperplanes. On the other hand, when MAUðqÞ; we cannot prove a
comparable bound and settle for the following crude upper bound.

Proposition 2.3. Let rX1 and qX2 be integers and let MAUðqÞ be a simple rank-r

matroid. Then, M has at most qrðr�1Þ hyperplanes.

Proof. Let n ¼ jEðMÞj; thus npqr�1
q�1

pqr: Each hyperplane is spanned by a set of

r � 1 points, so the number of hyperplanes is at most ð n
r�1Þpnr�1pqrðr�1Þ: &

3. Round matroids

We call a matroid M round if each cocircuit of M is spanning. Equivalently, M is
round if and only if EðMÞ cannot be written as the union of two proper flats. For a
simple graph G; MðGÞ is round if and only if G is a clique.

Theorem 3.1 (Geelen et al. [2]). There exists an integer-valued function f ðn; qÞ such

that, for any integers nX1 and qX2; if MAUðqÞ is a round matroid with rank at least

f ðn; qÞ; then M contains an MðKnÞ-minor.
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The following properties are straightforward to check:

1. If M is a round matroid and eAEðMÞ then M=e is round.
2. If N is a spanning minor of M and N is round, then M is round.

Let F be a flat of a matroid M: We call F round if the restriction of M to F is
round. Each rank-one flat is round. Moreover, a rank-two flat is round if and only if
it contains at least 3 rank-one flats. We call a rank-two flat with at least 3 rank-one
flats a long line.

Lemma 3.2. There exists an integer-valued function Zðc; qÞ such that, for any integers

cX0 and qX2; if MAUðqÞ is a simple matroid with jEðMÞj > Zðc; qÞrðMÞ; then there

exists a simple minor N of M that contains more than cjEðNÞj long lines.

Proof. Let Zðc; qÞ ¼ c q2: For each vAE; let Nv ¼ siðM=vÞ: Inductively, we may
assume that jEðNvÞjpZðc; qÞrðNvÞ for each vAE: Now, rðNvÞ ¼ rðMÞ � 1 and
jEðMÞj > Zðc; qÞrðMÞ; so jEðMÞj � jEðNvÞjXZðc; qÞ þ 1: Since MAUðqÞ; any long
line in M has at most q þ 1 points; so when we contract an element the parallel
classes contain at most q elements. Thus v is on at least Zðc; qÞ=ðq � 1Þ long lines. So

the number of long lines is at least
Zðc;qÞ

ðq�1Þðqþ1ÞjEðMÞj > cjEðMÞj: &

Lemma 3.3. Let M be a matroid, let F1 and F2 be round flats of M such that rMðF1Þ ¼
rMðF2Þ ¼ k and rMðF1,F2Þ ¼ k þ 1; and let F be the flat of M spanned by F1,F2: If

FaF1,F2 then F is round.

Proof. Let eAF � ðF1,F2Þ; we may assume that EðMÞ ¼ F1,F2,feg: Suppose
that M is not round, and let C; C0 be a pair of disjoint cocircuits of M; we may
assume that eeC: Also, since e is not a coloop, by possibly swapping F1 and F2; we
may assume that C0-F1 is non-empty. Note that, EðMÞ � F1 is a cocircuit
(containing e), so C-F1 is nonempty. Let M1 be the restriction of M to F1: Then,
C-F1 and C0-F1 both contain cocircuits of M1; and these cocircuits are disjoint.
This contradicts the fact that F1 is round. &

Let F be a set of round flats in M: A rank-k flat F is called F-constructed if there
exist rank-ðk � 1Þ flats F1; F2AF such that F ¼ clMðF1,F2Þ and FaF1,F2: Thus,
the F-constructed flats are round. To facilitate induction, we prove the following
technical lemma that readily implies Theorem 2.1.

Lemma 3.4. There exists an integer-valued function lðc; n; qÞ such that, for all integers

nX2; cX0; and qX2; if MAUðqÞ is a simple matroid with jEðMÞj > lðc; n; qÞrðMÞ;
then there exists a simple minor N of M and a set F of round rank-ðn � 1Þ flats of N

such that the number of F-constructed flats is greater than cjFj:

Proof. Let lð2; c; qÞ ¼ Zðc; qÞ; and, for nX2; we recursively define

lðn þ 1; c; qÞ ¼ lðn; qðnþ1Þ2c þ qn; qÞ:
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The proof is by induction on n: Consider the case that n ¼ 2: Now, let MAUðqÞ be a
simple matroid with jEðMÞj > lð2; c; qÞrðMÞ: By Lemma 3.2, there exists a simple
minor N of M with more than cjEðNÞj long lines. Let F be the set of rank-one flats.
The long lines are F-constructed flats and cjEðNÞj ¼ cjFj; as required.

Suppose that the result holds for n ¼ k and consider the case that n ¼ k þ 1: Now
let MAUðqÞ be a simple matroid with jEðMÞj > lðk þ 1; c; qÞrðMÞ: We let c0 denote

qðkþ1Þ2c þ qk: By the induction hypothesis there exists a simple minor N of M and a
setF of round rank-ðk � 1Þ flats of N such that the number ofF-constructed flats is
greater than c0jFj; suppose that N is minor-minimal with these properties.

Let F1 be the set of F-constructed flats in N and let F2 be the set of F1-
constructed flats in N: Now, for each vAEðNÞ; let Nv ¼ siðN=vÞ: Let Fv denote the
set of rank-ðk � 1Þ flats in Nv corresponding to the set of flats in F in N: That is, if

FAF and veF then clNv
ðFÞAFv: LetF

1
v be the set ofFv-constructed flats in Nv: By

our choice of N; jF1j � c0jFj > 0; and, by the minimality of N; jF1
v j � c0jFvjp0 for

all vAEðNÞ: Thus,

ðjF1j � jF1
v jÞ � c0ðjFj � jFvjÞ > 0:

Let

D ¼
X

ðjFj � jFvj: vAEðNÞÞ

and

D1 ¼
X

ðjF1j � jF1
v j: vAEðNÞÞ:

This proves:

D1 � c0D > 0: ð1Þ

Consider a flat FAF1: By definition there exist flats F1; F2AF such that F ¼
clNðF1,F2Þ and there exists an element vAF � ðF1,F2Þ: Now clNv

ðF1Þ ¼ clNv
ðF2Þ;

so these two flats in F are reduced to a single flat in Fv: This proves:

DXjF1j: ð2Þ

Now, for some vAEðNÞ; compare F1 with F1
v : There are two ways to lose

constructed flats; we can either contract an element in a flat or we contract two flats
onto each other. Firstly, suppose FAF1 and vAF : Note that F � fvg only has rank

k � 1 in N=v; so it will not determine a flat inF1
v : Now F has rank k and, by Lemma

2.2, a rank k flat contains at most qk�1
q�1

oqk elements; we destroy F if we contract any

one of these points. Secondly, consider two flats F1; F2AF1 that are contracted onto
each other in Nv: Let F be the flat of N spanned by F1,F2 in N: Since F1 and F2 are
contracted onto a common rank-k flat in Nv; we see that F has rank k þ 1 and

vAF � ðF1,F2Þ: Thus, FAF2: Now, F has rank k þ 1; so it has at most qkþ1 points.

Moreover, by Proposition 2.3, in a flat of rank k þ 1 there are at most qðkþ1Þk rank-k

flats avoiding a given element. Thus, F � fvg contains at most qðkþ1Þk flats of F;
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these flats will be contracted to a single flat in F1
v : This proves:

D1pqkjF1j þ qðkþ1Þ2 jF2j: ð3Þ
Now, combining (1)–(3), we get

qðkþ1Þ2ðjF2j � cjF1jÞ ¼ qðkþ1Þ2 jF2j � ðc0 � qkÞjF1jXD1 � c0D > 0:

Thus, jF2j > cjF1j: That is, the number of F1-constructed flats in N is greater than

cjF1j; as required. &

Proof of Theorem 2.1. Let l ¼ lðf ðn; qÞ; 0; qÞ and let MAUðqÞ be a simple matroid
with jEðMÞj > lrðMÞ: By Lemma 3.4, M contains a simple minor N and a set F of
round rank-ðf ðn; qÞ � 1Þ flats such that the set of F-constructed flats is non-empty.
Let F be an F-constructed flat. Then, the restriction of N to F is a round rank-
f ðn; qÞ matroid, and hence, by Theorem 3.1, contains an MðKnÞ-minor. &
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